root/drivers/fsi/fsi-master-ast-cf.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. msg_push_bits
  2. msg_push_crc
  3. msg_finish_cmd
  4. check_same_address
  5. check_relative_address
  6. last_address_update
  7. build_ar_command
  8. build_dpoll_command
  9. build_epoll_command
  10. build_term_command
  11. do_copro_command
  12. clock_zeros
  13. send_request
  14. read_copro_response
  15. send_term
  16. dump_ucode_trace
  17. handle_response
  18. fsi_master_acf_xfer
  19. fsi_master_acf_read
  20. fsi_master_acf_write
  21. fsi_master_acf_term
  22. fsi_master_acf_break
  23. reset_cf
  24. start_cf
  25. setup_ast2500_cf_maps
  26. setup_ast2400_cf_maps
  27. setup_common_fw_config
  28. setup_ast2500_fw_config
  29. setup_ast2400_fw_config
  30. setup_gpios_for_copro
  31. release_copro_gpios
  32. load_copro_firmware
  33. check_firmware_image
  34. copro_enable_sw_irq
  35. fsi_master_acf_setup
  36. fsi_master_acf_terminate
  37. fsi_master_acf_setup_external
  38. fsi_master_acf_link_enable
  39. fsi_master_acf_link_config
  40. external_mode_show
  41. external_mode_store
  42. fsi_master_acf_gpio_request
  43. fsi_master_acf_gpio_release
  44. fsi_master_acf_release
  45. fsi_master_acf_probe
  46. fsi_master_acf_remove

   1 // SPDX-License-Identifier: GPL-2.0+
   2 // Copyright 2018 IBM Corp
   3 /*
   4  * A FSI master controller, using a simple GPIO bit-banging interface
   5  */
   6 
   7 #include <linux/crc4.h>
   8 #include <linux/delay.h>
   9 #include <linux/device.h>
  10 #include <linux/fsi.h>
  11 #include <linux/gpio/consumer.h>
  12 #include <linux/io.h>
  13 #include <linux/irqflags.h>
  14 #include <linux/module.h>
  15 #include <linux/of.h>
  16 #include <linux/platform_device.h>
  17 #include <linux/slab.h>
  18 #include <linux/regmap.h>
  19 #include <linux/firmware.h>
  20 #include <linux/gpio/aspeed.h>
  21 #include <linux/mfd/syscon.h>
  22 #include <linux/of_address.h>
  23 #include <linux/genalloc.h>
  24 
  25 #include "fsi-master.h"
  26 #include "cf-fsi-fw.h"
  27 
  28 #define FW_FILE_NAME    "cf-fsi-fw.bin"
  29 
  30 /* Common SCU based coprocessor control registers */
  31 #define SCU_COPRO_CTRL                  0x100
  32 #define   SCU_COPRO_RESET                       0x00000002
  33 #define   SCU_COPRO_CLK_EN                      0x00000001
  34 
  35 /* AST2500 specific ones */
  36 #define SCU_2500_COPRO_SEG0             0x104
  37 #define SCU_2500_COPRO_SEG1             0x108
  38 #define SCU_2500_COPRO_SEG2             0x10c
  39 #define SCU_2500_COPRO_SEG3             0x110
  40 #define SCU_2500_COPRO_SEG4             0x114
  41 #define SCU_2500_COPRO_SEG5             0x118
  42 #define SCU_2500_COPRO_SEG6             0x11c
  43 #define SCU_2500_COPRO_SEG7             0x120
  44 #define SCU_2500_COPRO_SEG8             0x124
  45 #define   SCU_2500_COPRO_SEG_SWAP               0x00000001
  46 #define SCU_2500_COPRO_CACHE_CTL        0x128
  47 #define   SCU_2500_COPRO_CACHE_EN               0x00000001
  48 #define   SCU_2500_COPRO_SEG0_CACHE_EN          0x00000002
  49 #define   SCU_2500_COPRO_SEG1_CACHE_EN          0x00000004
  50 #define   SCU_2500_COPRO_SEG2_CACHE_EN          0x00000008
  51 #define   SCU_2500_COPRO_SEG3_CACHE_EN          0x00000010
  52 #define   SCU_2500_COPRO_SEG4_CACHE_EN          0x00000020
  53 #define   SCU_2500_COPRO_SEG5_CACHE_EN          0x00000040
  54 #define   SCU_2500_COPRO_SEG6_CACHE_EN          0x00000080
  55 #define   SCU_2500_COPRO_SEG7_CACHE_EN          0x00000100
  56 #define   SCU_2500_COPRO_SEG8_CACHE_EN          0x00000200
  57 
  58 #define SCU_2400_COPRO_SEG0             0x104
  59 #define SCU_2400_COPRO_SEG2             0x108
  60 #define SCU_2400_COPRO_SEG4             0x10c
  61 #define SCU_2400_COPRO_SEG6             0x110
  62 #define SCU_2400_COPRO_SEG8             0x114
  63 #define   SCU_2400_COPRO_SEG_SWAP               0x80000000
  64 #define SCU_2400_COPRO_CACHE_CTL        0x118
  65 #define   SCU_2400_COPRO_CACHE_EN               0x00000001
  66 #define   SCU_2400_COPRO_SEG0_CACHE_EN          0x00000002
  67 #define   SCU_2400_COPRO_SEG2_CACHE_EN          0x00000004
  68 #define   SCU_2400_COPRO_SEG4_CACHE_EN          0x00000008
  69 #define   SCU_2400_COPRO_SEG6_CACHE_EN          0x00000010
  70 #define   SCU_2400_COPRO_SEG8_CACHE_EN          0x00000020
  71 
  72 /* CVIC registers */
  73 #define CVIC_EN_REG                     0x10
  74 #define CVIC_TRIG_REG                   0x18
  75 
  76 /*
  77  * System register base address (needed for configuring the
  78  * coldfire maps)
  79  */
  80 #define SYSREG_BASE                     0x1e600000
  81 
  82 /* Amount of SRAM required */
  83 #define SRAM_SIZE                       0x1000
  84 
  85 #define LAST_ADDR_INVALID               0x1
  86 
  87 struct fsi_master_acf {
  88         struct fsi_master       master;
  89         struct device           *dev;
  90         struct regmap           *scu;
  91         struct mutex            lock;   /* mutex for command ordering */
  92         struct gpio_desc        *gpio_clk;
  93         struct gpio_desc        *gpio_data;
  94         struct gpio_desc        *gpio_trans;    /* Voltage translator */
  95         struct gpio_desc        *gpio_enable;   /* FSI enable */
  96         struct gpio_desc        *gpio_mux;      /* Mux control */
  97         uint16_t                gpio_clk_vreg;
  98         uint16_t                gpio_clk_dreg;
  99         uint16_t                gpio_dat_vreg;
 100         uint16_t                gpio_dat_dreg;
 101         uint16_t                gpio_tra_vreg;
 102         uint16_t                gpio_tra_dreg;
 103         uint8_t                 gpio_clk_bit;
 104         uint8_t                 gpio_dat_bit;
 105         uint8_t                 gpio_tra_bit;
 106         uint32_t                cf_mem_addr;
 107         size_t                  cf_mem_size;
 108         void __iomem            *cf_mem;
 109         void __iomem            *cvic;
 110         struct gen_pool         *sram_pool;
 111         void __iomem            *sram;
 112         bool                    is_ast2500;
 113         bool                    external_mode;
 114         bool                    trace_enabled;
 115         uint32_t                last_addr;
 116         uint8_t                 t_send_delay;
 117         uint8_t                 t_echo_delay;
 118         uint32_t                cvic_sw_irq;
 119 };
 120 #define to_fsi_master_acf(m) container_of(m, struct fsi_master_acf, master)
 121 
 122 struct fsi_msg {
 123         uint64_t        msg;
 124         uint8_t         bits;
 125 };
 126 
 127 #define CREATE_TRACE_POINTS
 128 #include <trace/events/fsi_master_ast_cf.h>
 129 
 130 static void msg_push_bits(struct fsi_msg *msg, uint64_t data, int bits)
 131 {
 132         msg->msg <<= bits;
 133         msg->msg |= data & ((1ull << bits) - 1);
 134         msg->bits += bits;
 135 }
 136 
 137 static void msg_push_crc(struct fsi_msg *msg)
 138 {
 139         uint8_t crc;
 140         int top;
 141 
 142         top = msg->bits & 0x3;
 143 
 144         /* start bit, and any non-aligned top bits */
 145         crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1);
 146 
 147         /* aligned bits */
 148         crc = crc4(crc, msg->msg, msg->bits - top);
 149 
 150         msg_push_bits(msg, crc, 4);
 151 }
 152 
 153 static void msg_finish_cmd(struct fsi_msg *cmd)
 154 {
 155         /* Left align message */
 156         cmd->msg <<= (64 - cmd->bits);
 157 }
 158 
 159 static bool check_same_address(struct fsi_master_acf *master, int id,
 160                                uint32_t addr)
 161 {
 162         /* this will also handle LAST_ADDR_INVALID */
 163         return master->last_addr == (((id & 0x3) << 21) | (addr & ~0x3));
 164 }
 165 
 166 static bool check_relative_address(struct fsi_master_acf *master, int id,
 167                                    uint32_t addr, uint32_t *rel_addrp)
 168 {
 169         uint32_t last_addr = master->last_addr;
 170         int32_t rel_addr;
 171 
 172         if (last_addr == LAST_ADDR_INVALID)
 173                 return false;
 174 
 175         /* We may be in 23-bit addressing mode, which uses the id as the
 176          * top two address bits. So, if we're referencing a different ID,
 177          * use absolute addresses.
 178          */
 179         if (((last_addr >> 21) & 0x3) != id)
 180                 return false;
 181 
 182         /* remove the top two bits from any 23-bit addressing */
 183         last_addr &= (1 << 21) - 1;
 184 
 185         /* We know that the addresses are limited to 21 bits, so this won't
 186          * overflow the signed rel_addr */
 187         rel_addr = addr - last_addr;
 188         if (rel_addr > 255 || rel_addr < -256)
 189                 return false;
 190 
 191         *rel_addrp = (uint32_t)rel_addr;
 192 
 193         return true;
 194 }
 195 
 196 static void last_address_update(struct fsi_master_acf *master,
 197                                 int id, bool valid, uint32_t addr)
 198 {
 199         if (!valid)
 200                 master->last_addr = LAST_ADDR_INVALID;
 201         else
 202                 master->last_addr = ((id & 0x3) << 21) | (addr & ~0x3);
 203 }
 204 
 205 /*
 206  * Encode an Absolute/Relative/Same Address command
 207  */
 208 static void build_ar_command(struct fsi_master_acf *master,
 209                              struct fsi_msg *cmd, uint8_t id,
 210                              uint32_t addr, size_t size,
 211                              const void *data)
 212 {
 213         int i, addr_bits, opcode_bits;
 214         bool write = !!data;
 215         uint8_t ds, opcode;
 216         uint32_t rel_addr;
 217 
 218         cmd->bits = 0;
 219         cmd->msg = 0;
 220 
 221         /* we have 21 bits of address max */
 222         addr &= ((1 << 21) - 1);
 223 
 224         /* cmd opcodes are variable length - SAME_AR is only two bits */
 225         opcode_bits = 3;
 226 
 227         if (check_same_address(master, id, addr)) {
 228                 /* we still address the byte offset within the word */
 229                 addr_bits = 2;
 230                 opcode_bits = 2;
 231                 opcode = FSI_CMD_SAME_AR;
 232                 trace_fsi_master_acf_cmd_same_addr(master);
 233 
 234         } else if (check_relative_address(master, id, addr, &rel_addr)) {
 235                 /* 8 bits plus sign */
 236                 addr_bits = 9;
 237                 addr = rel_addr;
 238                 opcode = FSI_CMD_REL_AR;
 239                 trace_fsi_master_acf_cmd_rel_addr(master, rel_addr);
 240 
 241         } else {
 242                 addr_bits = 21;
 243                 opcode = FSI_CMD_ABS_AR;
 244                 trace_fsi_master_acf_cmd_abs_addr(master, addr);
 245         }
 246 
 247         /*
 248          * The read/write size is encoded in the lower bits of the address
 249          * (as it must be naturally-aligned), and the following ds bit.
 250          *
 251          *      size    addr:1  addr:0  ds
 252          *      1       x       x       0
 253          *      2       x       0       1
 254          *      4       0       1       1
 255          *
 256          */
 257         ds = size > 1 ? 1 : 0;
 258         addr &= ~(size - 1);
 259         if (size == 4)
 260                 addr |= 1;
 261 
 262         msg_push_bits(cmd, id, 2);
 263         msg_push_bits(cmd, opcode, opcode_bits);
 264         msg_push_bits(cmd, write ? 0 : 1, 1);
 265         msg_push_bits(cmd, addr, addr_bits);
 266         msg_push_bits(cmd, ds, 1);
 267         for (i = 0; write && i < size; i++)
 268                 msg_push_bits(cmd, ((uint8_t *)data)[i], 8);
 269 
 270         msg_push_crc(cmd);
 271         msg_finish_cmd(cmd);
 272 }
 273 
 274 static void build_dpoll_command(struct fsi_msg *cmd, uint8_t slave_id)
 275 {
 276         cmd->bits = 0;
 277         cmd->msg = 0;
 278 
 279         msg_push_bits(cmd, slave_id, 2);
 280         msg_push_bits(cmd, FSI_CMD_DPOLL, 3);
 281         msg_push_crc(cmd);
 282         msg_finish_cmd(cmd);
 283 }
 284 
 285 static void build_epoll_command(struct fsi_msg *cmd, uint8_t slave_id)
 286 {
 287         cmd->bits = 0;
 288         cmd->msg = 0;
 289 
 290         msg_push_bits(cmd, slave_id, 2);
 291         msg_push_bits(cmd, FSI_CMD_EPOLL, 3);
 292         msg_push_crc(cmd);
 293         msg_finish_cmd(cmd);
 294 }
 295 
 296 static void build_term_command(struct fsi_msg *cmd, uint8_t slave_id)
 297 {
 298         cmd->bits = 0;
 299         cmd->msg = 0;
 300 
 301         msg_push_bits(cmd, slave_id, 2);
 302         msg_push_bits(cmd, FSI_CMD_TERM, 6);
 303         msg_push_crc(cmd);
 304         msg_finish_cmd(cmd);
 305 }
 306 
 307 static int do_copro_command(struct fsi_master_acf *master, uint32_t op)
 308 {
 309         uint32_t timeout = 10000000;
 310         uint8_t stat;
 311 
 312         trace_fsi_master_acf_copro_command(master, op);
 313 
 314         /* Send command */
 315         iowrite32be(op, master->sram + CMD_STAT_REG);
 316 
 317         /* Ring doorbell if any */
 318         if (master->cvic)
 319                 iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
 320 
 321         /* Wait for status to indicate completion (or error) */
 322         do {
 323                 if (timeout-- == 0) {
 324                         dev_warn(master->dev,
 325                                  "Timeout waiting for coprocessor completion\n");
 326                         return -ETIMEDOUT;
 327                 }
 328                 stat = ioread8(master->sram + CMD_STAT_REG);
 329         } while(stat < STAT_COMPLETE || stat == 0xff);
 330 
 331         if (stat == STAT_COMPLETE)
 332                 return 0;
 333         switch(stat) {
 334         case STAT_ERR_INVAL_CMD:
 335                 return -EINVAL;
 336         case STAT_ERR_INVAL_IRQ:
 337                 return -EIO;
 338         case STAT_ERR_MTOE:
 339                 return -ESHUTDOWN;
 340         }
 341         return -ENXIO;
 342 }
 343 
 344 static int clock_zeros(struct fsi_master_acf *master, int count)
 345 {
 346         while (count) {
 347                 int rc, lcnt = min(count, 255);
 348 
 349                 rc = do_copro_command(master,
 350                                       CMD_IDLE_CLOCKS | (lcnt << CMD_REG_CLEN_SHIFT));
 351                 if (rc)
 352                         return rc;
 353                 count -= lcnt;
 354         }
 355         return 0;
 356 }
 357 
 358 static int send_request(struct fsi_master_acf *master, struct fsi_msg *cmd,
 359                         unsigned int resp_bits)
 360 {
 361         uint32_t op;
 362 
 363         trace_fsi_master_acf_send_request(master, cmd, resp_bits);
 364 
 365         /* Store message into SRAM */
 366         iowrite32be((cmd->msg >> 32), master->sram + CMD_DATA);
 367         iowrite32be((cmd->msg & 0xffffffff), master->sram + CMD_DATA + 4);
 368 
 369         op = CMD_COMMAND;
 370         op |= cmd->bits << CMD_REG_CLEN_SHIFT;
 371         if (resp_bits)
 372                 op |= resp_bits << CMD_REG_RLEN_SHIFT;
 373 
 374         return do_copro_command(master, op);
 375 }
 376 
 377 static int read_copro_response(struct fsi_master_acf *master, uint8_t size,
 378                                uint32_t *response, u8 *tag)
 379 {
 380         uint8_t rtag = ioread8(master->sram + STAT_RTAG) & 0xf;
 381         uint8_t rcrc = ioread8(master->sram + STAT_RCRC) & 0xf;
 382         uint32_t rdata = 0;
 383         uint32_t crc;
 384         uint8_t ack;
 385 
 386         *tag = ack = rtag & 3;
 387 
 388         /* we have a whole message now; check CRC */
 389         crc = crc4(0, 1, 1);
 390         crc = crc4(crc, rtag, 4);
 391         if (ack == FSI_RESP_ACK && size) {
 392                 rdata = ioread32be(master->sram + RSP_DATA);
 393                 crc = crc4(crc, rdata, size);
 394                 if (response)
 395                         *response = rdata;
 396         }
 397         crc = crc4(crc, rcrc, 4);
 398 
 399         trace_fsi_master_acf_copro_response(master, rtag, rcrc, rdata, crc == 0);
 400 
 401         if (crc) {
 402                 /*
 403                  * Check if it's all 1's or all 0's, that probably means
 404                  * the host is off
 405                  */
 406                 if ((rtag == 0xf && rcrc == 0xf) || (rtag == 0 && rcrc == 0))
 407                         return -ENODEV;
 408                 dev_dbg(master->dev, "Bad response CRC !\n");
 409                 return -EAGAIN;
 410         }
 411         return 0;
 412 }
 413 
 414 static int send_term(struct fsi_master_acf *master, uint8_t slave)
 415 {
 416         struct fsi_msg cmd;
 417         uint8_t tag;
 418         int rc;
 419 
 420         build_term_command(&cmd, slave);
 421 
 422         rc = send_request(master, &cmd, 0);
 423         if (rc) {
 424                 dev_warn(master->dev, "Error %d sending term\n", rc);
 425                 return rc;
 426         }
 427 
 428         rc = read_copro_response(master, 0, NULL, &tag);
 429         if (rc < 0) {
 430                 dev_err(master->dev,
 431                                 "TERM failed; lost communication with slave\n");
 432                 return -EIO;
 433         } else if (tag != FSI_RESP_ACK) {
 434                 dev_err(master->dev, "TERM failed; response %d\n", tag);
 435                 return -EIO;
 436         }
 437         return 0;
 438 }
 439 
 440 static void dump_ucode_trace(struct fsi_master_acf *master)
 441 {
 442         char trbuf[52];
 443         char *p;
 444         int i;
 445 
 446         dev_dbg(master->dev,
 447                 "CMDSTAT:%08x RTAG=%02x RCRC=%02x RDATA=%02x #INT=%08x\n",
 448                 ioread32be(master->sram + CMD_STAT_REG),
 449                 ioread8(master->sram + STAT_RTAG),
 450                 ioread8(master->sram + STAT_RCRC),
 451                 ioread32be(master->sram + RSP_DATA),
 452                 ioread32be(master->sram + INT_CNT));
 453 
 454         for (i = 0; i < 512; i++) {
 455                 uint8_t v;
 456                 if ((i % 16) == 0)
 457                         p = trbuf;
 458                 v = ioread8(master->sram + TRACEBUF + i);
 459                 p += sprintf(p, "%02x ", v);
 460                 if (((i % 16) == 15) || v == TR_END)
 461                         dev_dbg(master->dev, "%s\n", trbuf);
 462                 if (v == TR_END)
 463                         break;
 464         }
 465 }
 466 
 467 static int handle_response(struct fsi_master_acf *master,
 468                            uint8_t slave, uint8_t size, void *data)
 469 {
 470         int busy_count = 0, rc;
 471         int crc_err_retries = 0;
 472         struct fsi_msg cmd;
 473         uint32_t response;
 474         uint8_t tag;
 475 retry:
 476         rc = read_copro_response(master, size, &response, &tag);
 477 
 478         /* Handle retries on CRC errors */
 479         if (rc == -EAGAIN) {
 480                 /* Too many retries ? */
 481                 if (crc_err_retries++ > FSI_CRC_ERR_RETRIES) {
 482                         /*
 483                          * Pass it up as a -EIO otherwise upper level will retry
 484                          * the whole command which isn't what we want here.
 485                          */
 486                         rc = -EIO;
 487                         goto bail;
 488                 }
 489                 trace_fsi_master_acf_crc_rsp_error(master, crc_err_retries);
 490                 if (master->trace_enabled)
 491                         dump_ucode_trace(master);
 492                 rc = clock_zeros(master, FSI_MASTER_EPOLL_CLOCKS);
 493                 if (rc) {
 494                         dev_warn(master->dev,
 495                                  "Error %d clocking zeros for E_POLL\n", rc);
 496                         return rc;
 497                 }
 498                 build_epoll_command(&cmd, slave);
 499                 rc = send_request(master, &cmd, size);
 500                 if (rc) {
 501                         dev_warn(master->dev, "Error %d sending E_POLL\n", rc);
 502                         return -EIO;
 503                 }
 504                 goto retry;
 505         }
 506         if (rc)
 507                 return rc;
 508 
 509         switch (tag) {
 510         case FSI_RESP_ACK:
 511                 if (size && data) {
 512                         if (size == 32)
 513                                 *(__be32 *)data = cpu_to_be32(response);
 514                         else if (size == 16)
 515                                 *(__be16 *)data = cpu_to_be16(response);
 516                         else
 517                                 *(u8 *)data = response;
 518                 }
 519                 break;
 520         case FSI_RESP_BUSY:
 521                 /*
 522                  * Its necessary to clock slave before issuing
 523                  * d-poll, not indicated in the hardware protocol
 524                  * spec. < 20 clocks causes slave to hang, 21 ok.
 525                  */
 526                 dev_dbg(master->dev, "Busy, retrying...\n");
 527                 if (master->trace_enabled)
 528                         dump_ucode_trace(master);
 529                 rc = clock_zeros(master, FSI_MASTER_DPOLL_CLOCKS);
 530                 if (rc) {
 531                         dev_warn(master->dev,
 532                                  "Error %d clocking zeros for D_POLL\n", rc);
 533                         break;
 534                 }
 535                 if (busy_count++ < FSI_MASTER_MAX_BUSY) {
 536                         build_dpoll_command(&cmd, slave);
 537                         rc = send_request(master, &cmd, size);
 538                         if (rc) {
 539                                 dev_warn(master->dev, "Error %d sending D_POLL\n", rc);
 540                                 break;
 541                         }
 542                         goto retry;
 543                 }
 544                 dev_dbg(master->dev,
 545                         "ERR slave is stuck in busy state, issuing TERM\n");
 546                 send_term(master, slave);
 547                 rc = -EIO;
 548                 break;
 549 
 550         case FSI_RESP_ERRA:
 551                 dev_dbg(master->dev, "ERRA received\n");
 552                 if (master->trace_enabled)
 553                         dump_ucode_trace(master);
 554                 rc = -EIO;
 555                 break;
 556         case FSI_RESP_ERRC:
 557                 dev_dbg(master->dev, "ERRC received\n");
 558                 if (master->trace_enabled)
 559                         dump_ucode_trace(master);
 560                 rc = -EAGAIN;
 561                 break;
 562         }
 563  bail:
 564         if (busy_count > 0) {
 565                 trace_fsi_master_acf_poll_response_busy(master, busy_count);
 566         }
 567 
 568         return rc;
 569 }
 570 
 571 static int fsi_master_acf_xfer(struct fsi_master_acf *master, uint8_t slave,
 572                                struct fsi_msg *cmd, size_t resp_len, void *resp)
 573 {
 574         int rc = -EAGAIN, retries = 0;
 575 
 576         resp_len <<= 3;
 577         while ((retries++) < FSI_CRC_ERR_RETRIES) {
 578                 rc = send_request(master, cmd, resp_len);
 579                 if (rc) {
 580                         if (rc != -ESHUTDOWN)
 581                                 dev_warn(master->dev, "Error %d sending command\n", rc);
 582                         break;
 583                 }
 584                 rc = handle_response(master, slave, resp_len, resp);
 585                 if (rc != -EAGAIN)
 586                         break;
 587                 rc = -EIO;
 588                 dev_dbg(master->dev, "ECRC retry %d\n", retries);
 589 
 590                 /* Pace it a bit before retry */
 591                 msleep(1);
 592         }
 593 
 594         return rc;
 595 }
 596 
 597 static int fsi_master_acf_read(struct fsi_master *_master, int link,
 598                                uint8_t id, uint32_t addr, void *val,
 599                                size_t size)
 600 {
 601         struct fsi_master_acf *master = to_fsi_master_acf(_master);
 602         struct fsi_msg cmd;
 603         int rc;
 604 
 605         if (link != 0)
 606                 return -ENODEV;
 607 
 608         mutex_lock(&master->lock);
 609         dev_dbg(master->dev, "read id %d addr %x size %zd\n", id, addr, size);
 610         build_ar_command(master, &cmd, id, addr, size, NULL);
 611         rc = fsi_master_acf_xfer(master, id, &cmd, size, val);
 612         last_address_update(master, id, rc == 0, addr);
 613         if (rc)
 614                 dev_dbg(master->dev, "read id %d addr 0x%08x err: %d\n",
 615                         id, addr, rc);
 616         mutex_unlock(&master->lock);
 617 
 618         return rc;
 619 }
 620 
 621 static int fsi_master_acf_write(struct fsi_master *_master, int link,
 622                                 uint8_t id, uint32_t addr, const void *val,
 623                                 size_t size)
 624 {
 625         struct fsi_master_acf *master = to_fsi_master_acf(_master);
 626         struct fsi_msg cmd;
 627         int rc;
 628 
 629         if (link != 0)
 630                 return -ENODEV;
 631 
 632         mutex_lock(&master->lock);
 633         build_ar_command(master, &cmd, id, addr, size, val);
 634         dev_dbg(master->dev, "write id %d addr %x size %zd raw_data: %08x\n",
 635                 id, addr, size, *(uint32_t *)val);
 636         rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
 637         last_address_update(master, id, rc == 0, addr);
 638         if (rc)
 639                 dev_dbg(master->dev, "write id %d addr 0x%08x err: %d\n",
 640                         id, addr, rc);
 641         mutex_unlock(&master->lock);
 642 
 643         return rc;
 644 }
 645 
 646 static int fsi_master_acf_term(struct fsi_master *_master,
 647                                int link, uint8_t id)
 648 {
 649         struct fsi_master_acf *master = to_fsi_master_acf(_master);
 650         struct fsi_msg cmd;
 651         int rc;
 652 
 653         if (link != 0)
 654                 return -ENODEV;
 655 
 656         mutex_lock(&master->lock);
 657         build_term_command(&cmd, id);
 658         dev_dbg(master->dev, "term id %d\n", id);
 659         rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
 660         last_address_update(master, id, false, 0);
 661         mutex_unlock(&master->lock);
 662 
 663         return rc;
 664 }
 665 
 666 static int fsi_master_acf_break(struct fsi_master *_master, int link)
 667 {
 668         struct fsi_master_acf *master = to_fsi_master_acf(_master);
 669         int rc;
 670 
 671         if (link != 0)
 672                 return -ENODEV;
 673 
 674         mutex_lock(&master->lock);
 675         if (master->external_mode) {
 676                 mutex_unlock(&master->lock);
 677                 return -EBUSY;
 678         }
 679         dev_dbg(master->dev, "sending BREAK\n");
 680         rc = do_copro_command(master, CMD_BREAK);
 681         last_address_update(master, 0, false, 0);
 682         mutex_unlock(&master->lock);
 683 
 684         /* Wait for logic reset to take effect */
 685         udelay(200);
 686 
 687         return rc;
 688 }
 689 
 690 static void reset_cf(struct fsi_master_acf *master)
 691 {
 692         regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_RESET);
 693         usleep_range(20,20);
 694         regmap_write(master->scu, SCU_COPRO_CTRL, 0);
 695         usleep_range(20,20);
 696 }
 697 
 698 static void start_cf(struct fsi_master_acf *master)
 699 {
 700         regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_CLK_EN);
 701 }
 702 
 703 static void setup_ast2500_cf_maps(struct fsi_master_acf *master)
 704 {
 705         /*
 706          * Note about byteswap setting: the bus is wired backwards,
 707          * so setting the byteswap bit actually makes the ColdFire
 708          * work "normally" for a BE processor, ie, put the MSB in
 709          * the lowest address byte.
 710          *
 711          * We thus need to set the bit for our main memory which
 712          * contains our program code. We create two mappings for
 713          * the register, one with each setting.
 714          *
 715          * Segments 2 and 3 has a "swapped" mapping (BE)
 716          * and 6 and 7 have a non-swapped mapping (LE) which allows
 717          * us to avoid byteswapping register accesses since the
 718          * registers are all LE.
 719          */
 720 
 721         /* Setup segment 0 to our memory region */
 722         regmap_write(master->scu, SCU_2500_COPRO_SEG0, master->cf_mem_addr |
 723                      SCU_2500_COPRO_SEG_SWAP);
 724 
 725         /* Segments 2 and 3 to sysregs with byteswap (for SRAM) */
 726         regmap_write(master->scu, SCU_2500_COPRO_SEG2, SYSREG_BASE |
 727                      SCU_2500_COPRO_SEG_SWAP);
 728         regmap_write(master->scu, SCU_2500_COPRO_SEG3, SYSREG_BASE | 0x100000 |
 729                      SCU_2500_COPRO_SEG_SWAP);
 730 
 731         /* And segment 6 and 7 to sysregs no byteswap */
 732         regmap_write(master->scu, SCU_2500_COPRO_SEG6, SYSREG_BASE);
 733         regmap_write(master->scu, SCU_2500_COPRO_SEG7, SYSREG_BASE | 0x100000);
 734 
 735         /* Memory cachable, regs and SRAM not cachable */
 736         regmap_write(master->scu, SCU_2500_COPRO_CACHE_CTL,
 737                      SCU_2500_COPRO_SEG0_CACHE_EN | SCU_2500_COPRO_CACHE_EN);
 738 }
 739 
 740 static void setup_ast2400_cf_maps(struct fsi_master_acf *master)
 741 {
 742         /* Setup segment 0 to our memory region */
 743         regmap_write(master->scu, SCU_2400_COPRO_SEG0, master->cf_mem_addr |
 744                      SCU_2400_COPRO_SEG_SWAP);
 745 
 746         /* Segments 2 to sysregs with byteswap (for SRAM) */
 747         regmap_write(master->scu, SCU_2400_COPRO_SEG2, SYSREG_BASE |
 748                      SCU_2400_COPRO_SEG_SWAP);
 749 
 750         /* And segment 6 to sysregs no byteswap */
 751         regmap_write(master->scu, SCU_2400_COPRO_SEG6, SYSREG_BASE);
 752 
 753         /* Memory cachable, regs and SRAM not cachable */
 754         regmap_write(master->scu, SCU_2400_COPRO_CACHE_CTL,
 755                      SCU_2400_COPRO_SEG0_CACHE_EN | SCU_2400_COPRO_CACHE_EN);
 756 }
 757 
 758 static void setup_common_fw_config(struct fsi_master_acf *master,
 759                                    void __iomem *base)
 760 {
 761         iowrite16be(master->gpio_clk_vreg, base + HDR_CLOCK_GPIO_VADDR);
 762         iowrite16be(master->gpio_clk_dreg, base + HDR_CLOCK_GPIO_DADDR);
 763         iowrite16be(master->gpio_dat_vreg, base + HDR_DATA_GPIO_VADDR);
 764         iowrite16be(master->gpio_dat_dreg, base + HDR_DATA_GPIO_DADDR);
 765         iowrite16be(master->gpio_tra_vreg, base + HDR_TRANS_GPIO_VADDR);
 766         iowrite16be(master->gpio_tra_dreg, base + HDR_TRANS_GPIO_DADDR);
 767         iowrite8(master->gpio_clk_bit, base + HDR_CLOCK_GPIO_BIT);
 768         iowrite8(master->gpio_dat_bit, base + HDR_DATA_GPIO_BIT);
 769         iowrite8(master->gpio_tra_bit, base + HDR_TRANS_GPIO_BIT);
 770 }
 771 
 772 static void setup_ast2500_fw_config(struct fsi_master_acf *master)
 773 {
 774         void __iomem *base = master->cf_mem + HDR_OFFSET;
 775 
 776         setup_common_fw_config(master, base);
 777         iowrite32be(FW_CONTROL_USE_STOP, base + HDR_FW_CONTROL);
 778 }
 779 
 780 static void setup_ast2400_fw_config(struct fsi_master_acf *master)
 781 {
 782         void __iomem *base = master->cf_mem + HDR_OFFSET;
 783 
 784         setup_common_fw_config(master, base);
 785         iowrite32be(FW_CONTROL_CONT_CLOCK|FW_CONTROL_DUMMY_RD, base + HDR_FW_CONTROL);
 786 }
 787 
 788 static int setup_gpios_for_copro(struct fsi_master_acf *master)
 789 {
 790 
 791         int rc;
 792 
 793         /* This aren't under ColdFire control, just set them up appropriately */
 794         gpiod_direction_output(master->gpio_mux, 1);
 795         gpiod_direction_output(master->gpio_enable, 1);
 796 
 797         /* Those are under ColdFire control, let it configure them */
 798         rc = aspeed_gpio_copro_grab_gpio(master->gpio_clk, &master->gpio_clk_vreg,
 799                                          &master->gpio_clk_dreg, &master->gpio_clk_bit);
 800         if (rc) {
 801                 dev_err(master->dev, "failed to assign clock gpio to coprocessor\n");
 802                 return rc;
 803         }
 804         rc = aspeed_gpio_copro_grab_gpio(master->gpio_data, &master->gpio_dat_vreg,
 805                                          &master->gpio_dat_dreg, &master->gpio_dat_bit);
 806         if (rc) {
 807                 dev_err(master->dev, "failed to assign data gpio to coprocessor\n");
 808                 aspeed_gpio_copro_release_gpio(master->gpio_clk);
 809                 return rc;
 810         }
 811         rc = aspeed_gpio_copro_grab_gpio(master->gpio_trans, &master->gpio_tra_vreg,
 812                                          &master->gpio_tra_dreg, &master->gpio_tra_bit);
 813         if (rc) {
 814                 dev_err(master->dev, "failed to assign trans gpio to coprocessor\n");
 815                 aspeed_gpio_copro_release_gpio(master->gpio_clk);
 816                 aspeed_gpio_copro_release_gpio(master->gpio_data);
 817                 return rc;
 818         }
 819         return 0;
 820 }
 821 
 822 static void release_copro_gpios(struct fsi_master_acf *master)
 823 {
 824         aspeed_gpio_copro_release_gpio(master->gpio_clk);
 825         aspeed_gpio_copro_release_gpio(master->gpio_data);
 826         aspeed_gpio_copro_release_gpio(master->gpio_trans);
 827 }
 828 
 829 static int load_copro_firmware(struct fsi_master_acf *master)
 830 {
 831         const struct firmware *fw;
 832         uint16_t sig = 0, wanted_sig;
 833         const u8 *data;
 834         size_t size = 0;
 835         int rc;
 836 
 837         /* Get the binary */
 838         rc = request_firmware(&fw, FW_FILE_NAME, master->dev);
 839         if (rc) {
 840                 dev_err(
 841                         master->dev, "Error %d to load firwmare '%s' !\n",
 842                         rc, FW_FILE_NAME);
 843                 return rc;
 844         }
 845 
 846         /* Which image do we want ? (shared vs. split clock/data GPIOs) */
 847         if (master->gpio_clk_vreg == master->gpio_dat_vreg)
 848                 wanted_sig = SYS_SIG_SHARED;
 849         else
 850                 wanted_sig = SYS_SIG_SPLIT;
 851         dev_dbg(master->dev, "Looking for image sig %04x\n", wanted_sig);
 852 
 853         /* Try to find it */
 854         for (data = fw->data; data < (fw->data + fw->size);) {
 855                 sig = be16_to_cpup((__be16 *)(data + HDR_OFFSET + HDR_SYS_SIG));
 856                 size = be32_to_cpup((__be32 *)(data + HDR_OFFSET + HDR_FW_SIZE));
 857                 if (sig == wanted_sig)
 858                         break;
 859                 data += size;
 860         }
 861         if (sig != wanted_sig) {
 862                 dev_err(master->dev, "Failed to locate image sig %04x in FW blob\n",
 863                         wanted_sig);
 864                 rc = -ENODEV;
 865                 goto release_fw;
 866         }
 867         if (size > master->cf_mem_size) {
 868                 dev_err(master->dev, "FW size (%zd) bigger than memory reserve (%zd)\n",
 869                         fw->size, master->cf_mem_size);
 870                 rc = -ENOMEM;
 871         } else {
 872                 memcpy_toio(master->cf_mem, data, size);
 873         }
 874 
 875 release_fw:
 876         release_firmware(fw);
 877         return rc;
 878 }
 879 
 880 static int check_firmware_image(struct fsi_master_acf *master)
 881 {
 882         uint32_t fw_vers, fw_api, fw_options;
 883 
 884         fw_vers = ioread16be(master->cf_mem + HDR_OFFSET + HDR_FW_VERS);
 885         fw_api = ioread16be(master->cf_mem + HDR_OFFSET + HDR_API_VERS);
 886         fw_options = ioread32be(master->cf_mem + HDR_OFFSET + HDR_FW_OPTIONS);
 887         master->trace_enabled = !!(fw_options & FW_OPTION_TRACE_EN);
 888 
 889         /* Check version and signature */
 890         dev_info(master->dev, "ColdFire initialized, firmware v%d API v%d.%d (trace %s)\n",
 891                  fw_vers, fw_api >> 8, fw_api & 0xff,
 892                  master->trace_enabled ? "enabled" : "disabled");
 893 
 894         if ((fw_api >> 8) != API_VERSION_MAJ) {
 895                 dev_err(master->dev, "Unsupported coprocessor API version !\n");
 896                 return -ENODEV;
 897         }
 898 
 899         return 0;
 900 }
 901 
 902 static int copro_enable_sw_irq(struct fsi_master_acf *master)
 903 {
 904         int timeout;
 905         uint32_t val;
 906 
 907         /*
 908          * Enable coprocessor interrupt input. I've had problems getting the
 909          * value to stick, so try in a loop
 910          */
 911         for (timeout = 0; timeout < 10; timeout++) {
 912                 iowrite32(0x2, master->cvic + CVIC_EN_REG);
 913                 val = ioread32(master->cvic + CVIC_EN_REG);
 914                 if (val & 2)
 915                         break;
 916                 msleep(1);
 917         }
 918         if (!(val & 2)) {
 919                 dev_err(master->dev, "Failed to enable coprocessor interrupt !\n");
 920                 return -ENODEV;
 921         }
 922         return 0;
 923 }
 924 
 925 static int fsi_master_acf_setup(struct fsi_master_acf *master)
 926 {
 927         int timeout, rc;
 928         uint32_t val;
 929 
 930         /* Make sure the ColdFire is stopped  */
 931         reset_cf(master);
 932 
 933         /*
 934          * Clear SRAM. This needs to happen before we setup the GPIOs
 935          * as we might start trying to arbitrate as soon as that happens.
 936          */
 937         memset_io(master->sram, 0, SRAM_SIZE);
 938 
 939         /* Configure GPIOs */
 940         rc = setup_gpios_for_copro(master);
 941         if (rc)
 942                 return rc;
 943 
 944         /* Load the firmware into the reserved memory */
 945         rc = load_copro_firmware(master);
 946         if (rc)
 947                 return rc;
 948 
 949         /* Read signature and check versions */
 950         rc = check_firmware_image(master);
 951         if (rc)
 952                 return rc;
 953 
 954         /* Setup coldfire memory map */
 955         if (master->is_ast2500) {
 956                 setup_ast2500_cf_maps(master);
 957                 setup_ast2500_fw_config(master);
 958         } else {
 959                 setup_ast2400_cf_maps(master);
 960                 setup_ast2400_fw_config(master);
 961         }
 962 
 963         /* Start the ColdFire */
 964         start_cf(master);
 965 
 966         /* Wait for status register to indicate command completion
 967          * which signals the initialization is complete
 968          */
 969         for (timeout = 0; timeout < 10; timeout++) {
 970                 val = ioread8(master->sram + CF_STARTED);
 971                 if (val)
 972                         break;
 973                 msleep(1);
 974         }
 975         if (!val) {
 976                 dev_err(master->dev, "Coprocessor startup timeout !\n");
 977                 rc = -ENODEV;
 978                 goto err;
 979         }
 980 
 981         /* Configure echo & send delay */
 982         iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
 983         iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
 984 
 985         /* Enable SW interrupt to copro if any */
 986         if (master->cvic) {
 987                 rc = copro_enable_sw_irq(master);
 988                 if (rc)
 989                         goto err;
 990         }
 991         return 0;
 992  err:
 993         /* An error occurred, don't leave the coprocessor running */
 994         reset_cf(master);
 995 
 996         /* Release the GPIOs */
 997         release_copro_gpios(master);
 998 
 999         return rc;
1000 }
1001 
1002 
1003 static void fsi_master_acf_terminate(struct fsi_master_acf *master)
1004 {
1005         unsigned long flags;
1006 
1007         /*
1008          * A GPIO arbitration requestion could come in while this is
1009          * happening. To avoid problems, we disable interrupts so it
1010          * cannot preempt us on this CPU
1011          */
1012 
1013         local_irq_save(flags);
1014 
1015         /* Stop the coprocessor */
1016         reset_cf(master);
1017 
1018         /* We mark the copro not-started */
1019         iowrite32(0, master->sram + CF_STARTED);
1020 
1021         /* We mark the ARB register as having given up arbitration to
1022          * deal with a potential race with the arbitration request
1023          */
1024         iowrite8(ARB_ARM_ACK, master->sram + ARB_REG);
1025 
1026         local_irq_restore(flags);
1027 
1028         /* Return the GPIOs to the ARM */
1029         release_copro_gpios(master);
1030 }
1031 
1032 static void fsi_master_acf_setup_external(struct fsi_master_acf *master)
1033 {
1034         /* Setup GPIOs for external FSI master (FSP box) */
1035         gpiod_direction_output(master->gpio_mux, 0);
1036         gpiod_direction_output(master->gpio_trans, 0);
1037         gpiod_direction_output(master->gpio_enable, 1);
1038         gpiod_direction_input(master->gpio_clk);
1039         gpiod_direction_input(master->gpio_data);
1040 }
1041 
1042 static int fsi_master_acf_link_enable(struct fsi_master *_master, int link)
1043 {
1044         struct fsi_master_acf *master = to_fsi_master_acf(_master);
1045         int rc = -EBUSY;
1046 
1047         if (link != 0)
1048                 return -ENODEV;
1049 
1050         mutex_lock(&master->lock);
1051         if (!master->external_mode) {
1052                 gpiod_set_value(master->gpio_enable, 1);
1053                 rc = 0;
1054         }
1055         mutex_unlock(&master->lock);
1056 
1057         return rc;
1058 }
1059 
1060 static int fsi_master_acf_link_config(struct fsi_master *_master, int link,
1061                                       u8 t_send_delay, u8 t_echo_delay)
1062 {
1063         struct fsi_master_acf *master = to_fsi_master_acf(_master);
1064 
1065         if (link != 0)
1066                 return -ENODEV;
1067 
1068         mutex_lock(&master->lock);
1069         master->t_send_delay = t_send_delay;
1070         master->t_echo_delay = t_echo_delay;
1071         dev_dbg(master->dev, "Changing delays: send=%d echo=%d\n",
1072                 t_send_delay, t_echo_delay);
1073         iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
1074         iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
1075         mutex_unlock(&master->lock);
1076 
1077         return 0;
1078 }
1079 
1080 static ssize_t external_mode_show(struct device *dev,
1081                                   struct device_attribute *attr, char *buf)
1082 {
1083         struct fsi_master_acf *master = dev_get_drvdata(dev);
1084 
1085         return snprintf(buf, PAGE_SIZE - 1, "%u\n",
1086                         master->external_mode ? 1 : 0);
1087 }
1088 
1089 static ssize_t external_mode_store(struct device *dev,
1090                 struct device_attribute *attr, const char *buf, size_t count)
1091 {
1092         struct fsi_master_acf *master = dev_get_drvdata(dev);
1093         unsigned long val;
1094         bool external_mode;
1095         int err;
1096 
1097         err = kstrtoul(buf, 0, &val);
1098         if (err)
1099                 return err;
1100 
1101         external_mode = !!val;
1102 
1103         mutex_lock(&master->lock);
1104 
1105         if (external_mode == master->external_mode) {
1106                 mutex_unlock(&master->lock);
1107                 return count;
1108         }
1109 
1110         master->external_mode = external_mode;
1111         if (master->external_mode) {
1112                 fsi_master_acf_terminate(master);
1113                 fsi_master_acf_setup_external(master);
1114         } else
1115                 fsi_master_acf_setup(master);
1116 
1117         mutex_unlock(&master->lock);
1118 
1119         fsi_master_rescan(&master->master);
1120 
1121         return count;
1122 }
1123 
1124 static DEVICE_ATTR(external_mode, 0664,
1125                 external_mode_show, external_mode_store);
1126 
1127 static int fsi_master_acf_gpio_request(void *data)
1128 {
1129         struct fsi_master_acf *master = data;
1130         int timeout;
1131         u8 val;
1132 
1133         /* Note: This doesn't require holding out mutex */
1134 
1135         /* Write reqest */
1136         iowrite8(ARB_ARM_REQ, master->sram + ARB_REG);
1137 
1138         /*
1139          * There is a race (which does happen at boot time) when we get an
1140          * arbitration request as we are either about to or just starting
1141          * the coprocessor.
1142          *
1143          * To handle it, we first check if we are running. If not yet we
1144          * check whether the copro is started in the SCU.
1145          *
1146          * If it's not started, we can basically just assume we have arbitration
1147          * and return. Otherwise, we wait normally expecting for the arbitration
1148          * to eventually complete.
1149          */
1150         if (ioread32(master->sram + CF_STARTED) == 0) {
1151                 unsigned int reg = 0;
1152 
1153                 regmap_read(master->scu, SCU_COPRO_CTRL, &reg);
1154                 if (!(reg & SCU_COPRO_CLK_EN))
1155                         return 0;
1156         }
1157 
1158         /* Ring doorbell if any */
1159         if (master->cvic)
1160                 iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
1161 
1162         for (timeout = 0; timeout < 10000; timeout++) {
1163                 val = ioread8(master->sram + ARB_REG);
1164                 if (val != ARB_ARM_REQ)
1165                         break;
1166                 udelay(1);
1167         }
1168 
1169         /* If it failed, override anyway */
1170         if (val != ARB_ARM_ACK)
1171                 dev_warn(master->dev, "GPIO request arbitration timeout\n");
1172 
1173         return 0;
1174 }
1175 
1176 static int fsi_master_acf_gpio_release(void *data)
1177 {
1178         struct fsi_master_acf *master = data;
1179 
1180         /* Write release */
1181         iowrite8(0, master->sram + ARB_REG);
1182 
1183         /* Ring doorbell if any */
1184         if (master->cvic)
1185                 iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
1186 
1187         return 0;
1188 }
1189 
1190 static void fsi_master_acf_release(struct device *dev)
1191 {
1192         struct fsi_master_acf *master = to_fsi_master_acf(dev_to_fsi_master(dev));
1193 
1194         /* Cleanup, stop coprocessor */
1195         mutex_lock(&master->lock);
1196         fsi_master_acf_terminate(master);
1197         aspeed_gpio_copro_set_ops(NULL, NULL);
1198         mutex_unlock(&master->lock);
1199 
1200         /* Free resources */
1201         gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
1202         of_node_put(dev_of_node(master->dev));
1203 
1204         kfree(master);
1205 }
1206 
1207 static const struct aspeed_gpio_copro_ops fsi_master_acf_gpio_ops = {
1208         .request_access = fsi_master_acf_gpio_request,
1209         .release_access = fsi_master_acf_gpio_release,
1210 };
1211 
1212 static int fsi_master_acf_probe(struct platform_device *pdev)
1213 {
1214         struct device_node *np, *mnode = dev_of_node(&pdev->dev);
1215         struct genpool_data_fixed gpdf;
1216         struct fsi_master_acf *master;
1217         struct gpio_desc *gpio;
1218         struct resource res;
1219         uint32_t cf_mem_align;
1220         int rc;
1221 
1222         master = kzalloc(sizeof(*master), GFP_KERNEL);
1223         if (!master)
1224                 return -ENOMEM;
1225 
1226         master->dev = &pdev->dev;
1227         master->master.dev.parent = master->dev;
1228         master->last_addr = LAST_ADDR_INVALID;
1229 
1230         /* AST2400 vs. AST2500 */
1231         master->is_ast2500 = of_device_is_compatible(mnode, "aspeed,ast2500-cf-fsi-master");
1232 
1233         /* Grab the SCU, we'll need to access it to configure the coprocessor */
1234         if (master->is_ast2500)
1235                 master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2500-scu");
1236         else
1237                 master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2400-scu");
1238         if (IS_ERR(master->scu)) {
1239                 dev_err(&pdev->dev, "failed to find SCU regmap\n");
1240                 rc = PTR_ERR(master->scu);
1241                 goto err_free;
1242         }
1243 
1244         /* Grab all the GPIOs we need */
1245         gpio = devm_gpiod_get(&pdev->dev, "clock", 0);
1246         if (IS_ERR(gpio)) {
1247                 dev_err(&pdev->dev, "failed to get clock gpio\n");
1248                 rc = PTR_ERR(gpio);
1249                 goto err_free;
1250         }
1251         master->gpio_clk = gpio;
1252 
1253         gpio = devm_gpiod_get(&pdev->dev, "data", 0);
1254         if (IS_ERR(gpio)) {
1255                 dev_err(&pdev->dev, "failed to get data gpio\n");
1256                 rc = PTR_ERR(gpio);
1257                 goto err_free;
1258         }
1259         master->gpio_data = gpio;
1260 
1261         /* Optional GPIOs */
1262         gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0);
1263         if (IS_ERR(gpio)) {
1264                 dev_err(&pdev->dev, "failed to get trans gpio\n");
1265                 rc = PTR_ERR(gpio);
1266                 goto err_free;
1267         }
1268         master->gpio_trans = gpio;
1269 
1270         gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0);
1271         if (IS_ERR(gpio)) {
1272                 dev_err(&pdev->dev, "failed to get enable gpio\n");
1273                 rc = PTR_ERR(gpio);
1274                 goto err_free;
1275         }
1276         master->gpio_enable = gpio;
1277 
1278         gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0);
1279         if (IS_ERR(gpio)) {
1280                 dev_err(&pdev->dev, "failed to get mux gpio\n");
1281                 rc = PTR_ERR(gpio);
1282                 goto err_free;
1283         }
1284         master->gpio_mux = gpio;
1285 
1286         /* Grab the reserved memory region (use DMA API instead ?) */
1287         np = of_parse_phandle(mnode, "memory-region", 0);
1288         if (!np) {
1289                 dev_err(&pdev->dev, "Didn't find reserved memory\n");
1290                 rc = -EINVAL;
1291                 goto err_free;
1292         }
1293         rc = of_address_to_resource(np, 0, &res);
1294         of_node_put(np);
1295         if (rc) {
1296                 dev_err(&pdev->dev, "Couldn't address to resource for reserved memory\n");
1297                 rc = -ENOMEM;
1298                 goto err_free;
1299         }
1300         master->cf_mem_size = resource_size(&res);
1301         master->cf_mem_addr = (uint32_t)res.start;
1302         cf_mem_align = master->is_ast2500 ? 0x00100000 : 0x00200000;
1303         if (master->cf_mem_addr & (cf_mem_align - 1)) {
1304                 dev_err(&pdev->dev, "Reserved memory has insufficient alignment\n");
1305                 rc = -ENOMEM;
1306                 goto err_free;
1307         }
1308         master->cf_mem = devm_ioremap_resource(&pdev->dev, &res);
1309         if (IS_ERR(master->cf_mem)) {
1310                 rc = PTR_ERR(master->cf_mem);
1311                 dev_err(&pdev->dev, "Error %d mapping coldfire memory\n", rc);
1312                 goto err_free;
1313         }
1314         dev_dbg(&pdev->dev, "DRAM allocation @%x\n", master->cf_mem_addr);
1315 
1316         /* AST2500 has a SW interrupt to the coprocessor */
1317         if (master->is_ast2500) {
1318                 /* Grab the CVIC (ColdFire interrupts controller) */
1319                 np = of_parse_phandle(mnode, "aspeed,cvic", 0);
1320                 if (!np) {
1321                         dev_err(&pdev->dev, "Didn't find CVIC\n");
1322                         rc = -EINVAL;
1323                         goto err_free;
1324                 }
1325                 master->cvic = devm_of_iomap(&pdev->dev, np, 0, NULL);
1326                 if (IS_ERR(master->cvic)) {
1327                         rc = PTR_ERR(master->cvic);
1328                         dev_err(&pdev->dev, "Error %d mapping CVIC\n", rc);
1329                         goto err_free;
1330                 }
1331                 rc = of_property_read_u32(np, "copro-sw-interrupts",
1332                                           &master->cvic_sw_irq);
1333                 if (rc) {
1334                         dev_err(&pdev->dev, "Can't find coprocessor SW interrupt\n");
1335                         goto err_free;
1336                 }
1337         }
1338 
1339         /* Grab the SRAM */
1340         master->sram_pool = of_gen_pool_get(dev_of_node(&pdev->dev), "aspeed,sram", 0);
1341         if (!master->sram_pool) {
1342                 rc = -ENODEV;
1343                 dev_err(&pdev->dev, "Can't find sram pool\n");
1344                 goto err_free;
1345         }
1346 
1347         /* Current microcode only deals with fixed location in SRAM */
1348         gpdf.offset = 0;
1349         master->sram = (void __iomem *)gen_pool_alloc_algo(master->sram_pool, SRAM_SIZE,
1350                                                            gen_pool_fixed_alloc, &gpdf);
1351         if (!master->sram) {
1352                 rc = -ENOMEM;
1353                 dev_err(&pdev->dev, "Failed to allocate sram from pool\n");
1354                 goto err_free;
1355         }
1356         dev_dbg(&pdev->dev, "SRAM allocation @%lx\n",
1357                 (unsigned long)gen_pool_virt_to_phys(master->sram_pool,
1358                                                      (unsigned long)master->sram));
1359 
1360         /*
1361          * Hookup with the GPIO driver for arbitration of GPIO banks
1362          * ownership.
1363          */
1364         aspeed_gpio_copro_set_ops(&fsi_master_acf_gpio_ops, master);
1365 
1366         /* Default FSI command delays */
1367         master->t_send_delay = FSI_SEND_DELAY_CLOCKS;
1368         master->t_echo_delay = FSI_ECHO_DELAY_CLOCKS;
1369         master->master.n_links = 1;
1370         if (master->is_ast2500)
1371                 master->master.flags = FSI_MASTER_FLAG_SWCLOCK;
1372         master->master.read = fsi_master_acf_read;
1373         master->master.write = fsi_master_acf_write;
1374         master->master.term = fsi_master_acf_term;
1375         master->master.send_break = fsi_master_acf_break;
1376         master->master.link_enable = fsi_master_acf_link_enable;
1377         master->master.link_config = fsi_master_acf_link_config;
1378         master->master.dev.of_node = of_node_get(dev_of_node(master->dev));
1379         master->master.dev.release = fsi_master_acf_release;
1380         platform_set_drvdata(pdev, master);
1381         mutex_init(&master->lock);
1382 
1383         mutex_lock(&master->lock);
1384         rc = fsi_master_acf_setup(master);
1385         mutex_unlock(&master->lock);
1386         if (rc)
1387                 goto release_of_dev;
1388 
1389         rc = device_create_file(&pdev->dev, &dev_attr_external_mode);
1390         if (rc)
1391                 goto stop_copro;
1392 
1393         rc = fsi_master_register(&master->master);
1394         if (!rc)
1395                 return 0;
1396 
1397         device_remove_file(master->dev, &dev_attr_external_mode);
1398         put_device(&master->master.dev);
1399         return rc;
1400 
1401  stop_copro:
1402         fsi_master_acf_terminate(master);
1403  release_of_dev:
1404         aspeed_gpio_copro_set_ops(NULL, NULL);
1405         gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
1406         of_node_put(dev_of_node(master->dev));
1407  err_free:
1408         kfree(master);
1409         return rc;
1410 }
1411 
1412 
1413 static int fsi_master_acf_remove(struct platform_device *pdev)
1414 {
1415         struct fsi_master_acf *master = platform_get_drvdata(pdev);
1416 
1417         device_remove_file(master->dev, &dev_attr_external_mode);
1418 
1419         fsi_master_unregister(&master->master);
1420 
1421         return 0;
1422 }
1423 
1424 static const struct of_device_id fsi_master_acf_match[] = {
1425         { .compatible = "aspeed,ast2400-cf-fsi-master" },
1426         { .compatible = "aspeed,ast2500-cf-fsi-master" },
1427         { },
1428 };
1429 
1430 static struct platform_driver fsi_master_acf = {
1431         .driver = {
1432                 .name           = "fsi-master-acf",
1433                 .of_match_table = fsi_master_acf_match,
1434         },
1435         .probe  = fsi_master_acf_probe,
1436         .remove = fsi_master_acf_remove,
1437 };
1438 
1439 module_platform_driver(fsi_master_acf);
1440 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */