root/tools/lib/bpf/btf_dump.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pfx
  2. str_hash_fn
  3. str_equal_fn
  4. btf_name_of
  5. btf_dump_printf
  6. btf_dump__new
  7. btf_dump__free
  8. btf_dump__dump_type
  9. btf_dump_mark_referenced
  10. btf_dump_add_emit_queue_id
  11. btf_dump_order_type
  12. btf_dump_is_blacklisted
  13. btf_dump_emit_type
  14. btf_align_of
  15. btf_is_struct_packed
  16. chip_away_bits
  17. btf_dump_emit_bit_padding
  18. btf_dump_emit_struct_fwd
  19. btf_dump_emit_struct_def
  20. btf_dump_emit_enum_fwd
  21. btf_dump_emit_enum_def
  22. btf_dump_emit_fwd_def
  23. btf_dump_emit_typedef_def
  24. btf_dump_push_decl_stack_id
  25. btf_dump_emit_type_decl
  26. btf_dump_emit_mods
  27. btf_dump_emit_name
  28. btf_dump_emit_type_chain
  29. btf_dump_name_dups
  30. btf_dump_resolve_name
  31. btf_dump_type_name
  32. btf_dump_ident_name

   1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2 
   3 /*
   4  * BTF-to-C type converter.
   5  *
   6  * Copyright (c) 2019 Facebook
   7  */
   8 
   9 #include <stdbool.h>
  10 #include <stddef.h>
  11 #include <stdlib.h>
  12 #include <string.h>
  13 #include <errno.h>
  14 #include <linux/err.h>
  15 #include <linux/btf.h>
  16 #include "btf.h"
  17 #include "hashmap.h"
  18 #include "libbpf.h"
  19 #include "libbpf_internal.h"
  20 
  21 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
  22 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
  23 
  24 static const char *pfx(int lvl)
  25 {
  26         return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
  27 }
  28 
  29 enum btf_dump_type_order_state {
  30         NOT_ORDERED,
  31         ORDERING,
  32         ORDERED,
  33 };
  34 
  35 enum btf_dump_type_emit_state {
  36         NOT_EMITTED,
  37         EMITTING,
  38         EMITTED,
  39 };
  40 
  41 /* per-type auxiliary state */
  42 struct btf_dump_type_aux_state {
  43         /* topological sorting state */
  44         enum btf_dump_type_order_state order_state: 2;
  45         /* emitting state used to determine the need for forward declaration */
  46         enum btf_dump_type_emit_state emit_state: 2;
  47         /* whether forward declaration was already emitted */
  48         __u8 fwd_emitted: 1;
  49         /* whether unique non-duplicate name was already assigned */
  50         __u8 name_resolved: 1;
  51         /* whether type is referenced from any other type */
  52         __u8 referenced: 1;
  53 };
  54 
  55 struct btf_dump {
  56         const struct btf *btf;
  57         const struct btf_ext *btf_ext;
  58         btf_dump_printf_fn_t printf_fn;
  59         struct btf_dump_opts opts;
  60 
  61         /* per-type auxiliary state */
  62         struct btf_dump_type_aux_state *type_states;
  63         /* per-type optional cached unique name, must be freed, if present */
  64         const char **cached_names;
  65 
  66         /* topo-sorted list of dependent type definitions */
  67         __u32 *emit_queue;
  68         int emit_queue_cap;
  69         int emit_queue_cnt;
  70 
  71         /*
  72          * stack of type declarations (e.g., chain of modifiers, arrays,
  73          * funcs, etc)
  74          */
  75         __u32 *decl_stack;
  76         int decl_stack_cap;
  77         int decl_stack_cnt;
  78 
  79         /* maps struct/union/enum name to a number of name occurrences */
  80         struct hashmap *type_names;
  81         /*
  82          * maps typedef identifiers and enum value names to a number of such
  83          * name occurrences
  84          */
  85         struct hashmap *ident_names;
  86 };
  87 
  88 static size_t str_hash_fn(const void *key, void *ctx)
  89 {
  90         const char *s = key;
  91         size_t h = 0;
  92 
  93         while (*s) {
  94                 h = h * 31 + *s;
  95                 s++;
  96         }
  97         return h;
  98 }
  99 
 100 static bool str_equal_fn(const void *a, const void *b, void *ctx)
 101 {
 102         return strcmp(a, b) == 0;
 103 }
 104 
 105 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
 106 {
 107         return btf__name_by_offset(d->btf, name_off);
 108 }
 109 
 110 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
 111 {
 112         va_list args;
 113 
 114         va_start(args, fmt);
 115         d->printf_fn(d->opts.ctx, fmt, args);
 116         va_end(args);
 117 }
 118 
 119 struct btf_dump *btf_dump__new(const struct btf *btf,
 120                                const struct btf_ext *btf_ext,
 121                                const struct btf_dump_opts *opts,
 122                                btf_dump_printf_fn_t printf_fn)
 123 {
 124         struct btf_dump *d;
 125         int err;
 126 
 127         d = calloc(1, sizeof(struct btf_dump));
 128         if (!d)
 129                 return ERR_PTR(-ENOMEM);
 130 
 131         d->btf = btf;
 132         d->btf_ext = btf_ext;
 133         d->printf_fn = printf_fn;
 134         d->opts.ctx = opts ? opts->ctx : NULL;
 135 
 136         d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 137         if (IS_ERR(d->type_names)) {
 138                 err = PTR_ERR(d->type_names);
 139                 d->type_names = NULL;
 140                 btf_dump__free(d);
 141                 return ERR_PTR(err);
 142         }
 143         d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 144         if (IS_ERR(d->ident_names)) {
 145                 err = PTR_ERR(d->ident_names);
 146                 d->ident_names = NULL;
 147                 btf_dump__free(d);
 148                 return ERR_PTR(err);
 149         }
 150 
 151         return d;
 152 }
 153 
 154 void btf_dump__free(struct btf_dump *d)
 155 {
 156         int i, cnt;
 157 
 158         if (!d)
 159                 return;
 160 
 161         free(d->type_states);
 162         if (d->cached_names) {
 163                 /* any set cached name is owned by us and should be freed */
 164                 for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
 165                         if (d->cached_names[i])
 166                                 free((void *)d->cached_names[i]);
 167                 }
 168         }
 169         free(d->cached_names);
 170         free(d->emit_queue);
 171         free(d->decl_stack);
 172         hashmap__free(d->type_names);
 173         hashmap__free(d->ident_names);
 174 
 175         free(d);
 176 }
 177 
 178 static int btf_dump_mark_referenced(struct btf_dump *d);
 179 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
 180 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
 181 
 182 /*
 183  * Dump BTF type in a compilable C syntax, including all the necessary
 184  * dependent types, necessary for compilation. If some of the dependent types
 185  * were already emitted as part of previous btf_dump__dump_type() invocation
 186  * for another type, they won't be emitted again. This API allows callers to
 187  * filter out BTF types according to user-defined criterias and emitted only
 188  * minimal subset of types, necessary to compile everything. Full struct/union
 189  * definitions will still be emitted, even if the only usage is through
 190  * pointer and could be satisfied with just a forward declaration.
 191  *
 192  * Dumping is done in two high-level passes:
 193  *   1. Topologically sort type definitions to satisfy C rules of compilation.
 194  *   2. Emit type definitions in C syntax.
 195  *
 196  * Returns 0 on success; <0, otherwise.
 197  */
 198 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
 199 {
 200         int err, i;
 201 
 202         if (id > btf__get_nr_types(d->btf))
 203                 return -EINVAL;
 204 
 205         /* type states are lazily allocated, as they might not be needed */
 206         if (!d->type_states) {
 207                 d->type_states = calloc(1 + btf__get_nr_types(d->btf),
 208                                         sizeof(d->type_states[0]));
 209                 if (!d->type_states)
 210                         return -ENOMEM;
 211                 d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
 212                                          sizeof(d->cached_names[0]));
 213                 if (!d->cached_names)
 214                         return -ENOMEM;
 215 
 216                 /* VOID is special */
 217                 d->type_states[0].order_state = ORDERED;
 218                 d->type_states[0].emit_state = EMITTED;
 219 
 220                 /* eagerly determine referenced types for anon enums */
 221                 err = btf_dump_mark_referenced(d);
 222                 if (err)
 223                         return err;
 224         }
 225 
 226         d->emit_queue_cnt = 0;
 227         err = btf_dump_order_type(d, id, false);
 228         if (err < 0)
 229                 return err;
 230 
 231         for (i = 0; i < d->emit_queue_cnt; i++)
 232                 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
 233 
 234         return 0;
 235 }
 236 
 237 /*
 238  * Mark all types that are referenced from any other type. This is used to
 239  * determine top-level anonymous enums that need to be emitted as an
 240  * independent type declarations.
 241  * Anonymous enums come in two flavors: either embedded in a struct's field
 242  * definition, in which case they have to be declared inline as part of field
 243  * type declaration; or as a top-level anonymous enum, typically used for
 244  * declaring global constants. It's impossible to distinguish between two
 245  * without knowning whether given enum type was referenced from other type:
 246  * top-level anonymous enum won't be referenced by anything, while embedded
 247  * one will.
 248  */
 249 static int btf_dump_mark_referenced(struct btf_dump *d)
 250 {
 251         int i, j, n = btf__get_nr_types(d->btf);
 252         const struct btf_type *t;
 253         __u16 vlen;
 254 
 255         for (i = 1; i <= n; i++) {
 256                 t = btf__type_by_id(d->btf, i);
 257                 vlen = btf_vlen(t);
 258 
 259                 switch (btf_kind(t)) {
 260                 case BTF_KIND_INT:
 261                 case BTF_KIND_ENUM:
 262                 case BTF_KIND_FWD:
 263                         break;
 264 
 265                 case BTF_KIND_VOLATILE:
 266                 case BTF_KIND_CONST:
 267                 case BTF_KIND_RESTRICT:
 268                 case BTF_KIND_PTR:
 269                 case BTF_KIND_TYPEDEF:
 270                 case BTF_KIND_FUNC:
 271                 case BTF_KIND_VAR:
 272                         d->type_states[t->type].referenced = 1;
 273                         break;
 274 
 275                 case BTF_KIND_ARRAY: {
 276                         const struct btf_array *a = btf_array(t);
 277 
 278                         d->type_states[a->index_type].referenced = 1;
 279                         d->type_states[a->type].referenced = 1;
 280                         break;
 281                 }
 282                 case BTF_KIND_STRUCT:
 283                 case BTF_KIND_UNION: {
 284                         const struct btf_member *m = btf_members(t);
 285 
 286                         for (j = 0; j < vlen; j++, m++)
 287                                 d->type_states[m->type].referenced = 1;
 288                         break;
 289                 }
 290                 case BTF_KIND_FUNC_PROTO: {
 291                         const struct btf_param *p = btf_params(t);
 292 
 293                         for (j = 0; j < vlen; j++, p++)
 294                                 d->type_states[p->type].referenced = 1;
 295                         break;
 296                 }
 297                 case BTF_KIND_DATASEC: {
 298                         const struct btf_var_secinfo *v = btf_var_secinfos(t);
 299 
 300                         for (j = 0; j < vlen; j++, v++)
 301                                 d->type_states[v->type].referenced = 1;
 302                         break;
 303                 }
 304                 default:
 305                         return -EINVAL;
 306                 }
 307         }
 308         return 0;
 309 }
 310 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
 311 {
 312         __u32 *new_queue;
 313         size_t new_cap;
 314 
 315         if (d->emit_queue_cnt >= d->emit_queue_cap) {
 316                 new_cap = max(16, d->emit_queue_cap * 3 / 2);
 317                 new_queue = realloc(d->emit_queue,
 318                                     new_cap * sizeof(new_queue[0]));
 319                 if (!new_queue)
 320                         return -ENOMEM;
 321                 d->emit_queue = new_queue;
 322                 d->emit_queue_cap = new_cap;
 323         }
 324 
 325         d->emit_queue[d->emit_queue_cnt++] = id;
 326         return 0;
 327 }
 328 
 329 /*
 330  * Determine order of emitting dependent types and specified type to satisfy
 331  * C compilation rules.  This is done through topological sorting with an
 332  * additional complication which comes from C rules. The main idea for C is
 333  * that if some type is "embedded" into a struct/union, it's size needs to be
 334  * known at the time of definition of containing type. E.g., for:
 335  *
 336  *      struct A {};
 337  *      struct B { struct A x; }
 338  *
 339  * struct A *HAS* to be defined before struct B, because it's "embedded",
 340  * i.e., it is part of struct B layout. But in the following case:
 341  *
 342  *      struct A;
 343  *      struct B { struct A *x; }
 344  *      struct A {};
 345  *
 346  * it's enough to just have a forward declaration of struct A at the time of
 347  * struct B definition, as struct B has a pointer to struct A, so the size of
 348  * field x is known without knowing struct A size: it's sizeof(void *).
 349  *
 350  * Unfortunately, there are some trickier cases we need to handle, e.g.:
 351  *
 352  *      struct A {}; // if this was forward-declaration: compilation error
 353  *      struct B {
 354  *              struct { // anonymous struct
 355  *                      struct A y;
 356  *              } *x;
 357  *      };
 358  *
 359  * In this case, struct B's field x is a pointer, so it's size is known
 360  * regardless of the size of (anonymous) struct it points to. But because this
 361  * struct is anonymous and thus defined inline inside struct B, *and* it
 362  * embeds struct A, compiler requires full definition of struct A to be known
 363  * before struct B can be defined. This creates a transitive dependency
 364  * between struct A and struct B. If struct A was forward-declared before
 365  * struct B definition and fully defined after struct B definition, that would
 366  * trigger compilation error.
 367  *
 368  * All this means that while we are doing topological sorting on BTF type
 369  * graph, we need to determine relationships between different types (graph
 370  * nodes):
 371  *   - weak link (relationship) between X and Y, if Y *CAN* be
 372  *   forward-declared at the point of X definition;
 373  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
 374  *
 375  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
 376  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
 377  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
 378  * Weak/strong relationship is determined recursively during DFS traversal and
 379  * is returned as a result from btf_dump_order_type().
 380  *
 381  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
 382  * but it is not guaranteeing that no extraneous forward declarations will be
 383  * emitted.
 384  *
 385  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
 386  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
 387  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
 388  * entire graph path, so depending where from one came to that BTF type, it
 389  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
 390  * once they are processed, there is no need to do it again, so they are
 391  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
 392  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
 393  * in any case, once those are processed, no need to do it again, as the
 394  * result won't change.
 395  *
 396  * Returns:
 397  *   - 1, if type is part of strong link (so there is strong topological
 398  *   ordering requirements);
 399  *   - 0, if type is part of weak link (so can be satisfied through forward
 400  *   declaration);
 401  *   - <0, on error (e.g., unsatisfiable type loop detected).
 402  */
 403 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
 404 {
 405         /*
 406          * Order state is used to detect strong link cycles, but only for BTF
 407          * kinds that are or could be an independent definition (i.e.,
 408          * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
 409          * func_protos, modifiers are just means to get to these definitions.
 410          * Int/void don't need definitions, they are assumed to be always
 411          * properly defined.  We also ignore datasec, var, and funcs for now.
 412          * So for all non-defining kinds, we never even set ordering state,
 413          * for defining kinds we set ORDERING and subsequently ORDERED if it
 414          * forms a strong link.
 415          */
 416         struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 417         const struct btf_type *t;
 418         __u16 vlen;
 419         int err, i;
 420 
 421         /* return true, letting typedefs know that it's ok to be emitted */
 422         if (tstate->order_state == ORDERED)
 423                 return 1;
 424 
 425         t = btf__type_by_id(d->btf, id);
 426 
 427         if (tstate->order_state == ORDERING) {
 428                 /* type loop, but resolvable through fwd declaration */
 429                 if (btf_is_composite(t) && through_ptr && t->name_off != 0)
 430                         return 0;
 431                 pr_warning("unsatisfiable type cycle, id:[%u]\n", id);
 432                 return -ELOOP;
 433         }
 434 
 435         switch (btf_kind(t)) {
 436         case BTF_KIND_INT:
 437                 tstate->order_state = ORDERED;
 438                 return 0;
 439 
 440         case BTF_KIND_PTR:
 441                 err = btf_dump_order_type(d, t->type, true);
 442                 tstate->order_state = ORDERED;
 443                 return err;
 444 
 445         case BTF_KIND_ARRAY:
 446                 return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
 447 
 448         case BTF_KIND_STRUCT:
 449         case BTF_KIND_UNION: {
 450                 const struct btf_member *m = btf_members(t);
 451                 /*
 452                  * struct/union is part of strong link, only if it's embedded
 453                  * (so no ptr in a path) or it's anonymous (so has to be
 454                  * defined inline, even if declared through ptr)
 455                  */
 456                 if (through_ptr && t->name_off != 0)
 457                         return 0;
 458 
 459                 tstate->order_state = ORDERING;
 460 
 461                 vlen = btf_vlen(t);
 462                 for (i = 0; i < vlen; i++, m++) {
 463                         err = btf_dump_order_type(d, m->type, false);
 464                         if (err < 0)
 465                                 return err;
 466                 }
 467 
 468                 if (t->name_off != 0) {
 469                         err = btf_dump_add_emit_queue_id(d, id);
 470                         if (err < 0)
 471                                 return err;
 472                 }
 473 
 474                 tstate->order_state = ORDERED;
 475                 return 1;
 476         }
 477         case BTF_KIND_ENUM:
 478         case BTF_KIND_FWD:
 479                 /*
 480                  * non-anonymous or non-referenced enums are top-level
 481                  * declarations and should be emitted. Same logic can be
 482                  * applied to FWDs, it won't hurt anyways.
 483                  */
 484                 if (t->name_off != 0 || !tstate->referenced) {
 485                         err = btf_dump_add_emit_queue_id(d, id);
 486                         if (err)
 487                                 return err;
 488                 }
 489                 tstate->order_state = ORDERED;
 490                 return 1;
 491 
 492         case BTF_KIND_TYPEDEF: {
 493                 int is_strong;
 494 
 495                 is_strong = btf_dump_order_type(d, t->type, through_ptr);
 496                 if (is_strong < 0)
 497                         return is_strong;
 498 
 499                 /* typedef is similar to struct/union w.r.t. fwd-decls */
 500                 if (through_ptr && !is_strong)
 501                         return 0;
 502 
 503                 /* typedef is always a named definition */
 504                 err = btf_dump_add_emit_queue_id(d, id);
 505                 if (err)
 506                         return err;
 507 
 508                 d->type_states[id].order_state = ORDERED;
 509                 return 1;
 510         }
 511         case BTF_KIND_VOLATILE:
 512         case BTF_KIND_CONST:
 513         case BTF_KIND_RESTRICT:
 514                 return btf_dump_order_type(d, t->type, through_ptr);
 515 
 516         case BTF_KIND_FUNC_PROTO: {
 517                 const struct btf_param *p = btf_params(t);
 518                 bool is_strong;
 519 
 520                 err = btf_dump_order_type(d, t->type, through_ptr);
 521                 if (err < 0)
 522                         return err;
 523                 is_strong = err > 0;
 524 
 525                 vlen = btf_vlen(t);
 526                 for (i = 0; i < vlen; i++, p++) {
 527                         err = btf_dump_order_type(d, p->type, through_ptr);
 528                         if (err < 0)
 529                                 return err;
 530                         if (err > 0)
 531                                 is_strong = true;
 532                 }
 533                 return is_strong;
 534         }
 535         case BTF_KIND_FUNC:
 536         case BTF_KIND_VAR:
 537         case BTF_KIND_DATASEC:
 538                 d->type_states[id].order_state = ORDERED;
 539                 return 0;
 540 
 541         default:
 542                 return -EINVAL;
 543         }
 544 }
 545 
 546 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 547                                      const struct btf_type *t);
 548 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
 549                                      const struct btf_type *t, int lvl);
 550 
 551 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 552                                    const struct btf_type *t);
 553 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 554                                    const struct btf_type *t, int lvl);
 555 
 556 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 557                                   const struct btf_type *t);
 558 
 559 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 560                                       const struct btf_type *t, int lvl);
 561 
 562 /* a local view into a shared stack */
 563 struct id_stack {
 564         const __u32 *ids;
 565         int cnt;
 566 };
 567 
 568 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
 569                                     const char *fname, int lvl);
 570 static void btf_dump_emit_type_chain(struct btf_dump *d,
 571                                      struct id_stack *decl_stack,
 572                                      const char *fname, int lvl);
 573 
 574 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
 575 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
 576 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
 577                                  const char *orig_name);
 578 
 579 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
 580 {
 581         const struct btf_type *t = btf__type_by_id(d->btf, id);
 582 
 583         /* __builtin_va_list is a compiler built-in, which causes compilation
 584          * errors, when compiling w/ different compiler, then used to compile
 585          * original code (e.g., GCC to compile kernel, Clang to use generated
 586          * C header from BTF). As it is built-in, it should be already defined
 587          * properly internally in compiler.
 588          */
 589         if (t->name_off == 0)
 590                 return false;
 591         return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
 592 }
 593 
 594 /*
 595  * Emit C-syntax definitions of types from chains of BTF types.
 596  *
 597  * High-level handling of determining necessary forward declarations are handled
 598  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
 599  * declarations/definitions in C syntax  are handled by a combo of
 600  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
 601  * corresponding btf_dump_emit_*_{def,fwd}() functions.
 602  *
 603  * We also keep track of "containing struct/union type ID" to determine when
 604  * we reference it from inside and thus can avoid emitting unnecessary forward
 605  * declaration.
 606  *
 607  * This algorithm is designed in such a way, that even if some error occurs
 608  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
 609  * that doesn't comply to C rules completely), algorithm will try to proceed
 610  * and produce as much meaningful output as possible.
 611  */
 612 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
 613 {
 614         struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 615         bool top_level_def = cont_id == 0;
 616         const struct btf_type *t;
 617         __u16 kind;
 618 
 619         if (tstate->emit_state == EMITTED)
 620                 return;
 621 
 622         t = btf__type_by_id(d->btf, id);
 623         kind = btf_kind(t);
 624 
 625         if (tstate->emit_state == EMITTING) {
 626                 if (tstate->fwd_emitted)
 627                         return;
 628 
 629                 switch (kind) {
 630                 case BTF_KIND_STRUCT:
 631                 case BTF_KIND_UNION:
 632                         /*
 633                          * if we are referencing a struct/union that we are
 634                          * part of - then no need for fwd declaration
 635                          */
 636                         if (id == cont_id)
 637                                 return;
 638                         if (t->name_off == 0) {
 639                                 pr_warning("anonymous struct/union loop, id:[%u]\n",
 640                                            id);
 641                                 return;
 642                         }
 643                         btf_dump_emit_struct_fwd(d, id, t);
 644                         btf_dump_printf(d, ";\n\n");
 645                         tstate->fwd_emitted = 1;
 646                         break;
 647                 case BTF_KIND_TYPEDEF:
 648                         /*
 649                          * for typedef fwd_emitted means typedef definition
 650                          * was emitted, but it can be used only for "weak"
 651                          * references through pointer only, not for embedding
 652                          */
 653                         if (!btf_dump_is_blacklisted(d, id)) {
 654                                 btf_dump_emit_typedef_def(d, id, t, 0);
 655                                 btf_dump_printf(d, ";\n\n");
 656                         };
 657                         tstate->fwd_emitted = 1;
 658                         break;
 659                 default:
 660                         break;
 661                 }
 662 
 663                 return;
 664         }
 665 
 666         switch (kind) {
 667         case BTF_KIND_INT:
 668                 tstate->emit_state = EMITTED;
 669                 break;
 670         case BTF_KIND_ENUM:
 671                 if (top_level_def) {
 672                         btf_dump_emit_enum_def(d, id, t, 0);
 673                         btf_dump_printf(d, ";\n\n");
 674                 }
 675                 tstate->emit_state = EMITTED;
 676                 break;
 677         case BTF_KIND_PTR:
 678         case BTF_KIND_VOLATILE:
 679         case BTF_KIND_CONST:
 680         case BTF_KIND_RESTRICT:
 681                 btf_dump_emit_type(d, t->type, cont_id);
 682                 break;
 683         case BTF_KIND_ARRAY:
 684                 btf_dump_emit_type(d, btf_array(t)->type, cont_id);
 685                 break;
 686         case BTF_KIND_FWD:
 687                 btf_dump_emit_fwd_def(d, id, t);
 688                 btf_dump_printf(d, ";\n\n");
 689                 tstate->emit_state = EMITTED;
 690                 break;
 691         case BTF_KIND_TYPEDEF:
 692                 tstate->emit_state = EMITTING;
 693                 btf_dump_emit_type(d, t->type, id);
 694                 /*
 695                  * typedef can server as both definition and forward
 696                  * declaration; at this stage someone depends on
 697                  * typedef as a forward declaration (refers to it
 698                  * through pointer), so unless we already did it,
 699                  * emit typedef as a forward declaration
 700                  */
 701                 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
 702                         btf_dump_emit_typedef_def(d, id, t, 0);
 703                         btf_dump_printf(d, ";\n\n");
 704                 }
 705                 tstate->emit_state = EMITTED;
 706                 break;
 707         case BTF_KIND_STRUCT:
 708         case BTF_KIND_UNION:
 709                 tstate->emit_state = EMITTING;
 710                 /* if it's a top-level struct/union definition or struct/union
 711                  * is anonymous, then in C we'll be emitting all fields and
 712                  * their types (as opposed to just `struct X`), so we need to
 713                  * make sure that all types, referenced from struct/union
 714                  * members have necessary forward-declarations, where
 715                  * applicable
 716                  */
 717                 if (top_level_def || t->name_off == 0) {
 718                         const struct btf_member *m = btf_members(t);
 719                         __u16 vlen = btf_vlen(t);
 720                         int i, new_cont_id;
 721 
 722                         new_cont_id = t->name_off == 0 ? cont_id : id;
 723                         for (i = 0; i < vlen; i++, m++)
 724                                 btf_dump_emit_type(d, m->type, new_cont_id);
 725                 } else if (!tstate->fwd_emitted && id != cont_id) {
 726                         btf_dump_emit_struct_fwd(d, id, t);
 727                         btf_dump_printf(d, ";\n\n");
 728                         tstate->fwd_emitted = 1;
 729                 }
 730 
 731                 if (top_level_def) {
 732                         btf_dump_emit_struct_def(d, id, t, 0);
 733                         btf_dump_printf(d, ";\n\n");
 734                         tstate->emit_state = EMITTED;
 735                 } else {
 736                         tstate->emit_state = NOT_EMITTED;
 737                 }
 738                 break;
 739         case BTF_KIND_FUNC_PROTO: {
 740                 const struct btf_param *p = btf_params(t);
 741                 __u16 vlen = btf_vlen(t);
 742                 int i;
 743 
 744                 btf_dump_emit_type(d, t->type, cont_id);
 745                 for (i = 0; i < vlen; i++, p++)
 746                         btf_dump_emit_type(d, p->type, cont_id);
 747 
 748                 break;
 749         }
 750         default:
 751                 break;
 752         }
 753 }
 754 
 755 static int btf_align_of(const struct btf *btf, __u32 id)
 756 {
 757         const struct btf_type *t = btf__type_by_id(btf, id);
 758         __u16 kind = btf_kind(t);
 759 
 760         switch (kind) {
 761         case BTF_KIND_INT:
 762         case BTF_KIND_ENUM:
 763                 return min(sizeof(void *), t->size);
 764         case BTF_KIND_PTR:
 765                 return sizeof(void *);
 766         case BTF_KIND_TYPEDEF:
 767         case BTF_KIND_VOLATILE:
 768         case BTF_KIND_CONST:
 769         case BTF_KIND_RESTRICT:
 770                 return btf_align_of(btf, t->type);
 771         case BTF_KIND_ARRAY:
 772                 return btf_align_of(btf, btf_array(t)->type);
 773         case BTF_KIND_STRUCT:
 774         case BTF_KIND_UNION: {
 775                 const struct btf_member *m = btf_members(t);
 776                 __u16 vlen = btf_vlen(t);
 777                 int i, align = 1;
 778 
 779                 for (i = 0; i < vlen; i++, m++)
 780                         align = max(align, btf_align_of(btf, m->type));
 781 
 782                 return align;
 783         }
 784         default:
 785                 pr_warning("unsupported BTF_KIND:%u\n", btf_kind(t));
 786                 return 1;
 787         }
 788 }
 789 
 790 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
 791                                  const struct btf_type *t)
 792 {
 793         const struct btf_member *m;
 794         int align, i, bit_sz;
 795         __u16 vlen;
 796 
 797         align = btf_align_of(btf, id);
 798         /* size of a non-packed struct has to be a multiple of its alignment*/
 799         if (t->size % align)
 800                 return true;
 801 
 802         m = btf_members(t);
 803         vlen = btf_vlen(t);
 804         /* all non-bitfield fields have to be naturally aligned */
 805         for (i = 0; i < vlen; i++, m++) {
 806                 align = btf_align_of(btf, m->type);
 807                 bit_sz = btf_member_bitfield_size(t, i);
 808                 if (bit_sz == 0 && m->offset % (8 * align) != 0)
 809                         return true;
 810         }
 811 
 812         /*
 813          * if original struct was marked as packed, but its layout is
 814          * naturally aligned, we'll detect that it's not packed
 815          */
 816         return false;
 817 }
 818 
 819 static int chip_away_bits(int total, int at_most)
 820 {
 821         return total % at_most ? : at_most;
 822 }
 823 
 824 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
 825                                       int cur_off, int m_off, int m_bit_sz,
 826                                       int align, int lvl)
 827 {
 828         int off_diff = m_off - cur_off;
 829         int ptr_bits = sizeof(void *) * 8;
 830 
 831         if (off_diff <= 0)
 832                 /* no gap */
 833                 return;
 834         if (m_bit_sz == 0 && off_diff < align * 8)
 835                 /* natural padding will take care of a gap */
 836                 return;
 837 
 838         while (off_diff > 0) {
 839                 const char *pad_type;
 840                 int pad_bits;
 841 
 842                 if (ptr_bits > 32 && off_diff > 32) {
 843                         pad_type = "long";
 844                         pad_bits = chip_away_bits(off_diff, ptr_bits);
 845                 } else if (off_diff > 16) {
 846                         pad_type = "int";
 847                         pad_bits = chip_away_bits(off_diff, 32);
 848                 } else if (off_diff > 8) {
 849                         pad_type = "short";
 850                         pad_bits = chip_away_bits(off_diff, 16);
 851                 } else {
 852                         pad_type = "char";
 853                         pad_bits = chip_away_bits(off_diff, 8);
 854                 }
 855                 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
 856                 off_diff -= pad_bits;
 857         }
 858 }
 859 
 860 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 861                                      const struct btf_type *t)
 862 {
 863         btf_dump_printf(d, "%s %s",
 864                         btf_is_struct(t) ? "struct" : "union",
 865                         btf_dump_type_name(d, id));
 866 }
 867 
 868 static void btf_dump_emit_struct_def(struct btf_dump *d,
 869                                      __u32 id,
 870                                      const struct btf_type *t,
 871                                      int lvl)
 872 {
 873         const struct btf_member *m = btf_members(t);
 874         bool is_struct = btf_is_struct(t);
 875         int align, i, packed, off = 0;
 876         __u16 vlen = btf_vlen(t);
 877 
 878         packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
 879 
 880         btf_dump_printf(d, "%s%s%s {",
 881                         is_struct ? "struct" : "union",
 882                         t->name_off ? " " : "",
 883                         btf_dump_type_name(d, id));
 884 
 885         for (i = 0; i < vlen; i++, m++) {
 886                 const char *fname;
 887                 int m_off, m_sz;
 888 
 889                 fname = btf_name_of(d, m->name_off);
 890                 m_sz = btf_member_bitfield_size(t, i);
 891                 m_off = btf_member_bit_offset(t, i);
 892                 align = packed ? 1 : btf_align_of(d->btf, m->type);
 893 
 894                 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
 895                 btf_dump_printf(d, "\n%s", pfx(lvl + 1));
 896                 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
 897 
 898                 if (m_sz) {
 899                         btf_dump_printf(d, ": %d", m_sz);
 900                         off = m_off + m_sz;
 901                 } else {
 902                         m_sz = max(0, btf__resolve_size(d->btf, m->type));
 903                         off = m_off + m_sz * 8;
 904                 }
 905                 btf_dump_printf(d, ";");
 906         }
 907 
 908         /* pad at the end, if necessary */
 909         if (is_struct) {
 910                 align = packed ? 1 : btf_align_of(d->btf, id);
 911                 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
 912                                           lvl + 1);
 913         }
 914 
 915         if (vlen)
 916                 btf_dump_printf(d, "\n");
 917         btf_dump_printf(d, "%s}", pfx(lvl));
 918         if (packed)
 919                 btf_dump_printf(d, " __attribute__((packed))");
 920 }
 921 
 922 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 923                                    const struct btf_type *t)
 924 {
 925         btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
 926 }
 927 
 928 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 929                                    const struct btf_type *t,
 930                                    int lvl)
 931 {
 932         const struct btf_enum *v = btf_enum(t);
 933         __u16 vlen = btf_vlen(t);
 934         const char *name;
 935         size_t dup_cnt;
 936         int i;
 937 
 938         btf_dump_printf(d, "enum%s%s",
 939                         t->name_off ? " " : "",
 940                         btf_dump_type_name(d, id));
 941 
 942         if (vlen) {
 943                 btf_dump_printf(d, " {");
 944                 for (i = 0; i < vlen; i++, v++) {
 945                         name = btf_name_of(d, v->name_off);
 946                         /* enumerators share namespace with typedef idents */
 947                         dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
 948                         if (dup_cnt > 1) {
 949                                 btf_dump_printf(d, "\n%s%s___%zu = %d,",
 950                                                 pfx(lvl + 1), name, dup_cnt,
 951                                                 (__s32)v->val);
 952                         } else {
 953                                 btf_dump_printf(d, "\n%s%s = %d,",
 954                                                 pfx(lvl + 1), name,
 955                                                 (__s32)v->val);
 956                         }
 957                 }
 958                 btf_dump_printf(d, "\n%s}", pfx(lvl));
 959         }
 960 }
 961 
 962 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 963                                   const struct btf_type *t)
 964 {
 965         const char *name = btf_dump_type_name(d, id);
 966 
 967         if (btf_kflag(t))
 968                 btf_dump_printf(d, "union %s", name);
 969         else
 970                 btf_dump_printf(d, "struct %s", name);
 971 }
 972 
 973 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 974                                      const struct btf_type *t, int lvl)
 975 {
 976         const char *name = btf_dump_ident_name(d, id);
 977 
 978         btf_dump_printf(d, "typedef ");
 979         btf_dump_emit_type_decl(d, t->type, name, lvl);
 980 }
 981 
 982 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
 983 {
 984         __u32 *new_stack;
 985         size_t new_cap;
 986 
 987         if (d->decl_stack_cnt >= d->decl_stack_cap) {
 988                 new_cap = max(16, d->decl_stack_cap * 3 / 2);
 989                 new_stack = realloc(d->decl_stack,
 990                                     new_cap * sizeof(new_stack[0]));
 991                 if (!new_stack)
 992                         return -ENOMEM;
 993                 d->decl_stack = new_stack;
 994                 d->decl_stack_cap = new_cap;
 995         }
 996 
 997         d->decl_stack[d->decl_stack_cnt++] = id;
 998 
 999         return 0;
1000 }
1001 
1002 /*
1003  * Emit type declaration (e.g., field type declaration in a struct or argument
1004  * declaration in function prototype) in correct C syntax.
1005  *
1006  * For most types it's trivial, but there are few quirky type declaration
1007  * cases worth mentioning:
1008  *   - function prototypes (especially nesting of function prototypes);
1009  *   - arrays;
1010  *   - const/volatile/restrict for pointers vs other types.
1011  *
1012  * For a good discussion of *PARSING* C syntax (as a human), see
1013  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1014  * Ch.3 "Unscrambling Declarations in C".
1015  *
1016  * It won't help with BTF to C conversion much, though, as it's an opposite
1017  * problem. So we came up with this algorithm in reverse to van der Linden's
1018  * parsing algorithm. It goes from structured BTF representation of type
1019  * declaration to a valid compilable C syntax.
1020  *
1021  * For instance, consider this C typedef:
1022  *      typedef const int * const * arr[10] arr_t;
1023  * It will be represented in BTF with this chain of BTF types:
1024  *      [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1025  *
1026  * Notice how [const] modifier always goes before type it modifies in BTF type
1027  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1028  * the right of pointers, but to the left of other types. There are also other
1029  * quirks, like function pointers, arrays of them, functions returning other
1030  * functions, etc.
1031  *
1032  * We handle that by pushing all the types to a stack, until we hit "terminal"
1033  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1034  * top of a stack, modifiers are handled differently. Array/function pointers
1035  * have also wildly different syntax and how nesting of them are done. See
1036  * code for authoritative definition.
1037  *
1038  * To avoid allocating new stack for each independent chain of BTF types, we
1039  * share one bigger stack, with each chain working only on its own local view
1040  * of a stack frame. Some care is required to "pop" stack frames after
1041  * processing type declaration chain.
1042  */
1043 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1044                                     const char *fname, int lvl)
1045 {
1046         struct id_stack decl_stack;
1047         const struct btf_type *t;
1048         int err, stack_start;
1049 
1050         stack_start = d->decl_stack_cnt;
1051         for (;;) {
1052                 err = btf_dump_push_decl_stack_id(d, id);
1053                 if (err < 0) {
1054                         /*
1055                          * if we don't have enough memory for entire type decl
1056                          * chain, restore stack, emit warning, and try to
1057                          * proceed nevertheless
1058                          */
1059                         pr_warning("not enough memory for decl stack:%d", err);
1060                         d->decl_stack_cnt = stack_start;
1061                         return;
1062                 }
1063 
1064                 /* VOID */
1065                 if (id == 0)
1066                         break;
1067 
1068                 t = btf__type_by_id(d->btf, id);
1069                 switch (btf_kind(t)) {
1070                 case BTF_KIND_PTR:
1071                 case BTF_KIND_VOLATILE:
1072                 case BTF_KIND_CONST:
1073                 case BTF_KIND_RESTRICT:
1074                 case BTF_KIND_FUNC_PROTO:
1075                         id = t->type;
1076                         break;
1077                 case BTF_KIND_ARRAY:
1078                         id = btf_array(t)->type;
1079                         break;
1080                 case BTF_KIND_INT:
1081                 case BTF_KIND_ENUM:
1082                 case BTF_KIND_FWD:
1083                 case BTF_KIND_STRUCT:
1084                 case BTF_KIND_UNION:
1085                 case BTF_KIND_TYPEDEF:
1086                         goto done;
1087                 default:
1088                         pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1089                                    btf_kind(t), id);
1090                         goto done;
1091                 }
1092         }
1093 done:
1094         /*
1095          * We might be inside a chain of declarations (e.g., array of function
1096          * pointers returning anonymous (so inlined) structs, having another
1097          * array field). Each of those needs its own "stack frame" to handle
1098          * emitting of declarations. Those stack frames are non-overlapping
1099          * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1100          * handle this set of nested stacks, we create a view corresponding to
1101          * our own "stack frame" and work with it as an independent stack.
1102          * We'll need to clean up after emit_type_chain() returns, though.
1103          */
1104         decl_stack.ids = d->decl_stack + stack_start;
1105         decl_stack.cnt = d->decl_stack_cnt - stack_start;
1106         btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1107         /*
1108          * emit_type_chain() guarantees that it will pop its entire decl_stack
1109          * frame before returning. But it works with a read-only view into
1110          * decl_stack, so it doesn't actually pop anything from the
1111          * perspective of shared btf_dump->decl_stack, per se. We need to
1112          * reset decl_stack state to how it was before us to avoid it growing
1113          * all the time.
1114          */
1115         d->decl_stack_cnt = stack_start;
1116 }
1117 
1118 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1119 {
1120         const struct btf_type *t;
1121         __u32 id;
1122 
1123         while (decl_stack->cnt) {
1124                 id = decl_stack->ids[decl_stack->cnt - 1];
1125                 t = btf__type_by_id(d->btf, id);
1126 
1127                 switch (btf_kind(t)) {
1128                 case BTF_KIND_VOLATILE:
1129                         btf_dump_printf(d, "volatile ");
1130                         break;
1131                 case BTF_KIND_CONST:
1132                         btf_dump_printf(d, "const ");
1133                         break;
1134                 case BTF_KIND_RESTRICT:
1135                         btf_dump_printf(d, "restrict ");
1136                         break;
1137                 default:
1138                         return;
1139                 }
1140                 decl_stack->cnt--;
1141         }
1142 }
1143 
1144 static void btf_dump_emit_name(const struct btf_dump *d,
1145                                const char *name, bool last_was_ptr)
1146 {
1147         bool separate = name[0] && !last_was_ptr;
1148 
1149         btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1150 }
1151 
1152 static void btf_dump_emit_type_chain(struct btf_dump *d,
1153                                      struct id_stack *decls,
1154                                      const char *fname, int lvl)
1155 {
1156         /*
1157          * last_was_ptr is used to determine if we need to separate pointer
1158          * asterisk (*) from previous part of type signature with space, so
1159          * that we get `int ***`, instead of `int * * *`. We default to true
1160          * for cases where we have single pointer in a chain. E.g., in ptr ->
1161          * func_proto case. func_proto will start a new emit_type_chain call
1162          * with just ptr, which should be emitted as (*) or (*<fname>), so we
1163          * don't want to prepend space for that last pointer.
1164          */
1165         bool last_was_ptr = true;
1166         const struct btf_type *t;
1167         const char *name;
1168         __u16 kind;
1169         __u32 id;
1170 
1171         while (decls->cnt) {
1172                 id = decls->ids[--decls->cnt];
1173                 if (id == 0) {
1174                         /* VOID is a special snowflake */
1175                         btf_dump_emit_mods(d, decls);
1176                         btf_dump_printf(d, "void");
1177                         last_was_ptr = false;
1178                         continue;
1179                 }
1180 
1181                 t = btf__type_by_id(d->btf, id);
1182                 kind = btf_kind(t);
1183 
1184                 switch (kind) {
1185                 case BTF_KIND_INT:
1186                         btf_dump_emit_mods(d, decls);
1187                         name = btf_name_of(d, t->name_off);
1188                         btf_dump_printf(d, "%s", name);
1189                         break;
1190                 case BTF_KIND_STRUCT:
1191                 case BTF_KIND_UNION:
1192                         btf_dump_emit_mods(d, decls);
1193                         /* inline anonymous struct/union */
1194                         if (t->name_off == 0)
1195                                 btf_dump_emit_struct_def(d, id, t, lvl);
1196                         else
1197                                 btf_dump_emit_struct_fwd(d, id, t);
1198                         break;
1199                 case BTF_KIND_ENUM:
1200                         btf_dump_emit_mods(d, decls);
1201                         /* inline anonymous enum */
1202                         if (t->name_off == 0)
1203                                 btf_dump_emit_enum_def(d, id, t, lvl);
1204                         else
1205                                 btf_dump_emit_enum_fwd(d, id, t);
1206                         break;
1207                 case BTF_KIND_FWD:
1208                         btf_dump_emit_mods(d, decls);
1209                         btf_dump_emit_fwd_def(d, id, t);
1210                         break;
1211                 case BTF_KIND_TYPEDEF:
1212                         btf_dump_emit_mods(d, decls);
1213                         btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1214                         break;
1215                 case BTF_KIND_PTR:
1216                         btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1217                         break;
1218                 case BTF_KIND_VOLATILE:
1219                         btf_dump_printf(d, " volatile");
1220                         break;
1221                 case BTF_KIND_CONST:
1222                         btf_dump_printf(d, " const");
1223                         break;
1224                 case BTF_KIND_RESTRICT:
1225                         btf_dump_printf(d, " restrict");
1226                         break;
1227                 case BTF_KIND_ARRAY: {
1228                         const struct btf_array *a = btf_array(t);
1229                         const struct btf_type *next_t;
1230                         __u32 next_id;
1231                         bool multidim;
1232                         /*
1233                          * GCC has a bug
1234                          * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1235                          * which causes it to emit extra const/volatile
1236                          * modifiers for an array, if array's element type has
1237                          * const/volatile modifiers. Clang doesn't do that.
1238                          * In general, it doesn't seem very meaningful to have
1239                          * a const/volatile modifier for array, so we are
1240                          * going to silently skip them here.
1241                          */
1242                         while (decls->cnt) {
1243                                 next_id = decls->ids[decls->cnt - 1];
1244                                 next_t = btf__type_by_id(d->btf, next_id);
1245                                 if (btf_is_mod(next_t))
1246                                         decls->cnt--;
1247                                 else
1248                                         break;
1249                         }
1250 
1251                         if (decls->cnt == 0) {
1252                                 btf_dump_emit_name(d, fname, last_was_ptr);
1253                                 btf_dump_printf(d, "[%u]", a->nelems);
1254                                 return;
1255                         }
1256 
1257                         next_id = decls->ids[decls->cnt - 1];
1258                         next_t = btf__type_by_id(d->btf, next_id);
1259                         multidim = btf_is_array(next_t);
1260                         /* we need space if we have named non-pointer */
1261                         if (fname[0] && !last_was_ptr)
1262                                 btf_dump_printf(d, " ");
1263                         /* no parentheses for multi-dimensional array */
1264                         if (!multidim)
1265                                 btf_dump_printf(d, "(");
1266                         btf_dump_emit_type_chain(d, decls, fname, lvl);
1267                         if (!multidim)
1268                                 btf_dump_printf(d, ")");
1269                         btf_dump_printf(d, "[%u]", a->nelems);
1270                         return;
1271                 }
1272                 case BTF_KIND_FUNC_PROTO: {
1273                         const struct btf_param *p = btf_params(t);
1274                         __u16 vlen = btf_vlen(t);
1275                         int i;
1276 
1277                         btf_dump_emit_mods(d, decls);
1278                         if (decls->cnt) {
1279                                 btf_dump_printf(d, " (");
1280                                 btf_dump_emit_type_chain(d, decls, fname, lvl);
1281                                 btf_dump_printf(d, ")");
1282                         } else {
1283                                 btf_dump_emit_name(d, fname, last_was_ptr);
1284                         }
1285                         btf_dump_printf(d, "(");
1286                         /*
1287                          * Clang for BPF target generates func_proto with no
1288                          * args as a func_proto with a single void arg (e.g.,
1289                          * `int (*f)(void)` vs just `int (*f)()`). We are
1290                          * going to pretend there are no args for such case.
1291                          */
1292                         if (vlen == 1 && p->type == 0) {
1293                                 btf_dump_printf(d, ")");
1294                                 return;
1295                         }
1296 
1297                         for (i = 0; i < vlen; i++, p++) {
1298                                 if (i > 0)
1299                                         btf_dump_printf(d, ", ");
1300 
1301                                 /* last arg of type void is vararg */
1302                                 if (i == vlen - 1 && p->type == 0) {
1303                                         btf_dump_printf(d, "...");
1304                                         break;
1305                                 }
1306 
1307                                 name = btf_name_of(d, p->name_off);
1308                                 btf_dump_emit_type_decl(d, p->type, name, lvl);
1309                         }
1310 
1311                         btf_dump_printf(d, ")");
1312                         return;
1313                 }
1314                 default:
1315                         pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1316                                    kind, id);
1317                         return;
1318                 }
1319 
1320                 last_was_ptr = kind == BTF_KIND_PTR;
1321         }
1322 
1323         btf_dump_emit_name(d, fname, last_was_ptr);
1324 }
1325 
1326 /* return number of duplicates (occurrences) of a given name */
1327 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1328                                  const char *orig_name)
1329 {
1330         size_t dup_cnt = 0;
1331 
1332         hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1333         dup_cnt++;
1334         hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1335 
1336         return dup_cnt;
1337 }
1338 
1339 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1340                                          struct hashmap *name_map)
1341 {
1342         struct btf_dump_type_aux_state *s = &d->type_states[id];
1343         const struct btf_type *t = btf__type_by_id(d->btf, id);
1344         const char *orig_name = btf_name_of(d, t->name_off);
1345         const char **cached_name = &d->cached_names[id];
1346         size_t dup_cnt;
1347 
1348         if (t->name_off == 0)
1349                 return "";
1350 
1351         if (s->name_resolved)
1352                 return *cached_name ? *cached_name : orig_name;
1353 
1354         dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1355         if (dup_cnt > 1) {
1356                 const size_t max_len = 256;
1357                 char new_name[max_len];
1358 
1359                 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1360                 *cached_name = strdup(new_name);
1361         }
1362 
1363         s->name_resolved = 1;
1364         return *cached_name ? *cached_name : orig_name;
1365 }
1366 
1367 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1368 {
1369         return btf_dump_resolve_name(d, id, d->type_names);
1370 }
1371 
1372 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1373 {
1374         return btf_dump_resolve_name(d, id, d->ident_names);
1375 }

/* [<][>][^][v][top][bottom][index][help] */