root/fs/xfs/xfs_buf.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xfs_buf_is_vmapped
  2. xfs_buf_vmap_len
  3. xfs_buf_ioacct_inc
  4. __xfs_buf_ioacct_dec
  5. xfs_buf_ioacct_dec
  6. xfs_buf_stale
  7. xfs_buf_get_maps
  8. xfs_buf_free_maps
  9. _xfs_buf_alloc
  10. _xfs_buf_get_pages
  11. _xfs_buf_free_pages
  12. xfs_buf_free
  13. xfs_buf_allocate_memory
  14. _xfs_buf_map_pages
  15. _xfs_buf_obj_cmp
  16. xfs_buf_hash_init
  17. xfs_buf_hash_destroy
  18. xfs_buf_find
  19. xfs_buf_incore
  20. xfs_buf_get_map
  21. _xfs_buf_read
  22. xfs_buf_reverify
  23. xfs_buf_read_map
  24. xfs_buf_readahead_map
  25. xfs_buf_read_uncached
  26. xfs_buf_get_uncached
  27. xfs_buf_hold
  28. xfs_buf_rele
  29. xfs_buf_trylock
  30. xfs_buf_lock
  31. xfs_buf_unlock
  32. xfs_buf_wait_unpin
  33. xfs_buf_ioend
  34. xfs_buf_ioend_work
  35. xfs_buf_ioend_async
  36. __xfs_buf_ioerror
  37. xfs_buf_ioerror_alert
  38. xfs_bwrite
  39. xfs_buf_bio_end_io
  40. xfs_buf_ioapply_map
  41. _xfs_buf_ioapply
  42. xfs_buf_iowait
  43. __xfs_buf_submit
  44. xfs_buf_offset
  45. xfs_buf_zero
  46. xfs_buftarg_wait_rele
  47. xfs_wait_buftarg
  48. xfs_buftarg_isolate
  49. xfs_buftarg_shrink_scan
  50. xfs_buftarg_shrink_count
  51. xfs_free_buftarg
  52. xfs_setsize_buftarg
  53. xfs_setsize_buftarg_early
  54. xfs_alloc_buftarg
  55. xfs_buf_delwri_cancel
  56. xfs_buf_delwri_queue
  57. xfs_buf_cmp
  58. xfs_buf_delwri_submit_buffers
  59. xfs_buf_delwri_submit_nowait
  60. xfs_buf_delwri_submit
  61. xfs_buf_delwri_pushbuf
  62. xfs_buf_init
  63. xfs_buf_terminate
  64. xfs_buf_set_ref
  65. xfs_verify_magic
  66. xfs_verify_magic16

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4  * All Rights Reserved.
   5  */
   6 #include "xfs.h"
   7 #include <linux/backing-dev.h>
   8 
   9 #include "xfs_shared.h"
  10 #include "xfs_format.h"
  11 #include "xfs_log_format.h"
  12 #include "xfs_trans_resv.h"
  13 #include "xfs_sb.h"
  14 #include "xfs_mount.h"
  15 #include "xfs_trace.h"
  16 #include "xfs_log.h"
  17 #include "xfs_errortag.h"
  18 #include "xfs_error.h"
  19 
  20 static kmem_zone_t *xfs_buf_zone;
  21 
  22 #define xb_to_gfp(flags) \
  23         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  24 
  25 /*
  26  * Locking orders
  27  *
  28  * xfs_buf_ioacct_inc:
  29  * xfs_buf_ioacct_dec:
  30  *      b_sema (caller holds)
  31  *        b_lock
  32  *
  33  * xfs_buf_stale:
  34  *      b_sema (caller holds)
  35  *        b_lock
  36  *          lru_lock
  37  *
  38  * xfs_buf_rele:
  39  *      b_lock
  40  *        pag_buf_lock
  41  *          lru_lock
  42  *
  43  * xfs_buftarg_wait_rele
  44  *      lru_lock
  45  *        b_lock (trylock due to inversion)
  46  *
  47  * xfs_buftarg_isolate
  48  *      lru_lock
  49  *        b_lock (trylock due to inversion)
  50  */
  51 
  52 static inline int
  53 xfs_buf_is_vmapped(
  54         struct xfs_buf  *bp)
  55 {
  56         /*
  57          * Return true if the buffer is vmapped.
  58          *
  59          * b_addr is null if the buffer is not mapped, but the code is clever
  60          * enough to know it doesn't have to map a single page, so the check has
  61          * to be both for b_addr and bp->b_page_count > 1.
  62          */
  63         return bp->b_addr && bp->b_page_count > 1;
  64 }
  65 
  66 static inline int
  67 xfs_buf_vmap_len(
  68         struct xfs_buf  *bp)
  69 {
  70         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  71 }
  72 
  73 /*
  74  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
  75  * this buffer. The count is incremented once per buffer (per hold cycle)
  76  * because the corresponding decrement is deferred to buffer release. Buffers
  77  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
  78  * tracking adds unnecessary overhead. This is used for sychronization purposes
  79  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
  80  * in-flight buffers.
  81  *
  82  * Buffers that are never released (e.g., superblock, iclog buffers) must set
  83  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
  84  * never reaches zero and unmount hangs indefinitely.
  85  */
  86 static inline void
  87 xfs_buf_ioacct_inc(
  88         struct xfs_buf  *bp)
  89 {
  90         if (bp->b_flags & XBF_NO_IOACCT)
  91                 return;
  92 
  93         ASSERT(bp->b_flags & XBF_ASYNC);
  94         spin_lock(&bp->b_lock);
  95         if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
  96                 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
  97                 percpu_counter_inc(&bp->b_target->bt_io_count);
  98         }
  99         spin_unlock(&bp->b_lock);
 100 }
 101 
 102 /*
 103  * Clear the in-flight state on a buffer about to be released to the LRU or
 104  * freed and unaccount from the buftarg.
 105  */
 106 static inline void
 107 __xfs_buf_ioacct_dec(
 108         struct xfs_buf  *bp)
 109 {
 110         lockdep_assert_held(&bp->b_lock);
 111 
 112         if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
 113                 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
 114                 percpu_counter_dec(&bp->b_target->bt_io_count);
 115         }
 116 }
 117 
 118 static inline void
 119 xfs_buf_ioacct_dec(
 120         struct xfs_buf  *bp)
 121 {
 122         spin_lock(&bp->b_lock);
 123         __xfs_buf_ioacct_dec(bp);
 124         spin_unlock(&bp->b_lock);
 125 }
 126 
 127 /*
 128  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 129  * b_lru_ref count so that the buffer is freed immediately when the buffer
 130  * reference count falls to zero. If the buffer is already on the LRU, we need
 131  * to remove the reference that LRU holds on the buffer.
 132  *
 133  * This prevents build-up of stale buffers on the LRU.
 134  */
 135 void
 136 xfs_buf_stale(
 137         struct xfs_buf  *bp)
 138 {
 139         ASSERT(xfs_buf_islocked(bp));
 140 
 141         bp->b_flags |= XBF_STALE;
 142 
 143         /*
 144          * Clear the delwri status so that a delwri queue walker will not
 145          * flush this buffer to disk now that it is stale. The delwri queue has
 146          * a reference to the buffer, so this is safe to do.
 147          */
 148         bp->b_flags &= ~_XBF_DELWRI_Q;
 149 
 150         /*
 151          * Once the buffer is marked stale and unlocked, a subsequent lookup
 152          * could reset b_flags. There is no guarantee that the buffer is
 153          * unaccounted (released to LRU) before that occurs. Drop in-flight
 154          * status now to preserve accounting consistency.
 155          */
 156         spin_lock(&bp->b_lock);
 157         __xfs_buf_ioacct_dec(bp);
 158 
 159         atomic_set(&bp->b_lru_ref, 0);
 160         if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 161             (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 162                 atomic_dec(&bp->b_hold);
 163 
 164         ASSERT(atomic_read(&bp->b_hold) >= 1);
 165         spin_unlock(&bp->b_lock);
 166 }
 167 
 168 static int
 169 xfs_buf_get_maps(
 170         struct xfs_buf          *bp,
 171         int                     map_count)
 172 {
 173         ASSERT(bp->b_maps == NULL);
 174         bp->b_map_count = map_count;
 175 
 176         if (map_count == 1) {
 177                 bp->b_maps = &bp->__b_map;
 178                 return 0;
 179         }
 180 
 181         bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 182                                 KM_NOFS);
 183         if (!bp->b_maps)
 184                 return -ENOMEM;
 185         return 0;
 186 }
 187 
 188 /*
 189  *      Frees b_pages if it was allocated.
 190  */
 191 static void
 192 xfs_buf_free_maps(
 193         struct xfs_buf  *bp)
 194 {
 195         if (bp->b_maps != &bp->__b_map) {
 196                 kmem_free(bp->b_maps);
 197                 bp->b_maps = NULL;
 198         }
 199 }
 200 
 201 static struct xfs_buf *
 202 _xfs_buf_alloc(
 203         struct xfs_buftarg      *target,
 204         struct xfs_buf_map      *map,
 205         int                     nmaps,
 206         xfs_buf_flags_t         flags)
 207 {
 208         struct xfs_buf          *bp;
 209         int                     error;
 210         int                     i;
 211 
 212         bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 213         if (unlikely(!bp))
 214                 return NULL;
 215 
 216         /*
 217          * We don't want certain flags to appear in b_flags unless they are
 218          * specifically set by later operations on the buffer.
 219          */
 220         flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 221 
 222         atomic_set(&bp->b_hold, 1);
 223         atomic_set(&bp->b_lru_ref, 1);
 224         init_completion(&bp->b_iowait);
 225         INIT_LIST_HEAD(&bp->b_lru);
 226         INIT_LIST_HEAD(&bp->b_list);
 227         INIT_LIST_HEAD(&bp->b_li_list);
 228         sema_init(&bp->b_sema, 0); /* held, no waiters */
 229         spin_lock_init(&bp->b_lock);
 230         bp->b_target = target;
 231         bp->b_mount = target->bt_mount;
 232         bp->b_flags = flags;
 233 
 234         /*
 235          * Set length and io_length to the same value initially.
 236          * I/O routines should use io_length, which will be the same in
 237          * most cases but may be reset (e.g. XFS recovery).
 238          */
 239         error = xfs_buf_get_maps(bp, nmaps);
 240         if (error)  {
 241                 kmem_zone_free(xfs_buf_zone, bp);
 242                 return NULL;
 243         }
 244 
 245         bp->b_bn = map[0].bm_bn;
 246         bp->b_length = 0;
 247         for (i = 0; i < nmaps; i++) {
 248                 bp->b_maps[i].bm_bn = map[i].bm_bn;
 249                 bp->b_maps[i].bm_len = map[i].bm_len;
 250                 bp->b_length += map[i].bm_len;
 251         }
 252 
 253         atomic_set(&bp->b_pin_count, 0);
 254         init_waitqueue_head(&bp->b_waiters);
 255 
 256         XFS_STATS_INC(bp->b_mount, xb_create);
 257         trace_xfs_buf_init(bp, _RET_IP_);
 258 
 259         return bp;
 260 }
 261 
 262 /*
 263  *      Allocate a page array capable of holding a specified number
 264  *      of pages, and point the page buf at it.
 265  */
 266 STATIC int
 267 _xfs_buf_get_pages(
 268         xfs_buf_t               *bp,
 269         int                     page_count)
 270 {
 271         /* Make sure that we have a page list */
 272         if (bp->b_pages == NULL) {
 273                 bp->b_page_count = page_count;
 274                 if (page_count <= XB_PAGES) {
 275                         bp->b_pages = bp->b_page_array;
 276                 } else {
 277                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
 278                                                  page_count, KM_NOFS);
 279                         if (bp->b_pages == NULL)
 280                                 return -ENOMEM;
 281                 }
 282                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 283         }
 284         return 0;
 285 }
 286 
 287 /*
 288  *      Frees b_pages if it was allocated.
 289  */
 290 STATIC void
 291 _xfs_buf_free_pages(
 292         xfs_buf_t       *bp)
 293 {
 294         if (bp->b_pages != bp->b_page_array) {
 295                 kmem_free(bp->b_pages);
 296                 bp->b_pages = NULL;
 297         }
 298 }
 299 
 300 /*
 301  *      Releases the specified buffer.
 302  *
 303  *      The modification state of any associated pages is left unchanged.
 304  *      The buffer must not be on any hash - use xfs_buf_rele instead for
 305  *      hashed and refcounted buffers
 306  */
 307 void
 308 xfs_buf_free(
 309         xfs_buf_t               *bp)
 310 {
 311         trace_xfs_buf_free(bp, _RET_IP_);
 312 
 313         ASSERT(list_empty(&bp->b_lru));
 314 
 315         if (bp->b_flags & _XBF_PAGES) {
 316                 uint            i;
 317 
 318                 if (xfs_buf_is_vmapped(bp))
 319                         vm_unmap_ram(bp->b_addr - bp->b_offset,
 320                                         bp->b_page_count);
 321 
 322                 for (i = 0; i < bp->b_page_count; i++) {
 323                         struct page     *page = bp->b_pages[i];
 324 
 325                         __free_page(page);
 326                 }
 327         } else if (bp->b_flags & _XBF_KMEM)
 328                 kmem_free(bp->b_addr);
 329         _xfs_buf_free_pages(bp);
 330         xfs_buf_free_maps(bp);
 331         kmem_zone_free(xfs_buf_zone, bp);
 332 }
 333 
 334 /*
 335  * Allocates all the pages for buffer in question and builds it's page list.
 336  */
 337 STATIC int
 338 xfs_buf_allocate_memory(
 339         xfs_buf_t               *bp,
 340         uint                    flags)
 341 {
 342         size_t                  size;
 343         size_t                  nbytes, offset;
 344         gfp_t                   gfp_mask = xb_to_gfp(flags);
 345         unsigned short          page_count, i;
 346         xfs_off_t               start, end;
 347         int                     error;
 348         xfs_km_flags_t          kmflag_mask = 0;
 349 
 350         /*
 351          * assure zeroed buffer for non-read cases.
 352          */
 353         if (!(flags & XBF_READ)) {
 354                 kmflag_mask |= KM_ZERO;
 355                 gfp_mask |= __GFP_ZERO;
 356         }
 357 
 358         /*
 359          * for buffers that are contained within a single page, just allocate
 360          * the memory from the heap - there's no need for the complexity of
 361          * page arrays to keep allocation down to order 0.
 362          */
 363         size = BBTOB(bp->b_length);
 364         if (size < PAGE_SIZE) {
 365                 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
 366                 bp->b_addr = kmem_alloc_io(size, align_mask,
 367                                            KM_NOFS | kmflag_mask);
 368                 if (!bp->b_addr) {
 369                         /* low memory - use alloc_page loop instead */
 370                         goto use_alloc_page;
 371                 }
 372 
 373                 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 374                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
 375                         /* b_addr spans two pages - use alloc_page instead */
 376                         kmem_free(bp->b_addr);
 377                         bp->b_addr = NULL;
 378                         goto use_alloc_page;
 379                 }
 380                 bp->b_offset = offset_in_page(bp->b_addr);
 381                 bp->b_pages = bp->b_page_array;
 382                 bp->b_pages[0] = kmem_to_page(bp->b_addr);
 383                 bp->b_page_count = 1;
 384                 bp->b_flags |= _XBF_KMEM;
 385                 return 0;
 386         }
 387 
 388 use_alloc_page:
 389         start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 390         end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 391                                                                 >> PAGE_SHIFT;
 392         page_count = end - start;
 393         error = _xfs_buf_get_pages(bp, page_count);
 394         if (unlikely(error))
 395                 return error;
 396 
 397         offset = bp->b_offset;
 398         bp->b_flags |= _XBF_PAGES;
 399 
 400         for (i = 0; i < bp->b_page_count; i++) {
 401                 struct page     *page;
 402                 uint            retries = 0;
 403 retry:
 404                 page = alloc_page(gfp_mask);
 405                 if (unlikely(page == NULL)) {
 406                         if (flags & XBF_READ_AHEAD) {
 407                                 bp->b_page_count = i;
 408                                 error = -ENOMEM;
 409                                 goto out_free_pages;
 410                         }
 411 
 412                         /*
 413                          * This could deadlock.
 414                          *
 415                          * But until all the XFS lowlevel code is revamped to
 416                          * handle buffer allocation failures we can't do much.
 417                          */
 418                         if (!(++retries % 100))
 419                                 xfs_err(NULL,
 420                 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
 421                                         current->comm, current->pid,
 422                                         __func__, gfp_mask);
 423 
 424                         XFS_STATS_INC(bp->b_mount, xb_page_retries);
 425                         congestion_wait(BLK_RW_ASYNC, HZ/50);
 426                         goto retry;
 427                 }
 428 
 429                 XFS_STATS_INC(bp->b_mount, xb_page_found);
 430 
 431                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 432                 size -= nbytes;
 433                 bp->b_pages[i] = page;
 434                 offset = 0;
 435         }
 436         return 0;
 437 
 438 out_free_pages:
 439         for (i = 0; i < bp->b_page_count; i++)
 440                 __free_page(bp->b_pages[i]);
 441         bp->b_flags &= ~_XBF_PAGES;
 442         return error;
 443 }
 444 
 445 /*
 446  *      Map buffer into kernel address-space if necessary.
 447  */
 448 STATIC int
 449 _xfs_buf_map_pages(
 450         xfs_buf_t               *bp,
 451         uint                    flags)
 452 {
 453         ASSERT(bp->b_flags & _XBF_PAGES);
 454         if (bp->b_page_count == 1) {
 455                 /* A single page buffer is always mappable */
 456                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 457         } else if (flags & XBF_UNMAPPED) {
 458                 bp->b_addr = NULL;
 459         } else {
 460                 int retried = 0;
 461                 unsigned nofs_flag;
 462 
 463                 /*
 464                  * vm_map_ram() will allocate auxillary structures (e.g.
 465                  * pagetables) with GFP_KERNEL, yet we are likely to be under
 466                  * GFP_NOFS context here. Hence we need to tell memory reclaim
 467                  * that we are in such a context via PF_MEMALLOC_NOFS to prevent
 468                  * memory reclaim re-entering the filesystem here and
 469                  * potentially deadlocking.
 470                  */
 471                 nofs_flag = memalloc_nofs_save();
 472                 do {
 473                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 474                                                 -1, PAGE_KERNEL);
 475                         if (bp->b_addr)
 476                                 break;
 477                         vm_unmap_aliases();
 478                 } while (retried++ <= 1);
 479                 memalloc_nofs_restore(nofs_flag);
 480 
 481                 if (!bp->b_addr)
 482                         return -ENOMEM;
 483                 bp->b_addr += bp->b_offset;
 484         }
 485 
 486         return 0;
 487 }
 488 
 489 /*
 490  *      Finding and Reading Buffers
 491  */
 492 static int
 493 _xfs_buf_obj_cmp(
 494         struct rhashtable_compare_arg   *arg,
 495         const void                      *obj)
 496 {
 497         const struct xfs_buf_map        *map = arg->key;
 498         const struct xfs_buf            *bp = obj;
 499 
 500         /*
 501          * The key hashing in the lookup path depends on the key being the
 502          * first element of the compare_arg, make sure to assert this.
 503          */
 504         BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
 505 
 506         if (bp->b_bn != map->bm_bn)
 507                 return 1;
 508 
 509         if (unlikely(bp->b_length != map->bm_len)) {
 510                 /*
 511                  * found a block number match. If the range doesn't
 512                  * match, the only way this is allowed is if the buffer
 513                  * in the cache is stale and the transaction that made
 514                  * it stale has not yet committed. i.e. we are
 515                  * reallocating a busy extent. Skip this buffer and
 516                  * continue searching for an exact match.
 517                  */
 518                 ASSERT(bp->b_flags & XBF_STALE);
 519                 return 1;
 520         }
 521         return 0;
 522 }
 523 
 524 static const struct rhashtable_params xfs_buf_hash_params = {
 525         .min_size               = 32,   /* empty AGs have minimal footprint */
 526         .nelem_hint             = 16,
 527         .key_len                = sizeof(xfs_daddr_t),
 528         .key_offset             = offsetof(struct xfs_buf, b_bn),
 529         .head_offset            = offsetof(struct xfs_buf, b_rhash_head),
 530         .automatic_shrinking    = true,
 531         .obj_cmpfn              = _xfs_buf_obj_cmp,
 532 };
 533 
 534 int
 535 xfs_buf_hash_init(
 536         struct xfs_perag        *pag)
 537 {
 538         spin_lock_init(&pag->pag_buf_lock);
 539         return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
 540 }
 541 
 542 void
 543 xfs_buf_hash_destroy(
 544         struct xfs_perag        *pag)
 545 {
 546         rhashtable_destroy(&pag->pag_buf_hash);
 547 }
 548 
 549 /*
 550  * Look up a buffer in the buffer cache and return it referenced and locked
 551  * in @found_bp.
 552  *
 553  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
 554  * cache.
 555  *
 556  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
 557  * -EAGAIN if we fail to lock it.
 558  *
 559  * Return values are:
 560  *      -EFSCORRUPTED if have been supplied with an invalid address
 561  *      -EAGAIN on trylock failure
 562  *      -ENOENT if we fail to find a match and @new_bp was NULL
 563  *      0, with @found_bp:
 564  *              - @new_bp if we inserted it into the cache
 565  *              - the buffer we found and locked.
 566  */
 567 static int
 568 xfs_buf_find(
 569         struct xfs_buftarg      *btp,
 570         struct xfs_buf_map      *map,
 571         int                     nmaps,
 572         xfs_buf_flags_t         flags,
 573         struct xfs_buf          *new_bp,
 574         struct xfs_buf          **found_bp)
 575 {
 576         struct xfs_perag        *pag;
 577         xfs_buf_t               *bp;
 578         struct xfs_buf_map      cmap = { .bm_bn = map[0].bm_bn };
 579         xfs_daddr_t             eofs;
 580         int                     i;
 581 
 582         *found_bp = NULL;
 583 
 584         for (i = 0; i < nmaps; i++)
 585                 cmap.bm_len += map[i].bm_len;
 586 
 587         /* Check for IOs smaller than the sector size / not sector aligned */
 588         ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
 589         ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
 590 
 591         /*
 592          * Corrupted block numbers can get through to here, unfortunately, so we
 593          * have to check that the buffer falls within the filesystem bounds.
 594          */
 595         eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 596         if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
 597                 xfs_alert(btp->bt_mount,
 598                           "%s: daddr 0x%llx out of range, EOFS 0x%llx",
 599                           __func__, cmap.bm_bn, eofs);
 600                 WARN_ON(1);
 601                 return -EFSCORRUPTED;
 602         }
 603 
 604         pag = xfs_perag_get(btp->bt_mount,
 605                             xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
 606 
 607         spin_lock(&pag->pag_buf_lock);
 608         bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
 609                                     xfs_buf_hash_params);
 610         if (bp) {
 611                 atomic_inc(&bp->b_hold);
 612                 goto found;
 613         }
 614 
 615         /* No match found */
 616         if (!new_bp) {
 617                 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
 618                 spin_unlock(&pag->pag_buf_lock);
 619                 xfs_perag_put(pag);
 620                 return -ENOENT;
 621         }
 622 
 623         /* the buffer keeps the perag reference until it is freed */
 624         new_bp->b_pag = pag;
 625         rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
 626                                xfs_buf_hash_params);
 627         spin_unlock(&pag->pag_buf_lock);
 628         *found_bp = new_bp;
 629         return 0;
 630 
 631 found:
 632         spin_unlock(&pag->pag_buf_lock);
 633         xfs_perag_put(pag);
 634 
 635         if (!xfs_buf_trylock(bp)) {
 636                 if (flags & XBF_TRYLOCK) {
 637                         xfs_buf_rele(bp);
 638                         XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
 639                         return -EAGAIN;
 640                 }
 641                 xfs_buf_lock(bp);
 642                 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
 643         }
 644 
 645         /*
 646          * if the buffer is stale, clear all the external state associated with
 647          * it. We need to keep flags such as how we allocated the buffer memory
 648          * intact here.
 649          */
 650         if (bp->b_flags & XBF_STALE) {
 651                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 652                 ASSERT(bp->b_iodone == NULL);
 653                 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 654                 bp->b_ops = NULL;
 655         }
 656 
 657         trace_xfs_buf_find(bp, flags, _RET_IP_);
 658         XFS_STATS_INC(btp->bt_mount, xb_get_locked);
 659         *found_bp = bp;
 660         return 0;
 661 }
 662 
 663 struct xfs_buf *
 664 xfs_buf_incore(
 665         struct xfs_buftarg      *target,
 666         xfs_daddr_t             blkno,
 667         size_t                  numblks,
 668         xfs_buf_flags_t         flags)
 669 {
 670         struct xfs_buf          *bp;
 671         int                     error;
 672         DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
 673 
 674         error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
 675         if (error)
 676                 return NULL;
 677         return bp;
 678 }
 679 
 680 /*
 681  * Assembles a buffer covering the specified range. The code is optimised for
 682  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 683  * more hits than misses.
 684  */
 685 struct xfs_buf *
 686 xfs_buf_get_map(
 687         struct xfs_buftarg      *target,
 688         struct xfs_buf_map      *map,
 689         int                     nmaps,
 690         xfs_buf_flags_t         flags)
 691 {
 692         struct xfs_buf          *bp;
 693         struct xfs_buf          *new_bp;
 694         int                     error = 0;
 695 
 696         error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
 697 
 698         switch (error) {
 699         case 0:
 700                 /* cache hit */
 701                 goto found;
 702         case -EAGAIN:
 703                 /* cache hit, trylock failure, caller handles failure */
 704                 ASSERT(flags & XBF_TRYLOCK);
 705                 return NULL;
 706         case -ENOENT:
 707                 /* cache miss, go for insert */
 708                 break;
 709         case -EFSCORRUPTED:
 710         default:
 711                 /*
 712                  * None of the higher layers understand failure types
 713                  * yet, so return NULL to signal a fatal lookup error.
 714                  */
 715                 return NULL;
 716         }
 717 
 718         new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
 719         if (unlikely(!new_bp))
 720                 return NULL;
 721 
 722         error = xfs_buf_allocate_memory(new_bp, flags);
 723         if (error) {
 724                 xfs_buf_free(new_bp);
 725                 return NULL;
 726         }
 727 
 728         error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
 729         if (error) {
 730                 xfs_buf_free(new_bp);
 731                 return NULL;
 732         }
 733 
 734         if (bp != new_bp)
 735                 xfs_buf_free(new_bp);
 736 
 737 found:
 738         if (!bp->b_addr) {
 739                 error = _xfs_buf_map_pages(bp, flags);
 740                 if (unlikely(error)) {
 741                         xfs_warn(target->bt_mount,
 742                                 "%s: failed to map pagesn", __func__);
 743                         xfs_buf_relse(bp);
 744                         return NULL;
 745                 }
 746         }
 747 
 748         /*
 749          * Clear b_error if this is a lookup from a caller that doesn't expect
 750          * valid data to be found in the buffer.
 751          */
 752         if (!(flags & XBF_READ))
 753                 xfs_buf_ioerror(bp, 0);
 754 
 755         XFS_STATS_INC(target->bt_mount, xb_get);
 756         trace_xfs_buf_get(bp, flags, _RET_IP_);
 757         return bp;
 758 }
 759 
 760 STATIC int
 761 _xfs_buf_read(
 762         xfs_buf_t               *bp,
 763         xfs_buf_flags_t         flags)
 764 {
 765         ASSERT(!(flags & XBF_WRITE));
 766         ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 767 
 768         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 769         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 770 
 771         return xfs_buf_submit(bp);
 772 }
 773 
 774 /*
 775  * Reverify a buffer found in cache without an attached ->b_ops.
 776  *
 777  * If the caller passed an ops structure and the buffer doesn't have ops
 778  * assigned, set the ops and use it to verify the contents. If verification
 779  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
 780  * already in XBF_DONE state on entry.
 781  *
 782  * Under normal operations, every in-core buffer is verified on read I/O
 783  * completion. There are two scenarios that can lead to in-core buffers without
 784  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
 785  * filesystem, though these buffers are purged at the end of recovery. The
 786  * other is online repair, which intentionally reads with a NULL buffer ops to
 787  * run several verifiers across an in-core buffer in order to establish buffer
 788  * type.  If repair can't establish that, the buffer will be left in memory
 789  * with NULL buffer ops.
 790  */
 791 int
 792 xfs_buf_reverify(
 793         struct xfs_buf          *bp,
 794         const struct xfs_buf_ops *ops)
 795 {
 796         ASSERT(bp->b_flags & XBF_DONE);
 797         ASSERT(bp->b_error == 0);
 798 
 799         if (!ops || bp->b_ops)
 800                 return 0;
 801 
 802         bp->b_ops = ops;
 803         bp->b_ops->verify_read(bp);
 804         if (bp->b_error)
 805                 bp->b_flags &= ~XBF_DONE;
 806         return bp->b_error;
 807 }
 808 
 809 xfs_buf_t *
 810 xfs_buf_read_map(
 811         struct xfs_buftarg      *target,
 812         struct xfs_buf_map      *map,
 813         int                     nmaps,
 814         xfs_buf_flags_t         flags,
 815         const struct xfs_buf_ops *ops)
 816 {
 817         struct xfs_buf          *bp;
 818 
 819         flags |= XBF_READ;
 820 
 821         bp = xfs_buf_get_map(target, map, nmaps, flags);
 822         if (!bp)
 823                 return NULL;
 824 
 825         trace_xfs_buf_read(bp, flags, _RET_IP_);
 826 
 827         if (!(bp->b_flags & XBF_DONE)) {
 828                 XFS_STATS_INC(target->bt_mount, xb_get_read);
 829                 bp->b_ops = ops;
 830                 _xfs_buf_read(bp, flags);
 831                 return bp;
 832         }
 833 
 834         xfs_buf_reverify(bp, ops);
 835 
 836         if (flags & XBF_ASYNC) {
 837                 /*
 838                  * Read ahead call which is already satisfied,
 839                  * drop the buffer
 840                  */
 841                 xfs_buf_relse(bp);
 842                 return NULL;
 843         }
 844 
 845         /* We do not want read in the flags */
 846         bp->b_flags &= ~XBF_READ;
 847         ASSERT(bp->b_ops != NULL || ops == NULL);
 848         return bp;
 849 }
 850 
 851 /*
 852  *      If we are not low on memory then do the readahead in a deadlock
 853  *      safe manner.
 854  */
 855 void
 856 xfs_buf_readahead_map(
 857         struct xfs_buftarg      *target,
 858         struct xfs_buf_map      *map,
 859         int                     nmaps,
 860         const struct xfs_buf_ops *ops)
 861 {
 862         if (bdi_read_congested(target->bt_bdev->bd_bdi))
 863                 return;
 864 
 865         xfs_buf_read_map(target, map, nmaps,
 866                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
 867 }
 868 
 869 /*
 870  * Read an uncached buffer from disk. Allocates and returns a locked
 871  * buffer containing the disk contents or nothing.
 872  */
 873 int
 874 xfs_buf_read_uncached(
 875         struct xfs_buftarg      *target,
 876         xfs_daddr_t             daddr,
 877         size_t                  numblks,
 878         int                     flags,
 879         struct xfs_buf          **bpp,
 880         const struct xfs_buf_ops *ops)
 881 {
 882         struct xfs_buf          *bp;
 883 
 884         *bpp = NULL;
 885 
 886         bp = xfs_buf_get_uncached(target, numblks, flags);
 887         if (!bp)
 888                 return -ENOMEM;
 889 
 890         /* set up the buffer for a read IO */
 891         ASSERT(bp->b_map_count == 1);
 892         bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
 893         bp->b_maps[0].bm_bn = daddr;
 894         bp->b_flags |= XBF_READ;
 895         bp->b_ops = ops;
 896 
 897         xfs_buf_submit(bp);
 898         if (bp->b_error) {
 899                 int     error = bp->b_error;
 900                 xfs_buf_relse(bp);
 901                 return error;
 902         }
 903 
 904         *bpp = bp;
 905         return 0;
 906 }
 907 
 908 xfs_buf_t *
 909 xfs_buf_get_uncached(
 910         struct xfs_buftarg      *target,
 911         size_t                  numblks,
 912         int                     flags)
 913 {
 914         unsigned long           page_count;
 915         int                     error, i;
 916         struct xfs_buf          *bp;
 917         DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 918 
 919         /* flags might contain irrelevant bits, pass only what we care about */
 920         bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
 921         if (unlikely(bp == NULL))
 922                 goto fail;
 923 
 924         page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 925         error = _xfs_buf_get_pages(bp, page_count);
 926         if (error)
 927                 goto fail_free_buf;
 928 
 929         for (i = 0; i < page_count; i++) {
 930                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 931                 if (!bp->b_pages[i])
 932                         goto fail_free_mem;
 933         }
 934         bp->b_flags |= _XBF_PAGES;
 935 
 936         error = _xfs_buf_map_pages(bp, 0);
 937         if (unlikely(error)) {
 938                 xfs_warn(target->bt_mount,
 939                         "%s: failed to map pages", __func__);
 940                 goto fail_free_mem;
 941         }
 942 
 943         trace_xfs_buf_get_uncached(bp, _RET_IP_);
 944         return bp;
 945 
 946  fail_free_mem:
 947         while (--i >= 0)
 948                 __free_page(bp->b_pages[i]);
 949         _xfs_buf_free_pages(bp);
 950  fail_free_buf:
 951         xfs_buf_free_maps(bp);
 952         kmem_zone_free(xfs_buf_zone, bp);
 953  fail:
 954         return NULL;
 955 }
 956 
 957 /*
 958  *      Increment reference count on buffer, to hold the buffer concurrently
 959  *      with another thread which may release (free) the buffer asynchronously.
 960  *      Must hold the buffer already to call this function.
 961  */
 962 void
 963 xfs_buf_hold(
 964         xfs_buf_t               *bp)
 965 {
 966         trace_xfs_buf_hold(bp, _RET_IP_);
 967         atomic_inc(&bp->b_hold);
 968 }
 969 
 970 /*
 971  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
 972  * placed on LRU or freed (depending on b_lru_ref).
 973  */
 974 void
 975 xfs_buf_rele(
 976         xfs_buf_t               *bp)
 977 {
 978         struct xfs_perag        *pag = bp->b_pag;
 979         bool                    release;
 980         bool                    freebuf = false;
 981 
 982         trace_xfs_buf_rele(bp, _RET_IP_);
 983 
 984         if (!pag) {
 985                 ASSERT(list_empty(&bp->b_lru));
 986                 if (atomic_dec_and_test(&bp->b_hold)) {
 987                         xfs_buf_ioacct_dec(bp);
 988                         xfs_buf_free(bp);
 989                 }
 990                 return;
 991         }
 992 
 993         ASSERT(atomic_read(&bp->b_hold) > 0);
 994 
 995         /*
 996          * We grab the b_lock here first to serialise racing xfs_buf_rele()
 997          * calls. The pag_buf_lock being taken on the last reference only
 998          * serialises against racing lookups in xfs_buf_find(). IOWs, the second
 999          * to last reference we drop here is not serialised against the last
1000          * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001          * first, the last "release" reference can win the race to the lock and
1002          * free the buffer before the second-to-last reference is processed,
1003          * leading to a use-after-free scenario.
1004          */
1005         spin_lock(&bp->b_lock);
1006         release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1007         if (!release) {
1008                 /*
1009                  * Drop the in-flight state if the buffer is already on the LRU
1010                  * and it holds the only reference. This is racy because we
1011                  * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012                  * ensures the decrement occurs only once per-buf.
1013                  */
1014                 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1015                         __xfs_buf_ioacct_dec(bp);
1016                 goto out_unlock;
1017         }
1018 
1019         /* the last reference has been dropped ... */
1020         __xfs_buf_ioacct_dec(bp);
1021         if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1022                 /*
1023                  * If the buffer is added to the LRU take a new reference to the
1024                  * buffer for the LRU and clear the (now stale) dispose list
1025                  * state flag
1026                  */
1027                 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1028                         bp->b_state &= ~XFS_BSTATE_DISPOSE;
1029                         atomic_inc(&bp->b_hold);
1030                 }
1031                 spin_unlock(&pag->pag_buf_lock);
1032         } else {
1033                 /*
1034                  * most of the time buffers will already be removed from the
1035                  * LRU, so optimise that case by checking for the
1036                  * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037                  * was on was the disposal list
1038                  */
1039                 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1040                         list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1041                 } else {
1042                         ASSERT(list_empty(&bp->b_lru));
1043                 }
1044 
1045                 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1046                 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1047                                        xfs_buf_hash_params);
1048                 spin_unlock(&pag->pag_buf_lock);
1049                 xfs_perag_put(pag);
1050                 freebuf = true;
1051         }
1052 
1053 out_unlock:
1054         spin_unlock(&bp->b_lock);
1055 
1056         if (freebuf)
1057                 xfs_buf_free(bp);
1058 }
1059 
1060 
1061 /*
1062  *      Lock a buffer object, if it is not already locked.
1063  *
1064  *      If we come across a stale, pinned, locked buffer, we know that we are
1065  *      being asked to lock a buffer that has been reallocated. Because it is
1066  *      pinned, we know that the log has not been pushed to disk and hence it
1067  *      will still be locked.  Rather than continuing to have trylock attempts
1068  *      fail until someone else pushes the log, push it ourselves before
1069  *      returning.  This means that the xfsaild will not get stuck trying
1070  *      to push on stale inode buffers.
1071  */
1072 int
1073 xfs_buf_trylock(
1074         struct xfs_buf          *bp)
1075 {
1076         int                     locked;
1077 
1078         locked = down_trylock(&bp->b_sema) == 0;
1079         if (locked)
1080                 trace_xfs_buf_trylock(bp, _RET_IP_);
1081         else
1082                 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1083         return locked;
1084 }
1085 
1086 /*
1087  *      Lock a buffer object.
1088  *
1089  *      If we come across a stale, pinned, locked buffer, we know that we
1090  *      are being asked to lock a buffer that has been reallocated. Because
1091  *      it is pinned, we know that the log has not been pushed to disk and
1092  *      hence it will still be locked. Rather than sleeping until someone
1093  *      else pushes the log, push it ourselves before trying to get the lock.
1094  */
1095 void
1096 xfs_buf_lock(
1097         struct xfs_buf          *bp)
1098 {
1099         trace_xfs_buf_lock(bp, _RET_IP_);
1100 
1101         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1102                 xfs_log_force(bp->b_mount, 0);
1103         down(&bp->b_sema);
1104 
1105         trace_xfs_buf_lock_done(bp, _RET_IP_);
1106 }
1107 
1108 void
1109 xfs_buf_unlock(
1110         struct xfs_buf          *bp)
1111 {
1112         ASSERT(xfs_buf_islocked(bp));
1113 
1114         up(&bp->b_sema);
1115         trace_xfs_buf_unlock(bp, _RET_IP_);
1116 }
1117 
1118 STATIC void
1119 xfs_buf_wait_unpin(
1120         xfs_buf_t               *bp)
1121 {
1122         DECLARE_WAITQUEUE       (wait, current);
1123 
1124         if (atomic_read(&bp->b_pin_count) == 0)
1125                 return;
1126 
1127         add_wait_queue(&bp->b_waiters, &wait);
1128         for (;;) {
1129                 set_current_state(TASK_UNINTERRUPTIBLE);
1130                 if (atomic_read(&bp->b_pin_count) == 0)
1131                         break;
1132                 io_schedule();
1133         }
1134         remove_wait_queue(&bp->b_waiters, &wait);
1135         set_current_state(TASK_RUNNING);
1136 }
1137 
1138 /*
1139  *      Buffer Utility Routines
1140  */
1141 
1142 void
1143 xfs_buf_ioend(
1144         struct xfs_buf  *bp)
1145 {
1146         bool            read = bp->b_flags & XBF_READ;
1147 
1148         trace_xfs_buf_iodone(bp, _RET_IP_);
1149 
1150         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1151 
1152         /*
1153          * Pull in IO completion errors now. We are guaranteed to be running
1154          * single threaded, so we don't need the lock to read b_io_error.
1155          */
1156         if (!bp->b_error && bp->b_io_error)
1157                 xfs_buf_ioerror(bp, bp->b_io_error);
1158 
1159         /* Only validate buffers that were read without errors */
1160         if (read && !bp->b_error && bp->b_ops) {
1161                 ASSERT(!bp->b_iodone);
1162                 bp->b_ops->verify_read(bp);
1163         }
1164 
1165         if (!bp->b_error)
1166                 bp->b_flags |= XBF_DONE;
1167 
1168         if (bp->b_iodone)
1169                 (*(bp->b_iodone))(bp);
1170         else if (bp->b_flags & XBF_ASYNC)
1171                 xfs_buf_relse(bp);
1172         else
1173                 complete(&bp->b_iowait);
1174 }
1175 
1176 static void
1177 xfs_buf_ioend_work(
1178         struct work_struct      *work)
1179 {
1180         struct xfs_buf          *bp =
1181                 container_of(work, xfs_buf_t, b_ioend_work);
1182 
1183         xfs_buf_ioend(bp);
1184 }
1185 
1186 static void
1187 xfs_buf_ioend_async(
1188         struct xfs_buf  *bp)
1189 {
1190         INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1191         queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1192 }
1193 
1194 void
1195 __xfs_buf_ioerror(
1196         xfs_buf_t               *bp,
1197         int                     error,
1198         xfs_failaddr_t          failaddr)
1199 {
1200         ASSERT(error <= 0 && error >= -1000);
1201         bp->b_error = error;
1202         trace_xfs_buf_ioerror(bp, error, failaddr);
1203 }
1204 
1205 void
1206 xfs_buf_ioerror_alert(
1207         struct xfs_buf          *bp,
1208         const char              *func)
1209 {
1210         xfs_alert(bp->b_mount,
1211 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1212                         func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1213                         -bp->b_error);
1214 }
1215 
1216 int
1217 xfs_bwrite(
1218         struct xfs_buf          *bp)
1219 {
1220         int                     error;
1221 
1222         ASSERT(xfs_buf_islocked(bp));
1223 
1224         bp->b_flags |= XBF_WRITE;
1225         bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1226                          XBF_WRITE_FAIL | XBF_DONE);
1227 
1228         error = xfs_buf_submit(bp);
1229         if (error)
1230                 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1231         return error;
1232 }
1233 
1234 static void
1235 xfs_buf_bio_end_io(
1236         struct bio              *bio)
1237 {
1238         struct xfs_buf          *bp = (struct xfs_buf *)bio->bi_private;
1239 
1240         /*
1241          * don't overwrite existing errors - otherwise we can lose errors on
1242          * buffers that require multiple bios to complete.
1243          */
1244         if (bio->bi_status) {
1245                 int error = blk_status_to_errno(bio->bi_status);
1246 
1247                 cmpxchg(&bp->b_io_error, 0, error);
1248         }
1249 
1250         if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1251                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1252 
1253         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1254                 xfs_buf_ioend_async(bp);
1255         bio_put(bio);
1256 }
1257 
1258 static void
1259 xfs_buf_ioapply_map(
1260         struct xfs_buf  *bp,
1261         int             map,
1262         int             *buf_offset,
1263         int             *count,
1264         int             op,
1265         int             op_flags)
1266 {
1267         int             page_index;
1268         int             total_nr_pages = bp->b_page_count;
1269         int             nr_pages;
1270         struct bio      *bio;
1271         sector_t        sector =  bp->b_maps[map].bm_bn;
1272         int             size;
1273         int             offset;
1274 
1275         /* skip the pages in the buffer before the start offset */
1276         page_index = 0;
1277         offset = *buf_offset;
1278         while (offset >= PAGE_SIZE) {
1279                 page_index++;
1280                 offset -= PAGE_SIZE;
1281         }
1282 
1283         /*
1284          * Limit the IO size to the length of the current vector, and update the
1285          * remaining IO count for the next time around.
1286          */
1287         size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1288         *count -= size;
1289         *buf_offset += size;
1290 
1291 next_chunk:
1292         atomic_inc(&bp->b_io_remaining);
1293         nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1294 
1295         bio = bio_alloc(GFP_NOIO, nr_pages);
1296         bio_set_dev(bio, bp->b_target->bt_bdev);
1297         bio->bi_iter.bi_sector = sector;
1298         bio->bi_end_io = xfs_buf_bio_end_io;
1299         bio->bi_private = bp;
1300         bio_set_op_attrs(bio, op, op_flags);
1301 
1302         for (; size && nr_pages; nr_pages--, page_index++) {
1303                 int     rbytes, nbytes = PAGE_SIZE - offset;
1304 
1305                 if (nbytes > size)
1306                         nbytes = size;
1307 
1308                 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1309                                       offset);
1310                 if (rbytes < nbytes)
1311                         break;
1312 
1313                 offset = 0;
1314                 sector += BTOBB(nbytes);
1315                 size -= nbytes;
1316                 total_nr_pages--;
1317         }
1318 
1319         if (likely(bio->bi_iter.bi_size)) {
1320                 if (xfs_buf_is_vmapped(bp)) {
1321                         flush_kernel_vmap_range(bp->b_addr,
1322                                                 xfs_buf_vmap_len(bp));
1323                 }
1324                 submit_bio(bio);
1325                 if (size)
1326                         goto next_chunk;
1327         } else {
1328                 /*
1329                  * This is guaranteed not to be the last io reference count
1330                  * because the caller (xfs_buf_submit) holds a count itself.
1331                  */
1332                 atomic_dec(&bp->b_io_remaining);
1333                 xfs_buf_ioerror(bp, -EIO);
1334                 bio_put(bio);
1335         }
1336 
1337 }
1338 
1339 STATIC void
1340 _xfs_buf_ioapply(
1341         struct xfs_buf  *bp)
1342 {
1343         struct blk_plug plug;
1344         int             op;
1345         int             op_flags = 0;
1346         int             offset;
1347         int             size;
1348         int             i;
1349 
1350         /*
1351          * Make sure we capture only current IO errors rather than stale errors
1352          * left over from previous use of the buffer (e.g. failed readahead).
1353          */
1354         bp->b_error = 0;
1355 
1356         if (bp->b_flags & XBF_WRITE) {
1357                 op = REQ_OP_WRITE;
1358 
1359                 /*
1360                  * Run the write verifier callback function if it exists. If
1361                  * this function fails it will mark the buffer with an error and
1362                  * the IO should not be dispatched.
1363                  */
1364                 if (bp->b_ops) {
1365                         bp->b_ops->verify_write(bp);
1366                         if (bp->b_error) {
1367                                 xfs_force_shutdown(bp->b_mount,
1368                                                    SHUTDOWN_CORRUPT_INCORE);
1369                                 return;
1370                         }
1371                 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1372                         struct xfs_mount *mp = bp->b_mount;
1373 
1374                         /*
1375                          * non-crc filesystems don't attach verifiers during
1376                          * log recovery, so don't warn for such filesystems.
1377                          */
1378                         if (xfs_sb_version_hascrc(&mp->m_sb)) {
1379                                 xfs_warn(mp,
1380                                         "%s: no buf ops on daddr 0x%llx len %d",
1381                                         __func__, bp->b_bn, bp->b_length);
1382                                 xfs_hex_dump(bp->b_addr,
1383                                                 XFS_CORRUPTION_DUMP_LEN);
1384                                 dump_stack();
1385                         }
1386                 }
1387         } else if (bp->b_flags & XBF_READ_AHEAD) {
1388                 op = REQ_OP_READ;
1389                 op_flags = REQ_RAHEAD;
1390         } else {
1391                 op = REQ_OP_READ;
1392         }
1393 
1394         /* we only use the buffer cache for meta-data */
1395         op_flags |= REQ_META;
1396 
1397         /*
1398          * Walk all the vectors issuing IO on them. Set up the initial offset
1399          * into the buffer and the desired IO size before we start -
1400          * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401          * subsequent call.
1402          */
1403         offset = bp->b_offset;
1404         size = BBTOB(bp->b_length);
1405         blk_start_plug(&plug);
1406         for (i = 0; i < bp->b_map_count; i++) {
1407                 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408                 if (bp->b_error)
1409                         break;
1410                 if (size <= 0)
1411                         break;  /* all done */
1412         }
1413         blk_finish_plug(&plug);
1414 }
1415 
1416 /*
1417  * Wait for I/O completion of a sync buffer and return the I/O error code.
1418  */
1419 static int
1420 xfs_buf_iowait(
1421         struct xfs_buf  *bp)
1422 {
1423         ASSERT(!(bp->b_flags & XBF_ASYNC));
1424 
1425         trace_xfs_buf_iowait(bp, _RET_IP_);
1426         wait_for_completion(&bp->b_iowait);
1427         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1428 
1429         return bp->b_error;
1430 }
1431 
1432 /*
1433  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1434  * the buffer lock ownership and the current reference to the IO. It is not
1435  * safe to reference the buffer after a call to this function unless the caller
1436  * holds an additional reference itself.
1437  */
1438 int
1439 __xfs_buf_submit(
1440         struct xfs_buf  *bp,
1441         bool            wait)
1442 {
1443         int             error = 0;
1444 
1445         trace_xfs_buf_submit(bp, _RET_IP_);
1446 
1447         ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1448 
1449         /* on shutdown we stale and complete the buffer immediately */
1450         if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1451                 xfs_buf_ioerror(bp, -EIO);
1452                 bp->b_flags &= ~XBF_DONE;
1453                 xfs_buf_stale(bp);
1454                 xfs_buf_ioend(bp);
1455                 return -EIO;
1456         }
1457 
1458         /*
1459          * Grab a reference so the buffer does not go away underneath us. For
1460          * async buffers, I/O completion drops the callers reference, which
1461          * could occur before submission returns.
1462          */
1463         xfs_buf_hold(bp);
1464 
1465         if (bp->b_flags & XBF_WRITE)
1466                 xfs_buf_wait_unpin(bp);
1467 
1468         /* clear the internal error state to avoid spurious errors */
1469         bp->b_io_error = 0;
1470 
1471         /*
1472          * Set the count to 1 initially, this will stop an I/O completion
1473          * callout which happens before we have started all the I/O from calling
1474          * xfs_buf_ioend too early.
1475          */
1476         atomic_set(&bp->b_io_remaining, 1);
1477         if (bp->b_flags & XBF_ASYNC)
1478                 xfs_buf_ioacct_inc(bp);
1479         _xfs_buf_ioapply(bp);
1480 
1481         /*
1482          * If _xfs_buf_ioapply failed, we can get back here with only the IO
1483          * reference we took above. If we drop it to zero, run completion so
1484          * that we don't return to the caller with completion still pending.
1485          */
1486         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1487                 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1488                         xfs_buf_ioend(bp);
1489                 else
1490                         xfs_buf_ioend_async(bp);
1491         }
1492 
1493         if (wait)
1494                 error = xfs_buf_iowait(bp);
1495 
1496         /*
1497          * Release the hold that keeps the buffer referenced for the entire
1498          * I/O. Note that if the buffer is async, it is not safe to reference
1499          * after this release.
1500          */
1501         xfs_buf_rele(bp);
1502         return error;
1503 }
1504 
1505 void *
1506 xfs_buf_offset(
1507         struct xfs_buf          *bp,
1508         size_t                  offset)
1509 {
1510         struct page             *page;
1511 
1512         if (bp->b_addr)
1513                 return bp->b_addr + offset;
1514 
1515         offset += bp->b_offset;
1516         page = bp->b_pages[offset >> PAGE_SHIFT];
1517         return page_address(page) + (offset & (PAGE_SIZE-1));
1518 }
1519 
1520 void
1521 xfs_buf_zero(
1522         struct xfs_buf          *bp,
1523         size_t                  boff,
1524         size_t                  bsize)
1525 {
1526         size_t                  bend;
1527 
1528         bend = boff + bsize;
1529         while (boff < bend) {
1530                 struct page     *page;
1531                 int             page_index, page_offset, csize;
1532 
1533                 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1534                 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1535                 page = bp->b_pages[page_index];
1536                 csize = min_t(size_t, PAGE_SIZE - page_offset,
1537                                       BBTOB(bp->b_length) - boff);
1538 
1539                 ASSERT((csize + page_offset) <= PAGE_SIZE);
1540 
1541                 memset(page_address(page) + page_offset, 0, csize);
1542 
1543                 boff += csize;
1544         }
1545 }
1546 
1547 /*
1548  *      Handling of buffer targets (buftargs).
1549  */
1550 
1551 /*
1552  * Wait for any bufs with callbacks that have been submitted but have not yet
1553  * returned. These buffers will have an elevated hold count, so wait on those
1554  * while freeing all the buffers only held by the LRU.
1555  */
1556 static enum lru_status
1557 xfs_buftarg_wait_rele(
1558         struct list_head        *item,
1559         struct list_lru_one     *lru,
1560         spinlock_t              *lru_lock,
1561         void                    *arg)
1562 
1563 {
1564         struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1565         struct list_head        *dispose = arg;
1566 
1567         if (atomic_read(&bp->b_hold) > 1) {
1568                 /* need to wait, so skip it this pass */
1569                 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1570                 return LRU_SKIP;
1571         }
1572         if (!spin_trylock(&bp->b_lock))
1573                 return LRU_SKIP;
1574 
1575         /*
1576          * clear the LRU reference count so the buffer doesn't get
1577          * ignored in xfs_buf_rele().
1578          */
1579         atomic_set(&bp->b_lru_ref, 0);
1580         bp->b_state |= XFS_BSTATE_DISPOSE;
1581         list_lru_isolate_move(lru, item, dispose);
1582         spin_unlock(&bp->b_lock);
1583         return LRU_REMOVED;
1584 }
1585 
1586 void
1587 xfs_wait_buftarg(
1588         struct xfs_buftarg      *btp)
1589 {
1590         LIST_HEAD(dispose);
1591         int loop = 0;
1592 
1593         /*
1594          * First wait on the buftarg I/O count for all in-flight buffers to be
1595          * released. This is critical as new buffers do not make the LRU until
1596          * they are released.
1597          *
1598          * Next, flush the buffer workqueue to ensure all completion processing
1599          * has finished. Just waiting on buffer locks is not sufficient for
1600          * async IO as the reference count held over IO is not released until
1601          * after the buffer lock is dropped. Hence we need to ensure here that
1602          * all reference counts have been dropped before we start walking the
1603          * LRU list.
1604          */
1605         while (percpu_counter_sum(&btp->bt_io_count))
1606                 delay(100);
1607         flush_workqueue(btp->bt_mount->m_buf_workqueue);
1608 
1609         /* loop until there is nothing left on the lru list. */
1610         while (list_lru_count(&btp->bt_lru)) {
1611                 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1612                               &dispose, LONG_MAX);
1613 
1614                 while (!list_empty(&dispose)) {
1615                         struct xfs_buf *bp;
1616                         bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1617                         list_del_init(&bp->b_lru);
1618                         if (bp->b_flags & XBF_WRITE_FAIL) {
1619                                 xfs_alert(btp->bt_mount,
1620 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1621                                         (long long)bp->b_bn);
1622                                 xfs_alert(btp->bt_mount,
1623 "Please run xfs_repair to determine the extent of the problem.");
1624                         }
1625                         xfs_buf_rele(bp);
1626                 }
1627                 if (loop++ != 0)
1628                         delay(100);
1629         }
1630 }
1631 
1632 static enum lru_status
1633 xfs_buftarg_isolate(
1634         struct list_head        *item,
1635         struct list_lru_one     *lru,
1636         spinlock_t              *lru_lock,
1637         void                    *arg)
1638 {
1639         struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1640         struct list_head        *dispose = arg;
1641 
1642         /*
1643          * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1644          * If we fail to get the lock, just skip it.
1645          */
1646         if (!spin_trylock(&bp->b_lock))
1647                 return LRU_SKIP;
1648         /*
1649          * Decrement the b_lru_ref count unless the value is already
1650          * zero. If the value is already zero, we need to reclaim the
1651          * buffer, otherwise it gets another trip through the LRU.
1652          */
1653         if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1654                 spin_unlock(&bp->b_lock);
1655                 return LRU_ROTATE;
1656         }
1657 
1658         bp->b_state |= XFS_BSTATE_DISPOSE;
1659         list_lru_isolate_move(lru, item, dispose);
1660         spin_unlock(&bp->b_lock);
1661         return LRU_REMOVED;
1662 }
1663 
1664 static unsigned long
1665 xfs_buftarg_shrink_scan(
1666         struct shrinker         *shrink,
1667         struct shrink_control   *sc)
1668 {
1669         struct xfs_buftarg      *btp = container_of(shrink,
1670                                         struct xfs_buftarg, bt_shrinker);
1671         LIST_HEAD(dispose);
1672         unsigned long           freed;
1673 
1674         freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1675                                      xfs_buftarg_isolate, &dispose);
1676 
1677         while (!list_empty(&dispose)) {
1678                 struct xfs_buf *bp;
1679                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1680                 list_del_init(&bp->b_lru);
1681                 xfs_buf_rele(bp);
1682         }
1683 
1684         return freed;
1685 }
1686 
1687 static unsigned long
1688 xfs_buftarg_shrink_count(
1689         struct shrinker         *shrink,
1690         struct shrink_control   *sc)
1691 {
1692         struct xfs_buftarg      *btp = container_of(shrink,
1693                                         struct xfs_buftarg, bt_shrinker);
1694         return list_lru_shrink_count(&btp->bt_lru, sc);
1695 }
1696 
1697 void
1698 xfs_free_buftarg(
1699         struct xfs_buftarg      *btp)
1700 {
1701         unregister_shrinker(&btp->bt_shrinker);
1702         ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1703         percpu_counter_destroy(&btp->bt_io_count);
1704         list_lru_destroy(&btp->bt_lru);
1705 
1706         xfs_blkdev_issue_flush(btp);
1707 
1708         kmem_free(btp);
1709 }
1710 
1711 int
1712 xfs_setsize_buftarg(
1713         xfs_buftarg_t           *btp,
1714         unsigned int            sectorsize)
1715 {
1716         /* Set up metadata sector size info */
1717         btp->bt_meta_sectorsize = sectorsize;
1718         btp->bt_meta_sectormask = sectorsize - 1;
1719 
1720         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1721                 xfs_warn(btp->bt_mount,
1722                         "Cannot set_blocksize to %u on device %pg",
1723                         sectorsize, btp->bt_bdev);
1724                 return -EINVAL;
1725         }
1726 
1727         /* Set up device logical sector size mask */
1728         btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1729         btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1730 
1731         return 0;
1732 }
1733 
1734 /*
1735  * When allocating the initial buffer target we have not yet
1736  * read in the superblock, so don't know what sized sectors
1737  * are being used at this early stage.  Play safe.
1738  */
1739 STATIC int
1740 xfs_setsize_buftarg_early(
1741         xfs_buftarg_t           *btp,
1742         struct block_device     *bdev)
1743 {
1744         return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1745 }
1746 
1747 xfs_buftarg_t *
1748 xfs_alloc_buftarg(
1749         struct xfs_mount        *mp,
1750         struct block_device     *bdev,
1751         struct dax_device       *dax_dev)
1752 {
1753         xfs_buftarg_t           *btp;
1754 
1755         btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1756 
1757         btp->bt_mount = mp;
1758         btp->bt_dev =  bdev->bd_dev;
1759         btp->bt_bdev = bdev;
1760         btp->bt_daxdev = dax_dev;
1761 
1762         if (xfs_setsize_buftarg_early(btp, bdev))
1763                 goto error_free;
1764 
1765         if (list_lru_init(&btp->bt_lru))
1766                 goto error_free;
1767 
1768         if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1769                 goto error_lru;
1770 
1771         btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1772         btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1773         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1774         btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1775         if (register_shrinker(&btp->bt_shrinker))
1776                 goto error_pcpu;
1777         return btp;
1778 
1779 error_pcpu:
1780         percpu_counter_destroy(&btp->bt_io_count);
1781 error_lru:
1782         list_lru_destroy(&btp->bt_lru);
1783 error_free:
1784         kmem_free(btp);
1785         return NULL;
1786 }
1787 
1788 /*
1789  * Cancel a delayed write list.
1790  *
1791  * Remove each buffer from the list, clear the delwri queue flag and drop the
1792  * associated buffer reference.
1793  */
1794 void
1795 xfs_buf_delwri_cancel(
1796         struct list_head        *list)
1797 {
1798         struct xfs_buf          *bp;
1799 
1800         while (!list_empty(list)) {
1801                 bp = list_first_entry(list, struct xfs_buf, b_list);
1802 
1803                 xfs_buf_lock(bp);
1804                 bp->b_flags &= ~_XBF_DELWRI_Q;
1805                 list_del_init(&bp->b_list);
1806                 xfs_buf_relse(bp);
1807         }
1808 }
1809 
1810 /*
1811  * Add a buffer to the delayed write list.
1812  *
1813  * This queues a buffer for writeout if it hasn't already been.  Note that
1814  * neither this routine nor the buffer list submission functions perform
1815  * any internal synchronization.  It is expected that the lists are thread-local
1816  * to the callers.
1817  *
1818  * Returns true if we queued up the buffer, or false if it already had
1819  * been on the buffer list.
1820  */
1821 bool
1822 xfs_buf_delwri_queue(
1823         struct xfs_buf          *bp,
1824         struct list_head        *list)
1825 {
1826         ASSERT(xfs_buf_islocked(bp));
1827         ASSERT(!(bp->b_flags & XBF_READ));
1828 
1829         /*
1830          * If the buffer is already marked delwri it already is queued up
1831          * by someone else for imediate writeout.  Just ignore it in that
1832          * case.
1833          */
1834         if (bp->b_flags & _XBF_DELWRI_Q) {
1835                 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1836                 return false;
1837         }
1838 
1839         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1840 
1841         /*
1842          * If a buffer gets written out synchronously or marked stale while it
1843          * is on a delwri list we lazily remove it. To do this, the other party
1844          * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1845          * It remains referenced and on the list.  In a rare corner case it
1846          * might get readded to a delwri list after the synchronous writeout, in
1847          * which case we need just need to re-add the flag here.
1848          */
1849         bp->b_flags |= _XBF_DELWRI_Q;
1850         if (list_empty(&bp->b_list)) {
1851                 atomic_inc(&bp->b_hold);
1852                 list_add_tail(&bp->b_list, list);
1853         }
1854 
1855         return true;
1856 }
1857 
1858 /*
1859  * Compare function is more complex than it needs to be because
1860  * the return value is only 32 bits and we are doing comparisons
1861  * on 64 bit values
1862  */
1863 static int
1864 xfs_buf_cmp(
1865         void            *priv,
1866         struct list_head *a,
1867         struct list_head *b)
1868 {
1869         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1870         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1871         xfs_daddr_t             diff;
1872 
1873         diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1874         if (diff < 0)
1875                 return -1;
1876         if (diff > 0)
1877                 return 1;
1878         return 0;
1879 }
1880 
1881 /*
1882  * Submit buffers for write. If wait_list is specified, the buffers are
1883  * submitted using sync I/O and placed on the wait list such that the caller can
1884  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1885  * at I/O completion time. In either case, buffers remain locked until I/O
1886  * completes and the buffer is released from the queue.
1887  */
1888 static int
1889 xfs_buf_delwri_submit_buffers(
1890         struct list_head        *buffer_list,
1891         struct list_head        *wait_list)
1892 {
1893         struct xfs_buf          *bp, *n;
1894         int                     pinned = 0;
1895         struct blk_plug         plug;
1896 
1897         list_sort(NULL, buffer_list, xfs_buf_cmp);
1898 
1899         blk_start_plug(&plug);
1900         list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1901                 if (!wait_list) {
1902                         if (xfs_buf_ispinned(bp)) {
1903                                 pinned++;
1904                                 continue;
1905                         }
1906                         if (!xfs_buf_trylock(bp))
1907                                 continue;
1908                 } else {
1909                         xfs_buf_lock(bp);
1910                 }
1911 
1912                 /*
1913                  * Someone else might have written the buffer synchronously or
1914                  * marked it stale in the meantime.  In that case only the
1915                  * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1916                  * reference and remove it from the list here.
1917                  */
1918                 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1919                         list_del_init(&bp->b_list);
1920                         xfs_buf_relse(bp);
1921                         continue;
1922                 }
1923 
1924                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1925 
1926                 /*
1927                  * If we have a wait list, each buffer (and associated delwri
1928                  * queue reference) transfers to it and is submitted
1929                  * synchronously. Otherwise, drop the buffer from the delwri
1930                  * queue and submit async.
1931                  */
1932                 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1933                 bp->b_flags |= XBF_WRITE;
1934                 if (wait_list) {
1935                         bp->b_flags &= ~XBF_ASYNC;
1936                         list_move_tail(&bp->b_list, wait_list);
1937                 } else {
1938                         bp->b_flags |= XBF_ASYNC;
1939                         list_del_init(&bp->b_list);
1940                 }
1941                 __xfs_buf_submit(bp, false);
1942         }
1943         blk_finish_plug(&plug);
1944 
1945         return pinned;
1946 }
1947 
1948 /*
1949  * Write out a buffer list asynchronously.
1950  *
1951  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1952  * out and not wait for I/O completion on any of the buffers.  This interface
1953  * is only safely useable for callers that can track I/O completion by higher
1954  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1955  * function.
1956  *
1957  * Note: this function will skip buffers it would block on, and in doing so
1958  * leaves them on @buffer_list so they can be retried on a later pass. As such,
1959  * it is up to the caller to ensure that the buffer list is fully submitted or
1960  * cancelled appropriately when they are finished with the list. Failure to
1961  * cancel or resubmit the list until it is empty will result in leaked buffers
1962  * at unmount time.
1963  */
1964 int
1965 xfs_buf_delwri_submit_nowait(
1966         struct list_head        *buffer_list)
1967 {
1968         return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1969 }
1970 
1971 /*
1972  * Write out a buffer list synchronously.
1973  *
1974  * This will take the @buffer_list, write all buffers out and wait for I/O
1975  * completion on all of the buffers. @buffer_list is consumed by the function,
1976  * so callers must have some other way of tracking buffers if they require such
1977  * functionality.
1978  */
1979 int
1980 xfs_buf_delwri_submit(
1981         struct list_head        *buffer_list)
1982 {
1983         LIST_HEAD               (wait_list);
1984         int                     error = 0, error2;
1985         struct xfs_buf          *bp;
1986 
1987         xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1988 
1989         /* Wait for IO to complete. */
1990         while (!list_empty(&wait_list)) {
1991                 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1992 
1993                 list_del_init(&bp->b_list);
1994 
1995                 /*
1996                  * Wait on the locked buffer, check for errors and unlock and
1997                  * release the delwri queue reference.
1998                  */
1999                 error2 = xfs_buf_iowait(bp);
2000                 xfs_buf_relse(bp);
2001                 if (!error)
2002                         error = error2;
2003         }
2004 
2005         return error;
2006 }
2007 
2008 /*
2009  * Push a single buffer on a delwri queue.
2010  *
2011  * The purpose of this function is to submit a single buffer of a delwri queue
2012  * and return with the buffer still on the original queue. The waiting delwri
2013  * buffer submission infrastructure guarantees transfer of the delwri queue
2014  * buffer reference to a temporary wait list. We reuse this infrastructure to
2015  * transfer the buffer back to the original queue.
2016  *
2017  * Note the buffer transitions from the queued state, to the submitted and wait
2018  * listed state and back to the queued state during this call. The buffer
2019  * locking and queue management logic between _delwri_pushbuf() and
2020  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2021  * before returning.
2022  */
2023 int
2024 xfs_buf_delwri_pushbuf(
2025         struct xfs_buf          *bp,
2026         struct list_head        *buffer_list)
2027 {
2028         LIST_HEAD               (submit_list);
2029         int                     error;
2030 
2031         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2032 
2033         trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2034 
2035         /*
2036          * Isolate the buffer to a new local list so we can submit it for I/O
2037          * independently from the rest of the original list.
2038          */
2039         xfs_buf_lock(bp);
2040         list_move(&bp->b_list, &submit_list);
2041         xfs_buf_unlock(bp);
2042 
2043         /*
2044          * Delwri submission clears the DELWRI_Q buffer flag and returns with
2045          * the buffer on the wait list with the original reference. Rather than
2046          * bounce the buffer from a local wait list back to the original list
2047          * after I/O completion, reuse the original list as the wait list.
2048          */
2049         xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2050 
2051         /*
2052          * The buffer is now locked, under I/O and wait listed on the original
2053          * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2054          * return with the buffer unlocked and on the original queue.
2055          */
2056         error = xfs_buf_iowait(bp);
2057         bp->b_flags |= _XBF_DELWRI_Q;
2058         xfs_buf_unlock(bp);
2059 
2060         return error;
2061 }
2062 
2063 int __init
2064 xfs_buf_init(void)
2065 {
2066         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2067                                                 KM_ZONE_HWALIGN, NULL);
2068         if (!xfs_buf_zone)
2069                 goto out;
2070 
2071         return 0;
2072 
2073  out:
2074         return -ENOMEM;
2075 }
2076 
2077 void
2078 xfs_buf_terminate(void)
2079 {
2080         kmem_zone_destroy(xfs_buf_zone);
2081 }
2082 
2083 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2084 {
2085         /*
2086          * Set the lru reference count to 0 based on the error injection tag.
2087          * This allows userspace to disrupt buffer caching for debug/testing
2088          * purposes.
2089          */
2090         if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2091                 lru_ref = 0;
2092 
2093         atomic_set(&bp->b_lru_ref, lru_ref);
2094 }
2095 
2096 /*
2097  * Verify an on-disk magic value against the magic value specified in the
2098  * verifier structure. The verifier magic is in disk byte order so the caller is
2099  * expected to pass the value directly from disk.
2100  */
2101 bool
2102 xfs_verify_magic(
2103         struct xfs_buf          *bp,
2104         __be32                  dmagic)
2105 {
2106         struct xfs_mount        *mp = bp->b_mount;
2107         int                     idx;
2108 
2109         idx = xfs_sb_version_hascrc(&mp->m_sb);
2110         if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2111                 return false;
2112         return dmagic == bp->b_ops->magic[idx];
2113 }
2114 /*
2115  * Verify an on-disk magic value against the magic value specified in the
2116  * verifier structure. The verifier magic is in disk byte order so the caller is
2117  * expected to pass the value directly from disk.
2118  */
2119 bool
2120 xfs_verify_magic16(
2121         struct xfs_buf          *bp,
2122         __be16                  dmagic)
2123 {
2124         struct xfs_mount        *mp = bp->b_mount;
2125         int                     idx;
2126 
2127         idx = xfs_sb_version_hascrc(&mp->m_sb);
2128         if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2129                 return false;
2130         return dmagic == bp->b_ops->magic16[idx];
2131 }

/* [<][>][^][v][top][bottom][index][help] */