root/drivers/hwmon/lm85.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. FAN_TO_REG
  2. RANGE_TO_REG
  3. FREQ_TO_REG
  4. FREQ_FROM_REG
  5. ZONE_TO_REG
  6. lm85_read_value
  7. lm85_write_value
  8. lm85_update_device
  9. fan_show
  10. fan_min_show
  11. fan_min_store
  12. cpu0_vid_show
  13. vrm_show
  14. vrm_store
  15. alarms_show
  16. alarm_show
  17. pwm_show
  18. pwm_store
  19. pwm_enable_show
  20. pwm_enable_store
  21. pwm_freq_show
  22. pwm_freq_store
  23. in_show
  24. in_min_show
  25. in_min_store
  26. in_max_show
  27. in_max_store
  28. temp_show
  29. temp_min_show
  30. temp_min_store
  31. temp_max_show
  32. temp_max_store
  33. pwm_auto_channels_show
  34. pwm_auto_channels_store
  35. pwm_auto_pwm_min_show
  36. pwm_auto_pwm_min_store
  37. pwm_auto_pwm_minctl_show
  38. pwm_auto_pwm_minctl_store
  39. temp_auto_temp_off_show
  40. temp_auto_temp_off_store
  41. temp_auto_temp_min_show
  42. temp_auto_temp_min_store
  43. temp_auto_temp_max_show
  44. temp_auto_temp_max_store
  45. temp_auto_temp_crit_show
  46. temp_auto_temp_crit_store
  47. lm85_init_client
  48. lm85_is_fake
  49. lm85_detect
  50. lm85_probe

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   4  *          monitoring
   5  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   6  * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   7  * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   8  * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   9  * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
  10  *
  11  * Chip details at            <http://www.national.com/ds/LM/LM85.pdf>
  12  */
  13 
  14 #include <linux/module.h>
  15 #include <linux/of_device.h>
  16 #include <linux/init.h>
  17 #include <linux/slab.h>
  18 #include <linux/jiffies.h>
  19 #include <linux/i2c.h>
  20 #include <linux/hwmon.h>
  21 #include <linux/hwmon-vid.h>
  22 #include <linux/hwmon-sysfs.h>
  23 #include <linux/err.h>
  24 #include <linux/mutex.h>
  25 #include <linux/util_macros.h>
  26 
  27 /* Addresses to scan */
  28 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  29 
  30 enum chips {
  31         lm85, lm96000,
  32         adm1027, adt7463, adt7468,
  33         emc6d100, emc6d102, emc6d103, emc6d103s
  34 };
  35 
  36 /* The LM85 registers */
  37 
  38 #define LM85_REG_IN(nr)                 (0x20 + (nr))
  39 #define LM85_REG_IN_MIN(nr)             (0x44 + (nr) * 2)
  40 #define LM85_REG_IN_MAX(nr)             (0x45 + (nr) * 2)
  41 
  42 #define LM85_REG_TEMP(nr)               (0x25 + (nr))
  43 #define LM85_REG_TEMP_MIN(nr)           (0x4e + (nr) * 2)
  44 #define LM85_REG_TEMP_MAX(nr)           (0x4f + (nr) * 2)
  45 
  46 /* Fan speeds are LSB, MSB (2 bytes) */
  47 #define LM85_REG_FAN(nr)                (0x28 + (nr) * 2)
  48 #define LM85_REG_FAN_MIN(nr)            (0x54 + (nr) * 2)
  49 
  50 #define LM85_REG_PWM(nr)                (0x30 + (nr))
  51 
  52 #define LM85_REG_COMPANY                0x3e
  53 #define LM85_REG_VERSTEP                0x3f
  54 
  55 #define ADT7468_REG_CFG5                0x7c
  56 #define ADT7468_OFF64                   (1 << 0)
  57 #define ADT7468_HFPWM                   (1 << 1)
  58 #define IS_ADT7468_OFF64(data)          \
  59         ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  60 #define IS_ADT7468_HFPWM(data)          \
  61         ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  62 
  63 /* These are the recognized values for the above regs */
  64 #define LM85_COMPANY_NATIONAL           0x01
  65 #define LM85_COMPANY_ANALOG_DEV         0x41
  66 #define LM85_COMPANY_SMSC               0x5c
  67 #define LM85_VERSTEP_LM85C              0x60
  68 #define LM85_VERSTEP_LM85B              0x62
  69 #define LM85_VERSTEP_LM96000_1          0x68
  70 #define LM85_VERSTEP_LM96000_2          0x69
  71 #define LM85_VERSTEP_ADM1027            0x60
  72 #define LM85_VERSTEP_ADT7463            0x62
  73 #define LM85_VERSTEP_ADT7463C           0x6A
  74 #define LM85_VERSTEP_ADT7468_1          0x71
  75 #define LM85_VERSTEP_ADT7468_2          0x72
  76 #define LM85_VERSTEP_EMC6D100_A0        0x60
  77 #define LM85_VERSTEP_EMC6D100_A1        0x61
  78 #define LM85_VERSTEP_EMC6D102           0x65
  79 #define LM85_VERSTEP_EMC6D103_A0        0x68
  80 #define LM85_VERSTEP_EMC6D103_A1        0x69
  81 #define LM85_VERSTEP_EMC6D103S          0x6A    /* Also known as EMC6D103:A2 */
  82 
  83 #define LM85_REG_CONFIG                 0x40
  84 
  85 #define LM85_REG_ALARM1                 0x41
  86 #define LM85_REG_ALARM2                 0x42
  87 
  88 #define LM85_REG_VID                    0x43
  89 
  90 /* Automated FAN control */
  91 #define LM85_REG_AFAN_CONFIG(nr)        (0x5c + (nr))
  92 #define LM85_REG_AFAN_RANGE(nr)         (0x5f + (nr))
  93 #define LM85_REG_AFAN_SPIKE1            0x62
  94 #define LM85_REG_AFAN_MINPWM(nr)        (0x64 + (nr))
  95 #define LM85_REG_AFAN_LIMIT(nr)         (0x67 + (nr))
  96 #define LM85_REG_AFAN_CRITICAL(nr)      (0x6a + (nr))
  97 #define LM85_REG_AFAN_HYST1             0x6d
  98 #define LM85_REG_AFAN_HYST2             0x6e
  99 
 100 #define ADM1027_REG_EXTEND_ADC1         0x76
 101 #define ADM1027_REG_EXTEND_ADC2         0x77
 102 
 103 #define EMC6D100_REG_ALARM3             0x7d
 104 /* IN5, IN6 and IN7 */
 105 #define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 106 #define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 107 #define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 108 #define EMC6D102_REG_EXTEND_ADC1        0x85
 109 #define EMC6D102_REG_EXTEND_ADC2        0x86
 110 #define EMC6D102_REG_EXTEND_ADC3        0x87
 111 #define EMC6D102_REG_EXTEND_ADC4        0x88
 112 
 113 /*
 114  * Conversions. Rounding and limit checking is only done on the TO_REG
 115  * variants. Note that you should be a bit careful with which arguments
 116  * these macros are called: arguments may be evaluated more than once.
 117  */
 118 
 119 /* IN are scaled according to built-in resistors */
 120 static const int lm85_scaling[] = {  /* .001 Volts */
 121         2500, 2250, 3300, 5000, 12000,
 122         3300, 1500, 1800 /*EMC6D100*/
 123 };
 124 #define SCALE(val, from, to)    (((val) * (to) + ((from) / 2)) / (from))
 125 
 126 #define INS_TO_REG(n, val)      \
 127                 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
 128                       lm85_scaling[n], 192)
 129 
 130 #define INSEXT_FROM_REG(n, val, ext)    \
 131                 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 132 
 133 #define INS_FROM_REG(n, val)    SCALE((val), 192, lm85_scaling[n])
 134 
 135 /* FAN speed is measured using 90kHz clock */
 136 static inline u16 FAN_TO_REG(unsigned long val)
 137 {
 138         if (!val)
 139                 return 0xffff;
 140         return clamp_val(5400000 / val, 1, 0xfffe);
 141 }
 142 #define FAN_FROM_REG(val)       ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 143                                  5400000 / (val))
 144 
 145 /* Temperature is reported in .001 degC increments */
 146 #define TEMP_TO_REG(val)        \
 147                 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 148 #define TEMPEXT_FROM_REG(val, ext)      \
 149                 SCALE(((val) << 4) + (ext), 16, 1000)
 150 #define TEMP_FROM_REG(val)      ((val) * 1000)
 151 
 152 #define PWM_TO_REG(val)                 clamp_val(val, 0, 255)
 153 #define PWM_FROM_REG(val)               (val)
 154 
 155 /*
 156  * ZONEs have the following parameters:
 157  *    Limit (low) temp,           1. degC
 158  *    Hysteresis (below limit),   1. degC (0-15)
 159  *    Range of speed control,     .1 degC (2-80)
 160  *    Critical (high) temp,       1. degC
 161  *
 162  * FAN PWMs have the following parameters:
 163  *    Reference Zone,                 1, 2, 3, etc.
 164  *    Spinup time,                    .05 sec
 165  *    PWM value at limit/low temp,    1 count
 166  *    PWM Frequency,                  1. Hz
 167  *    PWM is Min or OFF below limit,  flag
 168  *    Invert PWM output,              flag
 169  *
 170  * Some chips filter the temp, others the fan.
 171  *    Filter constant (or disabled)   .1 seconds
 172  */
 173 
 174 /* These are the zone temperature range encodings in .001 degree C */
 175 static const int lm85_range_map[] = {
 176         2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 177         13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 178 };
 179 
 180 static int RANGE_TO_REG(long range)
 181 {
 182         return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 183 }
 184 #define RANGE_FROM_REG(val)     lm85_range_map[(val) & 0x0f]
 185 
 186 /* These are the PWM frequency encodings */
 187 static const int lm85_freq_map[] = { /* 1 Hz */
 188         10, 15, 23, 30, 38, 47, 61, 94
 189 };
 190 
 191 static const int lm96000_freq_map[] = { /* 1 Hz */
 192         10, 15, 23, 30, 38, 47, 61, 94,
 193         22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
 194 };
 195 
 196 static const int adm1027_freq_map[] = { /* 1 Hz */
 197         11, 15, 22, 29, 35, 44, 59, 88
 198 };
 199 
 200 static int FREQ_TO_REG(const int *map,
 201                        unsigned int map_size, unsigned long freq)
 202 {
 203         return find_closest(freq, map, map_size);
 204 }
 205 
 206 static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
 207 {
 208         return map[reg % map_size];
 209 }
 210 
 211 /*
 212  * Since we can't use strings, I'm abusing these numbers
 213  *   to stand in for the following meanings:
 214  *      1 -- PWM responds to Zone 1
 215  *      2 -- PWM responds to Zone 2
 216  *      3 -- PWM responds to Zone 3
 217  *     23 -- PWM responds to the higher temp of Zone 2 or 3
 218  *    123 -- PWM responds to highest of Zone 1, 2, or 3
 219  *      0 -- PWM is always at 0% (ie, off)
 220  *     -1 -- PWM is always at 100%
 221  *     -2 -- PWM responds to manual control
 222  */
 223 
 224 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 225 #define ZONE_FROM_REG(val)      lm85_zone_map[(val) >> 5]
 226 
 227 static int ZONE_TO_REG(int zone)
 228 {
 229         int i;
 230 
 231         for (i = 0; i <= 7; ++i)
 232                 if (zone == lm85_zone_map[i])
 233                         break;
 234         if (i > 7)   /* Not found. */
 235                 i = 3;  /* Always 100% */
 236         return i << 5;
 237 }
 238 
 239 #define HYST_TO_REG(val)        clamp_val(((val) + 500) / 1000, 0, 15)
 240 #define HYST_FROM_REG(val)      ((val) * 1000)
 241 
 242 /*
 243  * Chip sampling rates
 244  *
 245  * Some sensors are not updated more frequently than once per second
 246  *    so it doesn't make sense to read them more often than that.
 247  *    We cache the results and return the saved data if the driver
 248  *    is called again before a second has elapsed.
 249  *
 250  * Also, there is significant configuration data for this chip
 251  *    given the automatic PWM fan control that is possible.  There
 252  *    are about 47 bytes of config data to only 22 bytes of actual
 253  *    readings.  So, we keep the config data up to date in the cache
 254  *    when it is written and only sample it once every 1 *minute*
 255  */
 256 #define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 257 #define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 258 
 259 /*
 260  * LM85 can automatically adjust fan speeds based on temperature
 261  * This structure encapsulates an entire Zone config.  There are
 262  * three zones (one for each temperature input) on the lm85
 263  */
 264 struct lm85_zone {
 265         s8 limit;       /* Low temp limit */
 266         u8 hyst;        /* Low limit hysteresis. (0-15) */
 267         u8 range;       /* Temp range, encoded */
 268         s8 critical;    /* "All fans ON" temp limit */
 269         u8 max_desired; /*
 270                          * Actual "max" temperature specified.  Preserved
 271                          * to prevent "drift" as other autofan control
 272                          * values change.
 273                          */
 274 };
 275 
 276 struct lm85_autofan {
 277         u8 config;      /* Register value */
 278         u8 min_pwm;     /* Minimum PWM value, encoded */
 279         u8 min_off;     /* Min PWM or OFF below "limit", flag */
 280 };
 281 
 282 /*
 283  * For each registered chip, we need to keep some data in memory.
 284  * The structure is dynamically allocated.
 285  */
 286 struct lm85_data {
 287         struct i2c_client *client;
 288         const struct attribute_group *groups[6];
 289         const int *freq_map;
 290         unsigned int freq_map_size;
 291 
 292         enum chips type;
 293 
 294         bool has_vid5;  /* true if VID5 is configured for ADT7463 or ADT7468 */
 295 
 296         struct mutex update_lock;
 297         int valid;              /* !=0 if following fields are valid */
 298         unsigned long last_reading;     /* In jiffies */
 299         unsigned long last_config;      /* In jiffies */
 300 
 301         u8 in[8];               /* Register value */
 302         u8 in_max[8];           /* Register value */
 303         u8 in_min[8];           /* Register value */
 304         s8 temp[3];             /* Register value */
 305         s8 temp_min[3];         /* Register value */
 306         s8 temp_max[3];         /* Register value */
 307         u16 fan[4];             /* Register value */
 308         u16 fan_min[4];         /* Register value */
 309         u8 pwm[3];              /* Register value */
 310         u8 pwm_freq[3];         /* Register encoding */
 311         u8 temp_ext[3];         /* Decoded values */
 312         u8 in_ext[8];           /* Decoded values */
 313         u8 vid;                 /* Register value */
 314         u8 vrm;                 /* VRM version */
 315         u32 alarms;             /* Register encoding, combined */
 316         u8 cfg5;                /* Config Register 5 on ADT7468 */
 317         struct lm85_autofan autofan[3];
 318         struct lm85_zone zone[3];
 319 };
 320 
 321 static int lm85_read_value(struct i2c_client *client, u8 reg)
 322 {
 323         int res;
 324 
 325         /* What size location is it? */
 326         switch (reg) {
 327         case LM85_REG_FAN(0):  /* Read WORD data */
 328         case LM85_REG_FAN(1):
 329         case LM85_REG_FAN(2):
 330         case LM85_REG_FAN(3):
 331         case LM85_REG_FAN_MIN(0):
 332         case LM85_REG_FAN_MIN(1):
 333         case LM85_REG_FAN_MIN(2):
 334         case LM85_REG_FAN_MIN(3):
 335         case LM85_REG_ALARM1:   /* Read both bytes at once */
 336                 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 337                 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 338                 break;
 339         default:        /* Read BYTE data */
 340                 res = i2c_smbus_read_byte_data(client, reg);
 341                 break;
 342         }
 343 
 344         return res;
 345 }
 346 
 347 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 348 {
 349         switch (reg) {
 350         case LM85_REG_FAN(0):  /* Write WORD data */
 351         case LM85_REG_FAN(1):
 352         case LM85_REG_FAN(2):
 353         case LM85_REG_FAN(3):
 354         case LM85_REG_FAN_MIN(0):
 355         case LM85_REG_FAN_MIN(1):
 356         case LM85_REG_FAN_MIN(2):
 357         case LM85_REG_FAN_MIN(3):
 358         /* NOTE: ALARM is read only, so not included here */
 359                 i2c_smbus_write_byte_data(client, reg, value & 0xff);
 360                 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 361                 break;
 362         default:        /* Write BYTE data */
 363                 i2c_smbus_write_byte_data(client, reg, value);
 364                 break;
 365         }
 366 }
 367 
 368 static struct lm85_data *lm85_update_device(struct device *dev)
 369 {
 370         struct lm85_data *data = dev_get_drvdata(dev);
 371         struct i2c_client *client = data->client;
 372         int i;
 373 
 374         mutex_lock(&data->update_lock);
 375 
 376         if (!data->valid ||
 377              time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 378                 /* Things that change quickly */
 379                 dev_dbg(&client->dev, "Reading sensor values\n");
 380 
 381                 /*
 382                  * Have to read extended bits first to "freeze" the
 383                  * more significant bits that are read later.
 384                  * There are 2 additional resolution bits per channel and we
 385                  * have room for 4, so we shift them to the left.
 386                  */
 387                 if (data->type == adm1027 || data->type == adt7463 ||
 388                     data->type == adt7468) {
 389                         int ext1 = lm85_read_value(client,
 390                                                    ADM1027_REG_EXTEND_ADC1);
 391                         int ext2 =  lm85_read_value(client,
 392                                                     ADM1027_REG_EXTEND_ADC2);
 393                         int val = (ext1 << 8) + ext2;
 394 
 395                         for (i = 0; i <= 4; i++)
 396                                 data->in_ext[i] =
 397                                         ((val >> (i * 2)) & 0x03) << 2;
 398 
 399                         for (i = 0; i <= 2; i++)
 400                                 data->temp_ext[i] =
 401                                         (val >> ((i + 4) * 2)) & 0x0c;
 402                 }
 403 
 404                 data->vid = lm85_read_value(client, LM85_REG_VID);
 405 
 406                 for (i = 0; i <= 3; ++i) {
 407                         data->in[i] =
 408                             lm85_read_value(client, LM85_REG_IN(i));
 409                         data->fan[i] =
 410                             lm85_read_value(client, LM85_REG_FAN(i));
 411                 }
 412 
 413                 if (!data->has_vid5)
 414                         data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 415 
 416                 if (data->type == adt7468)
 417                         data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 418 
 419                 for (i = 0; i <= 2; ++i) {
 420                         data->temp[i] =
 421                             lm85_read_value(client, LM85_REG_TEMP(i));
 422                         data->pwm[i] =
 423                             lm85_read_value(client, LM85_REG_PWM(i));
 424 
 425                         if (IS_ADT7468_OFF64(data))
 426                                 data->temp[i] -= 64;
 427                 }
 428 
 429                 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 430 
 431                 if (data->type == emc6d100) {
 432                         /* Three more voltage sensors */
 433                         for (i = 5; i <= 7; ++i) {
 434                                 data->in[i] = lm85_read_value(client,
 435                                                         EMC6D100_REG_IN(i));
 436                         }
 437                         /* More alarm bits */
 438                         data->alarms |= lm85_read_value(client,
 439                                                 EMC6D100_REG_ALARM3) << 16;
 440                 } else if (data->type == emc6d102 || data->type == emc6d103 ||
 441                            data->type == emc6d103s) {
 442                         /*
 443                          * Have to read LSB bits after the MSB ones because
 444                          * the reading of the MSB bits has frozen the
 445                          * LSBs (backward from the ADM1027).
 446                          */
 447                         int ext1 = lm85_read_value(client,
 448                                                    EMC6D102_REG_EXTEND_ADC1);
 449                         int ext2 = lm85_read_value(client,
 450                                                    EMC6D102_REG_EXTEND_ADC2);
 451                         int ext3 = lm85_read_value(client,
 452                                                    EMC6D102_REG_EXTEND_ADC3);
 453                         int ext4 = lm85_read_value(client,
 454                                                    EMC6D102_REG_EXTEND_ADC4);
 455                         data->in_ext[0] = ext3 & 0x0f;
 456                         data->in_ext[1] = ext4 & 0x0f;
 457                         data->in_ext[2] = ext4 >> 4;
 458                         data->in_ext[3] = ext3 >> 4;
 459                         data->in_ext[4] = ext2 >> 4;
 460 
 461                         data->temp_ext[0] = ext1 & 0x0f;
 462                         data->temp_ext[1] = ext2 & 0x0f;
 463                         data->temp_ext[2] = ext1 >> 4;
 464                 }
 465 
 466                 data->last_reading = jiffies;
 467         }  /* last_reading */
 468 
 469         if (!data->valid ||
 470              time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 471                 /* Things that don't change often */
 472                 dev_dbg(&client->dev, "Reading config values\n");
 473 
 474                 for (i = 0; i <= 3; ++i) {
 475                         data->in_min[i] =
 476                             lm85_read_value(client, LM85_REG_IN_MIN(i));
 477                         data->in_max[i] =
 478                             lm85_read_value(client, LM85_REG_IN_MAX(i));
 479                         data->fan_min[i] =
 480                             lm85_read_value(client, LM85_REG_FAN_MIN(i));
 481                 }
 482 
 483                 if (!data->has_vid5)  {
 484                         data->in_min[4] = lm85_read_value(client,
 485                                           LM85_REG_IN_MIN(4));
 486                         data->in_max[4] = lm85_read_value(client,
 487                                           LM85_REG_IN_MAX(4));
 488                 }
 489 
 490                 if (data->type == emc6d100) {
 491                         for (i = 5; i <= 7; ++i) {
 492                                 data->in_min[i] = lm85_read_value(client,
 493                                                 EMC6D100_REG_IN_MIN(i));
 494                                 data->in_max[i] = lm85_read_value(client,
 495                                                 EMC6D100_REG_IN_MAX(i));
 496                         }
 497                 }
 498 
 499                 for (i = 0; i <= 2; ++i) {
 500                         int val;
 501 
 502                         data->temp_min[i] =
 503                             lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 504                         data->temp_max[i] =
 505                             lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 506 
 507                         data->autofan[i].config =
 508                             lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 509                         val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 510                         data->pwm_freq[i] = val % data->freq_map_size;
 511                         data->zone[i].range = val >> 4;
 512                         data->autofan[i].min_pwm =
 513                             lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 514                         data->zone[i].limit =
 515                             lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 516                         data->zone[i].critical =
 517                             lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 518 
 519                         if (IS_ADT7468_OFF64(data)) {
 520                                 data->temp_min[i] -= 64;
 521                                 data->temp_max[i] -= 64;
 522                                 data->zone[i].limit -= 64;
 523                                 data->zone[i].critical -= 64;
 524                         }
 525                 }
 526 
 527                 if (data->type != emc6d103s) {
 528                         i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 529                         data->autofan[0].min_off = (i & 0x20) != 0;
 530                         data->autofan[1].min_off = (i & 0x40) != 0;
 531                         data->autofan[2].min_off = (i & 0x80) != 0;
 532 
 533                         i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 534                         data->zone[0].hyst = i >> 4;
 535                         data->zone[1].hyst = i & 0x0f;
 536 
 537                         i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 538                         data->zone[2].hyst = i >> 4;
 539                 }
 540 
 541                 data->last_config = jiffies;
 542         }  /* last_config */
 543 
 544         data->valid = 1;
 545 
 546         mutex_unlock(&data->update_lock);
 547 
 548         return data;
 549 }
 550 
 551 /* 4 Fans */
 552 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
 553                         char *buf)
 554 {
 555         int nr = to_sensor_dev_attr(attr)->index;
 556         struct lm85_data *data = lm85_update_device(dev);
 557         return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 558 }
 559 
 560 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
 561                             char *buf)
 562 {
 563         int nr = to_sensor_dev_attr(attr)->index;
 564         struct lm85_data *data = lm85_update_device(dev);
 565         return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 566 }
 567 
 568 static ssize_t fan_min_store(struct device *dev,
 569                              struct device_attribute *attr, const char *buf,
 570                              size_t count)
 571 {
 572         int nr = to_sensor_dev_attr(attr)->index;
 573         struct lm85_data *data = dev_get_drvdata(dev);
 574         struct i2c_client *client = data->client;
 575         unsigned long val;
 576         int err;
 577 
 578         err = kstrtoul(buf, 10, &val);
 579         if (err)
 580                 return err;
 581 
 582         mutex_lock(&data->update_lock);
 583         data->fan_min[nr] = FAN_TO_REG(val);
 584         lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 585         mutex_unlock(&data->update_lock);
 586         return count;
 587 }
 588 
 589 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
 590 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
 591 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
 592 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
 593 static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
 594 static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
 595 static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
 596 static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
 597 
 598 /* vid, vrm, alarms */
 599 
 600 static ssize_t cpu0_vid_show(struct device *dev,
 601                              struct device_attribute *attr, char *buf)
 602 {
 603         struct lm85_data *data = lm85_update_device(dev);
 604         int vid;
 605 
 606         if (data->has_vid5) {
 607                 /* 6-pin VID (VRM 10) */
 608                 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 609         } else {
 610                 /* 5-pin VID (VRM 9) */
 611                 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 612         }
 613 
 614         return sprintf(buf, "%d\n", vid);
 615 }
 616 
 617 static DEVICE_ATTR_RO(cpu0_vid);
 618 
 619 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
 620                         char *buf)
 621 {
 622         struct lm85_data *data = dev_get_drvdata(dev);
 623         return sprintf(buf, "%ld\n", (long) data->vrm);
 624 }
 625 
 626 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
 627                          const char *buf, size_t count)
 628 {
 629         struct lm85_data *data = dev_get_drvdata(dev);
 630         unsigned long val;
 631         int err;
 632 
 633         err = kstrtoul(buf, 10, &val);
 634         if (err)
 635                 return err;
 636 
 637         if (val > 255)
 638                 return -EINVAL;
 639 
 640         data->vrm = val;
 641         return count;
 642 }
 643 
 644 static DEVICE_ATTR_RW(vrm);
 645 
 646 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 647                            char *buf)
 648 {
 649         struct lm85_data *data = lm85_update_device(dev);
 650         return sprintf(buf, "%u\n", data->alarms);
 651 }
 652 
 653 static DEVICE_ATTR_RO(alarms);
 654 
 655 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
 656                           char *buf)
 657 {
 658         int nr = to_sensor_dev_attr(attr)->index;
 659         struct lm85_data *data = lm85_update_device(dev);
 660         return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 661 }
 662 
 663 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
 664 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
 665 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
 666 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
 667 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
 668 static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
 669 static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
 670 static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
 671 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
 672 static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
 673 static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
 674 static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
 675 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
 676 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
 677 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
 678 static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
 679 static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
 680 
 681 /* pwm */
 682 
 683 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
 684                         char *buf)
 685 {
 686         int nr = to_sensor_dev_attr(attr)->index;
 687         struct lm85_data *data = lm85_update_device(dev);
 688         return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 689 }
 690 
 691 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
 692                          const char *buf, size_t count)
 693 {
 694         int nr = to_sensor_dev_attr(attr)->index;
 695         struct lm85_data *data = dev_get_drvdata(dev);
 696         struct i2c_client *client = data->client;
 697         unsigned long val;
 698         int err;
 699 
 700         err = kstrtoul(buf, 10, &val);
 701         if (err)
 702                 return err;
 703 
 704         mutex_lock(&data->update_lock);
 705         data->pwm[nr] = PWM_TO_REG(val);
 706         lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 707         mutex_unlock(&data->update_lock);
 708         return count;
 709 }
 710 
 711 static ssize_t pwm_enable_show(struct device *dev,
 712                                struct device_attribute *attr, char *buf)
 713 {
 714         int nr = to_sensor_dev_attr(attr)->index;
 715         struct lm85_data *data = lm85_update_device(dev);
 716         int pwm_zone, enable;
 717 
 718         pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 719         switch (pwm_zone) {
 720         case -1:        /* PWM is always at 100% */
 721                 enable = 0;
 722                 break;
 723         case 0:         /* PWM is always at 0% */
 724         case -2:        /* PWM responds to manual control */
 725                 enable = 1;
 726                 break;
 727         default:        /* PWM in automatic mode */
 728                 enable = 2;
 729         }
 730         return sprintf(buf, "%d\n", enable);
 731 }
 732 
 733 static ssize_t pwm_enable_store(struct device *dev,
 734                                 struct device_attribute *attr,
 735                                 const char *buf, size_t count)
 736 {
 737         int nr = to_sensor_dev_attr(attr)->index;
 738         struct lm85_data *data = dev_get_drvdata(dev);
 739         struct i2c_client *client = data->client;
 740         u8 config;
 741         unsigned long val;
 742         int err;
 743 
 744         err = kstrtoul(buf, 10, &val);
 745         if (err)
 746                 return err;
 747 
 748         switch (val) {
 749         case 0:
 750                 config = 3;
 751                 break;
 752         case 1:
 753                 config = 7;
 754                 break;
 755         case 2:
 756                 /*
 757                  * Here we have to choose arbitrarily one of the 5 possible
 758                  * configurations; I go for the safest
 759                  */
 760                 config = 6;
 761                 break;
 762         default:
 763                 return -EINVAL;
 764         }
 765 
 766         mutex_lock(&data->update_lock);
 767         data->autofan[nr].config = lm85_read_value(client,
 768                 LM85_REG_AFAN_CONFIG(nr));
 769         data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 770                 | (config << 5);
 771         lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 772                 data->autofan[nr].config);
 773         mutex_unlock(&data->update_lock);
 774         return count;
 775 }
 776 
 777 static ssize_t pwm_freq_show(struct device *dev,
 778                              struct device_attribute *attr, char *buf)
 779 {
 780         int nr = to_sensor_dev_attr(attr)->index;
 781         struct lm85_data *data = lm85_update_device(dev);
 782         int freq;
 783 
 784         if (IS_ADT7468_HFPWM(data))
 785                 freq = 22500;
 786         else
 787                 freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
 788                                      data->pwm_freq[nr]);
 789 
 790         return sprintf(buf, "%d\n", freq);
 791 }
 792 
 793 static ssize_t pwm_freq_store(struct device *dev,
 794                               struct device_attribute *attr, const char *buf,
 795                               size_t count)
 796 {
 797         int nr = to_sensor_dev_attr(attr)->index;
 798         struct lm85_data *data = dev_get_drvdata(dev);
 799         struct i2c_client *client = data->client;
 800         unsigned long val;
 801         int err;
 802 
 803         err = kstrtoul(buf, 10, &val);
 804         if (err)
 805                 return err;
 806 
 807         mutex_lock(&data->update_lock);
 808         /*
 809          * The ADT7468 has a special high-frequency PWM output mode,
 810          * where all PWM outputs are driven by a 22.5 kHz clock.
 811          * This might confuse the user, but there's not much we can do.
 812          */
 813         if (data->type == adt7468 && val >= 11300) {    /* High freq. mode */
 814                 data->cfg5 &= ~ADT7468_HFPWM;
 815                 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 816         } else {                                        /* Low freq. mode */
 817                 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 818                                                  data->freq_map_size, val);
 819                 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 820                                  (data->zone[nr].range << 4)
 821                                  | data->pwm_freq[nr]);
 822                 if (data->type == adt7468) {
 823                         data->cfg5 |= ADT7468_HFPWM;
 824                         lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 825                 }
 826         }
 827         mutex_unlock(&data->update_lock);
 828         return count;
 829 }
 830 
 831 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
 832 static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
 833 static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
 834 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
 835 static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
 836 static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
 837 static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
 838 static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
 839 static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
 840 
 841 /* Voltages */
 842 
 843 static ssize_t in_show(struct device *dev, struct device_attribute *attr,
 844                        char *buf)
 845 {
 846         int nr = to_sensor_dev_attr(attr)->index;
 847         struct lm85_data *data = lm85_update_device(dev);
 848         return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 849                                                     data->in_ext[nr]));
 850 }
 851 
 852 static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
 853                            char *buf)
 854 {
 855         int nr = to_sensor_dev_attr(attr)->index;
 856         struct lm85_data *data = lm85_update_device(dev);
 857         return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 858 }
 859 
 860 static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
 861                             const char *buf, size_t count)
 862 {
 863         int nr = to_sensor_dev_attr(attr)->index;
 864         struct lm85_data *data = dev_get_drvdata(dev);
 865         struct i2c_client *client = data->client;
 866         long val;
 867         int err;
 868 
 869         err = kstrtol(buf, 10, &val);
 870         if (err)
 871                 return err;
 872 
 873         mutex_lock(&data->update_lock);
 874         data->in_min[nr] = INS_TO_REG(nr, val);
 875         lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 876         mutex_unlock(&data->update_lock);
 877         return count;
 878 }
 879 
 880 static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
 881                            char *buf)
 882 {
 883         int nr = to_sensor_dev_attr(attr)->index;
 884         struct lm85_data *data = lm85_update_device(dev);
 885         return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 886 }
 887 
 888 static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
 889                             const char *buf, size_t count)
 890 {
 891         int nr = to_sensor_dev_attr(attr)->index;
 892         struct lm85_data *data = dev_get_drvdata(dev);
 893         struct i2c_client *client = data->client;
 894         long val;
 895         int err;
 896 
 897         err = kstrtol(buf, 10, &val);
 898         if (err)
 899                 return err;
 900 
 901         mutex_lock(&data->update_lock);
 902         data->in_max[nr] = INS_TO_REG(nr, val);
 903         lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 904         mutex_unlock(&data->update_lock);
 905         return count;
 906 }
 907 
 908 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
 909 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
 910 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
 911 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
 912 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
 913 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
 914 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
 915 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
 916 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
 917 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
 918 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
 919 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
 920 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
 921 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
 922 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
 923 static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
 924 static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
 925 static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
 926 static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
 927 static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
 928 static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
 929 static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
 930 static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
 931 static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
 932 
 933 /* Temps */
 934 
 935 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 936                          char *buf)
 937 {
 938         int nr = to_sensor_dev_attr(attr)->index;
 939         struct lm85_data *data = lm85_update_device(dev);
 940         return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 941                                                      data->temp_ext[nr]));
 942 }
 943 
 944 static ssize_t temp_min_show(struct device *dev,
 945                              struct device_attribute *attr, char *buf)
 946 {
 947         int nr = to_sensor_dev_attr(attr)->index;
 948         struct lm85_data *data = lm85_update_device(dev);
 949         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 950 }
 951 
 952 static ssize_t temp_min_store(struct device *dev,
 953                               struct device_attribute *attr, const char *buf,
 954                               size_t count)
 955 {
 956         int nr = to_sensor_dev_attr(attr)->index;
 957         struct lm85_data *data = dev_get_drvdata(dev);
 958         struct i2c_client *client = data->client;
 959         long val;
 960         int err;
 961 
 962         err = kstrtol(buf, 10, &val);
 963         if (err)
 964                 return err;
 965 
 966         if (IS_ADT7468_OFF64(data))
 967                 val += 64;
 968 
 969         mutex_lock(&data->update_lock);
 970         data->temp_min[nr] = TEMP_TO_REG(val);
 971         lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 972         mutex_unlock(&data->update_lock);
 973         return count;
 974 }
 975 
 976 static ssize_t temp_max_show(struct device *dev,
 977                              struct device_attribute *attr, char *buf)
 978 {
 979         int nr = to_sensor_dev_attr(attr)->index;
 980         struct lm85_data *data = lm85_update_device(dev);
 981         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 982 }
 983 
 984 static ssize_t temp_max_store(struct device *dev,
 985                               struct device_attribute *attr, const char *buf,
 986                               size_t count)
 987 {
 988         int nr = to_sensor_dev_attr(attr)->index;
 989         struct lm85_data *data = dev_get_drvdata(dev);
 990         struct i2c_client *client = data->client;
 991         long val;
 992         int err;
 993 
 994         err = kstrtol(buf, 10, &val);
 995         if (err)
 996                 return err;
 997 
 998         if (IS_ADT7468_OFF64(data))
 999                 val += 64;
1000 
1001         mutex_lock(&data->update_lock);
1002         data->temp_max[nr] = TEMP_TO_REG(val);
1003         lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004         mutex_unlock(&data->update_lock);
1005         return count;
1006 }
1007 
1008 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
1017 
1018 /* Automatic PWM control */
1019 
1020 static ssize_t pwm_auto_channels_show(struct device *dev,
1021                                       struct device_attribute *attr,
1022                                       char *buf)
1023 {
1024         int nr = to_sensor_dev_attr(attr)->index;
1025         struct lm85_data *data = lm85_update_device(dev);
1026         return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1027 }
1028 
1029 static ssize_t pwm_auto_channels_store(struct device *dev,
1030                                        struct device_attribute *attr,
1031                                        const char *buf, size_t count)
1032 {
1033         int nr = to_sensor_dev_attr(attr)->index;
1034         struct lm85_data *data = dev_get_drvdata(dev);
1035         struct i2c_client *client = data->client;
1036         long val;
1037         int err;
1038 
1039         err = kstrtol(buf, 10, &val);
1040         if (err)
1041                 return err;
1042 
1043         mutex_lock(&data->update_lock);
1044         data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045                 | ZONE_TO_REG(val);
1046         lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047                 data->autofan[nr].config);
1048         mutex_unlock(&data->update_lock);
1049         return count;
1050 }
1051 
1052 static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053                                      struct device_attribute *attr, char *buf)
1054 {
1055         int nr = to_sensor_dev_attr(attr)->index;
1056         struct lm85_data *data = lm85_update_device(dev);
1057         return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058 }
1059 
1060 static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061                                       struct device_attribute *attr,
1062                                       const char *buf, size_t count)
1063 {
1064         int nr = to_sensor_dev_attr(attr)->index;
1065         struct lm85_data *data = dev_get_drvdata(dev);
1066         struct i2c_client *client = data->client;
1067         unsigned long val;
1068         int err;
1069 
1070         err = kstrtoul(buf, 10, &val);
1071         if (err)
1072                 return err;
1073 
1074         mutex_lock(&data->update_lock);
1075         data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076         lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077                 data->autofan[nr].min_pwm);
1078         mutex_unlock(&data->update_lock);
1079         return count;
1080 }
1081 
1082 static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083                                         struct device_attribute *attr,
1084                                         char *buf)
1085 {
1086         int nr = to_sensor_dev_attr(attr)->index;
1087         struct lm85_data *data = lm85_update_device(dev);
1088         return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1089 }
1090 
1091 static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092                                          struct device_attribute *attr,
1093                                          const char *buf, size_t count)
1094 {
1095         int nr = to_sensor_dev_attr(attr)->index;
1096         struct lm85_data *data = dev_get_drvdata(dev);
1097         struct i2c_client *client = data->client;
1098         u8 tmp;
1099         long val;
1100         int err;
1101 
1102         err = kstrtol(buf, 10, &val);
1103         if (err)
1104                 return err;
1105 
1106         mutex_lock(&data->update_lock);
1107         data->autofan[nr].min_off = val;
1108         tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109         tmp &= ~(0x20 << nr);
1110         if (data->autofan[nr].min_off)
1111                 tmp |= 0x20 << nr;
1112         lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113         mutex_unlock(&data->update_lock);
1114         return count;
1115 }
1116 
1117 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
1126 
1127 /* Temperature settings for automatic PWM control */
1128 
1129 static ssize_t temp_auto_temp_off_show(struct device *dev,
1130                                        struct device_attribute *attr,
1131                                        char *buf)
1132 {
1133         int nr = to_sensor_dev_attr(attr)->index;
1134         struct lm85_data *data = lm85_update_device(dev);
1135         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136                 HYST_FROM_REG(data->zone[nr].hyst));
1137 }
1138 
1139 static ssize_t temp_auto_temp_off_store(struct device *dev,
1140                                         struct device_attribute *attr,
1141                                         const char *buf, size_t count)
1142 {
1143         int nr = to_sensor_dev_attr(attr)->index;
1144         struct lm85_data *data = dev_get_drvdata(dev);
1145         struct i2c_client *client = data->client;
1146         int min;
1147         long val;
1148         int err;
1149 
1150         err = kstrtol(buf, 10, &val);
1151         if (err)
1152                 return err;
1153 
1154         mutex_lock(&data->update_lock);
1155         min = TEMP_FROM_REG(data->zone[nr].limit);
1156         data->zone[nr].hyst = HYST_TO_REG(min - val);
1157         if (nr == 0 || nr == 1) {
1158                 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159                         (data->zone[0].hyst << 4)
1160                         | data->zone[1].hyst);
1161         } else {
1162                 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163                         (data->zone[2].hyst << 4));
1164         }
1165         mutex_unlock(&data->update_lock);
1166         return count;
1167 }
1168 
1169 static ssize_t temp_auto_temp_min_show(struct device *dev,
1170                                        struct device_attribute *attr,
1171                                        char *buf)
1172 {
1173         int nr = to_sensor_dev_attr(attr)->index;
1174         struct lm85_data *data = lm85_update_device(dev);
1175         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1176 }
1177 
1178 static ssize_t temp_auto_temp_min_store(struct device *dev,
1179                                         struct device_attribute *attr,
1180                                         const char *buf, size_t count)
1181 {
1182         int nr = to_sensor_dev_attr(attr)->index;
1183         struct lm85_data *data = dev_get_drvdata(dev);
1184         struct i2c_client *client = data->client;
1185         long val;
1186         int err;
1187 
1188         err = kstrtol(buf, 10, &val);
1189         if (err)
1190                 return err;
1191 
1192         mutex_lock(&data->update_lock);
1193         data->zone[nr].limit = TEMP_TO_REG(val);
1194         lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195                 data->zone[nr].limit);
1196 
1197 /* Update temp_auto_max and temp_auto_range */
1198         data->zone[nr].range = RANGE_TO_REG(
1199                 TEMP_FROM_REG(data->zone[nr].max_desired) -
1200                 TEMP_FROM_REG(data->zone[nr].limit));
1201         lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202                 ((data->zone[nr].range & 0x0f) << 4)
1203                 | data->pwm_freq[nr]);
1204 
1205         mutex_unlock(&data->update_lock);
1206         return count;
1207 }
1208 
1209 static ssize_t temp_auto_temp_max_show(struct device *dev,
1210                                        struct device_attribute *attr,
1211                                        char *buf)
1212 {
1213         int nr = to_sensor_dev_attr(attr)->index;
1214         struct lm85_data *data = lm85_update_device(dev);
1215         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216                 RANGE_FROM_REG(data->zone[nr].range));
1217 }
1218 
1219 static ssize_t temp_auto_temp_max_store(struct device *dev,
1220                                         struct device_attribute *attr,
1221                                         const char *buf, size_t count)
1222 {
1223         int nr = to_sensor_dev_attr(attr)->index;
1224         struct lm85_data *data = dev_get_drvdata(dev);
1225         struct i2c_client *client = data->client;
1226         int min;
1227         long val;
1228         int err;
1229 
1230         err = kstrtol(buf, 10, &val);
1231         if (err)
1232                 return err;
1233 
1234         mutex_lock(&data->update_lock);
1235         min = TEMP_FROM_REG(data->zone[nr].limit);
1236         data->zone[nr].max_desired = TEMP_TO_REG(val);
1237         data->zone[nr].range = RANGE_TO_REG(
1238                 val - min);
1239         lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240                 ((data->zone[nr].range & 0x0f) << 4)
1241                 | data->pwm_freq[nr]);
1242         mutex_unlock(&data->update_lock);
1243         return count;
1244 }
1245 
1246 static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247                                         struct device_attribute *attr,
1248                                         char *buf)
1249 {
1250         int nr = to_sensor_dev_attr(attr)->index;
1251         struct lm85_data *data = lm85_update_device(dev);
1252         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1253 }
1254 
1255 static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256                                          struct device_attribute *attr,
1257                                          const char *buf, size_t count)
1258 {
1259         int nr = to_sensor_dev_attr(attr)->index;
1260         struct lm85_data *data = dev_get_drvdata(dev);
1261         struct i2c_client *client = data->client;
1262         long val;
1263         int err;
1264 
1265         err = kstrtol(buf, 10, &val);
1266         if (err)
1267                 return err;
1268 
1269         mutex_lock(&data->update_lock);
1270         data->zone[nr].critical = TEMP_TO_REG(val);
1271         lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272                 data->zone[nr].critical);
1273         mutex_unlock(&data->update_lock);
1274         return count;
1275 }
1276 
1277 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
1289 
1290 static struct attribute *lm85_attributes[] = {
1291         &sensor_dev_attr_fan1_input.dev_attr.attr,
1292         &sensor_dev_attr_fan2_input.dev_attr.attr,
1293         &sensor_dev_attr_fan3_input.dev_attr.attr,
1294         &sensor_dev_attr_fan4_input.dev_attr.attr,
1295         &sensor_dev_attr_fan1_min.dev_attr.attr,
1296         &sensor_dev_attr_fan2_min.dev_attr.attr,
1297         &sensor_dev_attr_fan3_min.dev_attr.attr,
1298         &sensor_dev_attr_fan4_min.dev_attr.attr,
1299         &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300         &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301         &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302         &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1303 
1304         &sensor_dev_attr_pwm1.dev_attr.attr,
1305         &sensor_dev_attr_pwm2.dev_attr.attr,
1306         &sensor_dev_attr_pwm3.dev_attr.attr,
1307         &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308         &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309         &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310         &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311         &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312         &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1313 
1314         &sensor_dev_attr_in0_input.dev_attr.attr,
1315         &sensor_dev_attr_in1_input.dev_attr.attr,
1316         &sensor_dev_attr_in2_input.dev_attr.attr,
1317         &sensor_dev_attr_in3_input.dev_attr.attr,
1318         &sensor_dev_attr_in0_min.dev_attr.attr,
1319         &sensor_dev_attr_in1_min.dev_attr.attr,
1320         &sensor_dev_attr_in2_min.dev_attr.attr,
1321         &sensor_dev_attr_in3_min.dev_attr.attr,
1322         &sensor_dev_attr_in0_max.dev_attr.attr,
1323         &sensor_dev_attr_in1_max.dev_attr.attr,
1324         &sensor_dev_attr_in2_max.dev_attr.attr,
1325         &sensor_dev_attr_in3_max.dev_attr.attr,
1326         &sensor_dev_attr_in0_alarm.dev_attr.attr,
1327         &sensor_dev_attr_in1_alarm.dev_attr.attr,
1328         &sensor_dev_attr_in2_alarm.dev_attr.attr,
1329         &sensor_dev_attr_in3_alarm.dev_attr.attr,
1330 
1331         &sensor_dev_attr_temp1_input.dev_attr.attr,
1332         &sensor_dev_attr_temp2_input.dev_attr.attr,
1333         &sensor_dev_attr_temp3_input.dev_attr.attr,
1334         &sensor_dev_attr_temp1_min.dev_attr.attr,
1335         &sensor_dev_attr_temp2_min.dev_attr.attr,
1336         &sensor_dev_attr_temp3_min.dev_attr.attr,
1337         &sensor_dev_attr_temp1_max.dev_attr.attr,
1338         &sensor_dev_attr_temp2_max.dev_attr.attr,
1339         &sensor_dev_attr_temp3_max.dev_attr.attr,
1340         &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341         &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342         &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343         &sensor_dev_attr_temp1_fault.dev_attr.attr,
1344         &sensor_dev_attr_temp3_fault.dev_attr.attr,
1345 
1346         &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347         &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348         &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349         &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350         &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351         &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1352 
1353         &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354         &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355         &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356         &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357         &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358         &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359         &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360         &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361         &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1362 
1363         &dev_attr_vrm.attr,
1364         &dev_attr_cpu0_vid.attr,
1365         &dev_attr_alarms.attr,
1366         NULL
1367 };
1368 
1369 static const struct attribute_group lm85_group = {
1370         .attrs = lm85_attributes,
1371 };
1372 
1373 static struct attribute *lm85_attributes_minctl[] = {
1374         &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375         &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376         &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377         NULL
1378 };
1379 
1380 static const struct attribute_group lm85_group_minctl = {
1381         .attrs = lm85_attributes_minctl,
1382 };
1383 
1384 static struct attribute *lm85_attributes_temp_off[] = {
1385         &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386         &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387         &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388         NULL
1389 };
1390 
1391 static const struct attribute_group lm85_group_temp_off = {
1392         .attrs = lm85_attributes_temp_off,
1393 };
1394 
1395 static struct attribute *lm85_attributes_in4[] = {
1396         &sensor_dev_attr_in4_input.dev_attr.attr,
1397         &sensor_dev_attr_in4_min.dev_attr.attr,
1398         &sensor_dev_attr_in4_max.dev_attr.attr,
1399         &sensor_dev_attr_in4_alarm.dev_attr.attr,
1400         NULL
1401 };
1402 
1403 static const struct attribute_group lm85_group_in4 = {
1404         .attrs = lm85_attributes_in4,
1405 };
1406 
1407 static struct attribute *lm85_attributes_in567[] = {
1408         &sensor_dev_attr_in5_input.dev_attr.attr,
1409         &sensor_dev_attr_in6_input.dev_attr.attr,
1410         &sensor_dev_attr_in7_input.dev_attr.attr,
1411         &sensor_dev_attr_in5_min.dev_attr.attr,
1412         &sensor_dev_attr_in6_min.dev_attr.attr,
1413         &sensor_dev_attr_in7_min.dev_attr.attr,
1414         &sensor_dev_attr_in5_max.dev_attr.attr,
1415         &sensor_dev_attr_in6_max.dev_attr.attr,
1416         &sensor_dev_attr_in7_max.dev_attr.attr,
1417         &sensor_dev_attr_in5_alarm.dev_attr.attr,
1418         &sensor_dev_attr_in6_alarm.dev_attr.attr,
1419         &sensor_dev_attr_in7_alarm.dev_attr.attr,
1420         NULL
1421 };
1422 
1423 static const struct attribute_group lm85_group_in567 = {
1424         .attrs = lm85_attributes_in567,
1425 };
1426 
1427 static void lm85_init_client(struct i2c_client *client)
1428 {
1429         int value;
1430 
1431         /* Start monitoring if needed */
1432         value = lm85_read_value(client, LM85_REG_CONFIG);
1433         if (!(value & 0x01)) {
1434                 dev_info(&client->dev, "Starting monitoring\n");
1435                 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1436         }
1437 
1438         /* Warn about unusual configuration bits */
1439         if (value & 0x02)
1440                 dev_warn(&client->dev, "Device configuration is locked\n");
1441         if (!(value & 0x04))
1442                 dev_warn(&client->dev, "Device is not ready\n");
1443 }
1444 
1445 static int lm85_is_fake(struct i2c_client *client)
1446 {
1447         /*
1448          * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449          * emulate the former except that it has no hardware monitoring function
1450          * so the readings are always 0.
1451          */
1452         int i;
1453         u8 in_temp, fan;
1454 
1455         for (i = 0; i < 8; i++) {
1456                 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457                 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458                 if (in_temp != 0x00 || fan != 0xff)
1459                         return 0;
1460         }
1461 
1462         return 1;
1463 }
1464 
1465 /* Return 0 if detection is successful, -ENODEV otherwise */
1466 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1467 {
1468         struct i2c_adapter *adapter = client->adapter;
1469         int address = client->addr;
1470         const char *type_name = NULL;
1471         int company, verstep;
1472 
1473         if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474                 /* We need to be able to do byte I/O */
1475                 return -ENODEV;
1476         }
1477 
1478         /* Determine the chip type */
1479         company = lm85_read_value(client, LM85_REG_COMPANY);
1480         verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1481 
1482         dev_dbg(&adapter->dev,
1483                 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484                 address, company, verstep);
1485 
1486         if (company == LM85_COMPANY_NATIONAL) {
1487                 switch (verstep) {
1488                 case LM85_VERSTEP_LM85C:
1489                         type_name = "lm85c";
1490                         break;
1491                 case LM85_VERSTEP_LM85B:
1492                         type_name = "lm85b";
1493                         break;
1494                 case LM85_VERSTEP_LM96000_1:
1495                 case LM85_VERSTEP_LM96000_2:
1496                         /* Check for Winbond WPCD377I */
1497                         if (lm85_is_fake(client)) {
1498                                 dev_dbg(&adapter->dev,
1499                                         "Found Winbond WPCD377I, ignoring\n");
1500                                 return -ENODEV;
1501                         }
1502                         type_name = "lm96000";
1503                         break;
1504                 }
1505         } else if (company == LM85_COMPANY_ANALOG_DEV) {
1506                 switch (verstep) {
1507                 case LM85_VERSTEP_ADM1027:
1508                         type_name = "adm1027";
1509                         break;
1510                 case LM85_VERSTEP_ADT7463:
1511                 case LM85_VERSTEP_ADT7463C:
1512                         type_name = "adt7463";
1513                         break;
1514                 case LM85_VERSTEP_ADT7468_1:
1515                 case LM85_VERSTEP_ADT7468_2:
1516                         type_name = "adt7468";
1517                         break;
1518                 }
1519         } else if (company == LM85_COMPANY_SMSC) {
1520                 switch (verstep) {
1521                 case LM85_VERSTEP_EMC6D100_A0:
1522                 case LM85_VERSTEP_EMC6D100_A1:
1523                         /* Note: we can't tell a '100 from a '101 */
1524                         type_name = "emc6d100";
1525                         break;
1526                 case LM85_VERSTEP_EMC6D102:
1527                         type_name = "emc6d102";
1528                         break;
1529                 case LM85_VERSTEP_EMC6D103_A0:
1530                 case LM85_VERSTEP_EMC6D103_A1:
1531                         type_name = "emc6d103";
1532                         break;
1533                 case LM85_VERSTEP_EMC6D103S:
1534                         type_name = "emc6d103s";
1535                         break;
1536                 }
1537         }
1538 
1539         if (!type_name)
1540                 return -ENODEV;
1541 
1542         strlcpy(info->type, type_name, I2C_NAME_SIZE);
1543 
1544         return 0;
1545 }
1546 
1547 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1548 {
1549         struct device *dev = &client->dev;
1550         struct device *hwmon_dev;
1551         struct lm85_data *data;
1552         int idx = 0;
1553 
1554         data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1555         if (!data)
1556                 return -ENOMEM;
1557 
1558         data->client = client;
1559         if (client->dev.of_node)
1560                 data->type = (enum chips)of_device_get_match_data(&client->dev);
1561         else
1562                 data->type = id->driver_data;
1563         mutex_init(&data->update_lock);
1564 
1565         /* Fill in the chip specific driver values */
1566         switch (data->type) {
1567         case adm1027:
1568         case adt7463:
1569         case adt7468:
1570         case emc6d100:
1571         case emc6d102:
1572         case emc6d103:
1573         case emc6d103s:
1574                 data->freq_map = adm1027_freq_map;
1575                 data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1576                 break;
1577         case lm96000:
1578                 data->freq_map = lm96000_freq_map;
1579                 data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1580                 break;
1581         default:
1582                 data->freq_map = lm85_freq_map;
1583                 data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1584         }
1585 
1586         /* Set the VRM version */
1587         data->vrm = vid_which_vrm();
1588 
1589         /* Initialize the LM85 chip */
1590         lm85_init_client(client);
1591 
1592         /* sysfs hooks */
1593         data->groups[idx++] = &lm85_group;
1594 
1595         /* minctl and temp_off exist on all chips except emc6d103s */
1596         if (data->type != emc6d103s) {
1597                 data->groups[idx++] = &lm85_group_minctl;
1598                 data->groups[idx++] = &lm85_group_temp_off;
1599         }
1600 
1601         /*
1602          * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1603          * as a sixth digital VID input rather than an analog input.
1604          */
1605         if (data->type == adt7463 || data->type == adt7468) {
1606                 u8 vid = lm85_read_value(client, LM85_REG_VID);
1607                 if (vid & 0x80)
1608                         data->has_vid5 = true;
1609         }
1610 
1611         if (!data->has_vid5)
1612                 data->groups[idx++] = &lm85_group_in4;
1613 
1614         /* The EMC6D100 has 3 additional voltage inputs */
1615         if (data->type == emc6d100)
1616                 data->groups[idx++] = &lm85_group_in567;
1617 
1618         hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1619                                                            data, data->groups);
1620         return PTR_ERR_OR_ZERO(hwmon_dev);
1621 }
1622 
1623 static const struct i2c_device_id lm85_id[] = {
1624         { "adm1027", adm1027 },
1625         { "adt7463", adt7463 },
1626         { "adt7468", adt7468 },
1627         { "lm85", lm85 },
1628         { "lm85b", lm85 },
1629         { "lm85c", lm85 },
1630         { "lm96000", lm96000 },
1631         { "emc6d100", emc6d100 },
1632         { "emc6d101", emc6d100 },
1633         { "emc6d102", emc6d102 },
1634         { "emc6d103", emc6d103 },
1635         { "emc6d103s", emc6d103s },
1636         { }
1637 };
1638 MODULE_DEVICE_TABLE(i2c, lm85_id);
1639 
1640 static const struct of_device_id __maybe_unused lm85_of_match[] = {
1641         {
1642                 .compatible = "adi,adm1027",
1643                 .data = (void *)adm1027
1644         },
1645         {
1646                 .compatible = "adi,adt7463",
1647                 .data = (void *)adt7463
1648         },
1649         {
1650                 .compatible = "adi,adt7468",
1651                 .data = (void *)adt7468
1652         },
1653         {
1654                 .compatible = "national,lm85",
1655                 .data = (void *)lm85
1656         },
1657         {
1658                 .compatible = "national,lm85b",
1659                 .data = (void *)lm85
1660         },
1661         {
1662                 .compatible = "national,lm85c",
1663                 .data = (void *)lm85
1664         },
1665         {
1666                 .compatible = "ti,lm96000",
1667                 .data = (void *)lm96000
1668         },
1669         {
1670                 .compatible = "smsc,emc6d100",
1671                 .data = (void *)emc6d100
1672         },
1673         {
1674                 .compatible = "smsc,emc6d101",
1675                 .data = (void *)emc6d100
1676         },
1677         {
1678                 .compatible = "smsc,emc6d102",
1679                 .data = (void *)emc6d102
1680         },
1681         {
1682                 .compatible = "smsc,emc6d103",
1683                 .data = (void *)emc6d103
1684         },
1685         {
1686                 .compatible = "smsc,emc6d103s",
1687                 .data = (void *)emc6d103s
1688         },
1689         { },
1690 };
1691 MODULE_DEVICE_TABLE(of, lm85_of_match);
1692 
1693 static struct i2c_driver lm85_driver = {
1694         .class          = I2C_CLASS_HWMON,
1695         .driver = {
1696                 .name   = "lm85",
1697                 .of_match_table = of_match_ptr(lm85_of_match),
1698         },
1699         .probe          = lm85_probe,
1700         .id_table       = lm85_id,
1701         .detect         = lm85_detect,
1702         .address_list   = normal_i2c,
1703 };
1704 
1705 module_i2c_driver(lm85_driver);
1706 
1707 MODULE_LICENSE("GPL");
1708 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1709         "Margit Schubert-While <margitsw@t-online.de>, "
1710         "Justin Thiessen <jthiessen@penguincomputing.com>");
1711 MODULE_DESCRIPTION("LM85-B, LM85-C driver");

/* [<][>][^][v][top][bottom][index][help] */