root/drivers/hwmon/abituguru.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. abituguru_wait
  2. abituguru_ready
  3. abituguru_send_address
  4. abituguru_read
  5. abituguru_write
  6. abituguru_detect_bank1_sensor_type
  7. abituguru_detect_no_bank2_sensors
  8. abituguru_detect_no_pwms
  9. show_bank1_value
  10. show_bank1_setting
  11. show_bank2_value
  12. show_bank2_setting
  13. store_bank1_setting
  14. store_bank2_setting
  15. show_bank1_alarm
  16. show_bank2_alarm
  17. show_bank1_mask
  18. show_bank2_mask
  19. store_bank1_mask
  20. store_bank2_mask
  21. show_pwm_setting
  22. store_pwm_setting
  23. show_pwm_sensor
  24. store_pwm_sensor
  25. show_pwm_enable
  26. store_pwm_enable
  27. show_name
  28. abituguru_probe
  29. abituguru_remove
  30. abituguru_update_device
  31. abituguru_suspend
  32. abituguru_resume
  33. abituguru_detect
  34. abituguru_init
  35. abituguru_exit

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
   4  */
   5 /*
   6  * This driver supports the sensor part of the first and second revision of
   7  * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
   8  * of lack of specs the CPU/RAM voltage & frequency control is not supported!
   9  */
  10 
  11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12 
  13 #include <linux/module.h>
  14 #include <linux/sched.h>
  15 #include <linux/init.h>
  16 #include <linux/slab.h>
  17 #include <linux/jiffies.h>
  18 #include <linux/mutex.h>
  19 #include <linux/err.h>
  20 #include <linux/delay.h>
  21 #include <linux/platform_device.h>
  22 #include <linux/hwmon.h>
  23 #include <linux/hwmon-sysfs.h>
  24 #include <linux/dmi.h>
  25 #include <linux/io.h>
  26 
  27 /* Banks */
  28 #define ABIT_UGURU_ALARM_BANK                   0x20 /* 1x 3 bytes */
  29 #define ABIT_UGURU_SENSOR_BANK1                 0x21 /* 16x volt and temp */
  30 #define ABIT_UGURU_FAN_PWM                      0x24 /* 3x 5 bytes */
  31 #define ABIT_UGURU_SENSOR_BANK2                 0x26 /* fans */
  32 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
  33 #define ABIT_UGURU_MAX_BANK1_SENSORS            16
  34 /*
  35  * Warning if you increase one of the 2 MAX defines below to 10 or higher you
  36  * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
  37  */
  38 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
  39 #define ABIT_UGURU_MAX_BANK2_SENSORS            6
  40 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
  41 #define ABIT_UGURU_MAX_PWMS                     5
  42 /* uGuru sensor bank 1 flags */                      /* Alarm if: */
  43 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE       0x01 /*  temp over warn */
  44 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE       0x02 /*  volt over max */
  45 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE        0x04 /*  volt under min */
  46 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG         0x10 /* temp is over warn */
  47 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG         0x20 /* volt is over max */
  48 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG          0x40 /* volt is under min */
  49 /* uGuru sensor bank 2 flags */                      /* Alarm if: */
  50 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE         0x01 /*   fan under min */
  51 /* uGuru sensor bank common flags */
  52 #define ABIT_UGURU_BEEP_ENABLE                  0x08 /* beep if alarm */
  53 #define ABIT_UGURU_SHUTDOWN_ENABLE              0x80 /* shutdown if alarm */
  54 /* uGuru fan PWM (speed control) flags */
  55 #define ABIT_UGURU_FAN_PWM_ENABLE               0x80 /* enable speed control */
  56 /* Values used for conversion */
  57 #define ABIT_UGURU_FAN_MAX                      15300 /* RPM */
  58 /* Bank1 sensor types */
  59 #define ABIT_UGURU_IN_SENSOR                    0
  60 #define ABIT_UGURU_TEMP_SENSOR                  1
  61 #define ABIT_UGURU_NC                           2
  62 /*
  63  * In many cases we need to wait for the uGuru to reach a certain status, most
  64  * of the time it will reach this status within 30 - 90 ISA reads, and thus we
  65  * can best busy wait. This define gives the total amount of reads to try.
  66  */
  67 #define ABIT_UGURU_WAIT_TIMEOUT                 125
  68 /*
  69  * However sometimes older versions of the uGuru seem to be distracted and they
  70  * do not respond for a long time. To handle this we sleep before each of the
  71  * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
  72  */
  73 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP           5
  74 /*
  75  * Normally all expected status in abituguru_ready, are reported after the
  76  * first read, but sometimes not and we need to poll.
  77  */
  78 #define ABIT_UGURU_READY_TIMEOUT                5
  79 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
  80 #define ABIT_UGURU_MAX_RETRIES                  3
  81 #define ABIT_UGURU_RETRY_DELAY                  (HZ/5)
  82 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
  83 #define ABIT_UGURU_MAX_TIMEOUTS                 2
  84 /* utility macros */
  85 #define ABIT_UGURU_NAME                         "abituguru"
  86 #define ABIT_UGURU_DEBUG(level, format, arg...)         \
  87         do {                                            \
  88                 if (level <= verbose)                   \
  89                         pr_debug(format , ## arg);      \
  90         } while (0)
  91 
  92 /* Macros to help calculate the sysfs_names array length */
  93 /*
  94  * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
  95  * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
  96  */
  97 #define ABITUGURU_IN_NAMES_LENGTH       (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
  98 /*
  99  * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 100  * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 101  */
 102 #define ABITUGURU_TEMP_NAMES_LENGTH     (13 + 11 + 12 + 13 + 20 + 12 + 16)
 103 /*
 104  * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 105  * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 106  */
 107 #define ABITUGURU_FAN_NAMES_LENGTH      (11 + 9 + 11 + 18 + 10 + 14)
 108 /*
 109  * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 110  * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 111  */
 112 #define ABITUGURU_PWM_NAMES_LENGTH      (12 + 24 + 2 * 21 + 2 * 22)
 113 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
 114 #define ABITUGURU_SYSFS_NAMES_LENGTH    ( \
 115         ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
 116         ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
 117         ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
 118 
 119 /*
 120  * All the macros below are named identical to the oguru and oguru2 programs
 121  * reverse engineered by Olle Sandberg, hence the names might not be 100%
 122  * logical. I could come up with better names, but I prefer keeping the names
 123  * identical so that this driver can be compared with his work more easily.
 124  */
 125 /* Two i/o-ports are used by uGuru */
 126 #define ABIT_UGURU_BASE                         0x00E0
 127 /* Used to tell uGuru what to read and to read the actual data */
 128 #define ABIT_UGURU_CMD                          0x00
 129 /* Mostly used to check if uGuru is busy */
 130 #define ABIT_UGURU_DATA                         0x04
 131 #define ABIT_UGURU_REGION_LENGTH                5
 132 /* uGuru status' */
 133 #define ABIT_UGURU_STATUS_WRITE                 0x00 /* Ready to be written */
 134 #define ABIT_UGURU_STATUS_READ                  0x01 /* Ready to be read */
 135 #define ABIT_UGURU_STATUS_INPUT                 0x08 /* More input */
 136 #define ABIT_UGURU_STATUS_READY                 0x09 /* Ready to be written */
 137 
 138 /* Constants */
 139 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
 140 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
 141 /*
 142  * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 143  * correspond to 300-3000 RPM
 144  */
 145 static const u8 abituguru_bank2_min_threshold = 5;
 146 static const u8 abituguru_bank2_max_threshold = 50;
 147 /*
 148  * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 149  * are temperature trip points.
 150  */
 151 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
 152 /*
 153  * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 154  * special case the minimum allowed pwm% setting for this is 30% (77) on
 155  * some MB's this special case is handled in the code!
 156  */
 157 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
 158 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
 159 
 160 
 161 /* Insmod parameters */
 162 static bool force;
 163 module_param(force, bool, 0);
 164 MODULE_PARM_DESC(force, "Set to one to force detection.");
 165 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
 166         -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
 167 module_param_array(bank1_types, int, NULL, 0);
 168 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
 169         "   -1 autodetect\n"
 170         "    0 volt sensor\n"
 171         "    1 temp sensor\n"
 172         "    2 not connected");
 173 static int fan_sensors;
 174 module_param(fan_sensors, int, 0);
 175 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
 176         "(0 = autodetect)");
 177 static int pwms;
 178 module_param(pwms, int, 0);
 179 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
 180         "(0 = autodetect)");
 181 
 182 /* Default verbose is 2, since this driver is still in the testing phase */
 183 static int verbose = 2;
 184 module_param(verbose, int, 0644);
 185 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
 186         "   0 normal output\n"
 187         "   1 + verbose error reporting\n"
 188         "   2 + sensors type probing info\n"
 189         "   3 + retryable error reporting");
 190 
 191 
 192 /*
 193  * For the Abit uGuru, we need to keep some data in memory.
 194  * The structure is dynamically allocated, at the same time when a new
 195  * abituguru device is allocated.
 196  */
 197 struct abituguru_data {
 198         struct device *hwmon_dev;       /* hwmon registered device */
 199         struct mutex update_lock;       /* protect access to data and uGuru */
 200         unsigned long last_updated;     /* In jiffies */
 201         unsigned short addr;            /* uguru base address */
 202         char uguru_ready;               /* is the uguru in ready state? */
 203         unsigned char update_timeouts;  /*
 204                                          * number of update timeouts since last
 205                                          * successful update
 206                                          */
 207 
 208         /*
 209          * The sysfs attr and their names are generated automatically, for bank1
 210          * we cannot use a predefined array because we don't know beforehand
 211          * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
 212          * easier todo things the same way.  For in sensors we have 9 (temp 7)
 213          * sysfs entries per sensor, for bank2 and pwms 6.
 214          */
 215         struct sensor_device_attribute_2 sysfs_attr[
 216                 ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
 217                 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
 218         /* Buffer to store the dynamically generated sysfs names */
 219         char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
 220 
 221         /* Bank 1 data */
 222         /* number of and addresses of [0] in, [1] temp sensors */
 223         u8 bank1_sensors[2];
 224         u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
 225         u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 226         /*
 227          * This array holds 3 entries per sensor for the bank 1 sensor settings
 228          * (flags, min, max for voltage / flags, warn, shutdown for temp).
 229          */
 230         u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
 231         /*
 232          * Maximum value for each sensor used for scaling in mV/millidegrees
 233          * Celsius.
 234          */
 235         int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 236 
 237         /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
 238         u8 bank2_sensors; /* actual number of bank2 sensors found */
 239         u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
 240         u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
 241 
 242         /* Alarms 2 bytes for bank1, 1 byte for bank2 */
 243         u8 alarms[3];
 244 
 245         /* Fan PWM (speed control) 5 bytes per PWM */
 246         u8 pwms; /* actual number of pwms found */
 247         u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
 248 };
 249 
 250 static const char *never_happen = "This should never happen.";
 251 static const char *report_this =
 252         "Please report this to the abituguru maintainer (see MAINTAINERS)";
 253 
 254 /* wait till the uguru is in the specified state */
 255 static int abituguru_wait(struct abituguru_data *data, u8 state)
 256 {
 257         int timeout = ABIT_UGURU_WAIT_TIMEOUT;
 258 
 259         while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
 260                 timeout--;
 261                 if (timeout == 0)
 262                         return -EBUSY;
 263                 /*
 264                  * sleep a bit before our last few tries, see the comment on
 265                  * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
 266                  */
 267                 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
 268                         msleep(0);
 269         }
 270         return 0;
 271 }
 272 
 273 /* Put the uguru in ready for input state */
 274 static int abituguru_ready(struct abituguru_data *data)
 275 {
 276         int timeout = ABIT_UGURU_READY_TIMEOUT;
 277 
 278         if (data->uguru_ready)
 279                 return 0;
 280 
 281         /* Reset? / Prepare for next read/write cycle */
 282         outb(0x00, data->addr + ABIT_UGURU_DATA);
 283 
 284         /* Wait till the uguru is ready */
 285         if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
 286                 ABIT_UGURU_DEBUG(1,
 287                         "timeout exceeded waiting for ready state\n");
 288                 return -EIO;
 289         }
 290 
 291         /* Cmd port MUST be read now and should contain 0xAC */
 292         while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 293                 timeout--;
 294                 if (timeout == 0) {
 295                         ABIT_UGURU_DEBUG(1,
 296                            "CMD reg does not hold 0xAC after ready command\n");
 297                         return -EIO;
 298                 }
 299                 msleep(0);
 300         }
 301 
 302         /*
 303          * After this the ABIT_UGURU_DATA port should contain
 304          * ABIT_UGURU_STATUS_INPUT
 305          */
 306         timeout = ABIT_UGURU_READY_TIMEOUT;
 307         while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
 308                 timeout--;
 309                 if (timeout == 0) {
 310                         ABIT_UGURU_DEBUG(1,
 311                                 "state != more input after ready command\n");
 312                         return -EIO;
 313                 }
 314                 msleep(0);
 315         }
 316 
 317         data->uguru_ready = 1;
 318         return 0;
 319 }
 320 
 321 /*
 322  * Send the bank and then sensor address to the uGuru for the next read/write
 323  * cycle. This function gets called as the first part of a read/write by
 324  * abituguru_read and abituguru_write. This function should never be
 325  * called by any other function.
 326  */
 327 static int abituguru_send_address(struct abituguru_data *data,
 328         u8 bank_addr, u8 sensor_addr, int retries)
 329 {
 330         /*
 331          * assume the caller does error handling itself if it has not requested
 332          * any retries, and thus be quiet.
 333          */
 334         int report_errors = retries;
 335 
 336         for (;;) {
 337                 /*
 338                  * Make sure the uguru is ready and then send the bank address,
 339                  * after this the uguru is no longer "ready".
 340                  */
 341                 if (abituguru_ready(data) != 0)
 342                         return -EIO;
 343                 outb(bank_addr, data->addr + ABIT_UGURU_DATA);
 344                 data->uguru_ready = 0;
 345 
 346                 /*
 347                  * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
 348                  * and send the sensor addr
 349                  */
 350                 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
 351                         if (retries) {
 352                                 ABIT_UGURU_DEBUG(3, "timeout exceeded "
 353                                         "waiting for more input state, %d "
 354                                         "tries remaining\n", retries);
 355                                 set_current_state(TASK_UNINTERRUPTIBLE);
 356                                 schedule_timeout(ABIT_UGURU_RETRY_DELAY);
 357                                 retries--;
 358                                 continue;
 359                         }
 360                         if (report_errors)
 361                                 ABIT_UGURU_DEBUG(1, "timeout exceeded "
 362                                         "waiting for more input state "
 363                                         "(bank: %d)\n", (int)bank_addr);
 364                         return -EBUSY;
 365                 }
 366                 outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
 367                 return 0;
 368         }
 369 }
 370 
 371 /*
 372  * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 373  * result in buf, retry the send address part of the read retries times.
 374  */
 375 static int abituguru_read(struct abituguru_data *data,
 376         u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
 377 {
 378         int i;
 379 
 380         /* Send the address */
 381         i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
 382         if (i)
 383                 return i;
 384 
 385         /* And read the data */
 386         for (i = 0; i < count; i++) {
 387                 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 388                         ABIT_UGURU_DEBUG(retries ? 1 : 3,
 389                                 "timeout exceeded waiting for "
 390                                 "read state (bank: %d, sensor: %d)\n",
 391                                 (int)bank_addr, (int)sensor_addr);
 392                         break;
 393                 }
 394                 buf[i] = inb(data->addr + ABIT_UGURU_CMD);
 395         }
 396 
 397         /* Last put the chip back in ready state */
 398         abituguru_ready(data);
 399 
 400         return i;
 401 }
 402 
 403 /*
 404  * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 405  * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 406  */
 407 static int abituguru_write(struct abituguru_data *data,
 408         u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
 409 {
 410         /*
 411          * We use the ready timeout as we have to wait for 0xAC just like the
 412          * ready function
 413          */
 414         int i, timeout = ABIT_UGURU_READY_TIMEOUT;
 415 
 416         /* Send the address */
 417         i = abituguru_send_address(data, bank_addr, sensor_addr,
 418                 ABIT_UGURU_MAX_RETRIES);
 419         if (i)
 420                 return i;
 421 
 422         /* And write the data */
 423         for (i = 0; i < count; i++) {
 424                 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
 425                         ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
 426                                 "write state (bank: %d, sensor: %d)\n",
 427                                 (int)bank_addr, (int)sensor_addr);
 428                         break;
 429                 }
 430                 outb(buf[i], data->addr + ABIT_UGURU_CMD);
 431         }
 432 
 433         /*
 434          * Now we need to wait till the chip is ready to be read again,
 435          * so that we can read 0xAC as confirmation that our write has
 436          * succeeded.
 437          */
 438         if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 439                 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
 440                         "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
 441                         (int)sensor_addr);
 442                 return -EIO;
 443         }
 444 
 445         /* Cmd port MUST be read now and should contain 0xAC */
 446         while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 447                 timeout--;
 448                 if (timeout == 0) {
 449                         ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
 450                                 "write (bank: %d, sensor: %d)\n",
 451                                 (int)bank_addr, (int)sensor_addr);
 452                         return -EIO;
 453                 }
 454                 msleep(0);
 455         }
 456 
 457         /* Last put the chip back in ready state */
 458         abituguru_ready(data);
 459 
 460         return i;
 461 }
 462 
 463 /*
 464  * Detect sensor type. Temp and Volt sensors are enabled with
 465  * different masks and will ignore enable masks not meant for them.
 466  * This enables us to test what kind of sensor we're dealing with.
 467  * By setting the alarm thresholds so that we will always get an
 468  * alarm for sensor type X and then enabling the sensor as sensor type
 469  * X, if we then get an alarm it is a sensor of type X.
 470  */
 471 static int
 472 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
 473                                    u8 sensor_addr)
 474 {
 475         u8 val, test_flag, buf[3];
 476         int i, ret = -ENODEV; /* error is the most common used retval :| */
 477 
 478         /* If overriden by the user return the user selected type */
 479         if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
 480                         bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
 481                 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
 482                         "%d because of \"bank1_types\" module param\n",
 483                         bank1_types[sensor_addr], (int)sensor_addr);
 484                 return bank1_types[sensor_addr];
 485         }
 486 
 487         /* First read the sensor and the current settings */
 488         if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
 489                         1, ABIT_UGURU_MAX_RETRIES) != 1)
 490                 return -ENODEV;
 491 
 492         /* Test val is sane / usable for sensor type detection. */
 493         if ((val < 10u) || (val > 250u)) {
 494                 pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
 495                         "unable to determine sensor type, skipping sensor\n",
 496                         (int)sensor_addr, (int)val);
 497                 /*
 498                  * assume no sensor is there for sensors for which we can't
 499                  * determine the sensor type because their reading is too close
 500                  * to their limits, this usually means no sensor is there.
 501                  */
 502                 return ABIT_UGURU_NC;
 503         }
 504 
 505         ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
 506         /*
 507          * Volt sensor test, enable volt low alarm, set min value ridiculously
 508          * high, or vica versa if the reading is very high. If its a volt
 509          * sensor this should always give us an alarm.
 510          */
 511         if (val <= 240u) {
 512                 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
 513                 buf[1] = 245;
 514                 buf[2] = 250;
 515                 test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
 516         } else {
 517                 buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
 518                 buf[1] = 5;
 519                 buf[2] = 10;
 520                 test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
 521         }
 522 
 523         if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 524                         buf, 3) != 3)
 525                 goto abituguru_detect_bank1_sensor_type_exit;
 526         /*
 527          * Now we need 20 ms to give the uguru time to read the sensors
 528          * and raise a voltage alarm
 529          */
 530         set_current_state(TASK_UNINTERRUPTIBLE);
 531         schedule_timeout(HZ/50);
 532         /* Check for alarm and check the alarm is a volt low alarm. */
 533         if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 534                         ABIT_UGURU_MAX_RETRIES) != 3)
 535                 goto abituguru_detect_bank1_sensor_type_exit;
 536         if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 537                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 538                                 sensor_addr, buf, 3,
 539                                 ABIT_UGURU_MAX_RETRIES) != 3)
 540                         goto abituguru_detect_bank1_sensor_type_exit;
 541                 if (buf[0] & test_flag) {
 542                         ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
 543                         ret = ABIT_UGURU_IN_SENSOR;
 544                         goto abituguru_detect_bank1_sensor_type_exit;
 545                 } else
 546                         ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
 547                                 "sensor test, but volt range flag not set\n");
 548         } else
 549                 ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
 550                         "test\n");
 551 
 552         /*
 553          * Temp sensor test, enable sensor as a temp sensor, set beep value
 554          * ridiculously low (but not too low, otherwise uguru ignores it).
 555          * If its a temp sensor this should always give us an alarm.
 556          */
 557         buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
 558         buf[1] = 5;
 559         buf[2] = 10;
 560         if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 561                         buf, 3) != 3)
 562                 goto abituguru_detect_bank1_sensor_type_exit;
 563         /*
 564          * Now we need 50 ms to give the uguru time to read the sensors
 565          * and raise a temp alarm
 566          */
 567         set_current_state(TASK_UNINTERRUPTIBLE);
 568         schedule_timeout(HZ/20);
 569         /* Check for alarm and check the alarm is a temp high alarm. */
 570         if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 571                         ABIT_UGURU_MAX_RETRIES) != 3)
 572                 goto abituguru_detect_bank1_sensor_type_exit;
 573         if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 574                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 575                                 sensor_addr, buf, 3,
 576                                 ABIT_UGURU_MAX_RETRIES) != 3)
 577                         goto abituguru_detect_bank1_sensor_type_exit;
 578                 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
 579                         ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
 580                         ret = ABIT_UGURU_TEMP_SENSOR;
 581                         goto abituguru_detect_bank1_sensor_type_exit;
 582                 } else
 583                         ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
 584                                 "sensor test, but temp high flag not set\n");
 585         } else
 586                 ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
 587                         "test\n");
 588 
 589         ret = ABIT_UGURU_NC;
 590 abituguru_detect_bank1_sensor_type_exit:
 591         /*
 592          * Restore original settings, failing here is really BAD, it has been
 593          * reported that some BIOS-es hang when entering the uGuru menu with
 594          * invalid settings present in the uGuru, so we try this 3 times.
 595          */
 596         for (i = 0; i < 3; i++)
 597                 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 598                                 sensor_addr, data->bank1_settings[sensor_addr],
 599                                 3) == 3)
 600                         break;
 601         if (i == 3) {
 602                 pr_err("Fatal error could not restore original settings. %s %s\n",
 603                        never_happen, report_this);
 604                 return -ENODEV;
 605         }
 606         return ret;
 607 }
 608 
 609 /*
 610  * These functions try to find out how many sensors there are in bank2 and how
 611  * many pwms there are. The purpose of this is to make sure that we don't give
 612  * the user the possibility to change settings for non-existent sensors / pwm.
 613  * The uGuru will happily read / write whatever memory happens to be after the
 614  * memory storing the PWM settings when reading/writing to a PWM which is not
 615  * there. Notice even if we detect a PWM which doesn't exist we normally won't
 616  * write to it, unless the user tries to change the settings.
 617  *
 618  * Although the uGuru allows reading (settings) from non existing bank2
 619  * sensors, my version of the uGuru does seem to stop writing to them, the
 620  * write function above aborts in this case with:
 621  * "CMD reg does not hold 0xAC after write"
 622  *
 623  * Notice these 2 tests are non destructive iow read-only tests, otherwise
 624  * they would defeat their purpose. Although for the bank2_sensors detection a
 625  * read/write test would be feasible because of the reaction above, I've
 626  * however opted to stay on the safe side.
 627  */
 628 static void
 629 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
 630 {
 631         int i;
 632 
 633         if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
 634                 data->bank2_sensors = fan_sensors;
 635                 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
 636                         "\"fan_sensors\" module param\n",
 637                         (int)data->bank2_sensors);
 638                 return;
 639         }
 640 
 641         ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
 642         for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 643                 /*
 644                  * 0x89 are the known used bits:
 645                  * -0x80 enable shutdown
 646                  * -0x08 enable beep
 647                  * -0x01 enable alarm
 648                  * All other bits should be 0, but on some motherboards
 649                  * 0x40 (bit 6) is also high for some of the fans??
 650                  */
 651                 if (data->bank2_settings[i][0] & ~0xC9) {
 652                         ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 653                                 "to be a fan sensor: settings[0] = %02X\n",
 654                                 i, (unsigned int)data->bank2_settings[i][0]);
 655                         break;
 656                 }
 657 
 658                 /* check if the threshold is within the allowed range */
 659                 if (data->bank2_settings[i][1] <
 660                                 abituguru_bank2_min_threshold) {
 661                         ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 662                                 "to be a fan sensor: the threshold (%d) is "
 663                                 "below the minimum (%d)\n", i,
 664                                 (int)data->bank2_settings[i][1],
 665                                 (int)abituguru_bank2_min_threshold);
 666                         break;
 667                 }
 668                 if (data->bank2_settings[i][1] >
 669                                 abituguru_bank2_max_threshold) {
 670                         ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 671                                 "to be a fan sensor: the threshold (%d) is "
 672                                 "above the maximum (%d)\n", i,
 673                                 (int)data->bank2_settings[i][1],
 674                                 (int)abituguru_bank2_max_threshold);
 675                         break;
 676                 }
 677         }
 678 
 679         data->bank2_sensors = i;
 680         ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
 681                 (int)data->bank2_sensors);
 682 }
 683 
 684 static void
 685 abituguru_detect_no_pwms(struct abituguru_data *data)
 686 {
 687         int i, j;
 688 
 689         if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
 690                 data->pwms = pwms;
 691                 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
 692                         "\"pwms\" module param\n", (int)data->pwms);
 693                 return;
 694         }
 695 
 696         ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
 697         for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 698                 /*
 699                  * 0x80 is the enable bit and the low
 700                  * nibble is which temp sensor to use,
 701                  * the other bits should be 0
 702                  */
 703                 if (data->pwm_settings[i][0] & ~0x8F) {
 704                         ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 705                                 "to be a pwm channel: settings[0] = %02X\n",
 706                                 i, (unsigned int)data->pwm_settings[i][0]);
 707                         break;
 708                 }
 709 
 710                 /*
 711                  * the low nibble must correspond to one of the temp sensors
 712                  * we've found
 713                  */
 714                 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
 715                                 j++) {
 716                         if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
 717                                         (data->pwm_settings[i][0] & 0x0F))
 718                                 break;
 719                 }
 720                 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
 721                         ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 722                                 "to be a pwm channel: %d is not a valid temp "
 723                                 "sensor address\n", i,
 724                                 data->pwm_settings[i][0] & 0x0F);
 725                         break;
 726                 }
 727 
 728                 /* check if all other settings are within the allowed range */
 729                 for (j = 1; j < 5; j++) {
 730                         u8 min;
 731                         /* special case pwm1 min pwm% */
 732                         if ((i == 0) && ((j == 1) || (j == 2)))
 733                                 min = 77;
 734                         else
 735                                 min = abituguru_pwm_min[j];
 736                         if (data->pwm_settings[i][j] < min) {
 737                                 ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 738                                         "not seem to be a pwm channel: "
 739                                         "setting %d (%d) is below the minimum "
 740                                         "value (%d)\n", i, j,
 741                                         (int)data->pwm_settings[i][j],
 742                                         (int)min);
 743                                 goto abituguru_detect_no_pwms_exit;
 744                         }
 745                         if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
 746                                 ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 747                                         "not seem to be a pwm channel: "
 748                                         "setting %d (%d) is above the maximum "
 749                                         "value (%d)\n", i, j,
 750                                         (int)data->pwm_settings[i][j],
 751                                         (int)abituguru_pwm_max[j]);
 752                                 goto abituguru_detect_no_pwms_exit;
 753                         }
 754                 }
 755 
 756                 /* check that min temp < max temp and min pwm < max pwm */
 757                 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
 758                         ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 759                                 "to be a pwm channel: min pwm (%d) >= "
 760                                 "max pwm (%d)\n", i,
 761                                 (int)data->pwm_settings[i][1],
 762                                 (int)data->pwm_settings[i][2]);
 763                         break;
 764                 }
 765                 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
 766                         ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 767                                 "to be a pwm channel: min temp (%d) >= "
 768                                 "max temp (%d)\n", i,
 769                                 (int)data->pwm_settings[i][3],
 770                                 (int)data->pwm_settings[i][4]);
 771                         break;
 772                 }
 773         }
 774 
 775 abituguru_detect_no_pwms_exit:
 776         data->pwms = i;
 777         ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
 778 }
 779 
 780 /*
 781  * Following are the sysfs callback functions. These functions expect:
 782  * sensor_device_attribute_2->index:   sensor address/offset in the bank
 783  * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 784  */
 785 static struct abituguru_data *abituguru_update_device(struct device *dev);
 786 
 787 static ssize_t show_bank1_value(struct device *dev,
 788         struct device_attribute *devattr, char *buf)
 789 {
 790         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 791         struct abituguru_data *data = abituguru_update_device(dev);
 792         if (!data)
 793                 return -EIO;
 794         return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
 795                 data->bank1_max_value[attr->index] + 128) / 255);
 796 }
 797 
 798 static ssize_t show_bank1_setting(struct device *dev,
 799         struct device_attribute *devattr, char *buf)
 800 {
 801         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 802         struct abituguru_data *data = dev_get_drvdata(dev);
 803         return sprintf(buf, "%d\n",
 804                 (data->bank1_settings[attr->index][attr->nr] *
 805                 data->bank1_max_value[attr->index] + 128) / 255);
 806 }
 807 
 808 static ssize_t show_bank2_value(struct device *dev,
 809         struct device_attribute *devattr, char *buf)
 810 {
 811         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 812         struct abituguru_data *data = abituguru_update_device(dev);
 813         if (!data)
 814                 return -EIO;
 815         return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
 816                 ABIT_UGURU_FAN_MAX + 128) / 255);
 817 }
 818 
 819 static ssize_t show_bank2_setting(struct device *dev,
 820         struct device_attribute *devattr, char *buf)
 821 {
 822         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 823         struct abituguru_data *data = dev_get_drvdata(dev);
 824         return sprintf(buf, "%d\n",
 825                 (data->bank2_settings[attr->index][attr->nr] *
 826                 ABIT_UGURU_FAN_MAX + 128) / 255);
 827 }
 828 
 829 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
 830         *devattr, const char *buf, size_t count)
 831 {
 832         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 833         struct abituguru_data *data = dev_get_drvdata(dev);
 834         unsigned long val;
 835         ssize_t ret;
 836 
 837         ret = kstrtoul(buf, 10, &val);
 838         if (ret)
 839                 return ret;
 840 
 841         ret = count;
 842         val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
 843                 data->bank1_max_value[attr->index];
 844         if (val > 255)
 845                 return -EINVAL;
 846 
 847         mutex_lock(&data->update_lock);
 848         if (data->bank1_settings[attr->index][attr->nr] != val) {
 849                 u8 orig_val = data->bank1_settings[attr->index][attr->nr];
 850                 data->bank1_settings[attr->index][attr->nr] = val;
 851                 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 852                                 attr->index, data->bank1_settings[attr->index],
 853                                 3) <= attr->nr) {
 854                         data->bank1_settings[attr->index][attr->nr] = orig_val;
 855                         ret = -EIO;
 856                 }
 857         }
 858         mutex_unlock(&data->update_lock);
 859         return ret;
 860 }
 861 
 862 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
 863         *devattr, const char *buf, size_t count)
 864 {
 865         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 866         struct abituguru_data *data = dev_get_drvdata(dev);
 867         unsigned long val;
 868         ssize_t ret;
 869 
 870         ret = kstrtoul(buf, 10, &val);
 871         if (ret)
 872                 return ret;
 873 
 874         ret = count;
 875         val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
 876 
 877         /* this check can be done before taking the lock */
 878         if (val < abituguru_bank2_min_threshold ||
 879                         val > abituguru_bank2_max_threshold)
 880                 return -EINVAL;
 881 
 882         mutex_lock(&data->update_lock);
 883         if (data->bank2_settings[attr->index][attr->nr] != val) {
 884                 u8 orig_val = data->bank2_settings[attr->index][attr->nr];
 885                 data->bank2_settings[attr->index][attr->nr] = val;
 886                 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
 887                                 attr->index, data->bank2_settings[attr->index],
 888                                 2) <= attr->nr) {
 889                         data->bank2_settings[attr->index][attr->nr] = orig_val;
 890                         ret = -EIO;
 891                 }
 892         }
 893         mutex_unlock(&data->update_lock);
 894         return ret;
 895 }
 896 
 897 static ssize_t show_bank1_alarm(struct device *dev,
 898         struct device_attribute *devattr, char *buf)
 899 {
 900         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 901         struct abituguru_data *data = abituguru_update_device(dev);
 902         if (!data)
 903                 return -EIO;
 904         /*
 905          * See if the alarm bit for this sensor is set, and if the
 906          * alarm matches the type of alarm we're looking for (for volt
 907          * it can be either low or high). The type is stored in a few
 908          * readonly bits in the settings part of the relevant sensor.
 909          * The bitmask of the type is passed to us in attr->nr.
 910          */
 911         if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
 912                         (data->bank1_settings[attr->index][0] & attr->nr))
 913                 return sprintf(buf, "1\n");
 914         else
 915                 return sprintf(buf, "0\n");
 916 }
 917 
 918 static ssize_t show_bank2_alarm(struct device *dev,
 919         struct device_attribute *devattr, char *buf)
 920 {
 921         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 922         struct abituguru_data *data = abituguru_update_device(dev);
 923         if (!data)
 924                 return -EIO;
 925         if (data->alarms[2] & (0x01 << attr->index))
 926                 return sprintf(buf, "1\n");
 927         else
 928                 return sprintf(buf, "0\n");
 929 }
 930 
 931 static ssize_t show_bank1_mask(struct device *dev,
 932         struct device_attribute *devattr, char *buf)
 933 {
 934         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 935         struct abituguru_data *data = dev_get_drvdata(dev);
 936         if (data->bank1_settings[attr->index][0] & attr->nr)
 937                 return sprintf(buf, "1\n");
 938         else
 939                 return sprintf(buf, "0\n");
 940 }
 941 
 942 static ssize_t show_bank2_mask(struct device *dev,
 943         struct device_attribute *devattr, char *buf)
 944 {
 945         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 946         struct abituguru_data *data = dev_get_drvdata(dev);
 947         if (data->bank2_settings[attr->index][0] & attr->nr)
 948                 return sprintf(buf, "1\n");
 949         else
 950                 return sprintf(buf, "0\n");
 951 }
 952 
 953 static ssize_t store_bank1_mask(struct device *dev,
 954         struct device_attribute *devattr, const char *buf, size_t count)
 955 {
 956         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 957         struct abituguru_data *data = dev_get_drvdata(dev);
 958         ssize_t ret;
 959         u8 orig_val;
 960         unsigned long mask;
 961 
 962         ret = kstrtoul(buf, 10, &mask);
 963         if (ret)
 964                 return ret;
 965 
 966         ret = count;
 967         mutex_lock(&data->update_lock);
 968         orig_val = data->bank1_settings[attr->index][0];
 969 
 970         if (mask)
 971                 data->bank1_settings[attr->index][0] |= attr->nr;
 972         else
 973                 data->bank1_settings[attr->index][0] &= ~attr->nr;
 974 
 975         if ((data->bank1_settings[attr->index][0] != orig_val) &&
 976                         (abituguru_write(data,
 977                         ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
 978                         data->bank1_settings[attr->index], 3) < 1)) {
 979                 data->bank1_settings[attr->index][0] = orig_val;
 980                 ret = -EIO;
 981         }
 982         mutex_unlock(&data->update_lock);
 983         return ret;
 984 }
 985 
 986 static ssize_t store_bank2_mask(struct device *dev,
 987         struct device_attribute *devattr, const char *buf, size_t count)
 988 {
 989         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 990         struct abituguru_data *data = dev_get_drvdata(dev);
 991         ssize_t ret;
 992         u8 orig_val;
 993         unsigned long mask;
 994 
 995         ret = kstrtoul(buf, 10, &mask);
 996         if (ret)
 997                 return ret;
 998 
 999         ret = count;
1000         mutex_lock(&data->update_lock);
1001         orig_val = data->bank2_settings[attr->index][0];
1002 
1003         if (mask)
1004                 data->bank2_settings[attr->index][0] |= attr->nr;
1005         else
1006                 data->bank2_settings[attr->index][0] &= ~attr->nr;
1007 
1008         if ((data->bank2_settings[attr->index][0] != orig_val) &&
1009                         (abituguru_write(data,
1010                         ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1011                         data->bank2_settings[attr->index], 2) < 1)) {
1012                 data->bank2_settings[attr->index][0] = orig_val;
1013                 ret = -EIO;
1014         }
1015         mutex_unlock(&data->update_lock);
1016         return ret;
1017 }
1018 
1019 /* Fan PWM (speed control) */
1020 static ssize_t show_pwm_setting(struct device *dev,
1021         struct device_attribute *devattr, char *buf)
1022 {
1023         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024         struct abituguru_data *data = dev_get_drvdata(dev);
1025         return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1026                 abituguru_pwm_settings_multiplier[attr->nr]);
1027 }
1028 
1029 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1030         *devattr, const char *buf, size_t count)
1031 {
1032         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1033         struct abituguru_data *data = dev_get_drvdata(dev);
1034         u8 min;
1035         unsigned long val;
1036         ssize_t ret;
1037 
1038         ret = kstrtoul(buf, 10, &val);
1039         if (ret)
1040                 return ret;
1041 
1042         ret = count;
1043         val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1044                                 abituguru_pwm_settings_multiplier[attr->nr];
1045 
1046         /* special case pwm1 min pwm% */
1047         if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1048                 min = 77;
1049         else
1050                 min = abituguru_pwm_min[attr->nr];
1051 
1052         /* this check can be done before taking the lock */
1053         if (val < min || val > abituguru_pwm_max[attr->nr])
1054                 return -EINVAL;
1055 
1056         mutex_lock(&data->update_lock);
1057         /* this check needs to be done after taking the lock */
1058         if ((attr->nr & 1) &&
1059                         (val >= data->pwm_settings[attr->index][attr->nr + 1]))
1060                 ret = -EINVAL;
1061         else if (!(attr->nr & 1) &&
1062                         (val <= data->pwm_settings[attr->index][attr->nr - 1]))
1063                 ret = -EINVAL;
1064         else if (data->pwm_settings[attr->index][attr->nr] != val) {
1065                 u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1066                 data->pwm_settings[attr->index][attr->nr] = val;
1067                 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1068                                 attr->index, data->pwm_settings[attr->index],
1069                                 5) <= attr->nr) {
1070                         data->pwm_settings[attr->index][attr->nr] =
1071                                 orig_val;
1072                         ret = -EIO;
1073                 }
1074         }
1075         mutex_unlock(&data->update_lock);
1076         return ret;
1077 }
1078 
1079 static ssize_t show_pwm_sensor(struct device *dev,
1080         struct device_attribute *devattr, char *buf)
1081 {
1082         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1083         struct abituguru_data *data = dev_get_drvdata(dev);
1084         int i;
1085         /*
1086          * We need to walk to the temp sensor addresses to find what
1087          * the userspace id of the configured temp sensor is.
1088          */
1089         for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1090                 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1091                                 (data->pwm_settings[attr->index][0] & 0x0F))
1092                         return sprintf(buf, "%d\n", i+1);
1093 
1094         return -ENXIO;
1095 }
1096 
1097 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1098         *devattr, const char *buf, size_t count)
1099 {
1100         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1101         struct abituguru_data *data = dev_get_drvdata(dev);
1102         ssize_t ret;
1103         unsigned long val;
1104         u8 orig_val;
1105         u8 address;
1106 
1107         ret = kstrtoul(buf, 10, &val);
1108         if (ret)
1109                 return ret;
1110 
1111         if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1112                 return -EINVAL;
1113 
1114         val -= 1;
1115         ret = count;
1116         mutex_lock(&data->update_lock);
1117         orig_val = data->pwm_settings[attr->index][0];
1118         address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1119         data->pwm_settings[attr->index][0] &= 0xF0;
1120         data->pwm_settings[attr->index][0] |= address;
1121         if (data->pwm_settings[attr->index][0] != orig_val) {
1122                 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1123                                     data->pwm_settings[attr->index], 5) < 1) {
1124                         data->pwm_settings[attr->index][0] = orig_val;
1125                         ret = -EIO;
1126                 }
1127         }
1128         mutex_unlock(&data->update_lock);
1129         return ret;
1130 }
1131 
1132 static ssize_t show_pwm_enable(struct device *dev,
1133         struct device_attribute *devattr, char *buf)
1134 {
1135         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1136         struct abituguru_data *data = dev_get_drvdata(dev);
1137         int res = 0;
1138         if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1139                 res = 2;
1140         return sprintf(buf, "%d\n", res);
1141 }
1142 
1143 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1144         *devattr, const char *buf, size_t count)
1145 {
1146         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1147         struct abituguru_data *data = dev_get_drvdata(dev);
1148         u8 orig_val;
1149         ssize_t ret;
1150         unsigned long user_val;
1151 
1152         ret = kstrtoul(buf, 10, &user_val);
1153         if (ret)
1154                 return ret;
1155 
1156         ret = count;
1157         mutex_lock(&data->update_lock);
1158         orig_val = data->pwm_settings[attr->index][0];
1159         switch (user_val) {
1160         case 0:
1161                 data->pwm_settings[attr->index][0] &=
1162                         ~ABIT_UGURU_FAN_PWM_ENABLE;
1163                 break;
1164         case 2:
1165                 data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1166                 break;
1167         default:
1168                 ret = -EINVAL;
1169         }
1170         if ((data->pwm_settings[attr->index][0] != orig_val) &&
1171                         (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1172                         attr->index, data->pwm_settings[attr->index],
1173                         5) < 1)) {
1174                 data->pwm_settings[attr->index][0] = orig_val;
1175                 ret = -EIO;
1176         }
1177         mutex_unlock(&data->update_lock);
1178         return ret;
1179 }
1180 
1181 static ssize_t show_name(struct device *dev,
1182         struct device_attribute *devattr, char *buf)
1183 {
1184         return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1185 }
1186 
1187 /* Sysfs attr templates, the real entries are generated automatically. */
1188 static const
1189 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1190         {
1191         SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1192         SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1193                 store_bank1_setting, 1, 0),
1194         SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1195                 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1196         SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1197                 store_bank1_setting, 2, 0),
1198         SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1199                 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1200         SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1201                 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1202         SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1203                 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1204         SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1205                 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1206         SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1207                 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1208         }, {
1209         SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1210         SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1211                 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1212         SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1213                 store_bank1_setting, 1, 0),
1214         SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1215                 store_bank1_setting, 2, 0),
1216         SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1217                 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1218         SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1219                 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1220         SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1221                 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1222         }
1223 };
1224 
1225 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1226         SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1227         SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1228         SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1229                 store_bank2_setting, 1, 0),
1230         SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1231                 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1232         SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1233                 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1234         SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1235                 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1236 };
1237 
1238 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1239         SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1240                 store_pwm_enable, 0, 0),
1241         SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1242                 store_pwm_sensor, 0, 0),
1243         SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1244                 store_pwm_setting, 1, 0),
1245         SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1246                 store_pwm_setting, 2, 0),
1247         SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1248                 store_pwm_setting, 3, 0),
1249         SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1250                 store_pwm_setting, 4, 0),
1251 };
1252 
1253 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1254         SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1255 };
1256 
1257 static int abituguru_probe(struct platform_device *pdev)
1258 {
1259         struct abituguru_data *data;
1260         int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1261         char *sysfs_filename;
1262 
1263         /*
1264          * El weirdo probe order, to keep the sysfs order identical to the
1265          * BIOS and window-appliction listing order.
1266          */
1267         const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1268                 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1269                 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1270 
1271         data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1272                             GFP_KERNEL);
1273         if (!data)
1274                 return -ENOMEM;
1275 
1276         data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1277         mutex_init(&data->update_lock);
1278         platform_set_drvdata(pdev, data);
1279 
1280         /* See if the uGuru is ready */
1281         if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1282                 data->uguru_ready = 1;
1283 
1284         /*
1285          * Completely read the uGuru this has 2 purposes:
1286          * - testread / see if one really is there.
1287          * - make an in memory copy of all the uguru settings for future use.
1288          */
1289         if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1290                         data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1291                 goto abituguru_probe_error;
1292 
1293         for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1294                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1295                                 &data->bank1_value[i], 1,
1296                                 ABIT_UGURU_MAX_RETRIES) != 1)
1297                         goto abituguru_probe_error;
1298                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1299                                 data->bank1_settings[i], 3,
1300                                 ABIT_UGURU_MAX_RETRIES) != 3)
1301                         goto abituguru_probe_error;
1302         }
1303         /*
1304          * Note: We don't know how many bank2 sensors / pwms there really are,
1305          * but in order to "detect" this we need to read the maximum amount
1306          * anyways. If we read sensors/pwms not there we'll just read crap
1307          * this can't hurt. We need the detection because we don't want
1308          * unwanted writes, which will hurt!
1309          */
1310         for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1311                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1312                                 &data->bank2_value[i], 1,
1313                                 ABIT_UGURU_MAX_RETRIES) != 1)
1314                         goto abituguru_probe_error;
1315                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1316                                 data->bank2_settings[i], 2,
1317                                 ABIT_UGURU_MAX_RETRIES) != 2)
1318                         goto abituguru_probe_error;
1319         }
1320         for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1321                 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1322                                 data->pwm_settings[i], 5,
1323                                 ABIT_UGURU_MAX_RETRIES) != 5)
1324                         goto abituguru_probe_error;
1325         }
1326         data->last_updated = jiffies;
1327 
1328         /* Detect sensor types and fill the sysfs attr for bank1 */
1329         sysfs_attr_i = 0;
1330         sysfs_filename = data->sysfs_names;
1331         sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1332         for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1333                 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1334                 if (res < 0)
1335                         goto abituguru_probe_error;
1336                 if (res == ABIT_UGURU_NC)
1337                         continue;
1338 
1339                 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1340                 for (j = 0; j < (res ? 7 : 9); j++) {
1341                         used = snprintf(sysfs_filename, sysfs_names_free,
1342                                 abituguru_sysfs_bank1_templ[res][j].dev_attr.
1343                                 attr.name, data->bank1_sensors[res] + res)
1344                                 + 1;
1345                         data->sysfs_attr[sysfs_attr_i] =
1346                                 abituguru_sysfs_bank1_templ[res][j];
1347                         data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1348                                 sysfs_filename;
1349                         data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1350                         sysfs_filename += used;
1351                         sysfs_names_free -= used;
1352                         sysfs_attr_i++;
1353                 }
1354                 data->bank1_max_value[probe_order[i]] =
1355                         abituguru_bank1_max_value[res];
1356                 data->bank1_address[res][data->bank1_sensors[res]] =
1357                         probe_order[i];
1358                 data->bank1_sensors[res]++;
1359         }
1360         /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1361         abituguru_detect_no_bank2_sensors(data);
1362         for (i = 0; i < data->bank2_sensors; i++) {
1363                 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1364                         used = snprintf(sysfs_filename, sysfs_names_free,
1365                                 abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1366                                 i + 1) + 1;
1367                         data->sysfs_attr[sysfs_attr_i] =
1368                                 abituguru_sysfs_fan_templ[j];
1369                         data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1370                                 sysfs_filename;
1371                         data->sysfs_attr[sysfs_attr_i].index = i;
1372                         sysfs_filename += used;
1373                         sysfs_names_free -= used;
1374                         sysfs_attr_i++;
1375                 }
1376         }
1377         /* Detect number of sensors and fill the sysfs attr for pwms */
1378         abituguru_detect_no_pwms(data);
1379         for (i = 0; i < data->pwms; i++) {
1380                 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1381                         used = snprintf(sysfs_filename, sysfs_names_free,
1382                                 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1383                                 i + 1) + 1;
1384                         data->sysfs_attr[sysfs_attr_i] =
1385                                 abituguru_sysfs_pwm_templ[j];
1386                         data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1387                                 sysfs_filename;
1388                         data->sysfs_attr[sysfs_attr_i].index = i;
1389                         sysfs_filename += used;
1390                         sysfs_names_free -= used;
1391                         sysfs_attr_i++;
1392                 }
1393         }
1394         /* Fail safe check, this should never happen! */
1395         if (sysfs_names_free < 0) {
1396                 pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1397                        never_happen, report_this);
1398                 res = -ENAMETOOLONG;
1399                 goto abituguru_probe_error;
1400         }
1401         pr_info("found Abit uGuru\n");
1402 
1403         /* Register sysfs hooks */
1404         for (i = 0; i < sysfs_attr_i; i++) {
1405                 res = device_create_file(&pdev->dev,
1406                                          &data->sysfs_attr[i].dev_attr);
1407                 if (res)
1408                         goto abituguru_probe_error;
1409         }
1410         for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1411                 res = device_create_file(&pdev->dev,
1412                                          &abituguru_sysfs_attr[i].dev_attr);
1413                 if (res)
1414                         goto abituguru_probe_error;
1415         }
1416 
1417         data->hwmon_dev = hwmon_device_register(&pdev->dev);
1418         if (!IS_ERR(data->hwmon_dev))
1419                 return 0; /* success */
1420 
1421         res = PTR_ERR(data->hwmon_dev);
1422 abituguru_probe_error:
1423         for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1424                 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1425         for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1426                 device_remove_file(&pdev->dev,
1427                         &abituguru_sysfs_attr[i].dev_attr);
1428         return res;
1429 }
1430 
1431 static int abituguru_remove(struct platform_device *pdev)
1432 {
1433         int i;
1434         struct abituguru_data *data = platform_get_drvdata(pdev);
1435 
1436         hwmon_device_unregister(data->hwmon_dev);
1437         for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1438                 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1439         for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1440                 device_remove_file(&pdev->dev,
1441                         &abituguru_sysfs_attr[i].dev_attr);
1442 
1443         return 0;
1444 }
1445 
1446 static struct abituguru_data *abituguru_update_device(struct device *dev)
1447 {
1448         int i, err;
1449         struct abituguru_data *data = dev_get_drvdata(dev);
1450         /* fake a complete successful read if no update necessary. */
1451         char success = 1;
1452 
1453         mutex_lock(&data->update_lock);
1454         if (time_after(jiffies, data->last_updated + HZ)) {
1455                 success = 0;
1456                 err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1457                                      data->alarms, 3, 0);
1458                 if (err != 3)
1459                         goto LEAVE_UPDATE;
1460                 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1461                         err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1462                                              i, &data->bank1_value[i], 1, 0);
1463                         if (err != 1)
1464                                 goto LEAVE_UPDATE;
1465                         err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1466                                              i, data->bank1_settings[i], 3, 0);
1467                         if (err != 3)
1468                                 goto LEAVE_UPDATE;
1469                 }
1470                 for (i = 0; i < data->bank2_sensors; i++) {
1471                         err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1472                                              &data->bank2_value[i], 1, 0);
1473                         if (err != 1)
1474                                 goto LEAVE_UPDATE;
1475                 }
1476                 /* success! */
1477                 success = 1;
1478                 data->update_timeouts = 0;
1479 LEAVE_UPDATE:
1480                 /* handle timeout condition */
1481                 if (!success && (err == -EBUSY || err >= 0)) {
1482                         /* No overflow please */
1483                         if (data->update_timeouts < 255u)
1484                                 data->update_timeouts++;
1485                         if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1486                                 ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1487                                         "try again next update\n");
1488                                 /* Just a timeout, fake a successful read */
1489                                 success = 1;
1490                         } else
1491                                 ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1492                                         "times waiting for more input state\n",
1493                                         (int)data->update_timeouts);
1494                 }
1495                 /* On success set last_updated */
1496                 if (success)
1497                         data->last_updated = jiffies;
1498         }
1499         mutex_unlock(&data->update_lock);
1500 
1501         if (success)
1502                 return data;
1503         else
1504                 return NULL;
1505 }
1506 
1507 #ifdef CONFIG_PM_SLEEP
1508 static int abituguru_suspend(struct device *dev)
1509 {
1510         struct abituguru_data *data = dev_get_drvdata(dev);
1511         /*
1512          * make sure all communications with the uguru are done and no new
1513          * ones are started
1514          */
1515         mutex_lock(&data->update_lock);
1516         return 0;
1517 }
1518 
1519 static int abituguru_resume(struct device *dev)
1520 {
1521         struct abituguru_data *data = dev_get_drvdata(dev);
1522         /* See if the uGuru is still ready */
1523         if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1524                 data->uguru_ready = 0;
1525         mutex_unlock(&data->update_lock);
1526         return 0;
1527 }
1528 
1529 static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1530 #define ABIT_UGURU_PM   (&abituguru_pm)
1531 #else
1532 #define ABIT_UGURU_PM   NULL
1533 #endif /* CONFIG_PM */
1534 
1535 static struct platform_driver abituguru_driver = {
1536         .driver = {
1537                 .name   = ABIT_UGURU_NAME,
1538                 .pm     = ABIT_UGURU_PM,
1539         },
1540         .probe          = abituguru_probe,
1541         .remove         = abituguru_remove,
1542 };
1543 
1544 static int __init abituguru_detect(void)
1545 {
1546         /*
1547          * See if there is an uguru there. After a reboot uGuru will hold 0x00
1548          * at DATA and 0xAC, when this driver has already been loaded once
1549          * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1550          * scenario but some will hold 0x00.
1551          * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1552          * after reading CMD first, so CMD must be read first!
1553          */
1554         u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1555         u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1556         if (((data_val == 0x00) || (data_val == 0x08)) &&
1557             ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1558                 return ABIT_UGURU_BASE;
1559 
1560         ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1561                 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1562 
1563         if (force) {
1564                 pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1565                 return ABIT_UGURU_BASE;
1566         }
1567 
1568         /* No uGuru found */
1569         return -ENODEV;
1570 }
1571 
1572 static struct platform_device *abituguru_pdev;
1573 
1574 static int __init abituguru_init(void)
1575 {
1576         int address, err;
1577         struct resource res = { .flags = IORESOURCE_IO };
1578         const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1579 
1580         /* safety check, refuse to load on non Abit motherboards */
1581         if (!force && (!board_vendor ||
1582                         strcmp(board_vendor, "http://www.abit.com.tw/")))
1583                 return -ENODEV;
1584 
1585         address = abituguru_detect();
1586         if (address < 0)
1587                 return address;
1588 
1589         err = platform_driver_register(&abituguru_driver);
1590         if (err)
1591                 goto exit;
1592 
1593         abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1594         if (!abituguru_pdev) {
1595                 pr_err("Device allocation failed\n");
1596                 err = -ENOMEM;
1597                 goto exit_driver_unregister;
1598         }
1599 
1600         res.start = address;
1601         res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1602         res.name = ABIT_UGURU_NAME;
1603 
1604         err = platform_device_add_resources(abituguru_pdev, &res, 1);
1605         if (err) {
1606                 pr_err("Device resource addition failed (%d)\n", err);
1607                 goto exit_device_put;
1608         }
1609 
1610         err = platform_device_add(abituguru_pdev);
1611         if (err) {
1612                 pr_err("Device addition failed (%d)\n", err);
1613                 goto exit_device_put;
1614         }
1615 
1616         return 0;
1617 
1618 exit_device_put:
1619         platform_device_put(abituguru_pdev);
1620 exit_driver_unregister:
1621         platform_driver_unregister(&abituguru_driver);
1622 exit:
1623         return err;
1624 }
1625 
1626 static void __exit abituguru_exit(void)
1627 {
1628         platform_device_unregister(abituguru_pdev);
1629         platform_driver_unregister(&abituguru_driver);
1630 }
1631 
1632 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1633 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1634 MODULE_LICENSE("GPL");
1635 
1636 module_init(abituguru_init);
1637 module_exit(abituguru_exit);

/* [<][>][^][v][top][bottom][index][help] */