root/fs/xfs/xfs_extfree_item.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. EFI_ITEM
  2. xfs_efi_item_free
  3. xfs_efi_release
  4. xfs_efi_item_sizeof
  5. xfs_efi_item_size
  6. xfs_efi_item_format
  7. xfs_efi_item_unpin
  8. xfs_efi_item_release
  9. xfs_efi_init
  10. xfs_efi_copy_format
  11. EFD_ITEM
  12. xfs_efd_item_free
  13. xfs_efd_item_sizeof
  14. xfs_efd_item_size
  15. xfs_efd_item_format
  16. xfs_efd_item_release
  17. xfs_trans_get_efd
  18. xfs_trans_free_extent
  19. xfs_extent_free_diff_items
  20. xfs_extent_free_create_intent
  21. xfs_extent_free_log_item
  22. xfs_extent_free_create_done
  23. xfs_extent_free_finish_item
  24. xfs_extent_free_abort_intent
  25. xfs_extent_free_cancel_item
  26. xfs_agfl_free_finish_item
  27. xfs_efi_recover

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
   4  * All Rights Reserved.
   5  */
   6 #include "xfs.h"
   7 #include "xfs_fs.h"
   8 #include "xfs_format.h"
   9 #include "xfs_log_format.h"
  10 #include "xfs_trans_resv.h"
  11 #include "xfs_bit.h"
  12 #include "xfs_shared.h"
  13 #include "xfs_mount.h"
  14 #include "xfs_defer.h"
  15 #include "xfs_trans.h"
  16 #include "xfs_trans_priv.h"
  17 #include "xfs_extfree_item.h"
  18 #include "xfs_log.h"
  19 #include "xfs_btree.h"
  20 #include "xfs_rmap.h"
  21 #include "xfs_alloc.h"
  22 #include "xfs_bmap.h"
  23 #include "xfs_trace.h"
  24 
  25 
  26 kmem_zone_t     *xfs_efi_zone;
  27 kmem_zone_t     *xfs_efd_zone;
  28 
  29 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
  30 {
  31         return container_of(lip, struct xfs_efi_log_item, efi_item);
  32 }
  33 
  34 void
  35 xfs_efi_item_free(
  36         struct xfs_efi_log_item *efip)
  37 {
  38         kmem_free(efip->efi_item.li_lv_shadow);
  39         if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
  40                 kmem_free(efip);
  41         else
  42                 kmem_zone_free(xfs_efi_zone, efip);
  43 }
  44 
  45 /*
  46  * Freeing the efi requires that we remove it from the AIL if it has already
  47  * been placed there. However, the EFI may not yet have been placed in the AIL
  48  * when called by xfs_efi_release() from EFD processing due to the ordering of
  49  * committed vs unpin operations in bulk insert operations. Hence the reference
  50  * count to ensure only the last caller frees the EFI.
  51  */
  52 void
  53 xfs_efi_release(
  54         struct xfs_efi_log_item *efip)
  55 {
  56         ASSERT(atomic_read(&efip->efi_refcount) > 0);
  57         if (atomic_dec_and_test(&efip->efi_refcount)) {
  58                 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
  59                 xfs_efi_item_free(efip);
  60         }
  61 }
  62 
  63 /*
  64  * This returns the number of iovecs needed to log the given efi item.
  65  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
  66  * structure.
  67  */
  68 static inline int
  69 xfs_efi_item_sizeof(
  70         struct xfs_efi_log_item *efip)
  71 {
  72         return sizeof(struct xfs_efi_log_format) +
  73                (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
  74 }
  75 
  76 STATIC void
  77 xfs_efi_item_size(
  78         struct xfs_log_item     *lip,
  79         int                     *nvecs,
  80         int                     *nbytes)
  81 {
  82         *nvecs += 1;
  83         *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
  84 }
  85 
  86 /*
  87  * This is called to fill in the vector of log iovecs for the
  88  * given efi log item. We use only 1 iovec, and we point that
  89  * at the efi_log_format structure embedded in the efi item.
  90  * It is at this point that we assert that all of the extent
  91  * slots in the efi item have been filled.
  92  */
  93 STATIC void
  94 xfs_efi_item_format(
  95         struct xfs_log_item     *lip,
  96         struct xfs_log_vec      *lv)
  97 {
  98         struct xfs_efi_log_item *efip = EFI_ITEM(lip);
  99         struct xfs_log_iovec    *vecp = NULL;
 100 
 101         ASSERT(atomic_read(&efip->efi_next_extent) ==
 102                                 efip->efi_format.efi_nextents);
 103 
 104         efip->efi_format.efi_type = XFS_LI_EFI;
 105         efip->efi_format.efi_size = 1;
 106 
 107         xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
 108                         &efip->efi_format,
 109                         xfs_efi_item_sizeof(efip));
 110 }
 111 
 112 
 113 /*
 114  * The unpin operation is the last place an EFI is manipulated in the log. It is
 115  * either inserted in the AIL or aborted in the event of a log I/O error. In
 116  * either case, the EFI transaction has been successfully committed to make it
 117  * this far. Therefore, we expect whoever committed the EFI to either construct
 118  * and commit the EFD or drop the EFD's reference in the event of error. Simply
 119  * drop the log's EFI reference now that the log is done with it.
 120  */
 121 STATIC void
 122 xfs_efi_item_unpin(
 123         struct xfs_log_item     *lip,
 124         int                     remove)
 125 {
 126         struct xfs_efi_log_item *efip = EFI_ITEM(lip);
 127         xfs_efi_release(efip);
 128 }
 129 
 130 /*
 131  * The EFI has been either committed or aborted if the transaction has been
 132  * cancelled. If the transaction was cancelled, an EFD isn't going to be
 133  * constructed and thus we free the EFI here directly.
 134  */
 135 STATIC void
 136 xfs_efi_item_release(
 137         struct xfs_log_item     *lip)
 138 {
 139         xfs_efi_release(EFI_ITEM(lip));
 140 }
 141 
 142 static const struct xfs_item_ops xfs_efi_item_ops = {
 143         .iop_size       = xfs_efi_item_size,
 144         .iop_format     = xfs_efi_item_format,
 145         .iop_unpin      = xfs_efi_item_unpin,
 146         .iop_release    = xfs_efi_item_release,
 147 };
 148 
 149 
 150 /*
 151  * Allocate and initialize an efi item with the given number of extents.
 152  */
 153 struct xfs_efi_log_item *
 154 xfs_efi_init(
 155         struct xfs_mount        *mp,
 156         uint                    nextents)
 157 
 158 {
 159         struct xfs_efi_log_item *efip;
 160         uint                    size;
 161 
 162         ASSERT(nextents > 0);
 163         if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
 164                 size = (uint)(sizeof(xfs_efi_log_item_t) +
 165                         ((nextents - 1) * sizeof(xfs_extent_t)));
 166                 efip = kmem_zalloc(size, 0);
 167         } else {
 168                 efip = kmem_zone_zalloc(xfs_efi_zone, 0);
 169         }
 170 
 171         xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
 172         efip->efi_format.efi_nextents = nextents;
 173         efip->efi_format.efi_id = (uintptr_t)(void *)efip;
 174         atomic_set(&efip->efi_next_extent, 0);
 175         atomic_set(&efip->efi_refcount, 2);
 176 
 177         return efip;
 178 }
 179 
 180 /*
 181  * Copy an EFI format buffer from the given buf, and into the destination
 182  * EFI format structure.
 183  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
 184  * one of which will be the native format for this kernel.
 185  * It will handle the conversion of formats if necessary.
 186  */
 187 int
 188 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
 189 {
 190         xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
 191         uint i;
 192         uint len = sizeof(xfs_efi_log_format_t) + 
 193                 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);  
 194         uint len32 = sizeof(xfs_efi_log_format_32_t) + 
 195                 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);  
 196         uint len64 = sizeof(xfs_efi_log_format_64_t) + 
 197                 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);  
 198 
 199         if (buf->i_len == len) {
 200                 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
 201                 return 0;
 202         } else if (buf->i_len == len32) {
 203                 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
 204 
 205                 dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
 206                 dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
 207                 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
 208                 dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
 209                 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 210                         dst_efi_fmt->efi_extents[i].ext_start =
 211                                 src_efi_fmt_32->efi_extents[i].ext_start;
 212                         dst_efi_fmt->efi_extents[i].ext_len =
 213                                 src_efi_fmt_32->efi_extents[i].ext_len;
 214                 }
 215                 return 0;
 216         } else if (buf->i_len == len64) {
 217                 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
 218 
 219                 dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
 220                 dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
 221                 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
 222                 dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
 223                 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 224                         dst_efi_fmt->efi_extents[i].ext_start =
 225                                 src_efi_fmt_64->efi_extents[i].ext_start;
 226                         dst_efi_fmt->efi_extents[i].ext_len =
 227                                 src_efi_fmt_64->efi_extents[i].ext_len;
 228                 }
 229                 return 0;
 230         }
 231         return -EFSCORRUPTED;
 232 }
 233 
 234 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
 235 {
 236         return container_of(lip, struct xfs_efd_log_item, efd_item);
 237 }
 238 
 239 STATIC void
 240 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
 241 {
 242         kmem_free(efdp->efd_item.li_lv_shadow);
 243         if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
 244                 kmem_free(efdp);
 245         else
 246                 kmem_zone_free(xfs_efd_zone, efdp);
 247 }
 248 
 249 /*
 250  * This returns the number of iovecs needed to log the given efd item.
 251  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
 252  * structure.
 253  */
 254 static inline int
 255 xfs_efd_item_sizeof(
 256         struct xfs_efd_log_item *efdp)
 257 {
 258         return sizeof(xfs_efd_log_format_t) +
 259                (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
 260 }
 261 
 262 STATIC void
 263 xfs_efd_item_size(
 264         struct xfs_log_item     *lip,
 265         int                     *nvecs,
 266         int                     *nbytes)
 267 {
 268         *nvecs += 1;
 269         *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
 270 }
 271 
 272 /*
 273  * This is called to fill in the vector of log iovecs for the
 274  * given efd log item. We use only 1 iovec, and we point that
 275  * at the efd_log_format structure embedded in the efd item.
 276  * It is at this point that we assert that all of the extent
 277  * slots in the efd item have been filled.
 278  */
 279 STATIC void
 280 xfs_efd_item_format(
 281         struct xfs_log_item     *lip,
 282         struct xfs_log_vec      *lv)
 283 {
 284         struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
 285         struct xfs_log_iovec    *vecp = NULL;
 286 
 287         ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 288 
 289         efdp->efd_format.efd_type = XFS_LI_EFD;
 290         efdp->efd_format.efd_size = 1;
 291 
 292         xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
 293                         &efdp->efd_format,
 294                         xfs_efd_item_sizeof(efdp));
 295 }
 296 
 297 /*
 298  * The EFD is either committed or aborted if the transaction is cancelled. If
 299  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
 300  */
 301 STATIC void
 302 xfs_efd_item_release(
 303         struct xfs_log_item     *lip)
 304 {
 305         struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
 306 
 307         xfs_efi_release(efdp->efd_efip);
 308         xfs_efd_item_free(efdp);
 309 }
 310 
 311 static const struct xfs_item_ops xfs_efd_item_ops = {
 312         .flags          = XFS_ITEM_RELEASE_WHEN_COMMITTED,
 313         .iop_size       = xfs_efd_item_size,
 314         .iop_format     = xfs_efd_item_format,
 315         .iop_release    = xfs_efd_item_release,
 316 };
 317 
 318 /*
 319  * Allocate an "extent free done" log item that will hold nextents worth of
 320  * extents.  The caller must use all nextents extents, because we are not
 321  * flexible about this at all.
 322  */
 323 static struct xfs_efd_log_item *
 324 xfs_trans_get_efd(
 325         struct xfs_trans                *tp,
 326         struct xfs_efi_log_item         *efip,
 327         unsigned int                    nextents)
 328 {
 329         struct xfs_efd_log_item         *efdp;
 330 
 331         ASSERT(nextents > 0);
 332 
 333         if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
 334                 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
 335                                 (nextents - 1) * sizeof(struct xfs_extent),
 336                                 0);
 337         } else {
 338                 efdp = kmem_zone_zalloc(xfs_efd_zone, 0);
 339         }
 340 
 341         xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
 342                           &xfs_efd_item_ops);
 343         efdp->efd_efip = efip;
 344         efdp->efd_format.efd_nextents = nextents;
 345         efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
 346 
 347         xfs_trans_add_item(tp, &efdp->efd_item);
 348         return efdp;
 349 }
 350 
 351 /*
 352  * Free an extent and log it to the EFD. Note that the transaction is marked
 353  * dirty regardless of whether the extent free succeeds or fails to support the
 354  * EFI/EFD lifecycle rules.
 355  */
 356 static int
 357 xfs_trans_free_extent(
 358         struct xfs_trans                *tp,
 359         struct xfs_efd_log_item         *efdp,
 360         xfs_fsblock_t                   start_block,
 361         xfs_extlen_t                    ext_len,
 362         const struct xfs_owner_info     *oinfo,
 363         bool                            skip_discard)
 364 {
 365         struct xfs_mount                *mp = tp->t_mountp;
 366         struct xfs_extent               *extp;
 367         uint                            next_extent;
 368         xfs_agnumber_t                  agno = XFS_FSB_TO_AGNO(mp, start_block);
 369         xfs_agblock_t                   agbno = XFS_FSB_TO_AGBNO(mp,
 370                                                                 start_block);
 371         int                             error;
 372 
 373         trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
 374 
 375         error = __xfs_free_extent(tp, start_block, ext_len,
 376                                   oinfo, XFS_AG_RESV_NONE, skip_discard);
 377         /*
 378          * Mark the transaction dirty, even on error. This ensures the
 379          * transaction is aborted, which:
 380          *
 381          * 1.) releases the EFI and frees the EFD
 382          * 2.) shuts down the filesystem
 383          */
 384         tp->t_flags |= XFS_TRANS_DIRTY;
 385         set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
 386 
 387         next_extent = efdp->efd_next_extent;
 388         ASSERT(next_extent < efdp->efd_format.efd_nextents);
 389         extp = &(efdp->efd_format.efd_extents[next_extent]);
 390         extp->ext_start = start_block;
 391         extp->ext_len = ext_len;
 392         efdp->efd_next_extent++;
 393 
 394         return error;
 395 }
 396 
 397 /* Sort bmap items by AG. */
 398 static int
 399 xfs_extent_free_diff_items(
 400         void                            *priv,
 401         struct list_head                *a,
 402         struct list_head                *b)
 403 {
 404         struct xfs_mount                *mp = priv;
 405         struct xfs_extent_free_item     *ra;
 406         struct xfs_extent_free_item     *rb;
 407 
 408         ra = container_of(a, struct xfs_extent_free_item, xefi_list);
 409         rb = container_of(b, struct xfs_extent_free_item, xefi_list);
 410         return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
 411                 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
 412 }
 413 
 414 /* Get an EFI. */
 415 STATIC void *
 416 xfs_extent_free_create_intent(
 417         struct xfs_trans                *tp,
 418         unsigned int                    count)
 419 {
 420         struct xfs_efi_log_item         *efip;
 421 
 422         ASSERT(tp != NULL);
 423         ASSERT(count > 0);
 424 
 425         efip = xfs_efi_init(tp->t_mountp, count);
 426         ASSERT(efip != NULL);
 427 
 428         /*
 429          * Get a log_item_desc to point at the new item.
 430          */
 431         xfs_trans_add_item(tp, &efip->efi_item);
 432         return efip;
 433 }
 434 
 435 /* Log a free extent to the intent item. */
 436 STATIC void
 437 xfs_extent_free_log_item(
 438         struct xfs_trans                *tp,
 439         void                            *intent,
 440         struct list_head                *item)
 441 {
 442         struct xfs_efi_log_item         *efip = intent;
 443         struct xfs_extent_free_item     *free;
 444         uint                            next_extent;
 445         struct xfs_extent               *extp;
 446 
 447         free = container_of(item, struct xfs_extent_free_item, xefi_list);
 448 
 449         tp->t_flags |= XFS_TRANS_DIRTY;
 450         set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
 451 
 452         /*
 453          * atomic_inc_return gives us the value after the increment;
 454          * we want to use it as an array index so we need to subtract 1 from
 455          * it.
 456          */
 457         next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
 458         ASSERT(next_extent < efip->efi_format.efi_nextents);
 459         extp = &efip->efi_format.efi_extents[next_extent];
 460         extp->ext_start = free->xefi_startblock;
 461         extp->ext_len = free->xefi_blockcount;
 462 }
 463 
 464 /* Get an EFD so we can process all the free extents. */
 465 STATIC void *
 466 xfs_extent_free_create_done(
 467         struct xfs_trans                *tp,
 468         void                            *intent,
 469         unsigned int                    count)
 470 {
 471         return xfs_trans_get_efd(tp, intent, count);
 472 }
 473 
 474 /* Process a free extent. */
 475 STATIC int
 476 xfs_extent_free_finish_item(
 477         struct xfs_trans                *tp,
 478         struct list_head                *item,
 479         void                            *done_item,
 480         void                            **state)
 481 {
 482         struct xfs_extent_free_item     *free;
 483         int                             error;
 484 
 485         free = container_of(item, struct xfs_extent_free_item, xefi_list);
 486         error = xfs_trans_free_extent(tp, done_item,
 487                         free->xefi_startblock,
 488                         free->xefi_blockcount,
 489                         &free->xefi_oinfo, free->xefi_skip_discard);
 490         kmem_free(free);
 491         return error;
 492 }
 493 
 494 /* Abort all pending EFIs. */
 495 STATIC void
 496 xfs_extent_free_abort_intent(
 497         void                            *intent)
 498 {
 499         xfs_efi_release(intent);
 500 }
 501 
 502 /* Cancel a free extent. */
 503 STATIC void
 504 xfs_extent_free_cancel_item(
 505         struct list_head                *item)
 506 {
 507         struct xfs_extent_free_item     *free;
 508 
 509         free = container_of(item, struct xfs_extent_free_item, xefi_list);
 510         kmem_free(free);
 511 }
 512 
 513 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
 514         .max_items      = XFS_EFI_MAX_FAST_EXTENTS,
 515         .diff_items     = xfs_extent_free_diff_items,
 516         .create_intent  = xfs_extent_free_create_intent,
 517         .abort_intent   = xfs_extent_free_abort_intent,
 518         .log_item       = xfs_extent_free_log_item,
 519         .create_done    = xfs_extent_free_create_done,
 520         .finish_item    = xfs_extent_free_finish_item,
 521         .cancel_item    = xfs_extent_free_cancel_item,
 522 };
 523 
 524 /*
 525  * AGFL blocks are accounted differently in the reserve pools and are not
 526  * inserted into the busy extent list.
 527  */
 528 STATIC int
 529 xfs_agfl_free_finish_item(
 530         struct xfs_trans                *tp,
 531         struct list_head                *item,
 532         void                            *done_item,
 533         void                            **state)
 534 {
 535         struct xfs_mount                *mp = tp->t_mountp;
 536         struct xfs_efd_log_item         *efdp = done_item;
 537         struct xfs_extent_free_item     *free;
 538         struct xfs_extent               *extp;
 539         struct xfs_buf                  *agbp;
 540         int                             error;
 541         xfs_agnumber_t                  agno;
 542         xfs_agblock_t                   agbno;
 543         uint                            next_extent;
 544 
 545         free = container_of(item, struct xfs_extent_free_item, xefi_list);
 546         ASSERT(free->xefi_blockcount == 1);
 547         agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
 548         agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
 549 
 550         trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
 551 
 552         error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
 553         if (!error)
 554                 error = xfs_free_agfl_block(tp, agno, agbno, agbp,
 555                                             &free->xefi_oinfo);
 556 
 557         /*
 558          * Mark the transaction dirty, even on error. This ensures the
 559          * transaction is aborted, which:
 560          *
 561          * 1.) releases the EFI and frees the EFD
 562          * 2.) shuts down the filesystem
 563          */
 564         tp->t_flags |= XFS_TRANS_DIRTY;
 565         set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
 566 
 567         next_extent = efdp->efd_next_extent;
 568         ASSERT(next_extent < efdp->efd_format.efd_nextents);
 569         extp = &(efdp->efd_format.efd_extents[next_extent]);
 570         extp->ext_start = free->xefi_startblock;
 571         extp->ext_len = free->xefi_blockcount;
 572         efdp->efd_next_extent++;
 573 
 574         kmem_free(free);
 575         return error;
 576 }
 577 
 578 /* sub-type with special handling for AGFL deferred frees */
 579 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
 580         .max_items      = XFS_EFI_MAX_FAST_EXTENTS,
 581         .diff_items     = xfs_extent_free_diff_items,
 582         .create_intent  = xfs_extent_free_create_intent,
 583         .abort_intent   = xfs_extent_free_abort_intent,
 584         .log_item       = xfs_extent_free_log_item,
 585         .create_done    = xfs_extent_free_create_done,
 586         .finish_item    = xfs_agfl_free_finish_item,
 587         .cancel_item    = xfs_extent_free_cancel_item,
 588 };
 589 
 590 /*
 591  * Process an extent free intent item that was recovered from
 592  * the log.  We need to free the extents that it describes.
 593  */
 594 int
 595 xfs_efi_recover(
 596         struct xfs_mount        *mp,
 597         struct xfs_efi_log_item *efip)
 598 {
 599         struct xfs_efd_log_item *efdp;
 600         struct xfs_trans        *tp;
 601         int                     i;
 602         int                     error = 0;
 603         xfs_extent_t            *extp;
 604         xfs_fsblock_t           startblock_fsb;
 605 
 606         ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
 607 
 608         /*
 609          * First check the validity of the extents described by the
 610          * EFI.  If any are bad, then assume that all are bad and
 611          * just toss the EFI.
 612          */
 613         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 614                 extp = &efip->efi_format.efi_extents[i];
 615                 startblock_fsb = XFS_BB_TO_FSB(mp,
 616                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
 617                 if (startblock_fsb == 0 ||
 618                     extp->ext_len == 0 ||
 619                     startblock_fsb >= mp->m_sb.sb_dblocks ||
 620                     extp->ext_len >= mp->m_sb.sb_agblocks) {
 621                         /*
 622                          * This will pull the EFI from the AIL and
 623                          * free the memory associated with it.
 624                          */
 625                         set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
 626                         xfs_efi_release(efip);
 627                         return -EIO;
 628                 }
 629         }
 630 
 631         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
 632         if (error)
 633                 return error;
 634         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
 635 
 636         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 637                 extp = &efip->efi_format.efi_extents[i];
 638                 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
 639                                               extp->ext_len,
 640                                               &XFS_RMAP_OINFO_ANY_OWNER, false);
 641                 if (error)
 642                         goto abort_error;
 643 
 644         }
 645 
 646         set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
 647         error = xfs_trans_commit(tp);
 648         return error;
 649 
 650 abort_error:
 651         xfs_trans_cancel(tp);
 652         return error;
 653 }

/* [<][>][^][v][top][bottom][index][help] */