root/drivers/media/rc/rc-ir-raw.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ir_raw_event_thread
  2. ir_raw_event_store
  3. ir_raw_event_store_edge
  4. ir_raw_event_store_with_timeout
  5. ir_raw_event_store_with_filter
  6. ir_raw_event_set_idle
  7. ir_raw_event_handle
  8. ir_raw_get_allowed_protocols
  9. change_protocol
  10. ir_raw_disable_protocols
  11. ir_raw_gen_manchester
  12. ir_raw_gen_pd
  13. ir_raw_gen_pl
  14. ir_raw_encode_scancode
  15. ir_raw_edge_handle
  16. ir_raw_encode_carrier
  17. ir_raw_event_prepare
  18. ir_raw_event_register
  19. ir_raw_event_free
  20. ir_raw_event_unregister
  21. ir_raw_handler_register
  22. ir_raw_handler_unregister

   1 // SPDX-License-Identifier: GPL-2.0
   2 // rc-ir-raw.c - handle IR pulse/space events
   3 //
   4 // Copyright (C) 2010 by Mauro Carvalho Chehab
   5 
   6 #include <linux/export.h>
   7 #include <linux/kthread.h>
   8 #include <linux/mutex.h>
   9 #include <linux/kmod.h>
  10 #include <linux/sched.h>
  11 #include "rc-core-priv.h"
  12 
  13 /* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */
  14 static LIST_HEAD(ir_raw_client_list);
  15 
  16 /* Used to handle IR raw handler extensions */
  17 DEFINE_MUTEX(ir_raw_handler_lock);
  18 static LIST_HEAD(ir_raw_handler_list);
  19 static atomic64_t available_protocols = ATOMIC64_INIT(0);
  20 
  21 static int ir_raw_event_thread(void *data)
  22 {
  23         struct ir_raw_event ev;
  24         struct ir_raw_handler *handler;
  25         struct ir_raw_event_ctrl *raw = data;
  26         struct rc_dev *dev = raw->dev;
  27 
  28         while (1) {
  29                 mutex_lock(&ir_raw_handler_lock);
  30                 while (kfifo_out(&raw->kfifo, &ev, 1)) {
  31                         if (is_timing_event(ev)) {
  32                                 if (ev.duration == 0)
  33                                         dev_warn_once(&dev->dev, "nonsensical timing event of duration 0");
  34                                 if (is_timing_event(raw->prev_ev) &&
  35                                     !is_transition(&ev, &raw->prev_ev))
  36                                         dev_warn_once(&dev->dev, "two consecutive events of type %s",
  37                                                       TO_STR(ev.pulse));
  38                                 if (raw->prev_ev.reset && ev.pulse == 0)
  39                                         dev_warn_once(&dev->dev, "timing event after reset should be pulse");
  40                         }
  41                         list_for_each_entry(handler, &ir_raw_handler_list, list)
  42                                 if (dev->enabled_protocols &
  43                                     handler->protocols || !handler->protocols)
  44                                         handler->decode(dev, ev);
  45                         ir_lirc_raw_event(dev, ev);
  46                         raw->prev_ev = ev;
  47                 }
  48                 mutex_unlock(&ir_raw_handler_lock);
  49 
  50                 set_current_state(TASK_INTERRUPTIBLE);
  51 
  52                 if (kthread_should_stop()) {
  53                         __set_current_state(TASK_RUNNING);
  54                         break;
  55                 } else if (!kfifo_is_empty(&raw->kfifo))
  56                         set_current_state(TASK_RUNNING);
  57 
  58                 schedule();
  59         }
  60 
  61         return 0;
  62 }
  63 
  64 /**
  65  * ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders
  66  * @dev:        the struct rc_dev device descriptor
  67  * @ev:         the struct ir_raw_event descriptor of the pulse/space
  68  *
  69  * This routine (which may be called from an interrupt context) stores a
  70  * pulse/space duration for the raw ir decoding state machines. Pulses are
  71  * signalled as positive values and spaces as negative values. A zero value
  72  * will reset the decoding state machines.
  73  */
  74 int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev)
  75 {
  76         if (!dev->raw)
  77                 return -EINVAL;
  78 
  79         dev_dbg(&dev->dev, "sample: (%05dus %s)\n",
  80                 TO_US(ev->duration), TO_STR(ev->pulse));
  81 
  82         if (!kfifo_put(&dev->raw->kfifo, *ev)) {
  83                 dev_err(&dev->dev, "IR event FIFO is full!\n");
  84                 return -ENOSPC;
  85         }
  86 
  87         return 0;
  88 }
  89 EXPORT_SYMBOL_GPL(ir_raw_event_store);
  90 
  91 /**
  92  * ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space
  93  * @dev:        the struct rc_dev device descriptor
  94  * @pulse:      true for pulse, false for space
  95  *
  96  * This routine (which may be called from an interrupt context) is used to
  97  * store the beginning of an ir pulse or space (or the start/end of ir
  98  * reception) for the raw ir decoding state machines. This is used by
  99  * hardware which does not provide durations directly but only interrupts
 100  * (or similar events) on state change.
 101  */
 102 int ir_raw_event_store_edge(struct rc_dev *dev, bool pulse)
 103 {
 104         ktime_t                 now;
 105         struct ir_raw_event     ev = {};
 106 
 107         if (!dev->raw)
 108                 return -EINVAL;
 109 
 110         now = ktime_get();
 111         ev.duration = ktime_to_ns(ktime_sub(now, dev->raw->last_event));
 112         ev.pulse = !pulse;
 113 
 114         return ir_raw_event_store_with_timeout(dev, &ev);
 115 }
 116 EXPORT_SYMBOL_GPL(ir_raw_event_store_edge);
 117 
 118 /*
 119  * ir_raw_event_store_with_timeout() - pass a pulse/space duration to the raw
 120  *                                     ir decoders, schedule decoding and
 121  *                                     timeout
 122  * @dev:        the struct rc_dev device descriptor
 123  * @ev:         the struct ir_raw_event descriptor of the pulse/space
 124  *
 125  * This routine (which may be called from an interrupt context) stores a
 126  * pulse/space duration for the raw ir decoding state machines, schedules
 127  * decoding and generates a timeout.
 128  */
 129 int ir_raw_event_store_with_timeout(struct rc_dev *dev, struct ir_raw_event *ev)
 130 {
 131         ktime_t         now;
 132         int             rc = 0;
 133 
 134         if (!dev->raw)
 135                 return -EINVAL;
 136 
 137         now = ktime_get();
 138 
 139         spin_lock(&dev->raw->edge_spinlock);
 140         rc = ir_raw_event_store(dev, ev);
 141 
 142         dev->raw->last_event = now;
 143 
 144         /* timer could be set to timeout (125ms by default) */
 145         if (!timer_pending(&dev->raw->edge_handle) ||
 146             time_after(dev->raw->edge_handle.expires,
 147                        jiffies + msecs_to_jiffies(15))) {
 148                 mod_timer(&dev->raw->edge_handle,
 149                           jiffies + msecs_to_jiffies(15));
 150         }
 151         spin_unlock(&dev->raw->edge_spinlock);
 152 
 153         return rc;
 154 }
 155 EXPORT_SYMBOL_GPL(ir_raw_event_store_with_timeout);
 156 
 157 /**
 158  * ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing
 159  * @dev:        the struct rc_dev device descriptor
 160  * @ev:         the event that has occurred
 161  *
 162  * This routine (which may be called from an interrupt context) works
 163  * in similar manner to ir_raw_event_store_edge.
 164  * This routine is intended for devices with limited internal buffer
 165  * It automerges samples of same type, and handles timeouts. Returns non-zero
 166  * if the event was added, and zero if the event was ignored due to idle
 167  * processing.
 168  */
 169 int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev)
 170 {
 171         if (!dev->raw)
 172                 return -EINVAL;
 173 
 174         /* Ignore spaces in idle mode */
 175         if (dev->idle && !ev->pulse)
 176                 return 0;
 177         else if (dev->idle)
 178                 ir_raw_event_set_idle(dev, false);
 179 
 180         if (!dev->raw->this_ev.duration)
 181                 dev->raw->this_ev = *ev;
 182         else if (ev->pulse == dev->raw->this_ev.pulse)
 183                 dev->raw->this_ev.duration += ev->duration;
 184         else {
 185                 ir_raw_event_store(dev, &dev->raw->this_ev);
 186                 dev->raw->this_ev = *ev;
 187         }
 188 
 189         /* Enter idle mode if necessary */
 190         if (!ev->pulse && dev->timeout &&
 191             dev->raw->this_ev.duration >= dev->timeout)
 192                 ir_raw_event_set_idle(dev, true);
 193 
 194         return 1;
 195 }
 196 EXPORT_SYMBOL_GPL(ir_raw_event_store_with_filter);
 197 
 198 /**
 199  * ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not
 200  * @dev:        the struct rc_dev device descriptor
 201  * @idle:       whether the device is idle or not
 202  */
 203 void ir_raw_event_set_idle(struct rc_dev *dev, bool idle)
 204 {
 205         if (!dev->raw)
 206                 return;
 207 
 208         dev_dbg(&dev->dev, "%s idle mode\n", idle ? "enter" : "leave");
 209 
 210         if (idle) {
 211                 dev->raw->this_ev.timeout = true;
 212                 ir_raw_event_store(dev, &dev->raw->this_ev);
 213                 dev->raw->this_ev = (struct ir_raw_event) {};
 214         }
 215 
 216         if (dev->s_idle)
 217                 dev->s_idle(dev, idle);
 218 
 219         dev->idle = idle;
 220 }
 221 EXPORT_SYMBOL_GPL(ir_raw_event_set_idle);
 222 
 223 /**
 224  * ir_raw_event_handle() - schedules the decoding of stored ir data
 225  * @dev:        the struct rc_dev device descriptor
 226  *
 227  * This routine will tell rc-core to start decoding stored ir data.
 228  */
 229 void ir_raw_event_handle(struct rc_dev *dev)
 230 {
 231         if (!dev->raw || !dev->raw->thread)
 232                 return;
 233 
 234         wake_up_process(dev->raw->thread);
 235 }
 236 EXPORT_SYMBOL_GPL(ir_raw_event_handle);
 237 
 238 /* used internally by the sysfs interface */
 239 u64
 240 ir_raw_get_allowed_protocols(void)
 241 {
 242         return atomic64_read(&available_protocols);
 243 }
 244 
 245 static int change_protocol(struct rc_dev *dev, u64 *rc_proto)
 246 {
 247         struct ir_raw_handler *handler;
 248         u32 timeout = 0;
 249 
 250         mutex_lock(&ir_raw_handler_lock);
 251         list_for_each_entry(handler, &ir_raw_handler_list, list) {
 252                 if (!(dev->enabled_protocols & handler->protocols) &&
 253                     (*rc_proto & handler->protocols) && handler->raw_register)
 254                         handler->raw_register(dev);
 255 
 256                 if ((dev->enabled_protocols & handler->protocols) &&
 257                     !(*rc_proto & handler->protocols) &&
 258                     handler->raw_unregister)
 259                         handler->raw_unregister(dev);
 260         }
 261         mutex_unlock(&ir_raw_handler_lock);
 262 
 263         if (!dev->max_timeout)
 264                 return 0;
 265 
 266         mutex_lock(&ir_raw_handler_lock);
 267         list_for_each_entry(handler, &ir_raw_handler_list, list) {
 268                 if (handler->protocols & *rc_proto) {
 269                         if (timeout < handler->min_timeout)
 270                                 timeout = handler->min_timeout;
 271                 }
 272         }
 273         mutex_unlock(&ir_raw_handler_lock);
 274 
 275         if (timeout == 0)
 276                 timeout = IR_DEFAULT_TIMEOUT;
 277         else
 278                 timeout += MS_TO_NS(10);
 279 
 280         if (timeout < dev->min_timeout)
 281                 timeout = dev->min_timeout;
 282         else if (timeout > dev->max_timeout)
 283                 timeout = dev->max_timeout;
 284 
 285         if (dev->s_timeout)
 286                 dev->s_timeout(dev, timeout);
 287         else
 288                 dev->timeout = timeout;
 289 
 290         return 0;
 291 }
 292 
 293 static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols)
 294 {
 295         mutex_lock(&dev->lock);
 296         dev->enabled_protocols &= ~protocols;
 297         mutex_unlock(&dev->lock);
 298 }
 299 
 300 /**
 301  * ir_raw_gen_manchester() - Encode data with Manchester (bi-phase) modulation.
 302  * @ev:         Pointer to pointer to next free event. *@ev is incremented for
 303  *              each raw event filled.
 304  * @max:        Maximum number of raw events to fill.
 305  * @timings:    Manchester modulation timings.
 306  * @n:          Number of bits of data.
 307  * @data:       Data bits to encode.
 308  *
 309  * Encodes the @n least significant bits of @data using Manchester (bi-phase)
 310  * modulation with the timing characteristics described by @timings, writing up
 311  * to @max raw IR events using the *@ev pointer.
 312  *
 313  * Returns:     0 on success.
 314  *              -ENOBUFS if there isn't enough space in the array to fit the
 315  *              full encoded data. In this case all @max events will have been
 316  *              written.
 317  */
 318 int ir_raw_gen_manchester(struct ir_raw_event **ev, unsigned int max,
 319                           const struct ir_raw_timings_manchester *timings,
 320                           unsigned int n, u64 data)
 321 {
 322         bool need_pulse;
 323         u64 i;
 324         int ret = -ENOBUFS;
 325 
 326         i = BIT_ULL(n - 1);
 327 
 328         if (timings->leader_pulse) {
 329                 if (!max--)
 330                         return ret;
 331                 init_ir_raw_event_duration((*ev), 1, timings->leader_pulse);
 332                 if (timings->leader_space) {
 333                         if (!max--)
 334                                 return ret;
 335                         init_ir_raw_event_duration(++(*ev), 0,
 336                                                    timings->leader_space);
 337                 }
 338         } else {
 339                 /* continue existing signal */
 340                 --(*ev);
 341         }
 342         /* from here on *ev will point to the last event rather than the next */
 343 
 344         while (n && i > 0) {
 345                 need_pulse = !(data & i);
 346                 if (timings->invert)
 347                         need_pulse = !need_pulse;
 348                 if (need_pulse == !!(*ev)->pulse) {
 349                         (*ev)->duration += timings->clock;
 350                 } else {
 351                         if (!max--)
 352                                 goto nobufs;
 353                         init_ir_raw_event_duration(++(*ev), need_pulse,
 354                                                    timings->clock);
 355                 }
 356 
 357                 if (!max--)
 358                         goto nobufs;
 359                 init_ir_raw_event_duration(++(*ev), !need_pulse,
 360                                            timings->clock);
 361                 i >>= 1;
 362         }
 363 
 364         if (timings->trailer_space) {
 365                 if (!(*ev)->pulse)
 366                         (*ev)->duration += timings->trailer_space;
 367                 else if (!max--)
 368                         goto nobufs;
 369                 else
 370                         init_ir_raw_event_duration(++(*ev), 0,
 371                                                    timings->trailer_space);
 372         }
 373 
 374         ret = 0;
 375 nobufs:
 376         /* point to the next event rather than last event before returning */
 377         ++(*ev);
 378         return ret;
 379 }
 380 EXPORT_SYMBOL(ir_raw_gen_manchester);
 381 
 382 /**
 383  * ir_raw_gen_pd() - Encode data to raw events with pulse-distance modulation.
 384  * @ev:         Pointer to pointer to next free event. *@ev is incremented for
 385  *              each raw event filled.
 386  * @max:        Maximum number of raw events to fill.
 387  * @timings:    Pulse distance modulation timings.
 388  * @n:          Number of bits of data.
 389  * @data:       Data bits to encode.
 390  *
 391  * Encodes the @n least significant bits of @data using pulse-distance
 392  * modulation with the timing characteristics described by @timings, writing up
 393  * to @max raw IR events using the *@ev pointer.
 394  *
 395  * Returns:     0 on success.
 396  *              -ENOBUFS if there isn't enough space in the array to fit the
 397  *              full encoded data. In this case all @max events will have been
 398  *              written.
 399  */
 400 int ir_raw_gen_pd(struct ir_raw_event **ev, unsigned int max,
 401                   const struct ir_raw_timings_pd *timings,
 402                   unsigned int n, u64 data)
 403 {
 404         int i;
 405         int ret;
 406         unsigned int space;
 407 
 408         if (timings->header_pulse) {
 409                 ret = ir_raw_gen_pulse_space(ev, &max, timings->header_pulse,
 410                                              timings->header_space);
 411                 if (ret)
 412                         return ret;
 413         }
 414 
 415         if (timings->msb_first) {
 416                 for (i = n - 1; i >= 0; --i) {
 417                         space = timings->bit_space[(data >> i) & 1];
 418                         ret = ir_raw_gen_pulse_space(ev, &max,
 419                                                      timings->bit_pulse,
 420                                                      space);
 421                         if (ret)
 422                                 return ret;
 423                 }
 424         } else {
 425                 for (i = 0; i < n; ++i, data >>= 1) {
 426                         space = timings->bit_space[data & 1];
 427                         ret = ir_raw_gen_pulse_space(ev, &max,
 428                                                      timings->bit_pulse,
 429                                                      space);
 430                         if (ret)
 431                                 return ret;
 432                 }
 433         }
 434 
 435         ret = ir_raw_gen_pulse_space(ev, &max, timings->trailer_pulse,
 436                                      timings->trailer_space);
 437         return ret;
 438 }
 439 EXPORT_SYMBOL(ir_raw_gen_pd);
 440 
 441 /**
 442  * ir_raw_gen_pl() - Encode data to raw events with pulse-length modulation.
 443  * @ev:         Pointer to pointer to next free event. *@ev is incremented for
 444  *              each raw event filled.
 445  * @max:        Maximum number of raw events to fill.
 446  * @timings:    Pulse distance modulation timings.
 447  * @n:          Number of bits of data.
 448  * @data:       Data bits to encode.
 449  *
 450  * Encodes the @n least significant bits of @data using space-distance
 451  * modulation with the timing characteristics described by @timings, writing up
 452  * to @max raw IR events using the *@ev pointer.
 453  *
 454  * Returns:     0 on success.
 455  *              -ENOBUFS if there isn't enough space in the array to fit the
 456  *              full encoded data. In this case all @max events will have been
 457  *              written.
 458  */
 459 int ir_raw_gen_pl(struct ir_raw_event **ev, unsigned int max,
 460                   const struct ir_raw_timings_pl *timings,
 461                   unsigned int n, u64 data)
 462 {
 463         int i;
 464         int ret = -ENOBUFS;
 465         unsigned int pulse;
 466 
 467         if (!max--)
 468                 return ret;
 469 
 470         init_ir_raw_event_duration((*ev)++, 1, timings->header_pulse);
 471 
 472         if (timings->msb_first) {
 473                 for (i = n - 1; i >= 0; --i) {
 474                         if (!max--)
 475                                 return ret;
 476                         init_ir_raw_event_duration((*ev)++, 0,
 477                                                    timings->bit_space);
 478                         if (!max--)
 479                                 return ret;
 480                         pulse = timings->bit_pulse[(data >> i) & 1];
 481                         init_ir_raw_event_duration((*ev)++, 1, pulse);
 482                 }
 483         } else {
 484                 for (i = 0; i < n; ++i, data >>= 1) {
 485                         if (!max--)
 486                                 return ret;
 487                         init_ir_raw_event_duration((*ev)++, 0,
 488                                                    timings->bit_space);
 489                         if (!max--)
 490                                 return ret;
 491                         pulse = timings->bit_pulse[data & 1];
 492                         init_ir_raw_event_duration((*ev)++, 1, pulse);
 493                 }
 494         }
 495 
 496         if (!max--)
 497                 return ret;
 498 
 499         init_ir_raw_event_duration((*ev)++, 0, timings->trailer_space);
 500 
 501         return 0;
 502 }
 503 EXPORT_SYMBOL(ir_raw_gen_pl);
 504 
 505 /**
 506  * ir_raw_encode_scancode() - Encode a scancode as raw events
 507  *
 508  * @protocol:           protocol
 509  * @scancode:           scancode filter describing a single scancode
 510  * @events:             array of raw events to write into
 511  * @max:                max number of raw events
 512  *
 513  * Attempts to encode the scancode as raw events.
 514  *
 515  * Returns:     The number of events written.
 516  *              -ENOBUFS if there isn't enough space in the array to fit the
 517  *              encoding. In this case all @max events will have been written.
 518  *              -EINVAL if the scancode is ambiguous or invalid, or if no
 519  *              compatible encoder was found.
 520  */
 521 int ir_raw_encode_scancode(enum rc_proto protocol, u32 scancode,
 522                            struct ir_raw_event *events, unsigned int max)
 523 {
 524         struct ir_raw_handler *handler;
 525         int ret = -EINVAL;
 526         u64 mask = 1ULL << protocol;
 527 
 528         ir_raw_load_modules(&mask);
 529 
 530         mutex_lock(&ir_raw_handler_lock);
 531         list_for_each_entry(handler, &ir_raw_handler_list, list) {
 532                 if (handler->protocols & mask && handler->encode) {
 533                         ret = handler->encode(protocol, scancode, events, max);
 534                         if (ret >= 0 || ret == -ENOBUFS)
 535                                 break;
 536                 }
 537         }
 538         mutex_unlock(&ir_raw_handler_lock);
 539 
 540         return ret;
 541 }
 542 EXPORT_SYMBOL(ir_raw_encode_scancode);
 543 
 544 /**
 545  * ir_raw_edge_handle() - Handle ir_raw_event_store_edge() processing
 546  *
 547  * @t:          timer_list
 548  *
 549  * This callback is armed by ir_raw_event_store_edge(). It does two things:
 550  * first of all, rather than calling ir_raw_event_handle() for each
 551  * edge and waking up the rc thread, 15 ms after the first edge
 552  * ir_raw_event_handle() is called. Secondly, generate a timeout event
 553  * no more IR is received after the rc_dev timeout.
 554  */
 555 static void ir_raw_edge_handle(struct timer_list *t)
 556 {
 557         struct ir_raw_event_ctrl *raw = from_timer(raw, t, edge_handle);
 558         struct rc_dev *dev = raw->dev;
 559         unsigned long flags;
 560         ktime_t interval;
 561 
 562         spin_lock_irqsave(&dev->raw->edge_spinlock, flags);
 563         interval = ktime_sub(ktime_get(), dev->raw->last_event);
 564         if (ktime_to_ns(interval) >= dev->timeout) {
 565                 struct ir_raw_event ev = {
 566                         .timeout = true,
 567                         .duration = ktime_to_ns(interval)
 568                 };
 569 
 570                 ir_raw_event_store(dev, &ev);
 571         } else {
 572                 mod_timer(&dev->raw->edge_handle,
 573                           jiffies + nsecs_to_jiffies(dev->timeout -
 574                                                      ktime_to_ns(interval)));
 575         }
 576         spin_unlock_irqrestore(&dev->raw->edge_spinlock, flags);
 577 
 578         ir_raw_event_handle(dev);
 579 }
 580 
 581 /**
 582  * ir_raw_encode_carrier() - Get carrier used for protocol
 583  *
 584  * @protocol:           protocol
 585  *
 586  * Attempts to find the carrier for the specified protocol
 587  *
 588  * Returns:     The carrier in Hz
 589  *              -EINVAL if the protocol is invalid, or if no
 590  *              compatible encoder was found.
 591  */
 592 int ir_raw_encode_carrier(enum rc_proto protocol)
 593 {
 594         struct ir_raw_handler *handler;
 595         int ret = -EINVAL;
 596         u64 mask = BIT_ULL(protocol);
 597 
 598         mutex_lock(&ir_raw_handler_lock);
 599         list_for_each_entry(handler, &ir_raw_handler_list, list) {
 600                 if (handler->protocols & mask && handler->encode) {
 601                         ret = handler->carrier;
 602                         break;
 603                 }
 604         }
 605         mutex_unlock(&ir_raw_handler_lock);
 606 
 607         return ret;
 608 }
 609 EXPORT_SYMBOL(ir_raw_encode_carrier);
 610 
 611 /*
 612  * Used to (un)register raw event clients
 613  */
 614 int ir_raw_event_prepare(struct rc_dev *dev)
 615 {
 616         if (!dev)
 617                 return -EINVAL;
 618 
 619         dev->raw = kzalloc(sizeof(*dev->raw), GFP_KERNEL);
 620         if (!dev->raw)
 621                 return -ENOMEM;
 622 
 623         dev->raw->dev = dev;
 624         dev->change_protocol = change_protocol;
 625         dev->idle = true;
 626         spin_lock_init(&dev->raw->edge_spinlock);
 627         timer_setup(&dev->raw->edge_handle, ir_raw_edge_handle, 0);
 628         INIT_KFIFO(dev->raw->kfifo);
 629 
 630         return 0;
 631 }
 632 
 633 int ir_raw_event_register(struct rc_dev *dev)
 634 {
 635         struct task_struct *thread;
 636 
 637         thread = kthread_run(ir_raw_event_thread, dev->raw, "rc%u", dev->minor);
 638         if (IS_ERR(thread))
 639                 return PTR_ERR(thread);
 640 
 641         dev->raw->thread = thread;
 642 
 643         mutex_lock(&ir_raw_handler_lock);
 644         list_add_tail(&dev->raw->list, &ir_raw_client_list);
 645         mutex_unlock(&ir_raw_handler_lock);
 646 
 647         return 0;
 648 }
 649 
 650 void ir_raw_event_free(struct rc_dev *dev)
 651 {
 652         if (!dev)
 653                 return;
 654 
 655         kfree(dev->raw);
 656         dev->raw = NULL;
 657 }
 658 
 659 void ir_raw_event_unregister(struct rc_dev *dev)
 660 {
 661         struct ir_raw_handler *handler;
 662 
 663         if (!dev || !dev->raw)
 664                 return;
 665 
 666         kthread_stop(dev->raw->thread);
 667         del_timer_sync(&dev->raw->edge_handle);
 668 
 669         mutex_lock(&ir_raw_handler_lock);
 670         list_del(&dev->raw->list);
 671         list_for_each_entry(handler, &ir_raw_handler_list, list)
 672                 if (handler->raw_unregister &&
 673                     (handler->protocols & dev->enabled_protocols))
 674                         handler->raw_unregister(dev);
 675 
 676         lirc_bpf_free(dev);
 677 
 678         ir_raw_event_free(dev);
 679 
 680         /*
 681          * A user can be calling bpf(BPF_PROG_{QUERY|ATTACH|DETACH}), so
 682          * ensure that the raw member is null on unlock; this is how
 683          * "device gone" is checked.
 684          */
 685         mutex_unlock(&ir_raw_handler_lock);
 686 }
 687 
 688 /*
 689  * Extension interface - used to register the IR decoders
 690  */
 691 
 692 int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler)
 693 {
 694         mutex_lock(&ir_raw_handler_lock);
 695         list_add_tail(&ir_raw_handler->list, &ir_raw_handler_list);
 696         atomic64_or(ir_raw_handler->protocols, &available_protocols);
 697         mutex_unlock(&ir_raw_handler_lock);
 698 
 699         return 0;
 700 }
 701 EXPORT_SYMBOL(ir_raw_handler_register);
 702 
 703 void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler)
 704 {
 705         struct ir_raw_event_ctrl *raw;
 706         u64 protocols = ir_raw_handler->protocols;
 707 
 708         mutex_lock(&ir_raw_handler_lock);
 709         list_del(&ir_raw_handler->list);
 710         list_for_each_entry(raw, &ir_raw_client_list, list) {
 711                 if (ir_raw_handler->raw_unregister &&
 712                     (raw->dev->enabled_protocols & protocols))
 713                         ir_raw_handler->raw_unregister(raw->dev);
 714                 ir_raw_disable_protocols(raw->dev, protocols);
 715         }
 716         atomic64_andnot(protocols, &available_protocols);
 717         mutex_unlock(&ir_raw_handler_lock);
 718 }
 719 EXPORT_SYMBOL(ir_raw_handler_unregister);

/* [<][>][^][v][top][bottom][index][help] */