root/drivers/virt/fsl_hypervisor.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ioctl_restart
  2. ioctl_status
  3. ioctl_start
  4. ioctl_stop
  5. ioctl_memcpy
  6. ioctl_doorbell
  7. ioctl_dtprop
  8. fsl_hv_ioctl
  9. fsl_hv_queue_doorbell
  10. fsl_hv_isr
  11. fsl_hv_state_change_thread
  12. fsl_hv_state_change_isr
  13. fsl_hv_poll
  14. fsl_hv_read
  15. fsl_hv_open
  16. fsl_hv_close
  17. fsl_hv_shutdown_isr
  18. get_parent_handle
  19. fsl_hv_failover_register
  20. fsl_hv_failover_unregister
  21. has_fsl_hypervisor
  22. fsl_hypervisor_init
  23. fsl_hypervisor_exit

   1 /*
   2  * Freescale Hypervisor Management Driver
   3 
   4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
   5  * Author: Timur Tabi <timur@freescale.com>
   6  *
   7  * This file is licensed under the terms of the GNU General Public License
   8  * version 2.  This program is licensed "as is" without any warranty of any
   9  * kind, whether express or implied.
  10  *
  11  * The Freescale hypervisor management driver provides several services to
  12  * drivers and applications related to the Freescale hypervisor:
  13  *
  14  * 1. An ioctl interface for querying and managing partitions.
  15  *
  16  * 2. A file interface to reading incoming doorbells.
  17  *
  18  * 3. An interrupt handler for shutting down the partition upon receiving the
  19  *    shutdown doorbell from a manager partition.
  20  *
  21  * 4. A kernel interface for receiving callbacks when a managed partition
  22  *    shuts down.
  23  */
  24 
  25 #include <linux/kernel.h>
  26 #include <linux/module.h>
  27 #include <linux/init.h>
  28 #include <linux/types.h>
  29 #include <linux/err.h>
  30 #include <linux/fs.h>
  31 #include <linux/miscdevice.h>
  32 #include <linux/mm.h>
  33 #include <linux/pagemap.h>
  34 #include <linux/slab.h>
  35 #include <linux/poll.h>
  36 #include <linux/of.h>
  37 #include <linux/of_irq.h>
  38 #include <linux/reboot.h>
  39 #include <linux/uaccess.h>
  40 #include <linux/notifier.h>
  41 #include <linux/interrupt.h>
  42 
  43 #include <linux/io.h>
  44 #include <asm/fsl_hcalls.h>
  45 
  46 #include <linux/fsl_hypervisor.h>
  47 
  48 static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
  49 
  50 /*
  51  * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
  52  *
  53  * Restart a running partition
  54  */
  55 static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
  56 {
  57         struct fsl_hv_ioctl_restart param;
  58 
  59         /* Get the parameters from the user */
  60         if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart)))
  61                 return -EFAULT;
  62 
  63         param.ret = fh_partition_restart(param.partition);
  64 
  65         if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
  66                 return -EFAULT;
  67 
  68         return 0;
  69 }
  70 
  71 /*
  72  * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
  73  *
  74  * Query the status of a partition
  75  */
  76 static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
  77 {
  78         struct fsl_hv_ioctl_status param;
  79         u32 status;
  80 
  81         /* Get the parameters from the user */
  82         if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status)))
  83                 return -EFAULT;
  84 
  85         param.ret = fh_partition_get_status(param.partition, &status);
  86         if (!param.ret)
  87                 param.status = status;
  88 
  89         if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status)))
  90                 return -EFAULT;
  91 
  92         return 0;
  93 }
  94 
  95 /*
  96  * Ioctl interface for FSL_HV_IOCTL_PARTITION_START
  97  *
  98  * Start a stopped partition.
  99  */
 100 static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
 101 {
 102         struct fsl_hv_ioctl_start param;
 103 
 104         /* Get the parameters from the user */
 105         if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start)))
 106                 return -EFAULT;
 107 
 108         param.ret = fh_partition_start(param.partition, param.entry_point,
 109                                        param.load);
 110 
 111         if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
 112                 return -EFAULT;
 113 
 114         return 0;
 115 }
 116 
 117 /*
 118  * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
 119  *
 120  * Stop a running partition
 121  */
 122 static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
 123 {
 124         struct fsl_hv_ioctl_stop param;
 125 
 126         /* Get the parameters from the user */
 127         if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop)))
 128                 return -EFAULT;
 129 
 130         param.ret = fh_partition_stop(param.partition);
 131 
 132         if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
 133                 return -EFAULT;
 134 
 135         return 0;
 136 }
 137 
 138 /*
 139  * Ioctl interface for FSL_HV_IOCTL_MEMCPY
 140  *
 141  * The FH_MEMCPY hypercall takes an array of address/address/size structures
 142  * to represent the data being copied.  As a convenience to the user, this
 143  * ioctl takes a user-create buffer and a pointer to a guest physically
 144  * contiguous buffer in the remote partition, and creates the
 145  * address/address/size array for the hypercall.
 146  */
 147 static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
 148 {
 149         struct fsl_hv_ioctl_memcpy param;
 150 
 151         struct page **pages = NULL;
 152         void *sg_list_unaligned = NULL;
 153         struct fh_sg_list *sg_list = NULL;
 154 
 155         unsigned int num_pages;
 156         unsigned long lb_offset; /* Offset within a page of the local buffer */
 157 
 158         unsigned int i;
 159         long ret = 0;
 160         int num_pinned; /* return value from get_user_pages() */
 161         phys_addr_t remote_paddr; /* The next address in the remote buffer */
 162         uint32_t count; /* The number of bytes left to copy */
 163 
 164         /* Get the parameters from the user */
 165         if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy)))
 166                 return -EFAULT;
 167 
 168         /*
 169          * One partition must be local, the other must be remote.  In other
 170          * words, if source and target are both -1, or are both not -1, then
 171          * return an error.
 172          */
 173         if ((param.source == -1) == (param.target == -1))
 174                 return -EINVAL;
 175 
 176         /*
 177          * The array of pages returned by get_user_pages() covers only
 178          * page-aligned memory.  Since the user buffer is probably not
 179          * page-aligned, we need to handle the discrepancy.
 180          *
 181          * We calculate the offset within a page of the S/G list, and make
 182          * adjustments accordingly.  This will result in a page list that looks
 183          * like this:
 184          *
 185          *      ----    <-- first page starts before the buffer
 186          *     |    |
 187          *     |////|-> ----
 188          *     |////|  |    |
 189          *      ----   |    |
 190          *             |    |
 191          *      ----   |    |
 192          *     |////|  |    |
 193          *     |////|  |    |
 194          *     |////|  |    |
 195          *      ----   |    |
 196          *             |    |
 197          *      ----   |    |
 198          *     |////|  |    |
 199          *     |////|  |    |
 200          *     |////|  |    |
 201          *      ----   |    |
 202          *             |    |
 203          *      ----   |    |
 204          *     |////|  |    |
 205          *     |////|-> ----
 206          *     |    |   <-- last page ends after the buffer
 207          *      ----
 208          *
 209          * The distance between the start of the first page and the start of the
 210          * buffer is lb_offset.  The hashed (///) areas are the parts of the
 211          * page list that contain the actual buffer.
 212          *
 213          * The advantage of this approach is that the number of pages is
 214          * equal to the number of entries in the S/G list that we give to the
 215          * hypervisor.
 216          */
 217         lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
 218         if (param.count == 0 ||
 219             param.count > U64_MAX - lb_offset - PAGE_SIZE + 1)
 220                 return -EINVAL;
 221         num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
 222 
 223         /* Allocate the buffers we need */
 224 
 225         /*
 226          * 'pages' is an array of struct page pointers that's initialized by
 227          * get_user_pages().
 228          */
 229         pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
 230         if (!pages) {
 231                 pr_debug("fsl-hv: could not allocate page list\n");
 232                 return -ENOMEM;
 233         }
 234 
 235         /*
 236          * sg_list is the list of fh_sg_list objects that we pass to the
 237          * hypervisor.
 238          */
 239         sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
 240                 sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
 241         if (!sg_list_unaligned) {
 242                 pr_debug("fsl-hv: could not allocate S/G list\n");
 243                 ret = -ENOMEM;
 244                 goto exit;
 245         }
 246         sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
 247 
 248         /* Get the physical addresses of the source buffer */
 249         num_pinned = get_user_pages_fast(param.local_vaddr - lb_offset,
 250                 num_pages, param.source != -1 ? FOLL_WRITE : 0, pages);
 251 
 252         if (num_pinned != num_pages) {
 253                 /* get_user_pages() failed */
 254                 pr_debug("fsl-hv: could not lock source buffer\n");
 255                 ret = (num_pinned < 0) ? num_pinned : -EFAULT;
 256                 goto exit;
 257         }
 258 
 259         /*
 260          * Build the fh_sg_list[] array.  The first page is special
 261          * because it's misaligned.
 262          */
 263         if (param.source == -1) {
 264                 sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
 265                 sg_list[0].target = param.remote_paddr;
 266         } else {
 267                 sg_list[0].source = param.remote_paddr;
 268                 sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
 269         }
 270         sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
 271 
 272         remote_paddr = param.remote_paddr + sg_list[0].size;
 273         count = param.count - sg_list[0].size;
 274 
 275         for (i = 1; i < num_pages; i++) {
 276                 if (param.source == -1) {
 277                         /* local to remote */
 278                         sg_list[i].source = page_to_phys(pages[i]);
 279                         sg_list[i].target = remote_paddr;
 280                 } else {
 281                         /* remote to local */
 282                         sg_list[i].source = remote_paddr;
 283                         sg_list[i].target = page_to_phys(pages[i]);
 284                 }
 285                 sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
 286 
 287                 remote_paddr += sg_list[i].size;
 288                 count -= sg_list[i].size;
 289         }
 290 
 291         param.ret = fh_partition_memcpy(param.source, param.target,
 292                 virt_to_phys(sg_list), num_pages);
 293 
 294 exit:
 295         if (pages) {
 296                 for (i = 0; i < num_pages; i++)
 297                         if (pages[i])
 298                                 put_page(pages[i]);
 299         }
 300 
 301         kfree(sg_list_unaligned);
 302         kfree(pages);
 303 
 304         if (!ret)
 305                 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
 306                         return -EFAULT;
 307 
 308         return ret;
 309 }
 310 
 311 /*
 312  * Ioctl interface for FSL_HV_IOCTL_DOORBELL
 313  *
 314  * Ring a doorbell
 315  */
 316 static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
 317 {
 318         struct fsl_hv_ioctl_doorbell param;
 319 
 320         /* Get the parameters from the user. */
 321         if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell)))
 322                 return -EFAULT;
 323 
 324         param.ret = ev_doorbell_send(param.doorbell);
 325 
 326         if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
 327                 return -EFAULT;
 328 
 329         return 0;
 330 }
 331 
 332 static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
 333 {
 334         struct fsl_hv_ioctl_prop param;
 335         char __user *upath, *upropname;
 336         void __user *upropval;
 337         char *path, *propname;
 338         void *propval;
 339         int ret = 0;
 340 
 341         /* Get the parameters from the user. */
 342         if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop)))
 343                 return -EFAULT;
 344 
 345         upath = (char __user *)(uintptr_t)param.path;
 346         upropname = (char __user *)(uintptr_t)param.propname;
 347         upropval = (void __user *)(uintptr_t)param.propval;
 348 
 349         path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
 350         if (IS_ERR(path))
 351                 return PTR_ERR(path);
 352 
 353         propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
 354         if (IS_ERR(propname)) {
 355                 ret = PTR_ERR(propname);
 356                 goto err_free_path;
 357         }
 358 
 359         if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
 360                 ret = -EINVAL;
 361                 goto err_free_propname;
 362         }
 363 
 364         propval = kmalloc(param.proplen, GFP_KERNEL);
 365         if (!propval) {
 366                 ret = -ENOMEM;
 367                 goto err_free_propname;
 368         }
 369 
 370         if (set) {
 371                 if (copy_from_user(propval, upropval, param.proplen)) {
 372                         ret = -EFAULT;
 373                         goto err_free_propval;
 374                 }
 375 
 376                 param.ret = fh_partition_set_dtprop(param.handle,
 377                                                     virt_to_phys(path),
 378                                                     virt_to_phys(propname),
 379                                                     virt_to_phys(propval),
 380                                                     param.proplen);
 381         } else {
 382                 param.ret = fh_partition_get_dtprop(param.handle,
 383                                                     virt_to_phys(path),
 384                                                     virt_to_phys(propname),
 385                                                     virt_to_phys(propval),
 386                                                     &param.proplen);
 387 
 388                 if (param.ret == 0) {
 389                         if (copy_to_user(upropval, propval, param.proplen) ||
 390                             put_user(param.proplen, &p->proplen)) {
 391                                 ret = -EFAULT;
 392                                 goto err_free_propval;
 393                         }
 394                 }
 395         }
 396 
 397         if (put_user(param.ret, &p->ret))
 398                 ret = -EFAULT;
 399 
 400 err_free_propval:
 401         kfree(propval);
 402 err_free_propname:
 403         kfree(propname);
 404 err_free_path:
 405         kfree(path);
 406 
 407         return ret;
 408 }
 409 
 410 /*
 411  * Ioctl main entry point
 412  */
 413 static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
 414                          unsigned long argaddr)
 415 {
 416         void __user *arg = (void __user *)argaddr;
 417         long ret;
 418 
 419         switch (cmd) {
 420         case FSL_HV_IOCTL_PARTITION_RESTART:
 421                 ret = ioctl_restart(arg);
 422                 break;
 423         case FSL_HV_IOCTL_PARTITION_GET_STATUS:
 424                 ret = ioctl_status(arg);
 425                 break;
 426         case FSL_HV_IOCTL_PARTITION_START:
 427                 ret = ioctl_start(arg);
 428                 break;
 429         case FSL_HV_IOCTL_PARTITION_STOP:
 430                 ret = ioctl_stop(arg);
 431                 break;
 432         case FSL_HV_IOCTL_MEMCPY:
 433                 ret = ioctl_memcpy(arg);
 434                 break;
 435         case FSL_HV_IOCTL_DOORBELL:
 436                 ret = ioctl_doorbell(arg);
 437                 break;
 438         case FSL_HV_IOCTL_GETPROP:
 439                 ret = ioctl_dtprop(arg, 0);
 440                 break;
 441         case FSL_HV_IOCTL_SETPROP:
 442                 ret = ioctl_dtprop(arg, 1);
 443                 break;
 444         default:
 445                 pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n",
 446                          _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd),
 447                          _IOC_SIZE(cmd));
 448                 return -ENOTTY;
 449         }
 450 
 451         return ret;
 452 }
 453 
 454 /* Linked list of processes that have us open */
 455 static struct list_head db_list;
 456 
 457 /* spinlock for db_list */
 458 static DEFINE_SPINLOCK(db_list_lock);
 459 
 460 /* The size of the doorbell event queue.  This must be a power of two. */
 461 #define QSIZE   16
 462 
 463 /* Returns the next head/tail pointer, wrapping around the queue if necessary */
 464 #define nextp(x) (((x) + 1) & (QSIZE - 1))
 465 
 466 /* Per-open data structure */
 467 struct doorbell_queue {
 468         struct list_head list;
 469         spinlock_t lock;
 470         wait_queue_head_t wait;
 471         unsigned int head;
 472         unsigned int tail;
 473         uint32_t q[QSIZE];
 474 };
 475 
 476 /* Linked list of ISRs that we registered */
 477 struct list_head isr_list;
 478 
 479 /* Per-ISR data structure */
 480 struct doorbell_isr {
 481         struct list_head list;
 482         unsigned int irq;
 483         uint32_t doorbell;      /* The doorbell handle */
 484         uint32_t partition;     /* The partition handle, if used */
 485 };
 486 
 487 /*
 488  * Add a doorbell to all of the doorbell queues
 489  */
 490 static void fsl_hv_queue_doorbell(uint32_t doorbell)
 491 {
 492         struct doorbell_queue *dbq;
 493         unsigned long flags;
 494 
 495         /* Prevent another core from modifying db_list */
 496         spin_lock_irqsave(&db_list_lock, flags);
 497 
 498         list_for_each_entry(dbq, &db_list, list) {
 499                 if (dbq->head != nextp(dbq->tail)) {
 500                         dbq->q[dbq->tail] = doorbell;
 501                         /*
 502                          * This memory barrier eliminates the need to grab
 503                          * the spinlock for dbq.
 504                          */
 505                         smp_wmb();
 506                         dbq->tail = nextp(dbq->tail);
 507                         wake_up_interruptible(&dbq->wait);
 508                 }
 509         }
 510 
 511         spin_unlock_irqrestore(&db_list_lock, flags);
 512 }
 513 
 514 /*
 515  * Interrupt handler for all doorbells
 516  *
 517  * We use the same interrupt handler for all doorbells.  Whenever a doorbell
 518  * is rung, and we receive an interrupt, we just put the handle for that
 519  * doorbell (passed to us as *data) into all of the queues.
 520  */
 521 static irqreturn_t fsl_hv_isr(int irq, void *data)
 522 {
 523         fsl_hv_queue_doorbell((uintptr_t) data);
 524 
 525         return IRQ_HANDLED;
 526 }
 527 
 528 /*
 529  * State change thread function
 530  *
 531  * The state change notification arrives in an interrupt, but we can't call
 532  * blocking_notifier_call_chain() in an interrupt handler.  We could call
 533  * atomic_notifier_call_chain(), but that would require the clients' call-back
 534  * function to run in interrupt context.  Since we don't want to impose that
 535  * restriction on the clients, we use a threaded IRQ to process the
 536  * notification in kernel context.
 537  */
 538 static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
 539 {
 540         struct doorbell_isr *dbisr = data;
 541 
 542         blocking_notifier_call_chain(&failover_subscribers, dbisr->partition,
 543                                      NULL);
 544 
 545         return IRQ_HANDLED;
 546 }
 547 
 548 /*
 549  * Interrupt handler for state-change doorbells
 550  */
 551 static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
 552 {
 553         unsigned int status;
 554         struct doorbell_isr *dbisr = data;
 555         int ret;
 556 
 557         /* It's still a doorbell, so add it to all the queues. */
 558         fsl_hv_queue_doorbell(dbisr->doorbell);
 559 
 560         /* Determine the new state, and if it's stopped, notify the clients. */
 561         ret = fh_partition_get_status(dbisr->partition, &status);
 562         if (!ret && (status == FH_PARTITION_STOPPED))
 563                 return IRQ_WAKE_THREAD;
 564 
 565         return IRQ_HANDLED;
 566 }
 567 
 568 /*
 569  * Returns a bitmask indicating whether a read will block
 570  */
 571 static __poll_t fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
 572 {
 573         struct doorbell_queue *dbq = filp->private_data;
 574         unsigned long flags;
 575         __poll_t mask;
 576 
 577         spin_lock_irqsave(&dbq->lock, flags);
 578 
 579         poll_wait(filp, &dbq->wait, p);
 580         mask = (dbq->head == dbq->tail) ? 0 : (EPOLLIN | EPOLLRDNORM);
 581 
 582         spin_unlock_irqrestore(&dbq->lock, flags);
 583 
 584         return mask;
 585 }
 586 
 587 /*
 588  * Return the handles for any incoming doorbells
 589  *
 590  * If there are doorbell handles in the queue for this open instance, then
 591  * return them to the caller as an array of 32-bit integers.  Otherwise,
 592  * block until there is at least one handle to return.
 593  */
 594 static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
 595                            loff_t *off)
 596 {
 597         struct doorbell_queue *dbq = filp->private_data;
 598         uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
 599         unsigned long flags;
 600         ssize_t count = 0;
 601 
 602         /* Make sure we stop when the user buffer is full. */
 603         while (len >= sizeof(uint32_t)) {
 604                 uint32_t dbell; /* Local copy of doorbell queue data */
 605 
 606                 spin_lock_irqsave(&dbq->lock, flags);
 607 
 608                 /*
 609                  * If the queue is empty, then either we're done or we need
 610                  * to block.  If the application specified O_NONBLOCK, then
 611                  * we return the appropriate error code.
 612                  */
 613                 if (dbq->head == dbq->tail) {
 614                         spin_unlock_irqrestore(&dbq->lock, flags);
 615                         if (count)
 616                                 break;
 617                         if (filp->f_flags & O_NONBLOCK)
 618                                 return -EAGAIN;
 619                         if (wait_event_interruptible(dbq->wait,
 620                                                      dbq->head != dbq->tail))
 621                                 return -ERESTARTSYS;
 622                         continue;
 623                 }
 624 
 625                 /*
 626                  * Even though we have an smp_wmb() in the ISR, the core
 627                  * might speculatively execute the "dbell = ..." below while
 628                  * it's evaluating the if-statement above.  In that case, the
 629                  * value put into dbell could be stale if the core accepts the
 630                  * speculation. To prevent that, we need a read memory barrier
 631                  * here as well.
 632                  */
 633                 smp_rmb();
 634 
 635                 /* Copy the data to a temporary local buffer, because
 636                  * we can't call copy_to_user() from inside a spinlock
 637                  */
 638                 dbell = dbq->q[dbq->head];
 639                 dbq->head = nextp(dbq->head);
 640 
 641                 spin_unlock_irqrestore(&dbq->lock, flags);
 642 
 643                 if (put_user(dbell, p))
 644                         return -EFAULT;
 645                 p++;
 646                 count += sizeof(uint32_t);
 647                 len -= sizeof(uint32_t);
 648         }
 649 
 650         return count;
 651 }
 652 
 653 /*
 654  * Open the driver and prepare for reading doorbells.
 655  *
 656  * Every time an application opens the driver, we create a doorbell queue
 657  * for that file handle.  This queue is used for any incoming doorbells.
 658  */
 659 static int fsl_hv_open(struct inode *inode, struct file *filp)
 660 {
 661         struct doorbell_queue *dbq;
 662         unsigned long flags;
 663         int ret = 0;
 664 
 665         dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL);
 666         if (!dbq) {
 667                 pr_err("fsl-hv: out of memory\n");
 668                 return -ENOMEM;
 669         }
 670 
 671         spin_lock_init(&dbq->lock);
 672         init_waitqueue_head(&dbq->wait);
 673 
 674         spin_lock_irqsave(&db_list_lock, flags);
 675         list_add(&dbq->list, &db_list);
 676         spin_unlock_irqrestore(&db_list_lock, flags);
 677 
 678         filp->private_data = dbq;
 679 
 680         return ret;
 681 }
 682 
 683 /*
 684  * Close the driver
 685  */
 686 static int fsl_hv_close(struct inode *inode, struct file *filp)
 687 {
 688         struct doorbell_queue *dbq = filp->private_data;
 689         unsigned long flags;
 690 
 691         int ret = 0;
 692 
 693         spin_lock_irqsave(&db_list_lock, flags);
 694         list_del(&dbq->list);
 695         spin_unlock_irqrestore(&db_list_lock, flags);
 696 
 697         kfree(dbq);
 698 
 699         return ret;
 700 }
 701 
 702 static const struct file_operations fsl_hv_fops = {
 703         .owner = THIS_MODULE,
 704         .open = fsl_hv_open,
 705         .release = fsl_hv_close,
 706         .poll = fsl_hv_poll,
 707         .read = fsl_hv_read,
 708         .unlocked_ioctl = fsl_hv_ioctl,
 709         .compat_ioctl = fsl_hv_ioctl,
 710 };
 711 
 712 static struct miscdevice fsl_hv_misc_dev = {
 713         MISC_DYNAMIC_MINOR,
 714         "fsl-hv",
 715         &fsl_hv_fops
 716 };
 717 
 718 static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
 719 {
 720         orderly_poweroff(false);
 721 
 722         return IRQ_HANDLED;
 723 }
 724 
 725 /*
 726  * Returns the handle of the parent of the given node
 727  *
 728  * The handle is the value of the 'hv-handle' property
 729  */
 730 static int get_parent_handle(struct device_node *np)
 731 {
 732         struct device_node *parent;
 733         const uint32_t *prop;
 734         uint32_t handle;
 735         int len;
 736 
 737         parent = of_get_parent(np);
 738         if (!parent)
 739                 /* It's not really possible for this to fail */
 740                 return -ENODEV;
 741 
 742         /*
 743          * The proper name for the handle property is "hv-handle", but some
 744          * older versions of the hypervisor used "reg".
 745          */
 746         prop = of_get_property(parent, "hv-handle", &len);
 747         if (!prop)
 748                 prop = of_get_property(parent, "reg", &len);
 749 
 750         if (!prop || (len != sizeof(uint32_t))) {
 751                 /* This can happen only if the node is malformed */
 752                 of_node_put(parent);
 753                 return -ENODEV;
 754         }
 755 
 756         handle = be32_to_cpup(prop);
 757         of_node_put(parent);
 758 
 759         return handle;
 760 }
 761 
 762 /*
 763  * Register a callback for failover events
 764  *
 765  * This function is called by device drivers to register their callback
 766  * functions for fail-over events.
 767  */
 768 int fsl_hv_failover_register(struct notifier_block *nb)
 769 {
 770         return blocking_notifier_chain_register(&failover_subscribers, nb);
 771 }
 772 EXPORT_SYMBOL(fsl_hv_failover_register);
 773 
 774 /*
 775  * Unregister a callback for failover events
 776  */
 777 int fsl_hv_failover_unregister(struct notifier_block *nb)
 778 {
 779         return blocking_notifier_chain_unregister(&failover_subscribers, nb);
 780 }
 781 EXPORT_SYMBOL(fsl_hv_failover_unregister);
 782 
 783 /*
 784  * Return TRUE if we're running under FSL hypervisor
 785  *
 786  * This function checks to see if we're running under the Freescale
 787  * hypervisor, and returns zero if we're not, or non-zero if we are.
 788  *
 789  * First, it checks if MSR[GS]==1, which means we're running under some
 790  * hypervisor.  Then it checks if there is a hypervisor node in the device
 791  * tree.  Currently, that means there needs to be a node in the root called
 792  * "hypervisor" and which has a property named "fsl,hv-version".
 793  */
 794 static int has_fsl_hypervisor(void)
 795 {
 796         struct device_node *node;
 797         int ret;
 798 
 799         node = of_find_node_by_path("/hypervisor");
 800         if (!node)
 801                 return 0;
 802 
 803         ret = of_find_property(node, "fsl,hv-version", NULL) != NULL;
 804 
 805         of_node_put(node);
 806 
 807         return ret;
 808 }
 809 
 810 /*
 811  * Freescale hypervisor management driver init
 812  *
 813  * This function is called when this module is loaded.
 814  *
 815  * Register ourselves as a miscellaneous driver.  This will register the
 816  * fops structure and create the right sysfs entries for udev.
 817  */
 818 static int __init fsl_hypervisor_init(void)
 819 {
 820         struct device_node *np;
 821         struct doorbell_isr *dbisr, *n;
 822         int ret;
 823 
 824         pr_info("Freescale hypervisor management driver\n");
 825 
 826         if (!has_fsl_hypervisor()) {
 827                 pr_info("fsl-hv: no hypervisor found\n");
 828                 return -ENODEV;
 829         }
 830 
 831         ret = misc_register(&fsl_hv_misc_dev);
 832         if (ret) {
 833                 pr_err("fsl-hv: cannot register device\n");
 834                 return ret;
 835         }
 836 
 837         INIT_LIST_HEAD(&db_list);
 838         INIT_LIST_HEAD(&isr_list);
 839 
 840         for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
 841                 unsigned int irq;
 842                 const uint32_t *handle;
 843 
 844                 handle = of_get_property(np, "interrupts", NULL);
 845                 irq = irq_of_parse_and_map(np, 0);
 846                 if (!handle || (irq == NO_IRQ)) {
 847                         pr_err("fsl-hv: no 'interrupts' property in %pOF node\n",
 848                                 np);
 849                         continue;
 850                 }
 851 
 852                 dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL);
 853                 if (!dbisr)
 854                         goto out_of_memory;
 855 
 856                 dbisr->irq = irq;
 857                 dbisr->doorbell = be32_to_cpup(handle);
 858 
 859                 if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) {
 860                         /* The shutdown doorbell gets its own ISR */
 861                         ret = request_irq(irq, fsl_hv_shutdown_isr, 0,
 862                                           np->name, NULL);
 863                 } else if (of_device_is_compatible(np,
 864                         "fsl,hv-state-change-doorbell")) {
 865                         /*
 866                          * The state change doorbell triggers a notification if
 867                          * the state of the managed partition changes to
 868                          * "stopped". We need a separate interrupt handler for
 869                          * that, and we also need to know the handle of the
 870                          * target partition, not just the handle of the
 871                          * doorbell.
 872                          */
 873                         dbisr->partition = ret = get_parent_handle(np);
 874                         if (ret < 0) {
 875                                 pr_err("fsl-hv: node %pOF has missing or "
 876                                        "malformed parent\n", np);
 877                                 kfree(dbisr);
 878                                 continue;
 879                         }
 880                         ret = request_threaded_irq(irq, fsl_hv_state_change_isr,
 881                                                    fsl_hv_state_change_thread,
 882                                                    0, np->name, dbisr);
 883                 } else
 884                         ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr);
 885 
 886                 if (ret < 0) {
 887                         pr_err("fsl-hv: could not request irq %u for node %pOF\n",
 888                                irq, np);
 889                         kfree(dbisr);
 890                         continue;
 891                 }
 892 
 893                 list_add(&dbisr->list, &isr_list);
 894 
 895                 pr_info("fsl-hv: registered handler for doorbell %u\n",
 896                         dbisr->doorbell);
 897         }
 898 
 899         return 0;
 900 
 901 out_of_memory:
 902         list_for_each_entry_safe(dbisr, n, &isr_list, list) {
 903                 free_irq(dbisr->irq, dbisr);
 904                 list_del(&dbisr->list);
 905                 kfree(dbisr);
 906         }
 907 
 908         misc_deregister(&fsl_hv_misc_dev);
 909 
 910         return -ENOMEM;
 911 }
 912 
 913 /*
 914  * Freescale hypervisor management driver termination
 915  *
 916  * This function is called when this driver is unloaded.
 917  */
 918 static void __exit fsl_hypervisor_exit(void)
 919 {
 920         struct doorbell_isr *dbisr, *n;
 921 
 922         list_for_each_entry_safe(dbisr, n, &isr_list, list) {
 923                 free_irq(dbisr->irq, dbisr);
 924                 list_del(&dbisr->list);
 925                 kfree(dbisr);
 926         }
 927 
 928         misc_deregister(&fsl_hv_misc_dev);
 929 }
 930 
 931 module_init(fsl_hypervisor_init);
 932 module_exit(fsl_hypervisor_exit);
 933 
 934 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
 935 MODULE_DESCRIPTION("Freescale hypervisor management driver");
 936 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */