root/fs/coredump.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. expand_corename
  2. __printf
  3. __printf
  4. __printf
  5. cn_print_exe_file
  6. format_corename
  7. zap_process
  8. zap_threads
  9. coredump_wait
  10. coredump_finish
  11. dump_interrupted
  12. wait_for_dump_helpers
  13. umh_pipe_setup
  14. do_coredump
  15. dump_emit
  16. dump_skip
  17. dump_align
  18. dump_truncate

   1 // SPDX-License-Identifier: GPL-2.0
   2 #include <linux/slab.h>
   3 #include <linux/file.h>
   4 #include <linux/fdtable.h>
   5 #include <linux/freezer.h>
   6 #include <linux/mm.h>
   7 #include <linux/stat.h>
   8 #include <linux/fcntl.h>
   9 #include <linux/swap.h>
  10 #include <linux/ctype.h>
  11 #include <linux/string.h>
  12 #include <linux/init.h>
  13 #include <linux/pagemap.h>
  14 #include <linux/perf_event.h>
  15 #include <linux/highmem.h>
  16 #include <linux/spinlock.h>
  17 #include <linux/key.h>
  18 #include <linux/personality.h>
  19 #include <linux/binfmts.h>
  20 #include <linux/coredump.h>
  21 #include <linux/sched/coredump.h>
  22 #include <linux/sched/signal.h>
  23 #include <linux/sched/task_stack.h>
  24 #include <linux/utsname.h>
  25 #include <linux/pid_namespace.h>
  26 #include <linux/module.h>
  27 #include <linux/namei.h>
  28 #include <linux/mount.h>
  29 #include <linux/security.h>
  30 #include <linux/syscalls.h>
  31 #include <linux/tsacct_kern.h>
  32 #include <linux/cn_proc.h>
  33 #include <linux/audit.h>
  34 #include <linux/tracehook.h>
  35 #include <linux/kmod.h>
  36 #include <linux/fsnotify.h>
  37 #include <linux/fs_struct.h>
  38 #include <linux/pipe_fs_i.h>
  39 #include <linux/oom.h>
  40 #include <linux/compat.h>
  41 #include <linux/fs.h>
  42 #include <linux/path.h>
  43 #include <linux/timekeeping.h>
  44 
  45 #include <linux/uaccess.h>
  46 #include <asm/mmu_context.h>
  47 #include <asm/tlb.h>
  48 #include <asm/exec.h>
  49 
  50 #include <trace/events/task.h>
  51 #include "internal.h"
  52 
  53 #include <trace/events/sched.h>
  54 
  55 int core_uses_pid;
  56 unsigned int core_pipe_limit;
  57 char core_pattern[CORENAME_MAX_SIZE] = "core";
  58 static int core_name_size = CORENAME_MAX_SIZE;
  59 
  60 struct core_name {
  61         char *corename;
  62         int used, size;
  63 };
  64 
  65 /* The maximal length of core_pattern is also specified in sysctl.c */
  66 
  67 static int expand_corename(struct core_name *cn, int size)
  68 {
  69         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
  70 
  71         if (!corename)
  72                 return -ENOMEM;
  73 
  74         if (size > core_name_size) /* racy but harmless */
  75                 core_name_size = size;
  76 
  77         cn->size = ksize(corename);
  78         cn->corename = corename;
  79         return 0;
  80 }
  81 
  82 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
  83                                      va_list arg)
  84 {
  85         int free, need;
  86         va_list arg_copy;
  87 
  88 again:
  89         free = cn->size - cn->used;
  90 
  91         va_copy(arg_copy, arg);
  92         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
  93         va_end(arg_copy);
  94 
  95         if (need < free) {
  96                 cn->used += need;
  97                 return 0;
  98         }
  99 
 100         if (!expand_corename(cn, cn->size + need - free + 1))
 101                 goto again;
 102 
 103         return -ENOMEM;
 104 }
 105 
 106 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
 107 {
 108         va_list arg;
 109         int ret;
 110 
 111         va_start(arg, fmt);
 112         ret = cn_vprintf(cn, fmt, arg);
 113         va_end(arg);
 114 
 115         return ret;
 116 }
 117 
 118 static __printf(2, 3)
 119 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
 120 {
 121         int cur = cn->used;
 122         va_list arg;
 123         int ret;
 124 
 125         va_start(arg, fmt);
 126         ret = cn_vprintf(cn, fmt, arg);
 127         va_end(arg);
 128 
 129         if (ret == 0) {
 130                 /*
 131                  * Ensure that this coredump name component can't cause the
 132                  * resulting corefile path to consist of a ".." or ".".
 133                  */
 134                 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
 135                                 (cn->used - cur == 2 && cn->corename[cur] == '.'
 136                                 && cn->corename[cur+1] == '.'))
 137                         cn->corename[cur] = '!';
 138 
 139                 /*
 140                  * Empty names are fishy and could be used to create a "//" in a
 141                  * corefile name, causing the coredump to happen one directory
 142                  * level too high. Enforce that all components of the core
 143                  * pattern are at least one character long.
 144                  */
 145                 if (cn->used == cur)
 146                         ret = cn_printf(cn, "!");
 147         }
 148 
 149         for (; cur < cn->used; ++cur) {
 150                 if (cn->corename[cur] == '/')
 151                         cn->corename[cur] = '!';
 152         }
 153         return ret;
 154 }
 155 
 156 static int cn_print_exe_file(struct core_name *cn)
 157 {
 158         struct file *exe_file;
 159         char *pathbuf, *path;
 160         int ret;
 161 
 162         exe_file = get_mm_exe_file(current->mm);
 163         if (!exe_file)
 164                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
 165 
 166         pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 167         if (!pathbuf) {
 168                 ret = -ENOMEM;
 169                 goto put_exe_file;
 170         }
 171 
 172         path = file_path(exe_file, pathbuf, PATH_MAX);
 173         if (IS_ERR(path)) {
 174                 ret = PTR_ERR(path);
 175                 goto free_buf;
 176         }
 177 
 178         ret = cn_esc_printf(cn, "%s", path);
 179 
 180 free_buf:
 181         kfree(pathbuf);
 182 put_exe_file:
 183         fput(exe_file);
 184         return ret;
 185 }
 186 
 187 /* format_corename will inspect the pattern parameter, and output a
 188  * name into corename, which must have space for at least
 189  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
 190  */
 191 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
 192                            size_t **argv, int *argc)
 193 {
 194         const struct cred *cred = current_cred();
 195         const char *pat_ptr = core_pattern;
 196         int ispipe = (*pat_ptr == '|');
 197         bool was_space = false;
 198         int pid_in_pattern = 0;
 199         int err = 0;
 200 
 201         cn->used = 0;
 202         cn->corename = NULL;
 203         if (expand_corename(cn, core_name_size))
 204                 return -ENOMEM;
 205         cn->corename[0] = '\0';
 206 
 207         if (ispipe) {
 208                 int argvs = sizeof(core_pattern) / 2;
 209                 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
 210                 if (!(*argv))
 211                         return -ENOMEM;
 212                 (*argv)[(*argc)++] = 0;
 213                 ++pat_ptr;
 214                 if (!(*pat_ptr))
 215                         return -ENOMEM;
 216         }
 217 
 218         /* Repeat as long as we have more pattern to process and more output
 219            space */
 220         while (*pat_ptr) {
 221                 /*
 222                  * Split on spaces before doing template expansion so that
 223                  * %e and %E don't get split if they have spaces in them
 224                  */
 225                 if (ispipe) {
 226                         if (isspace(*pat_ptr)) {
 227                                 was_space = true;
 228                                 pat_ptr++;
 229                                 continue;
 230                         } else if (was_space) {
 231                                 was_space = false;
 232                                 err = cn_printf(cn, "%c", '\0');
 233                                 if (err)
 234                                         return err;
 235                                 (*argv)[(*argc)++] = cn->used;
 236                         }
 237                 }
 238                 if (*pat_ptr != '%') {
 239                         err = cn_printf(cn, "%c", *pat_ptr++);
 240                 } else {
 241                         switch (*++pat_ptr) {
 242                         /* single % at the end, drop that */
 243                         case 0:
 244                                 goto out;
 245                         /* Double percent, output one percent */
 246                         case '%':
 247                                 err = cn_printf(cn, "%c", '%');
 248                                 break;
 249                         /* pid */
 250                         case 'p':
 251                                 pid_in_pattern = 1;
 252                                 err = cn_printf(cn, "%d",
 253                                               task_tgid_vnr(current));
 254                                 break;
 255                         /* global pid */
 256                         case 'P':
 257                                 err = cn_printf(cn, "%d",
 258                                               task_tgid_nr(current));
 259                                 break;
 260                         case 'i':
 261                                 err = cn_printf(cn, "%d",
 262                                               task_pid_vnr(current));
 263                                 break;
 264                         case 'I':
 265                                 err = cn_printf(cn, "%d",
 266                                               task_pid_nr(current));
 267                                 break;
 268                         /* uid */
 269                         case 'u':
 270                                 err = cn_printf(cn, "%u",
 271                                                 from_kuid(&init_user_ns,
 272                                                           cred->uid));
 273                                 break;
 274                         /* gid */
 275                         case 'g':
 276                                 err = cn_printf(cn, "%u",
 277                                                 from_kgid(&init_user_ns,
 278                                                           cred->gid));
 279                                 break;
 280                         case 'd':
 281                                 err = cn_printf(cn, "%d",
 282                                         __get_dumpable(cprm->mm_flags));
 283                                 break;
 284                         /* signal that caused the coredump */
 285                         case 's':
 286                                 err = cn_printf(cn, "%d",
 287                                                 cprm->siginfo->si_signo);
 288                                 break;
 289                         /* UNIX time of coredump */
 290                         case 't': {
 291                                 time64_t time;
 292 
 293                                 time = ktime_get_real_seconds();
 294                                 err = cn_printf(cn, "%lld", time);
 295                                 break;
 296                         }
 297                         /* hostname */
 298                         case 'h':
 299                                 down_read(&uts_sem);
 300                                 err = cn_esc_printf(cn, "%s",
 301                                               utsname()->nodename);
 302                                 up_read(&uts_sem);
 303                                 break;
 304                         /* executable */
 305                         case 'e':
 306                                 err = cn_esc_printf(cn, "%s", current->comm);
 307                                 break;
 308                         case 'E':
 309                                 err = cn_print_exe_file(cn);
 310                                 break;
 311                         /* core limit size */
 312                         case 'c':
 313                                 err = cn_printf(cn, "%lu",
 314                                               rlimit(RLIMIT_CORE));
 315                                 break;
 316                         default:
 317                                 break;
 318                         }
 319                         ++pat_ptr;
 320                 }
 321 
 322                 if (err)
 323                         return err;
 324         }
 325 
 326 out:
 327         /* Backward compatibility with core_uses_pid:
 328          *
 329          * If core_pattern does not include a %p (as is the default)
 330          * and core_uses_pid is set, then .%pid will be appended to
 331          * the filename. Do not do this for piped commands. */
 332         if (!ispipe && !pid_in_pattern && core_uses_pid) {
 333                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
 334                 if (err)
 335                         return err;
 336         }
 337         return ispipe;
 338 }
 339 
 340 static int zap_process(struct task_struct *start, int exit_code, int flags)
 341 {
 342         struct task_struct *t;
 343         int nr = 0;
 344 
 345         /* ignore all signals except SIGKILL, see prepare_signal() */
 346         start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
 347         start->signal->group_exit_code = exit_code;
 348         start->signal->group_stop_count = 0;
 349 
 350         for_each_thread(start, t) {
 351                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 352                 if (t != current && t->mm) {
 353                         sigaddset(&t->pending.signal, SIGKILL);
 354                         signal_wake_up(t, 1);
 355                         nr++;
 356                 }
 357         }
 358 
 359         return nr;
 360 }
 361 
 362 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
 363                         struct core_state *core_state, int exit_code)
 364 {
 365         struct task_struct *g, *p;
 366         unsigned long flags;
 367         int nr = -EAGAIN;
 368 
 369         spin_lock_irq(&tsk->sighand->siglock);
 370         if (!signal_group_exit(tsk->signal)) {
 371                 mm->core_state = core_state;
 372                 tsk->signal->group_exit_task = tsk;
 373                 nr = zap_process(tsk, exit_code, 0);
 374                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 375         }
 376         spin_unlock_irq(&tsk->sighand->siglock);
 377         if (unlikely(nr < 0))
 378                 return nr;
 379 
 380         tsk->flags |= PF_DUMPCORE;
 381         if (atomic_read(&mm->mm_users) == nr + 1)
 382                 goto done;
 383         /*
 384          * We should find and kill all tasks which use this mm, and we should
 385          * count them correctly into ->nr_threads. We don't take tasklist
 386          * lock, but this is safe wrt:
 387          *
 388          * fork:
 389          *      None of sub-threads can fork after zap_process(leader). All
 390          *      processes which were created before this point should be
 391          *      visible to zap_threads() because copy_process() adds the new
 392          *      process to the tail of init_task.tasks list, and lock/unlock
 393          *      of ->siglock provides a memory barrier.
 394          *
 395          * do_exit:
 396          *      The caller holds mm->mmap_sem. This means that the task which
 397          *      uses this mm can't pass exit_mm(), so it can't exit or clear
 398          *      its ->mm.
 399          *
 400          * de_thread:
 401          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
 402          *      we must see either old or new leader, this does not matter.
 403          *      However, it can change p->sighand, so lock_task_sighand(p)
 404          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
 405          *      it can't fail.
 406          *
 407          *      Note also that "g" can be the old leader with ->mm == NULL
 408          *      and already unhashed and thus removed from ->thread_group.
 409          *      This is OK, __unhash_process()->list_del_rcu() does not
 410          *      clear the ->next pointer, we will find the new leader via
 411          *      next_thread().
 412          */
 413         rcu_read_lock();
 414         for_each_process(g) {
 415                 if (g == tsk->group_leader)
 416                         continue;
 417                 if (g->flags & PF_KTHREAD)
 418                         continue;
 419 
 420                 for_each_thread(g, p) {
 421                         if (unlikely(!p->mm))
 422                                 continue;
 423                         if (unlikely(p->mm == mm)) {
 424                                 lock_task_sighand(p, &flags);
 425                                 nr += zap_process(p, exit_code,
 426                                                         SIGNAL_GROUP_EXIT);
 427                                 unlock_task_sighand(p, &flags);
 428                         }
 429                         break;
 430                 }
 431         }
 432         rcu_read_unlock();
 433 done:
 434         atomic_set(&core_state->nr_threads, nr);
 435         return nr;
 436 }
 437 
 438 static int coredump_wait(int exit_code, struct core_state *core_state)
 439 {
 440         struct task_struct *tsk = current;
 441         struct mm_struct *mm = tsk->mm;
 442         int core_waiters = -EBUSY;
 443 
 444         init_completion(&core_state->startup);
 445         core_state->dumper.task = tsk;
 446         core_state->dumper.next = NULL;
 447 
 448         if (down_write_killable(&mm->mmap_sem))
 449                 return -EINTR;
 450 
 451         if (!mm->core_state)
 452                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
 453         up_write(&mm->mmap_sem);
 454 
 455         if (core_waiters > 0) {
 456                 struct core_thread *ptr;
 457 
 458                 freezer_do_not_count();
 459                 wait_for_completion(&core_state->startup);
 460                 freezer_count();
 461                 /*
 462                  * Wait for all the threads to become inactive, so that
 463                  * all the thread context (extended register state, like
 464                  * fpu etc) gets copied to the memory.
 465                  */
 466                 ptr = core_state->dumper.next;
 467                 while (ptr != NULL) {
 468                         wait_task_inactive(ptr->task, 0);
 469                         ptr = ptr->next;
 470                 }
 471         }
 472 
 473         return core_waiters;
 474 }
 475 
 476 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
 477 {
 478         struct core_thread *curr, *next;
 479         struct task_struct *task;
 480 
 481         spin_lock_irq(&current->sighand->siglock);
 482         if (core_dumped && !__fatal_signal_pending(current))
 483                 current->signal->group_exit_code |= 0x80;
 484         current->signal->group_exit_task = NULL;
 485         current->signal->flags = SIGNAL_GROUP_EXIT;
 486         spin_unlock_irq(&current->sighand->siglock);
 487 
 488         next = mm->core_state->dumper.next;
 489         while ((curr = next) != NULL) {
 490                 next = curr->next;
 491                 task = curr->task;
 492                 /*
 493                  * see exit_mm(), curr->task must not see
 494                  * ->task == NULL before we read ->next.
 495                  */
 496                 smp_mb();
 497                 curr->task = NULL;
 498                 wake_up_process(task);
 499         }
 500 
 501         mm->core_state = NULL;
 502 }
 503 
 504 static bool dump_interrupted(void)
 505 {
 506         /*
 507          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
 508          * can do try_to_freeze() and check __fatal_signal_pending(),
 509          * but then we need to teach dump_write() to restart and clear
 510          * TIF_SIGPENDING.
 511          */
 512         return signal_pending(current);
 513 }
 514 
 515 static void wait_for_dump_helpers(struct file *file)
 516 {
 517         struct pipe_inode_info *pipe = file->private_data;
 518 
 519         pipe_lock(pipe);
 520         pipe->readers++;
 521         pipe->writers--;
 522         wake_up_interruptible_sync(&pipe->wait);
 523         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 524         pipe_unlock(pipe);
 525 
 526         /*
 527          * We actually want wait_event_freezable() but then we need
 528          * to clear TIF_SIGPENDING and improve dump_interrupted().
 529          */
 530         wait_event_interruptible(pipe->wait, pipe->readers == 1);
 531 
 532         pipe_lock(pipe);
 533         pipe->readers--;
 534         pipe->writers++;
 535         pipe_unlock(pipe);
 536 }
 537 
 538 /*
 539  * umh_pipe_setup
 540  * helper function to customize the process used
 541  * to collect the core in userspace.  Specifically
 542  * it sets up a pipe and installs it as fd 0 (stdin)
 543  * for the process.  Returns 0 on success, or
 544  * PTR_ERR on failure.
 545  * Note that it also sets the core limit to 1.  This
 546  * is a special value that we use to trap recursive
 547  * core dumps
 548  */
 549 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
 550 {
 551         struct file *files[2];
 552         struct coredump_params *cp = (struct coredump_params *)info->data;
 553         int err = create_pipe_files(files, 0);
 554         if (err)
 555                 return err;
 556 
 557         cp->file = files[1];
 558 
 559         err = replace_fd(0, files[0], 0);
 560         fput(files[0]);
 561         /* and disallow core files too */
 562         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
 563 
 564         return err;
 565 }
 566 
 567 void do_coredump(const kernel_siginfo_t *siginfo)
 568 {
 569         struct core_state core_state;
 570         struct core_name cn;
 571         struct mm_struct *mm = current->mm;
 572         struct linux_binfmt * binfmt;
 573         const struct cred *old_cred;
 574         struct cred *cred;
 575         int retval = 0;
 576         int ispipe;
 577         size_t *argv = NULL;
 578         int argc = 0;
 579         struct files_struct *displaced;
 580         /* require nonrelative corefile path and be extra careful */
 581         bool need_suid_safe = false;
 582         bool core_dumped = false;
 583         static atomic_t core_dump_count = ATOMIC_INIT(0);
 584         struct coredump_params cprm = {
 585                 .siginfo = siginfo,
 586                 .regs = signal_pt_regs(),
 587                 .limit = rlimit(RLIMIT_CORE),
 588                 /*
 589                  * We must use the same mm->flags while dumping core to avoid
 590                  * inconsistency of bit flags, since this flag is not protected
 591                  * by any locks.
 592                  */
 593                 .mm_flags = mm->flags,
 594         };
 595 
 596         audit_core_dumps(siginfo->si_signo);
 597 
 598         binfmt = mm->binfmt;
 599         if (!binfmt || !binfmt->core_dump)
 600                 goto fail;
 601         if (!__get_dumpable(cprm.mm_flags))
 602                 goto fail;
 603 
 604         cred = prepare_creds();
 605         if (!cred)
 606                 goto fail;
 607         /*
 608          * We cannot trust fsuid as being the "true" uid of the process
 609          * nor do we know its entire history. We only know it was tainted
 610          * so we dump it as root in mode 2, and only into a controlled
 611          * environment (pipe handler or fully qualified path).
 612          */
 613         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
 614                 /* Setuid core dump mode */
 615                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
 616                 need_suid_safe = true;
 617         }
 618 
 619         retval = coredump_wait(siginfo->si_signo, &core_state);
 620         if (retval < 0)
 621                 goto fail_creds;
 622 
 623         old_cred = override_creds(cred);
 624 
 625         ispipe = format_corename(&cn, &cprm, &argv, &argc);
 626 
 627         if (ispipe) {
 628                 int argi;
 629                 int dump_count;
 630                 char **helper_argv;
 631                 struct subprocess_info *sub_info;
 632 
 633                 if (ispipe < 0) {
 634                         printk(KERN_WARNING "format_corename failed\n");
 635                         printk(KERN_WARNING "Aborting core\n");
 636                         goto fail_unlock;
 637                 }
 638 
 639                 if (cprm.limit == 1) {
 640                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
 641                          *
 642                          * Normally core limits are irrelevant to pipes, since
 643                          * we're not writing to the file system, but we use
 644                          * cprm.limit of 1 here as a special value, this is a
 645                          * consistent way to catch recursive crashes.
 646                          * We can still crash if the core_pattern binary sets
 647                          * RLIM_CORE = !1, but it runs as root, and can do
 648                          * lots of stupid things.
 649                          *
 650                          * Note that we use task_tgid_vnr here to grab the pid
 651                          * of the process group leader.  That way we get the
 652                          * right pid if a thread in a multi-threaded
 653                          * core_pattern process dies.
 654                          */
 655                         printk(KERN_WARNING
 656                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
 657                                 task_tgid_vnr(current), current->comm);
 658                         printk(KERN_WARNING "Aborting core\n");
 659                         goto fail_unlock;
 660                 }
 661                 cprm.limit = RLIM_INFINITY;
 662 
 663                 dump_count = atomic_inc_return(&core_dump_count);
 664                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
 665                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
 666                                task_tgid_vnr(current), current->comm);
 667                         printk(KERN_WARNING "Skipping core dump\n");
 668                         goto fail_dropcount;
 669                 }
 670 
 671                 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
 672                                             GFP_KERNEL);
 673                 if (!helper_argv) {
 674                         printk(KERN_WARNING "%s failed to allocate memory\n",
 675                                __func__);
 676                         goto fail_dropcount;
 677                 }
 678                 for (argi = 0; argi < argc; argi++)
 679                         helper_argv[argi] = cn.corename + argv[argi];
 680                 helper_argv[argi] = NULL;
 681 
 682                 retval = -ENOMEM;
 683                 sub_info = call_usermodehelper_setup(helper_argv[0],
 684                                                 helper_argv, NULL, GFP_KERNEL,
 685                                                 umh_pipe_setup, NULL, &cprm);
 686                 if (sub_info)
 687                         retval = call_usermodehelper_exec(sub_info,
 688                                                           UMH_WAIT_EXEC);
 689 
 690                 kfree(helper_argv);
 691                 if (retval) {
 692                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
 693                                cn.corename);
 694                         goto close_fail;
 695                 }
 696         } else {
 697                 struct inode *inode;
 698                 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
 699                                  O_LARGEFILE | O_EXCL;
 700 
 701                 if (cprm.limit < binfmt->min_coredump)
 702                         goto fail_unlock;
 703 
 704                 if (need_suid_safe && cn.corename[0] != '/') {
 705                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
 706                                 "to fully qualified path!\n",
 707                                 task_tgid_vnr(current), current->comm);
 708                         printk(KERN_WARNING "Skipping core dump\n");
 709                         goto fail_unlock;
 710                 }
 711 
 712                 /*
 713                  * Unlink the file if it exists unless this is a SUID
 714                  * binary - in that case, we're running around with root
 715                  * privs and don't want to unlink another user's coredump.
 716                  */
 717                 if (!need_suid_safe) {
 718                         /*
 719                          * If it doesn't exist, that's fine. If there's some
 720                          * other problem, we'll catch it at the filp_open().
 721                          */
 722                         do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
 723                 }
 724 
 725                 /*
 726                  * There is a race between unlinking and creating the
 727                  * file, but if that causes an EEXIST here, that's
 728                  * fine - another process raced with us while creating
 729                  * the corefile, and the other process won. To userspace,
 730                  * what matters is that at least one of the two processes
 731                  * writes its coredump successfully, not which one.
 732                  */
 733                 if (need_suid_safe) {
 734                         /*
 735                          * Using user namespaces, normal user tasks can change
 736                          * their current->fs->root to point to arbitrary
 737                          * directories. Since the intention of the "only dump
 738                          * with a fully qualified path" rule is to control where
 739                          * coredumps may be placed using root privileges,
 740                          * current->fs->root must not be used. Instead, use the
 741                          * root directory of init_task.
 742                          */
 743                         struct path root;
 744 
 745                         task_lock(&init_task);
 746                         get_fs_root(init_task.fs, &root);
 747                         task_unlock(&init_task);
 748                         cprm.file = file_open_root(root.dentry, root.mnt,
 749                                 cn.corename, open_flags, 0600);
 750                         path_put(&root);
 751                 } else {
 752                         cprm.file = filp_open(cn.corename, open_flags, 0600);
 753                 }
 754                 if (IS_ERR(cprm.file))
 755                         goto fail_unlock;
 756 
 757                 inode = file_inode(cprm.file);
 758                 if (inode->i_nlink > 1)
 759                         goto close_fail;
 760                 if (d_unhashed(cprm.file->f_path.dentry))
 761                         goto close_fail;
 762                 /*
 763                  * AK: actually i see no reason to not allow this for named
 764                  * pipes etc, but keep the previous behaviour for now.
 765                  */
 766                 if (!S_ISREG(inode->i_mode))
 767                         goto close_fail;
 768                 /*
 769                  * Don't dump core if the filesystem changed owner or mode
 770                  * of the file during file creation. This is an issue when
 771                  * a process dumps core while its cwd is e.g. on a vfat
 772                  * filesystem.
 773                  */
 774                 if (!uid_eq(inode->i_uid, current_fsuid()))
 775                         goto close_fail;
 776                 if ((inode->i_mode & 0677) != 0600)
 777                         goto close_fail;
 778                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
 779                         goto close_fail;
 780                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
 781                         goto close_fail;
 782         }
 783 
 784         /* get us an unshared descriptor table; almost always a no-op */
 785         retval = unshare_files(&displaced);
 786         if (retval)
 787                 goto close_fail;
 788         if (displaced)
 789                 put_files_struct(displaced);
 790         if (!dump_interrupted()) {
 791                 /*
 792                  * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
 793                  * have this set to NULL.
 794                  */
 795                 if (!cprm.file) {
 796                         pr_info("Core dump to |%s disabled\n", cn.corename);
 797                         goto close_fail;
 798                 }
 799                 file_start_write(cprm.file);
 800                 core_dumped = binfmt->core_dump(&cprm);
 801                 file_end_write(cprm.file);
 802         }
 803         if (ispipe && core_pipe_limit)
 804                 wait_for_dump_helpers(cprm.file);
 805 close_fail:
 806         if (cprm.file)
 807                 filp_close(cprm.file, NULL);
 808 fail_dropcount:
 809         if (ispipe)
 810                 atomic_dec(&core_dump_count);
 811 fail_unlock:
 812         kfree(argv);
 813         kfree(cn.corename);
 814         coredump_finish(mm, core_dumped);
 815         revert_creds(old_cred);
 816 fail_creds:
 817         put_cred(cred);
 818 fail:
 819         return;
 820 }
 821 
 822 /*
 823  * Core dumping helper functions.  These are the only things you should
 824  * do on a core-file: use only these functions to write out all the
 825  * necessary info.
 826  */
 827 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
 828 {
 829         struct file *file = cprm->file;
 830         loff_t pos = file->f_pos;
 831         ssize_t n;
 832         if (cprm->written + nr > cprm->limit)
 833                 return 0;
 834         while (nr) {
 835                 if (dump_interrupted())
 836                         return 0;
 837                 n = __kernel_write(file, addr, nr, &pos);
 838                 if (n <= 0)
 839                         return 0;
 840                 file->f_pos = pos;
 841                 cprm->written += n;
 842                 cprm->pos += n;
 843                 nr -= n;
 844         }
 845         return 1;
 846 }
 847 EXPORT_SYMBOL(dump_emit);
 848 
 849 int dump_skip(struct coredump_params *cprm, size_t nr)
 850 {
 851         static char zeroes[PAGE_SIZE];
 852         struct file *file = cprm->file;
 853         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
 854                 if (dump_interrupted() ||
 855                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
 856                         return 0;
 857                 cprm->pos += nr;
 858                 return 1;
 859         } else {
 860                 while (nr > PAGE_SIZE) {
 861                         if (!dump_emit(cprm, zeroes, PAGE_SIZE))
 862                                 return 0;
 863                         nr -= PAGE_SIZE;
 864                 }
 865                 return dump_emit(cprm, zeroes, nr);
 866         }
 867 }
 868 EXPORT_SYMBOL(dump_skip);
 869 
 870 int dump_align(struct coredump_params *cprm, int align)
 871 {
 872         unsigned mod = cprm->pos & (align - 1);
 873         if (align & (align - 1))
 874                 return 0;
 875         return mod ? dump_skip(cprm, align - mod) : 1;
 876 }
 877 EXPORT_SYMBOL(dump_align);
 878 
 879 /*
 880  * Ensures that file size is big enough to contain the current file
 881  * postion. This prevents gdb from complaining about a truncated file
 882  * if the last "write" to the file was dump_skip.
 883  */
 884 void dump_truncate(struct coredump_params *cprm)
 885 {
 886         struct file *file = cprm->file;
 887         loff_t offset;
 888 
 889         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
 890                 offset = file->f_op->llseek(file, 0, SEEK_CUR);
 891                 if (i_size_read(file->f_mapping->host) < offset)
 892                         do_truncate(file->f_path.dentry, offset, 0, file);
 893         }
 894 }
 895 EXPORT_SYMBOL(dump_truncate);

/* [<][>][^][v][top][bottom][index][help] */