root/lib/zlib_deflate/deftree.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. send_bits
  2. tr_static_init
  3. zlib_tr_init
  4. init_block
  5. pqdownheap
  6. gen_bitlen
  7. gen_codes
  8. build_tree
  9. scan_tree
  10. send_tree
  11. build_bl_tree
  12. send_all_trees
  13. zlib_tr_stored_block
  14. zlib_tr_stored_type_only
  15. zlib_tr_align
  16. zlib_tr_flush_block
  17. zlib_tr_tally
  18. compress_block
  19. set_data_type
  20. copy_block

   1 /* +++ trees.c */
   2 /* trees.c -- output deflated data using Huffman coding
   3  * Copyright (C) 1995-1996 Jean-loup Gailly
   4  * For conditions of distribution and use, see copyright notice in zlib.h 
   5  */
   6 
   7 /*
   8  *  ALGORITHM
   9  *
  10  *      The "deflation" process uses several Huffman trees. The more
  11  *      common source values are represented by shorter bit sequences.
  12  *
  13  *      Each code tree is stored in a compressed form which is itself
  14  * a Huffman encoding of the lengths of all the code strings (in
  15  * ascending order by source values).  The actual code strings are
  16  * reconstructed from the lengths in the inflate process, as described
  17  * in the deflate specification.
  18  *
  19  *  REFERENCES
  20  *
  21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
  22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
  23  *
  24  *      Storer, James A.
  25  *          Data Compression:  Methods and Theory, pp. 49-50.
  26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
  27  *
  28  *      Sedgewick, R.
  29  *          Algorithms, p290.
  30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
  31  */
  32 
  33 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
  34 
  35 /* #include "deflate.h" */
  36 
  37 #include <linux/zutil.h>
  38 #include <linux/bitrev.h>
  39 #include "defutil.h"
  40 
  41 #ifdef DEBUG_ZLIB
  42 #  include <ctype.h>
  43 #endif
  44 
  45 /* ===========================================================================
  46  * Constants
  47  */
  48 
  49 #define MAX_BL_BITS 7
  50 /* Bit length codes must not exceed MAX_BL_BITS bits */
  51 
  52 #define END_BLOCK 256
  53 /* end of block literal code */
  54 
  55 #define REP_3_6      16
  56 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
  57 
  58 #define REPZ_3_10    17
  59 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
  60 
  61 #define REPZ_11_138  18
  62 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
  63 
  64 static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
  65    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
  66 
  67 static const int extra_dbits[D_CODES] /* extra bits for each distance code */
  68    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
  69 
  70 static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
  71    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
  72 
  73 static const uch bl_order[BL_CODES]
  74    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
  75 /* The lengths of the bit length codes are sent in order of decreasing
  76  * probability, to avoid transmitting the lengths for unused bit length codes.
  77  */
  78 
  79 #define Buf_size (8 * 2*sizeof(char))
  80 /* Number of bits used within bi_buf. (bi_buf might be implemented on
  81  * more than 16 bits on some systems.)
  82  */
  83 
  84 /* ===========================================================================
  85  * Local data. These are initialized only once.
  86  */
  87 
  88 static ct_data static_ltree[L_CODES+2];
  89 /* The static literal tree. Since the bit lengths are imposed, there is no
  90  * need for the L_CODES extra codes used during heap construction. However
  91  * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
  92  * below).
  93  */
  94 
  95 static ct_data static_dtree[D_CODES];
  96 /* The static distance tree. (Actually a trivial tree since all codes use
  97  * 5 bits.)
  98  */
  99 
 100 static uch dist_code[512];
 101 /* distance codes. The first 256 values correspond to the distances
 102  * 3 .. 258, the last 256 values correspond to the top 8 bits of
 103  * the 15 bit distances.
 104  */
 105 
 106 static uch length_code[MAX_MATCH-MIN_MATCH+1];
 107 /* length code for each normalized match length (0 == MIN_MATCH) */
 108 
 109 static int base_length[LENGTH_CODES];
 110 /* First normalized length for each code (0 = MIN_MATCH) */
 111 
 112 static int base_dist[D_CODES];
 113 /* First normalized distance for each code (0 = distance of 1) */
 114 
 115 struct static_tree_desc_s {
 116     const ct_data *static_tree;  /* static tree or NULL */
 117     const int *extra_bits;       /* extra bits for each code or NULL */
 118     int     extra_base;          /* base index for extra_bits */
 119     int     elems;               /* max number of elements in the tree */
 120     int     max_length;          /* max bit length for the codes */
 121 };
 122 
 123 static static_tree_desc  static_l_desc =
 124 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
 125 
 126 static static_tree_desc  static_d_desc =
 127 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
 128 
 129 static static_tree_desc  static_bl_desc =
 130 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
 131 
 132 /* ===========================================================================
 133  * Local (static) routines in this file.
 134  */
 135 
 136 static void tr_static_init (void);
 137 static void init_block     (deflate_state *s);
 138 static void pqdownheap     (deflate_state *s, ct_data *tree, int k);
 139 static void gen_bitlen     (deflate_state *s, tree_desc *desc);
 140 static void gen_codes      (ct_data *tree, int max_code, ush *bl_count);
 141 static void build_tree     (deflate_state *s, tree_desc *desc);
 142 static void scan_tree      (deflate_state *s, ct_data *tree, int max_code);
 143 static void send_tree      (deflate_state *s, ct_data *tree, int max_code);
 144 static int  build_bl_tree  (deflate_state *s);
 145 static void send_all_trees (deflate_state *s, int lcodes, int dcodes,
 146                            int blcodes);
 147 static void compress_block (deflate_state *s, ct_data *ltree,
 148                            ct_data *dtree);
 149 static void set_data_type  (deflate_state *s);
 150 static void bi_windup      (deflate_state *s);
 151 static void bi_flush       (deflate_state *s);
 152 static void copy_block     (deflate_state *s, char *buf, unsigned len,
 153                            int header);
 154 
 155 #ifndef DEBUG_ZLIB
 156 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
 157    /* Send a code of the given tree. c and tree must not have side effects */
 158 
 159 #else /* DEBUG_ZLIB */
 160 #  define send_code(s, c, tree) \
 161      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
 162        send_bits(s, tree[c].Code, tree[c].Len); }
 163 #endif
 164 
 165 #define d_code(dist) \
 166    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
 167 /* Mapping from a distance to a distance code. dist is the distance - 1 and
 168  * must not have side effects. dist_code[256] and dist_code[257] are never
 169  * used.
 170  */
 171 
 172 /* ===========================================================================
 173  * Send a value on a given number of bits.
 174  * IN assertion: length <= 16 and value fits in length bits.
 175  */
 176 #ifdef DEBUG_ZLIB
 177 static void send_bits      (deflate_state *s, int value, int length);
 178 
 179 static void send_bits(
 180         deflate_state *s,
 181         int value,  /* value to send */
 182         int length  /* number of bits */
 183 )
 184 {
 185     Tracevv((stderr," l %2d v %4x ", length, value));
 186     Assert(length > 0 && length <= 15, "invalid length");
 187     s->bits_sent += (ulg)length;
 188 
 189     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 190      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
 191      * unused bits in value.
 192      */
 193     if (s->bi_valid > (int)Buf_size - length) {
 194         s->bi_buf |= (value << s->bi_valid);
 195         put_short(s, s->bi_buf);
 196         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
 197         s->bi_valid += length - Buf_size;
 198     } else {
 199         s->bi_buf |= value << s->bi_valid;
 200         s->bi_valid += length;
 201     }
 202 }
 203 #else /* !DEBUG_ZLIB */
 204 
 205 #define send_bits(s, value, length) \
 206 { int len = length;\
 207   if (s->bi_valid > (int)Buf_size - len) {\
 208     int val = value;\
 209     s->bi_buf |= (val << s->bi_valid);\
 210     put_short(s, s->bi_buf);\
 211     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
 212     s->bi_valid += len - Buf_size;\
 213   } else {\
 214     s->bi_buf |= (value) << s->bi_valid;\
 215     s->bi_valid += len;\
 216   }\
 217 }
 218 #endif /* DEBUG_ZLIB */
 219 
 220 /* ===========================================================================
 221  * Initialize the various 'constant' tables. In a multi-threaded environment,
 222  * this function may be called by two threads concurrently, but this is
 223  * harmless since both invocations do exactly the same thing.
 224  */
 225 static void tr_static_init(void)
 226 {
 227     static int static_init_done;
 228     int n;        /* iterates over tree elements */
 229     int bits;     /* bit counter */
 230     int length;   /* length value */
 231     int code;     /* code value */
 232     int dist;     /* distance index */
 233     ush bl_count[MAX_BITS+1];
 234     /* number of codes at each bit length for an optimal tree */
 235 
 236     if (static_init_done) return;
 237 
 238     /* Initialize the mapping length (0..255) -> length code (0..28) */
 239     length = 0;
 240     for (code = 0; code < LENGTH_CODES-1; code++) {
 241         base_length[code] = length;
 242         for (n = 0; n < (1<<extra_lbits[code]); n++) {
 243             length_code[length++] = (uch)code;
 244         }
 245     }
 246     Assert (length == 256, "tr_static_init: length != 256");
 247     /* Note that the length 255 (match length 258) can be represented
 248      * in two different ways: code 284 + 5 bits or code 285, so we
 249      * overwrite length_code[255] to use the best encoding:
 250      */
 251     length_code[length-1] = (uch)code;
 252 
 253     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 254     dist = 0;
 255     for (code = 0 ; code < 16; code++) {
 256         base_dist[code] = dist;
 257         for (n = 0; n < (1<<extra_dbits[code]); n++) {
 258             dist_code[dist++] = (uch)code;
 259         }
 260     }
 261     Assert (dist == 256, "tr_static_init: dist != 256");
 262     dist >>= 7; /* from now on, all distances are divided by 128 */
 263     for ( ; code < D_CODES; code++) {
 264         base_dist[code] = dist << 7;
 265         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
 266             dist_code[256 + dist++] = (uch)code;
 267         }
 268     }
 269     Assert (dist == 256, "tr_static_init: 256+dist != 512");
 270 
 271     /* Construct the codes of the static literal tree */
 272     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
 273     n = 0;
 274     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
 275     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
 276     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
 277     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
 278     /* Codes 286 and 287 do not exist, but we must include them in the
 279      * tree construction to get a canonical Huffman tree (longest code
 280      * all ones)
 281      */
 282     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
 283 
 284     /* The static distance tree is trivial: */
 285     for (n = 0; n < D_CODES; n++) {
 286         static_dtree[n].Len = 5;
 287         static_dtree[n].Code = bitrev32((u32)n) >> (32 - 5);
 288     }
 289     static_init_done = 1;
 290 }
 291 
 292 /* ===========================================================================
 293  * Initialize the tree data structures for a new zlib stream.
 294  */
 295 void zlib_tr_init(
 296         deflate_state *s
 297 )
 298 {
 299     tr_static_init();
 300 
 301     s->compressed_len = 0L;
 302 
 303     s->l_desc.dyn_tree = s->dyn_ltree;
 304     s->l_desc.stat_desc = &static_l_desc;
 305 
 306     s->d_desc.dyn_tree = s->dyn_dtree;
 307     s->d_desc.stat_desc = &static_d_desc;
 308 
 309     s->bl_desc.dyn_tree = s->bl_tree;
 310     s->bl_desc.stat_desc = &static_bl_desc;
 311 
 312     s->bi_buf = 0;
 313     s->bi_valid = 0;
 314     s->last_eob_len = 8; /* enough lookahead for inflate */
 315 #ifdef DEBUG_ZLIB
 316     s->bits_sent = 0L;
 317 #endif
 318 
 319     /* Initialize the first block of the first file: */
 320     init_block(s);
 321 }
 322 
 323 /* ===========================================================================
 324  * Initialize a new block.
 325  */
 326 static void init_block(
 327         deflate_state *s
 328 )
 329 {
 330     int n; /* iterates over tree elements */
 331 
 332     /* Initialize the trees. */
 333     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
 334     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
 335     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
 336 
 337     s->dyn_ltree[END_BLOCK].Freq = 1;
 338     s->opt_len = s->static_len = 0L;
 339     s->last_lit = s->matches = 0;
 340 }
 341 
 342 #define SMALLEST 1
 343 /* Index within the heap array of least frequent node in the Huffman tree */
 344 
 345 
 346 /* ===========================================================================
 347  * Remove the smallest element from the heap and recreate the heap with
 348  * one less element. Updates heap and heap_len.
 349  */
 350 #define pqremove(s, tree, top) \
 351 {\
 352     top = s->heap[SMALLEST]; \
 353     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
 354     pqdownheap(s, tree, SMALLEST); \
 355 }
 356 
 357 /* ===========================================================================
 358  * Compares to subtrees, using the tree depth as tie breaker when
 359  * the subtrees have equal frequency. This minimizes the worst case length.
 360  */
 361 #define smaller(tree, n, m, depth) \
 362    (tree[n].Freq < tree[m].Freq || \
 363    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
 364 
 365 /* ===========================================================================
 366  * Restore the heap property by moving down the tree starting at node k,
 367  * exchanging a node with the smallest of its two sons if necessary, stopping
 368  * when the heap property is re-established (each father smaller than its
 369  * two sons).
 370  */
 371 static void pqdownheap(
 372         deflate_state *s,
 373         ct_data *tree,  /* the tree to restore */
 374         int k           /* node to move down */
 375 )
 376 {
 377     int v = s->heap[k];
 378     int j = k << 1;  /* left son of k */
 379     while (j <= s->heap_len) {
 380         /* Set j to the smallest of the two sons: */
 381         if (j < s->heap_len &&
 382             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
 383             j++;
 384         }
 385         /* Exit if v is smaller than both sons */
 386         if (smaller(tree, v, s->heap[j], s->depth)) break;
 387 
 388         /* Exchange v with the smallest son */
 389         s->heap[k] = s->heap[j];  k = j;
 390 
 391         /* And continue down the tree, setting j to the left son of k */
 392         j <<= 1;
 393     }
 394     s->heap[k] = v;
 395 }
 396 
 397 /* ===========================================================================
 398  * Compute the optimal bit lengths for a tree and update the total bit length
 399  * for the current block.
 400  * IN assertion: the fields freq and dad are set, heap[heap_max] and
 401  *    above are the tree nodes sorted by increasing frequency.
 402  * OUT assertions: the field len is set to the optimal bit length, the
 403  *     array bl_count contains the frequencies for each bit length.
 404  *     The length opt_len is updated; static_len is also updated if stree is
 405  *     not null.
 406  */
 407 static void gen_bitlen(
 408         deflate_state *s,
 409         tree_desc *desc    /* the tree descriptor */
 410 )
 411 {
 412     ct_data *tree        = desc->dyn_tree;
 413     int max_code         = desc->max_code;
 414     const ct_data *stree = desc->stat_desc->static_tree;
 415     const int *extra     = desc->stat_desc->extra_bits;
 416     int base             = desc->stat_desc->extra_base;
 417     int max_length       = desc->stat_desc->max_length;
 418     int h;              /* heap index */
 419     int n, m;           /* iterate over the tree elements */
 420     int bits;           /* bit length */
 421     int xbits;          /* extra bits */
 422     ush f;              /* frequency */
 423     int overflow = 0;   /* number of elements with bit length too large */
 424 
 425     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
 426 
 427     /* In a first pass, compute the optimal bit lengths (which may
 428      * overflow in the case of the bit length tree).
 429      */
 430     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
 431 
 432     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
 433         n = s->heap[h];
 434         bits = tree[tree[n].Dad].Len + 1;
 435         if (bits > max_length) bits = max_length, overflow++;
 436         tree[n].Len = (ush)bits;
 437         /* We overwrite tree[n].Dad which is no longer needed */
 438 
 439         if (n > max_code) continue; /* not a leaf node */
 440 
 441         s->bl_count[bits]++;
 442         xbits = 0;
 443         if (n >= base) xbits = extra[n-base];
 444         f = tree[n].Freq;
 445         s->opt_len += (ulg)f * (bits + xbits);
 446         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
 447     }
 448     if (overflow == 0) return;
 449 
 450     Trace((stderr,"\nbit length overflow\n"));
 451     /* This happens for example on obj2 and pic of the Calgary corpus */
 452 
 453     /* Find the first bit length which could increase: */
 454     do {
 455         bits = max_length-1;
 456         while (s->bl_count[bits] == 0) bits--;
 457         s->bl_count[bits]--;      /* move one leaf down the tree */
 458         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
 459         s->bl_count[max_length]--;
 460         /* The brother of the overflow item also moves one step up,
 461          * but this does not affect bl_count[max_length]
 462          */
 463         overflow -= 2;
 464     } while (overflow > 0);
 465 
 466     /* Now recompute all bit lengths, scanning in increasing frequency.
 467      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 468      * lengths instead of fixing only the wrong ones. This idea is taken
 469      * from 'ar' written by Haruhiko Okumura.)
 470      */
 471     for (bits = max_length; bits != 0; bits--) {
 472         n = s->bl_count[bits];
 473         while (n != 0) {
 474             m = s->heap[--h];
 475             if (m > max_code) continue;
 476             if (tree[m].Len != (unsigned) bits) {
 477                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 478                 s->opt_len += ((long)bits - (long)tree[m].Len)
 479                               *(long)tree[m].Freq;
 480                 tree[m].Len = (ush)bits;
 481             }
 482             n--;
 483         }
 484     }
 485 }
 486 
 487 /* ===========================================================================
 488  * Generate the codes for a given tree and bit counts (which need not be
 489  * optimal).
 490  * IN assertion: the array bl_count contains the bit length statistics for
 491  * the given tree and the field len is set for all tree elements.
 492  * OUT assertion: the field code is set for all tree elements of non
 493  *     zero code length.
 494  */
 495 static void gen_codes(
 496         ct_data *tree,             /* the tree to decorate */
 497         int max_code,              /* largest code with non zero frequency */
 498         ush *bl_count             /* number of codes at each bit length */
 499 )
 500 {
 501     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
 502     ush code = 0;              /* running code value */
 503     int bits;                  /* bit index */
 504     int n;                     /* code index */
 505 
 506     /* The distribution counts are first used to generate the code values
 507      * without bit reversal.
 508      */
 509     for (bits = 1; bits <= MAX_BITS; bits++) {
 510         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
 511     }
 512     /* Check that the bit counts in bl_count are consistent. The last code
 513      * must be all ones.
 514      */
 515     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 516             "inconsistent bit counts");
 517     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 518 
 519     for (n = 0;  n <= max_code; n++) {
 520         int len = tree[n].Len;
 521         if (len == 0) continue;
 522         /* Now reverse the bits */
 523         tree[n].Code = bitrev32((u32)(next_code[len]++)) >> (32 - len);
 524 
 525         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 526              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 527     }
 528 }
 529 
 530 /* ===========================================================================
 531  * Construct one Huffman tree and assigns the code bit strings and lengths.
 532  * Update the total bit length for the current block.
 533  * IN assertion: the field freq is set for all tree elements.
 534  * OUT assertions: the fields len and code are set to the optimal bit length
 535  *     and corresponding code. The length opt_len is updated; static_len is
 536  *     also updated if stree is not null. The field max_code is set.
 537  */
 538 static void build_tree(
 539         deflate_state *s,
 540         tree_desc *desc  /* the tree descriptor */
 541 )
 542 {
 543     ct_data *tree         = desc->dyn_tree;
 544     const ct_data *stree  = desc->stat_desc->static_tree;
 545     int elems             = desc->stat_desc->elems;
 546     int n, m;          /* iterate over heap elements */
 547     int max_code = -1; /* largest code with non zero frequency */
 548     int node;          /* new node being created */
 549 
 550     /* Construct the initial heap, with least frequent element in
 551      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 552      * heap[0] is not used.
 553      */
 554     s->heap_len = 0, s->heap_max = HEAP_SIZE;
 555 
 556     for (n = 0; n < elems; n++) {
 557         if (tree[n].Freq != 0) {
 558             s->heap[++(s->heap_len)] = max_code = n;
 559             s->depth[n] = 0;
 560         } else {
 561             tree[n].Len = 0;
 562         }
 563     }
 564 
 565     /* The pkzip format requires that at least one distance code exists,
 566      * and that at least one bit should be sent even if there is only one
 567      * possible code. So to avoid special checks later on we force at least
 568      * two codes of non zero frequency.
 569      */
 570     while (s->heap_len < 2) {
 571         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
 572         tree[node].Freq = 1;
 573         s->depth[node] = 0;
 574         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
 575         /* node is 0 or 1 so it does not have extra bits */
 576     }
 577     desc->max_code = max_code;
 578 
 579     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 580      * establish sub-heaps of increasing lengths:
 581      */
 582     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
 583 
 584     /* Construct the Huffman tree by repeatedly combining the least two
 585      * frequent nodes.
 586      */
 587     node = elems;              /* next internal node of the tree */
 588     do {
 589         pqremove(s, tree, n);  /* n = node of least frequency */
 590         m = s->heap[SMALLEST]; /* m = node of next least frequency */
 591 
 592         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
 593         s->heap[--(s->heap_max)] = m;
 594 
 595         /* Create a new node father of n and m */
 596         tree[node].Freq = tree[n].Freq + tree[m].Freq;
 597         s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1);
 598         tree[n].Dad = tree[m].Dad = (ush)node;
 599 #ifdef DUMP_BL_TREE
 600         if (tree == s->bl_tree) {
 601             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
 602                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
 603         }
 604 #endif
 605         /* and insert the new node in the heap */
 606         s->heap[SMALLEST] = node++;
 607         pqdownheap(s, tree, SMALLEST);
 608 
 609     } while (s->heap_len >= 2);
 610 
 611     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
 612 
 613     /* At this point, the fields freq and dad are set. We can now
 614      * generate the bit lengths.
 615      */
 616     gen_bitlen(s, (tree_desc *)desc);
 617 
 618     /* The field len is now set, we can generate the bit codes */
 619     gen_codes ((ct_data *)tree, max_code, s->bl_count);
 620 }
 621 
 622 /* ===========================================================================
 623  * Scan a literal or distance tree to determine the frequencies of the codes
 624  * in the bit length tree.
 625  */
 626 static void scan_tree(
 627         deflate_state *s,
 628         ct_data *tree,   /* the tree to be scanned */
 629         int max_code     /* and its largest code of non zero frequency */
 630 )
 631 {
 632     int n;                     /* iterates over all tree elements */
 633     int prevlen = -1;          /* last emitted length */
 634     int curlen;                /* length of current code */
 635     int nextlen = tree[0].Len; /* length of next code */
 636     int count = 0;             /* repeat count of the current code */
 637     int max_count = 7;         /* max repeat count */
 638     int min_count = 4;         /* min repeat count */
 639 
 640     if (nextlen == 0) max_count = 138, min_count = 3;
 641     tree[max_code+1].Len = (ush)0xffff; /* guard */
 642 
 643     for (n = 0; n <= max_code; n++) {
 644         curlen = nextlen; nextlen = tree[n+1].Len;
 645         if (++count < max_count && curlen == nextlen) {
 646             continue;
 647         } else if (count < min_count) {
 648             s->bl_tree[curlen].Freq += count;
 649         } else if (curlen != 0) {
 650             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
 651             s->bl_tree[REP_3_6].Freq++;
 652         } else if (count <= 10) {
 653             s->bl_tree[REPZ_3_10].Freq++;
 654         } else {
 655             s->bl_tree[REPZ_11_138].Freq++;
 656         }
 657         count = 0; prevlen = curlen;
 658         if (nextlen == 0) {
 659             max_count = 138, min_count = 3;
 660         } else if (curlen == nextlen) {
 661             max_count = 6, min_count = 3;
 662         } else {
 663             max_count = 7, min_count = 4;
 664         }
 665     }
 666 }
 667 
 668 /* ===========================================================================
 669  * Send a literal or distance tree in compressed form, using the codes in
 670  * bl_tree.
 671  */
 672 static void send_tree(
 673         deflate_state *s,
 674         ct_data *tree, /* the tree to be scanned */
 675         int max_code   /* and its largest code of non zero frequency */
 676 )
 677 {
 678     int n;                     /* iterates over all tree elements */
 679     int prevlen = -1;          /* last emitted length */
 680     int curlen;                /* length of current code */
 681     int nextlen = tree[0].Len; /* length of next code */
 682     int count = 0;             /* repeat count of the current code */
 683     int max_count = 7;         /* max repeat count */
 684     int min_count = 4;         /* min repeat count */
 685 
 686     /* tree[max_code+1].Len = -1; */  /* guard already set */
 687     if (nextlen == 0) max_count = 138, min_count = 3;
 688 
 689     for (n = 0; n <= max_code; n++) {
 690         curlen = nextlen; nextlen = tree[n+1].Len;
 691         if (++count < max_count && curlen == nextlen) {
 692             continue;
 693         } else if (count < min_count) {
 694             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
 695 
 696         } else if (curlen != 0) {
 697             if (curlen != prevlen) {
 698                 send_code(s, curlen, s->bl_tree); count--;
 699             }
 700             Assert(count >= 3 && count <= 6, " 3_6?");
 701             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
 702 
 703         } else if (count <= 10) {
 704             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
 705 
 706         } else {
 707             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
 708         }
 709         count = 0; prevlen = curlen;
 710         if (nextlen == 0) {
 711             max_count = 138, min_count = 3;
 712         } else if (curlen == nextlen) {
 713             max_count = 6, min_count = 3;
 714         } else {
 715             max_count = 7, min_count = 4;
 716         }
 717     }
 718 }
 719 
 720 /* ===========================================================================
 721  * Construct the Huffman tree for the bit lengths and return the index in
 722  * bl_order of the last bit length code to send.
 723  */
 724 static int build_bl_tree(
 725         deflate_state *s
 726 )
 727 {
 728     int max_blindex;  /* index of last bit length code of non zero freq */
 729 
 730     /* Determine the bit length frequencies for literal and distance trees */
 731     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
 732     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
 733 
 734     /* Build the bit length tree: */
 735     build_tree(s, (tree_desc *)(&(s->bl_desc)));
 736     /* opt_len now includes the length of the tree representations, except
 737      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 738      */
 739 
 740     /* Determine the number of bit length codes to send. The pkzip format
 741      * requires that at least 4 bit length codes be sent. (appnote.txt says
 742      * 3 but the actual value used is 4.)
 743      */
 744     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
 745         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
 746     }
 747     /* Update opt_len to include the bit length tree and counts */
 748     s->opt_len += 3*(max_blindex+1) + 5+5+4;
 749     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 750             s->opt_len, s->static_len));
 751 
 752     return max_blindex;
 753 }
 754 
 755 /* ===========================================================================
 756  * Send the header for a block using dynamic Huffman trees: the counts, the
 757  * lengths of the bit length codes, the literal tree and the distance tree.
 758  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 759  */
 760 static void send_all_trees(
 761         deflate_state *s,
 762         int lcodes,  /* number of codes for each tree */
 763         int dcodes,  /* number of codes for each tree */
 764         int blcodes  /* number of codes for each tree */
 765 )
 766 {
 767     int rank;                    /* index in bl_order */
 768 
 769     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 770     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 771             "too many codes");
 772     Tracev((stderr, "\nbl counts: "));
 773     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
 774     send_bits(s, dcodes-1,   5);
 775     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
 776     for (rank = 0; rank < blcodes; rank++) {
 777         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 778         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
 779     }
 780     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 781 
 782     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
 783     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 784 
 785     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
 786     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 787 }
 788 
 789 /* ===========================================================================
 790  * Send a stored block
 791  */
 792 void zlib_tr_stored_block(
 793         deflate_state *s,
 794         char *buf,        /* input block */
 795         ulg stored_len,   /* length of input block */
 796         int eof           /* true if this is the last block for a file */
 797 )
 798 {
 799     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
 800     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
 801     s->compressed_len += (stored_len + 4) << 3;
 802 
 803     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
 804 }
 805 
 806 /* Send just the `stored block' type code without any length bytes or data.
 807  */
 808 void zlib_tr_stored_type_only(
 809         deflate_state *s
 810 )
 811 {
 812     send_bits(s, (STORED_BLOCK << 1), 3);
 813     bi_windup(s);
 814     s->compressed_len = (s->compressed_len + 3) & ~7L;
 815 }
 816 
 817 
 818 /* ===========================================================================
 819  * Send one empty static block to give enough lookahead for inflate.
 820  * This takes 10 bits, of which 7 may remain in the bit buffer.
 821  * The current inflate code requires 9 bits of lookahead. If the
 822  * last two codes for the previous block (real code plus EOB) were coded
 823  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
 824  * the last real code. In this case we send two empty static blocks instead
 825  * of one. (There are no problems if the previous block is stored or fixed.)
 826  * To simplify the code, we assume the worst case of last real code encoded
 827  * on one bit only.
 828  */
 829 void zlib_tr_align(
 830         deflate_state *s
 831 )
 832 {
 833     send_bits(s, STATIC_TREES<<1, 3);
 834     send_code(s, END_BLOCK, static_ltree);
 835     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
 836     bi_flush(s);
 837     /* Of the 10 bits for the empty block, we have already sent
 838      * (10 - bi_valid) bits. The lookahead for the last real code (before
 839      * the EOB of the previous block) was thus at least one plus the length
 840      * of the EOB plus what we have just sent of the empty static block.
 841      */
 842     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
 843         send_bits(s, STATIC_TREES<<1, 3);
 844         send_code(s, END_BLOCK, static_ltree);
 845         s->compressed_len += 10L;
 846         bi_flush(s);
 847     }
 848     s->last_eob_len = 7;
 849 }
 850 
 851 /* ===========================================================================
 852  * Determine the best encoding for the current block: dynamic trees, static
 853  * trees or store, and output the encoded block to the zip file. This function
 854  * returns the total compressed length for the file so far.
 855  */
 856 ulg zlib_tr_flush_block(
 857         deflate_state *s,
 858         char *buf,        /* input block, or NULL if too old */
 859         ulg stored_len,   /* length of input block */
 860         int eof           /* true if this is the last block for a file */
 861 )
 862 {
 863     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
 864     int max_blindex = 0;  /* index of last bit length code of non zero freq */
 865 
 866     /* Build the Huffman trees unless a stored block is forced */
 867     if (s->level > 0) {
 868 
 869          /* Check if the file is ascii or binary */
 870         if (s->data_type == Z_UNKNOWN) set_data_type(s);
 871 
 872         /* Construct the literal and distance trees */
 873         build_tree(s, (tree_desc *)(&(s->l_desc)));
 874         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 875                 s->static_len));
 876 
 877         build_tree(s, (tree_desc *)(&(s->d_desc)));
 878         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 879                 s->static_len));
 880         /* At this point, opt_len and static_len are the total bit lengths of
 881          * the compressed block data, excluding the tree representations.
 882          */
 883 
 884         /* Build the bit length tree for the above two trees, and get the index
 885          * in bl_order of the last bit length code to send.
 886          */
 887         max_blindex = build_bl_tree(s);
 888 
 889         /* Determine the best encoding. Compute first the block length in bytes*/
 890         opt_lenb = (s->opt_len+3+7)>>3;
 891         static_lenb = (s->static_len+3+7)>>3;
 892 
 893         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 894                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 895                 s->last_lit));
 896 
 897         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
 898 
 899     } else {
 900         Assert(buf != (char*)0, "lost buf");
 901         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 902     }
 903 
 904     /* If compression failed and this is the first and last block,
 905      * and if the .zip file can be seeked (to rewrite the local header),
 906      * the whole file is transformed into a stored file:
 907      */
 908 #ifdef STORED_FILE_OK
 909 #  ifdef FORCE_STORED_FILE
 910     if (eof && s->compressed_len == 0L) { /* force stored file */
 911 #  else
 912     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
 913 #  endif
 914         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
 915         if (buf == (char*)0) error ("block vanished");
 916 
 917         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
 918         s->compressed_len = stored_len << 3;
 919         s->method = STORED;
 920     } else
 921 #endif /* STORED_FILE_OK */
 922 
 923 #ifdef FORCE_STORED
 924     if (buf != (char*)0) { /* force stored block */
 925 #else
 926     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
 927                        /* 4: two words for the lengths */
 928 #endif
 929         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 930          * Otherwise we can't have processed more than WSIZE input bytes since
 931          * the last block flush, because compression would have been
 932          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 933          * transform a block into a stored block.
 934          */
 935         zlib_tr_stored_block(s, buf, stored_len, eof);
 936 
 937 #ifdef FORCE_STATIC
 938     } else if (static_lenb >= 0) { /* force static trees */
 939 #else
 940     } else if (static_lenb == opt_lenb) {
 941 #endif
 942         send_bits(s, (STATIC_TREES<<1)+eof, 3);
 943         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
 944         s->compressed_len += 3 + s->static_len;
 945     } else {
 946         send_bits(s, (DYN_TREES<<1)+eof, 3);
 947         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
 948                        max_blindex+1);
 949         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
 950         s->compressed_len += 3 + s->opt_len;
 951     }
 952     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 953     init_block(s);
 954 
 955     if (eof) {
 956         bi_windup(s);
 957         s->compressed_len += 7;  /* align on byte boundary */
 958     }
 959     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 960            s->compressed_len-7*eof));
 961 
 962     return s->compressed_len >> 3;
 963 }
 964 
 965 /* ===========================================================================
 966  * Save the match info and tally the frequency counts. Return true if
 967  * the current block must be flushed.
 968  */
 969 int zlib_tr_tally(
 970         deflate_state *s,
 971         unsigned dist,  /* distance of matched string */
 972         unsigned lc     /* match length-MIN_MATCH or unmatched char (if dist==0) */
 973 )
 974 {
 975     s->d_buf[s->last_lit] = (ush)dist;
 976     s->l_buf[s->last_lit++] = (uch)lc;
 977     if (dist == 0) {
 978         /* lc is the unmatched char */
 979         s->dyn_ltree[lc].Freq++;
 980     } else {
 981         s->matches++;
 982         /* Here, lc is the match length - MIN_MATCH */
 983         dist--;             /* dist = match distance - 1 */
 984         Assert((ush)dist < (ush)MAX_DIST(s) &&
 985                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 986                (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match");
 987 
 988         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
 989         s->dyn_dtree[d_code(dist)].Freq++;
 990     }
 991 
 992     /* Try to guess if it is profitable to stop the current block here */
 993     if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
 994         /* Compute an upper bound for the compressed length */
 995         ulg out_length = (ulg)s->last_lit*8L;
 996         ulg in_length = (ulg)((long)s->strstart - s->block_start);
 997         int dcode;
 998         for (dcode = 0; dcode < D_CODES; dcode++) {
 999             out_length += (ulg)s->dyn_dtree[dcode].Freq *
1000                 (5L+extra_dbits[dcode]);
1001         }
1002         out_length >>= 3;
1003         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1004                s->last_lit, in_length, out_length,
1005                100L - out_length*100L/in_length));
1006         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1007     }
1008     return (s->last_lit == s->lit_bufsize-1);
1009     /* We avoid equality with lit_bufsize because of wraparound at 64K
1010      * on 16 bit machines and because stored blocks are restricted to
1011      * 64K-1 bytes.
1012      */
1013 }
1014 
1015 /* ===========================================================================
1016  * Send the block data compressed using the given Huffman trees
1017  */
1018 static void compress_block(
1019         deflate_state *s,
1020         ct_data *ltree, /* literal tree */
1021         ct_data *dtree  /* distance tree */
1022 )
1023 {
1024     unsigned dist;      /* distance of matched string */
1025     int lc;             /* match length or unmatched char (if dist == 0) */
1026     unsigned lx = 0;    /* running index in l_buf */
1027     unsigned code;      /* the code to send */
1028     int extra;          /* number of extra bits to send */
1029 
1030     if (s->last_lit != 0) do {
1031         dist = s->d_buf[lx];
1032         lc = s->l_buf[lx++];
1033         if (dist == 0) {
1034             send_code(s, lc, ltree); /* send a literal byte */
1035             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1036         } else {
1037             /* Here, lc is the match length - MIN_MATCH */
1038             code = length_code[lc];
1039             send_code(s, code+LITERALS+1, ltree); /* send the length code */
1040             extra = extra_lbits[code];
1041             if (extra != 0) {
1042                 lc -= base_length[code];
1043                 send_bits(s, lc, extra);       /* send the extra length bits */
1044             }
1045             dist--; /* dist is now the match distance - 1 */
1046             code = d_code(dist);
1047             Assert (code < D_CODES, "bad d_code");
1048 
1049             send_code(s, code, dtree);       /* send the distance code */
1050             extra = extra_dbits[code];
1051             if (extra != 0) {
1052                 dist -= base_dist[code];
1053                 send_bits(s, dist, extra);   /* send the extra distance bits */
1054             }
1055         } /* literal or match pair ? */
1056 
1057         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1058         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1059 
1060     } while (lx < s->last_lit);
1061 
1062     send_code(s, END_BLOCK, ltree);
1063     s->last_eob_len = ltree[END_BLOCK].Len;
1064 }
1065 
1066 /* ===========================================================================
1067  * Set the data type to ASCII or BINARY, using a crude approximation:
1068  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1069  * IN assertion: the fields freq of dyn_ltree are set and the total of all
1070  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1071  */
1072 static void set_data_type(
1073         deflate_state *s
1074 )
1075 {
1076     int n = 0;
1077     unsigned ascii_freq = 0;
1078     unsigned bin_freq = 0;
1079     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
1080     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
1081     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1082     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1083 }
1084 
1085 /* ===========================================================================
1086  * Copy a stored block, storing first the length and its
1087  * one's complement if requested.
1088  */
1089 static void copy_block(
1090         deflate_state *s,
1091         char    *buf,     /* the input data */
1092         unsigned len,     /* its length */
1093         int      header   /* true if block header must be written */
1094 )
1095 {
1096     bi_windup(s);        /* align on byte boundary */
1097     s->last_eob_len = 8; /* enough lookahead for inflate */
1098 
1099     if (header) {
1100         put_short(s, (ush)len);   
1101         put_short(s, (ush)~len);
1102 #ifdef DEBUG_ZLIB
1103         s->bits_sent += 2*16;
1104 #endif
1105     }
1106 #ifdef DEBUG_ZLIB
1107     s->bits_sent += (ulg)len<<3;
1108 #endif
1109     /* bundle up the put_byte(s, *buf++) calls */
1110     memcpy(&s->pending_buf[s->pending], buf, len);
1111     s->pending += len;
1112 }
1113 

/* [<][>][^][v][top][bottom][index][help] */