root/drivers/staging/uwb/uwb.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. uwb_mas_bm_copy_le
  2. uwb_dev_get
  3. uwb_dev_put
  4. uwb_dev_addr_print
  5. uwb_mac_addr_print
  6. uwb_dev_addr_cmp
  7. uwb_mac_addr_cmp
  8. uwb_mac_addr_bcast
  9. uwb_mac_addr_unset
  10. __uwb_dev_addr_assigned
  11. uwb_rsv_is_owner
  12. edc_init
  13. edc_inc
  14. stats_init
  15. stats_add_sample
  16. stats_show
  17. stats_store

   1 /* SPDX-License-Identifier: GPL-2.0-only */
   2 /*
   3  * Ultra Wide Band
   4  * UWB API
   5  *
   6  * Copyright (C) 2005-2006 Intel Corporation
   7  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   8  *
   9  * FIXME: doc: overview of the API, different parts and pointers
  10  */
  11 
  12 #ifndef __LINUX__UWB_H__
  13 #define __LINUX__UWB_H__
  14 
  15 #include <linux/limits.h>
  16 #include <linux/device.h>
  17 #include <linux/mutex.h>
  18 #include <linux/timer.h>
  19 #include <linux/wait.h>
  20 #include <linux/workqueue.h>
  21 #include <asm/page.h>
  22 #include "include/spec.h"
  23 
  24 struct uwb_dev;
  25 struct uwb_beca_e;
  26 struct uwb_rc;
  27 struct uwb_rsv;
  28 struct uwb_dbg;
  29 
  30 /**
  31  * struct uwb_dev - a UWB Device
  32  * @rc: UWB Radio Controller that discovered the device (kind of its
  33  *     parent).
  34  * @bce: a beacon cache entry for this device; or NULL if the device
  35  *     is a local radio controller.
  36  * @mac_addr: the EUI-48 address of this device.
  37  * @dev_addr: the current DevAddr used by this device.
  38  * @beacon_slot: the slot number the beacon is using.
  39  * @streams: bitmap of streams allocated to reservations targeted at
  40  *     this device.  For an RC, this is the streams allocated for
  41  *     reservations targeted at DevAddrs.
  42  *
  43  * A UWB device may either by a neighbor or part of a local radio
  44  * controller.
  45  */
  46 struct uwb_dev {
  47         struct mutex mutex;
  48         struct list_head list_node;
  49         struct device dev;
  50         struct uwb_rc *rc;              /* radio controller */
  51         struct uwb_beca_e *bce;         /* Beacon Cache Entry */
  52 
  53         struct uwb_mac_addr mac_addr;
  54         struct uwb_dev_addr dev_addr;
  55         int beacon_slot;
  56         DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
  57         DECLARE_BITMAP(last_availability_bm, UWB_NUM_MAS);
  58 };
  59 #define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
  60 
  61 /**
  62  * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
  63  *
  64  * RC[CE]Bs have a 'context ID' field that matches the command with
  65  * the event received to confirm it.
  66  *
  67  * Maximum number of context IDs
  68  */
  69 enum { UWB_RC_CTX_MAX = 256 };
  70 
  71 
  72 /** Notification chain head for UWB generated events to listeners */
  73 struct uwb_notifs_chain {
  74         struct list_head list;
  75         struct mutex mutex;
  76 };
  77 
  78 /* Beacon cache list */
  79 struct uwb_beca {
  80         struct list_head list;
  81         size_t entries;
  82         struct mutex mutex;
  83 };
  84 
  85 /* Event handling thread. */
  86 struct uwbd {
  87         int pid;
  88         struct task_struct *task;
  89         wait_queue_head_t wq;
  90         struct list_head event_list;
  91         spinlock_t event_list_lock;
  92 };
  93 
  94 /**
  95  * struct uwb_mas_bm - a bitmap of all MAS in a superframe
  96  * @bm: a bitmap of length #UWB_NUM_MAS
  97  */
  98 struct uwb_mas_bm {
  99         DECLARE_BITMAP(bm, UWB_NUM_MAS);
 100         DECLARE_BITMAP(unsafe_bm, UWB_NUM_MAS);
 101         int safe;
 102         int unsafe;
 103 };
 104 
 105 /**
 106  * uwb_rsv_state - UWB Reservation state.
 107  *
 108  * NONE - reservation is not active (no DRP IE being transmitted).
 109  *
 110  * Owner reservation states:
 111  *
 112  * INITIATED - owner has sent an initial DRP request.
 113  * PENDING - target responded with pending Reason Code.
 114  * MODIFIED - reservation manager is modifying an established
 115  * reservation with a different MAS allocation.
 116  * ESTABLISHED - the reservation has been successfully negotiated.
 117  *
 118  * Target reservation states:
 119  *
 120  * DENIED - request is denied.
 121  * ACCEPTED - request is accepted.
 122  * PENDING - PAL has yet to make a decision to whether to accept or
 123  * deny.
 124  *
 125  * FIXME: further target states TBD.
 126  */
 127 enum uwb_rsv_state {
 128         UWB_RSV_STATE_NONE = 0,
 129         UWB_RSV_STATE_O_INITIATED,
 130         UWB_RSV_STATE_O_PENDING,
 131         UWB_RSV_STATE_O_MODIFIED,
 132         UWB_RSV_STATE_O_ESTABLISHED,
 133         UWB_RSV_STATE_O_TO_BE_MOVED,
 134         UWB_RSV_STATE_O_MOVE_EXPANDING,
 135         UWB_RSV_STATE_O_MOVE_COMBINING,
 136         UWB_RSV_STATE_O_MOVE_REDUCING,
 137         UWB_RSV_STATE_T_ACCEPTED,
 138         UWB_RSV_STATE_T_DENIED,
 139         UWB_RSV_STATE_T_CONFLICT,
 140         UWB_RSV_STATE_T_PENDING,
 141         UWB_RSV_STATE_T_EXPANDING_ACCEPTED,
 142         UWB_RSV_STATE_T_EXPANDING_CONFLICT,
 143         UWB_RSV_STATE_T_EXPANDING_PENDING,
 144         UWB_RSV_STATE_T_EXPANDING_DENIED,
 145         UWB_RSV_STATE_T_RESIZED,
 146 
 147         UWB_RSV_STATE_LAST,
 148 };
 149 
 150 enum uwb_rsv_target_type {
 151         UWB_RSV_TARGET_DEV,
 152         UWB_RSV_TARGET_DEVADDR,
 153 };
 154 
 155 /**
 156  * struct uwb_rsv_target - the target of a reservation.
 157  *
 158  * Reservations unicast and targeted at a single device
 159  * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
 160  * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
 161  */
 162 struct uwb_rsv_target {
 163         enum uwb_rsv_target_type type;
 164         union {
 165                 struct uwb_dev *dev;
 166                 struct uwb_dev_addr devaddr;
 167         };
 168 };
 169 
 170 struct uwb_rsv_move {
 171         struct uwb_mas_bm final_mas;
 172         struct uwb_ie_drp *companion_drp_ie;
 173         struct uwb_mas_bm companion_mas;
 174 };
 175 
 176 /*
 177  * Number of streams reserved for reservations targeted at DevAddrs.
 178  */
 179 #define UWB_NUM_GLOBAL_STREAMS 1
 180 
 181 typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
 182 
 183 /**
 184  * struct uwb_rsv - a DRP reservation
 185  *
 186  * Data structure management:
 187  *
 188  * @rc:             the radio controller this reservation is for
 189  *                  (as target or owner)
 190  * @rc_node:        a list node for the RC
 191  * @pal_node:       a list node for the PAL
 192  *
 193  * Owner and target parameters:
 194  *
 195  * @owner:          the UWB device owning this reservation
 196  * @target:         the target UWB device
 197  * @type:           reservation type
 198  *
 199  * Owner parameters:
 200  *
 201  * @max_mas:        maxiumum number of MAS
 202  * @min_mas:        minimum number of MAS
 203  * @sparsity:       owner selected sparsity
 204  * @is_multicast:   true iff multicast
 205  *
 206  * @callback:       callback function when the reservation completes
 207  * @pal_priv:       private data for the PAL making the reservation
 208  *
 209  * Reservation status:
 210  *
 211  * @status:         negotiation status
 212  * @stream:         stream index allocated for this reservation
 213  * @tiebreaker:     conflict tiebreaker for this reservation
 214  * @mas:            reserved MAS
 215  * @drp_ie:         the DRP IE
 216  * @ie_valid:       true iff the DRP IE matches the reservation parameters
 217  *
 218  * DRP reservations are uniquely identified by the owner, target and
 219  * stream index.  However, when using a DevAddr as a target (e.g., for
 220  * a WUSB cluster reservation) the responses may be received from
 221  * devices with different DevAddrs.  In this case, reservations are
 222  * uniquely identified by just the stream index.  A number of stream
 223  * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
 224  */
 225 struct uwb_rsv {
 226         struct uwb_rc *rc;
 227         struct list_head rc_node;
 228         struct list_head pal_node;
 229         struct kref kref;
 230 
 231         struct uwb_dev *owner;
 232         struct uwb_rsv_target target;
 233         enum uwb_drp_type type;
 234         int max_mas;
 235         int min_mas;
 236         int max_interval;
 237         bool is_multicast;
 238 
 239         uwb_rsv_cb_f callback;
 240         void *pal_priv;
 241 
 242         enum uwb_rsv_state state;
 243         bool needs_release_companion_mas;
 244         u8 stream;
 245         u8 tiebreaker;
 246         struct uwb_mas_bm mas;
 247         struct uwb_ie_drp *drp_ie;
 248         struct uwb_rsv_move mv;
 249         bool ie_valid;
 250         struct timer_list timer;
 251         struct work_struct handle_timeout_work;
 252 };
 253 
 254 static const
 255 struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
 256 
 257 static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
 258 {
 259         bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
 260 }
 261 
 262 /**
 263  * struct uwb_drp_avail - a radio controller's view of MAS usage
 264  * @global:   MAS unused by neighbors (excluding reservations targeted
 265  *            or owned by the local radio controller) or the beaon period
 266  * @local:    MAS unused by local established reservations
 267  * @pending:  MAS unused by local pending reservations
 268  * @ie:       DRP Availability IE to be included in the beacon
 269  * @ie_valid: true iff @ie is valid and does not need to regenerated from
 270  *            @global and @local
 271  *
 272  * Each radio controller maintains a view of MAS usage or
 273  * availability. MAS available for a new reservation are determined
 274  * from the intersection of @global, @local, and @pending.
 275  *
 276  * The radio controller must transmit a DRP Availability IE that's the
 277  * intersection of @global and @local.
 278  *
 279  * A set bit indicates the MAS is unused and available.
 280  *
 281  * rc->rsvs_mutex should be held before accessing this data structure.
 282  *
 283  * [ECMA-368] section 17.4.3.
 284  */
 285 struct uwb_drp_avail {
 286         DECLARE_BITMAP(global, UWB_NUM_MAS);
 287         DECLARE_BITMAP(local, UWB_NUM_MAS);
 288         DECLARE_BITMAP(pending, UWB_NUM_MAS);
 289         struct uwb_ie_drp_avail ie;
 290         bool ie_valid;
 291 };
 292 
 293 struct uwb_drp_backoff_win {
 294         u8 window;
 295         u8 n;
 296         int total_expired;
 297         struct timer_list timer;
 298         bool can_reserve_extra_mases;
 299 };
 300 
 301 const char *uwb_rsv_state_str(enum uwb_rsv_state state);
 302 const char *uwb_rsv_type_str(enum uwb_drp_type type);
 303 
 304 struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
 305                                void *pal_priv);
 306 void uwb_rsv_destroy(struct uwb_rsv *rsv);
 307 
 308 int uwb_rsv_establish(struct uwb_rsv *rsv);
 309 int uwb_rsv_modify(struct uwb_rsv *rsv,
 310                    int max_mas, int min_mas, int sparsity);
 311 void uwb_rsv_terminate(struct uwb_rsv *rsv);
 312 
 313 void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
 314 
 315 void uwb_rsv_get_usable_mas(struct uwb_rsv *orig_rsv, struct uwb_mas_bm *mas);
 316 
 317 /**
 318  * Radio Control Interface instance
 319  *
 320  *
 321  * Life cycle rules: those of the UWB Device.
 322  *
 323  * @index:    an index number for this radio controller, as used in the
 324  *            device name.
 325  * @version:  version of protocol supported by this device
 326  * @priv:     Backend implementation; rw with uwb_dev.dev.sem taken.
 327  * @cmd:      Backend implementation to execute commands; rw and call
 328  *            only  with uwb_dev.dev.sem taken.
 329  * @reset:    Hardware reset of radio controller and any PAL controllers.
 330  * @filter:   Backend implementation to manipulate data to and from device
 331  *            to be compliant to specification assumed by driver (WHCI
 332  *            0.95).
 333  *
 334  *            uwb_dev.dev.mutex is used to execute commands and update
 335  *            the corresponding structures; can't use a spinlock
 336  *            because rc->cmd() can sleep.
 337  * @ies:         This is a dynamically allocated array cacheing the
 338  *               IEs (settable by the host) that the beacon of this
 339  *               radio controller is currently sending.
 340  *
 341  *               In reality, we store here the full command we set to
 342  *               the radio controller (which is basically a command
 343  *               prefix followed by all the IEs the beacon currently
 344  *               contains). This way we don't have to realloc and
 345  *               memcpy when setting it.
 346  *
 347  *               We set this up in uwb_rc_ie_setup(), where we alloc
 348  *               this struct, call get_ie() [so we know which IEs are
 349  *               currently being sent, if any].
 350  *
 351  * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
 352  *               amount used is given by sizeof(*ies) plus ies->wIELength
 353  *               (which is a little endian quantity all the time).
 354  * @ies_mutex:   protect the IE cache
 355  * @dbg:         information for the debug interface
 356  */
 357 struct uwb_rc {
 358         struct uwb_dev uwb_dev;
 359         int index;
 360         u16 version;
 361 
 362         struct module *owner;
 363         void *priv;
 364         int (*start)(struct uwb_rc *rc);
 365         void (*stop)(struct uwb_rc *rc);
 366         int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
 367         int (*reset)(struct uwb_rc *rc);
 368         int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
 369         int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
 370                             size_t *, size_t *);
 371 
 372         spinlock_t neh_lock;            /* protects neh_* and ctx_* */
 373         struct list_head neh_list;      /* Open NE handles */
 374         unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
 375         u8 ctx_roll;
 376 
 377         int beaconing;                  /* Beaconing state [channel number] */
 378         int beaconing_forced;
 379         int scanning;
 380         enum uwb_scan_type scan_type:3;
 381         unsigned ready:1;
 382         struct uwb_notifs_chain notifs_chain;
 383         struct uwb_beca uwb_beca;
 384 
 385         struct uwbd uwbd;
 386 
 387         struct uwb_drp_backoff_win bow;
 388         struct uwb_drp_avail drp_avail;
 389         struct list_head reservations;
 390         struct list_head cnflt_alien_list;
 391         struct uwb_mas_bm cnflt_alien_bitmap;
 392         struct mutex rsvs_mutex;
 393         spinlock_t rsvs_lock;
 394         struct workqueue_struct *rsv_workq;
 395 
 396         struct delayed_work rsv_update_work;
 397         struct delayed_work rsv_alien_bp_work;
 398         int set_drp_ie_pending;
 399         struct mutex ies_mutex;
 400         struct uwb_rc_cmd_set_ie *ies;
 401         size_t ies_capacity;
 402 
 403         struct list_head pals;
 404         int active_pals;
 405 
 406         struct uwb_dbg *dbg;
 407 };
 408 
 409 
 410 /**
 411  * struct uwb_pal - a UWB PAL
 412  * @name:    descriptive name for this PAL (wusbhc, wlp, etc.).
 413  * @device:  a device for the PAL.  Used to link the PAL and the radio
 414  *           controller in sysfs.
 415  * @rc:      the radio controller the PAL uses.
 416  * @channel_changed: called when the channel used by the radio changes.
 417  *           A channel of -1 means the channel has been stopped.
 418  * @new_rsv: called when a peer requests a reservation (may be NULL if
 419  *           the PAL cannot accept reservation requests).
 420  * @channel: channel being used by the PAL; 0 if the PAL isn't using
 421  *           the radio; -1 if the PAL wishes to use the radio but
 422  *           cannot.
 423  * @debugfs_dir: a debugfs directory which the PAL can use for its own
 424  *           debugfs files.
 425  *
 426  * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
 427  * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
 428  *
 429  * The PALs using a radio controller must register themselves to
 430  * permit the UWB stack to coordinate usage of the radio between the
 431  * various PALs or to allow PALs to response to certain requests from
 432  * peers.
 433  *
 434  * A struct uwb_pal should be embedded in a containing structure
 435  * belonging to the PAL and initialized with uwb_pal_init()).  Fields
 436  * should be set appropriately by the PAL before registering the PAL
 437  * with uwb_pal_register().
 438  */
 439 struct uwb_pal {
 440         struct list_head node;
 441         const char *name;
 442         struct device *device;
 443         struct uwb_rc *rc;
 444 
 445         void (*channel_changed)(struct uwb_pal *pal, int channel);
 446         void (*new_rsv)(struct uwb_pal *pal, struct uwb_rsv *rsv);
 447 
 448         int channel;
 449         struct dentry *debugfs_dir;
 450 };
 451 
 452 void uwb_pal_init(struct uwb_pal *pal);
 453 int uwb_pal_register(struct uwb_pal *pal);
 454 void uwb_pal_unregister(struct uwb_pal *pal);
 455 
 456 int uwb_radio_start(struct uwb_pal *pal);
 457 void uwb_radio_stop(struct uwb_pal *pal);
 458 
 459 /*
 460  * General public API
 461  *
 462  * This API can be used by UWB device drivers or by those implementing
 463  * UWB Radio Controllers
 464  */
 465 struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
 466                                        const struct uwb_dev_addr *devaddr);
 467 struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
 468 static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
 469 {
 470         get_device(&uwb_dev->dev);
 471 }
 472 static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
 473 {
 474         put_device(&uwb_dev->dev);
 475 }
 476 struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
 477 
 478 /**
 479  * Callback function for 'uwb_{dev,rc}_foreach()'.
 480  *
 481  * @dev:  Linux device instance
 482  *        'uwb_dev = container_of(dev, struct uwb_dev, dev)'
 483  * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
 484  *
 485  * @returns: 0 to continue the iterations, any other val to stop
 486  *           iterating and return the value to the caller of
 487  *           _foreach().
 488  */
 489 typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
 490 int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
 491 
 492 struct uwb_rc *uwb_rc_alloc(void);
 493 struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
 494 struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
 495 void uwb_rc_put(struct uwb_rc *rc);
 496 
 497 typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
 498                                 struct uwb_rceb *reply, ssize_t reply_size);
 499 
 500 int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
 501                      struct uwb_rccb *cmd, size_t cmd_size,
 502                      u8 expected_type, u16 expected_event,
 503                      uwb_rc_cmd_cb_f cb, void *arg);
 504 ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
 505                    struct uwb_rccb *cmd, size_t cmd_size,
 506                    struct uwb_rceb *reply, size_t reply_size);
 507 ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
 508                     struct uwb_rccb *cmd, size_t cmd_size,
 509                     u8 expected_type, u16 expected_event,
 510                     struct uwb_rceb **preply);
 511 
 512 size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
 513 
 514 int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
 515 int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
 516 int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
 517 int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
 518 int __uwb_mac_addr_assigned_check(struct device *, void *);
 519 int __uwb_dev_addr_assigned_check(struct device *, void *);
 520 
 521 /* Print in @buf a pretty repr of @addr */
 522 static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
 523                                         const struct uwb_dev_addr *addr)
 524 {
 525         return __uwb_addr_print(buf, buf_size, addr->data, 0);
 526 }
 527 
 528 /* Print in @buf a pretty repr of @addr */
 529 static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
 530                                         const struct uwb_mac_addr *addr)
 531 {
 532         return __uwb_addr_print(buf, buf_size, addr->data, 1);
 533 }
 534 
 535 /* @returns 0 if device addresses @addr2 and @addr1 are equal */
 536 static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
 537                                    const struct uwb_dev_addr *addr2)
 538 {
 539         return memcmp(addr1, addr2, sizeof(*addr1));
 540 }
 541 
 542 /* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
 543 static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
 544                                    const struct uwb_mac_addr *addr2)
 545 {
 546         return memcmp(addr1, addr2, sizeof(*addr1));
 547 }
 548 
 549 /* @returns !0 if a MAC @addr is a broadcast address */
 550 static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
 551 {
 552         struct uwb_mac_addr bcast = {
 553                 .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
 554         };
 555         return !uwb_mac_addr_cmp(addr, &bcast);
 556 }
 557 
 558 /* @returns !0 if a MAC @addr is all zeroes*/
 559 static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
 560 {
 561         struct uwb_mac_addr unset = {
 562                 .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
 563         };
 564         return !uwb_mac_addr_cmp(addr, &unset);
 565 }
 566 
 567 /* @returns !0 if the address is in use. */
 568 static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
 569                                                struct uwb_dev_addr *addr)
 570 {
 571         return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
 572 }
 573 
 574 /*
 575  * UWB Radio Controller API
 576  *
 577  * This API is used (in addition to the general API) to implement UWB
 578  * Radio Controllers.
 579  */
 580 void uwb_rc_init(struct uwb_rc *);
 581 int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
 582 void uwb_rc_rm(struct uwb_rc *);
 583 void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
 584 void uwb_rc_neh_error(struct uwb_rc *, int);
 585 void uwb_rc_reset_all(struct uwb_rc *rc);
 586 void uwb_rc_pre_reset(struct uwb_rc *rc);
 587 int uwb_rc_post_reset(struct uwb_rc *rc);
 588 
 589 /**
 590  * uwb_rsv_is_owner - is the owner of this reservation the RC?
 591  * @rsv: the reservation
 592  */
 593 static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
 594 {
 595         return rsv->owner == &rsv->rc->uwb_dev;
 596 }
 597 
 598 /**
 599  * enum uwb_notifs - UWB events that can be passed to any listeners
 600  * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
 601  * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
 602  *
 603  * Higher layers can register callback functions with the radio
 604  * controller using uwb_notifs_register(). The radio controller
 605  * maintains a list of all registered handlers and will notify all
 606  * nodes when an event occurs.
 607  */
 608 enum uwb_notifs {
 609         UWB_NOTIF_ONAIR,
 610         UWB_NOTIF_OFFAIR,
 611 };
 612 
 613 /* Callback function registered with UWB */
 614 struct uwb_notifs_handler {
 615         struct list_head list_node;
 616         void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
 617         void *data;
 618 };
 619 
 620 int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
 621 int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
 622 
 623 
 624 /**
 625  * UWB radio controller Event Size Entry (for creating entry tables)
 626  *
 627  * WUSB and WHCI define events and notifications, and they might have
 628  * fixed or variable size.
 629  *
 630  * Each event/notification has a size which is not necessarily known
 631  * in advance based on the event code. As well, vendor specific
 632  * events/notifications will have a size impossible to determine
 633  * unless we know about the device's specific details.
 634  *
 635  * It was way too smart of the spec writers not to think that it would
 636  * be impossible for a generic driver to skip over vendor specific
 637  * events/notifications if there are no LENGTH fields in the HEADER of
 638  * each message...the transaction size cannot be counted on as the
 639  * spec does not forbid to pack more than one event in a single
 640  * transaction.
 641  *
 642  * Thus, we guess sizes with tables (or for events, when you know the
 643  * size ahead of time you can use uwb_rc_neh_extra_size*()). We
 644  * register tables with the known events and their sizes, and then we
 645  * traverse those tables. For those with variable length, we provide a
 646  * way to lookup the size inside the event/notification's
 647  * payload. This allows device-specific event size tables to be
 648  * registered.
 649  *
 650  * @size:   Size of the payload
 651  *
 652  * @offset: if != 0, at offset @offset-1 starts a field with a length
 653  *          that has to be added to @size. The format of the field is
 654  *          given by @type.
 655  *
 656  * @type:   Type and length of the offset field. Most common is LE 16
 657  *          bits (that's why that is zero); others are there mostly to
 658  *          cover for bugs and weirdos.
 659  */
 660 struct uwb_est_entry {
 661         size_t size;
 662         unsigned offset;
 663         enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
 664 };
 665 
 666 int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
 667                      const struct uwb_est_entry *, size_t entries);
 668 int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
 669                        const struct uwb_est_entry *, size_t entries);
 670 ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
 671                           size_t len);
 672 
 673 /* -- Misc */
 674 
 675 enum {
 676         EDC_MAX_ERRORS = 10,
 677         EDC_ERROR_TIMEFRAME = HZ,
 678 };
 679 
 680 /* error density counter */
 681 struct edc {
 682         unsigned long timestart;
 683         u16 errorcount;
 684 };
 685 
 686 static inline
 687 void edc_init(struct edc *edc)
 688 {
 689         edc->timestart = jiffies;
 690 }
 691 
 692 /* Called when an error occurred.
 693  * This is way to determine if the number of acceptable errors per time
 694  * period has been exceeded. It is not accurate as there are cases in which
 695  * this scheme will not work, for example if there are periodic occurrences
 696  * of errors that straddle updates to the start time. This scheme is
 697  * sufficient for our usage.
 698  *
 699  * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
 700  */
 701 static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
 702 {
 703         unsigned long now;
 704 
 705         now = jiffies;
 706         if (now - err_hist->timestart > timeframe) {
 707                 err_hist->errorcount = 1;
 708                 err_hist->timestart = now;
 709         } else if (++err_hist->errorcount > max_err) {
 710                         err_hist->errorcount = 0;
 711                         err_hist->timestart = now;
 712                         return 1;
 713         }
 714         return 0;
 715 }
 716 
 717 
 718 /* Information Element handling */
 719 
 720 struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
 721 int uwb_rc_ie_add(struct uwb_rc *uwb_rc, const struct uwb_ie_hdr *ies, size_t size);
 722 int uwb_rc_ie_rm(struct uwb_rc *uwb_rc, enum uwb_ie element_id);
 723 
 724 /*
 725  * Transmission statistics
 726  *
 727  * UWB uses LQI and RSSI (one byte values) for reporting radio signal
 728  * strength and line quality indication. We do quick and dirty
 729  * averages of those. They are signed values, btw.
 730  *
 731  * For 8 bit quantities, we keep the min, the max, an accumulator
 732  * (@sigma) and a # of samples. When @samples gets to 255, we compute
 733  * the average (@sigma / @samples), place it in @sigma and reset
 734  * @samples to 1 (so we use it as the first sample).
 735  *
 736  * Now, statistically speaking, probably I am kicking the kidneys of
 737  * some books I have in my shelves collecting dust, but I just want to
 738  * get an approx, not the Nobel.
 739  *
 740  * LOCKING: there is no locking per se, but we try to keep a lockless
 741  * schema. Only _add_samples() modifies the values--as long as you
 742  * have other locking on top that makes sure that no two calls of
 743  * _add_sample() happen at the same time, then we are fine. Now, for
 744  * resetting the values we just set @samples to 0 and that makes the
 745  * next _add_sample() to start with defaults. Reading the values in
 746  * _show() currently can race, so you need to make sure the calls are
 747  * under the same lock that protects calls to _add_sample(). FIXME:
 748  * currently unlocked (It is not ultraprecise but does the trick. Bite
 749  * me).
 750  */
 751 struct stats {
 752         s8 min, max;
 753         s16 sigma;
 754         atomic_t samples;
 755 };
 756 
 757 static inline
 758 void stats_init(struct stats *stats)
 759 {
 760         atomic_set(&stats->samples, 0);
 761         wmb();
 762 }
 763 
 764 static inline
 765 void stats_add_sample(struct stats *stats, s8 sample)
 766 {
 767         s8 min, max;
 768         s16 sigma;
 769         unsigned samples = atomic_read(&stats->samples);
 770         if (samples == 0) {     /* it was zero before, so we initialize */
 771                 min = 127;
 772                 max = -128;
 773                 sigma = 0;
 774         } else {
 775                 min = stats->min;
 776                 max = stats->max;
 777                 sigma = stats->sigma;
 778         }
 779 
 780         if (sample < min)       /* compute new values */
 781                 min = sample;
 782         else if (sample > max)
 783                 max = sample;
 784         sigma += sample;
 785 
 786         stats->min = min;       /* commit */
 787         stats->max = max;
 788         stats->sigma = sigma;
 789         if (atomic_add_return(1, &stats->samples) > 255) {
 790                 /* wrapped around! reset */
 791                 stats->sigma = sigma / 256;
 792                 atomic_set(&stats->samples, 1);
 793         }
 794 }
 795 
 796 static inline ssize_t stats_show(struct stats *stats, char *buf)
 797 {
 798         int min, max, avg;
 799         int samples = atomic_read(&stats->samples);
 800         if (samples == 0)
 801                 min = max = avg = 0;
 802         else {
 803                 min = stats->min;
 804                 max = stats->max;
 805                 avg = stats->sigma / samples;
 806         }
 807         return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
 808 }
 809 
 810 static inline ssize_t stats_store(struct stats *stats, const char *buf,
 811                                   size_t size)
 812 {
 813         stats_init(stats);
 814         return size;
 815 }
 816 
 817 #endif /* #ifndef __LINUX__UWB_H__ */

/* [<][>][^][v][top][bottom][index][help] */