root/drivers/ide/pmac.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. kauai_lookup_timing
  2. pmac_ide_apply_timings
  3. pmac_ide_kauai_apply_timings
  4. pmac_ide_do_update_timings
  5. pmac_dev_select
  6. pmac_kauai_dev_select
  7. pmac_exec_command
  8. pmac_write_devctl
  9. pmac_ide_set_pio_mode
  10. set_timings_udma_ata4
  11. set_timings_udma_ata6
  12. set_timings_udma_shasta
  13. set_timings_mdma
  14. pmac_ide_set_dma_mode
  15. sanitize_timings
  16. on_media_bay
  17. pmac_ide_do_suspend
  18. pmac_ide_do_resume
  19. pmac_ide_cable_detect
  20. pmac_ide_init_dev
  21. pmac_ide_setup_device
  22. pmac_ide_init_ports
  23. pmac_ide_macio_attach
  24. pmac_ide_macio_suspend
  25. pmac_ide_macio_resume
  26. pmac_ide_pci_attach
  27. pmac_ide_pci_suspend
  28. pmac_ide_pci_resume
  29. pmac_ide_macio_mb_event
  30. pmac_ide_probe
  31. pmac_ide_build_dmatable
  32. pmac_ide_dma_setup
  33. pmac_ide_dma_start
  34. pmac_ide_dma_end
  35. pmac_ide_dma_test_irq
  36. pmac_ide_dma_host_set
  37. pmac_ide_dma_lost_irq
  38. pmac_ide_init_dma

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Support for IDE interfaces on PowerMacs.
   4  *
   5  * These IDE interfaces are memory-mapped and have a DBDMA channel
   6  * for doing DMA.
   7  *
   8  *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
   9  *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
  10  *
  11  * Some code taken from drivers/ide/ide-dma.c:
  12  *
  13  *  Copyright (c) 1995-1998  Mark Lord
  14  *
  15  * TODO: - Use pre-calculated (kauai) timing tables all the time and
  16  * get rid of the "rounded" tables used previously, so we have the
  17  * same table format for all controllers and can then just have one
  18  * big table
  19  */
  20 #include <linux/types.h>
  21 #include <linux/kernel.h>
  22 #include <linux/init.h>
  23 #include <linux/delay.h>
  24 #include <linux/ide.h>
  25 #include <linux/notifier.h>
  26 #include <linux/module.h>
  27 #include <linux/reboot.h>
  28 #include <linux/pci.h>
  29 #include <linux/adb.h>
  30 #include <linux/pmu.h>
  31 #include <linux/scatterlist.h>
  32 #include <linux/slab.h>
  33 
  34 #include <asm/prom.h>
  35 #include <asm/io.h>
  36 #include <asm/dbdma.h>
  37 #include <asm/ide.h>
  38 #include <asm/machdep.h>
  39 #include <asm/pmac_feature.h>
  40 #include <asm/sections.h>
  41 #include <asm/irq.h>
  42 #include <asm/mediabay.h>
  43 
  44 #define DRV_NAME "ide-pmac"
  45 
  46 #undef IDE_PMAC_DEBUG
  47 
  48 #define DMA_WAIT_TIMEOUT        50
  49 
  50 typedef struct pmac_ide_hwif {
  51         unsigned long                   regbase;
  52         int                             irq;
  53         int                             kind;
  54         int                             aapl_bus_id;
  55         unsigned                        broken_dma : 1;
  56         unsigned                        broken_dma_warn : 1;
  57         struct device_node*             node;
  58         struct macio_dev                *mdev;
  59         u32                             timings[4];
  60         volatile u32 __iomem *          *kauai_fcr;
  61         ide_hwif_t                      *hwif;
  62 
  63         /* Those fields are duplicating what is in hwif. We currently
  64          * can't use the hwif ones because of some assumptions that are
  65          * beeing done by the generic code about the kind of dma controller
  66          * and format of the dma table. This will have to be fixed though.
  67          */
  68         volatile struct dbdma_regs __iomem *    dma_regs;
  69         struct dbdma_cmd*               dma_table_cpu;
  70 } pmac_ide_hwif_t;
  71 
  72 enum {
  73         controller_ohare,       /* OHare based */
  74         controller_heathrow,    /* Heathrow/Paddington */
  75         controller_kl_ata3,     /* KeyLargo ATA-3 */
  76         controller_kl_ata4,     /* KeyLargo ATA-4 */
  77         controller_un_ata6,     /* UniNorth2 ATA-6 */
  78         controller_k2_ata6,     /* K2 ATA-6 */
  79         controller_sh_ata6,     /* Shasta ATA-6 */
  80 };
  81 
  82 static const char* model_name[] = {
  83         "OHare ATA",            /* OHare based */
  84         "Heathrow ATA",         /* Heathrow/Paddington */
  85         "KeyLargo ATA-3",       /* KeyLargo ATA-3 (MDMA only) */
  86         "KeyLargo ATA-4",       /* KeyLargo ATA-4 (UDMA/66) */
  87         "UniNorth ATA-6",       /* UniNorth2 ATA-6 (UDMA/100) */
  88         "K2 ATA-6",             /* K2 ATA-6 (UDMA/100) */
  89         "Shasta ATA-6",         /* Shasta ATA-6 (UDMA/133) */
  90 };
  91 
  92 /*
  93  * Extra registers, both 32-bit little-endian
  94  */
  95 #define IDE_TIMING_CONFIG       0x200
  96 #define IDE_INTERRUPT           0x300
  97 
  98 /* Kauai (U2) ATA has different register setup */
  99 #define IDE_KAUAI_PIO_CONFIG    0x200
 100 #define IDE_KAUAI_ULTRA_CONFIG  0x210
 101 #define IDE_KAUAI_POLL_CONFIG   0x220
 102 
 103 /*
 104  * Timing configuration register definitions
 105  */
 106 
 107 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
 108 #define SYSCLK_TICKS(t)         (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
 109 #define SYSCLK_TICKS_66(t)      (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
 110 #define IDE_SYSCLK_NS           30      /* 33Mhz cell */
 111 #define IDE_SYSCLK_66_NS        15      /* 66Mhz cell */
 112 
 113 /* 133Mhz cell, found in shasta.
 114  * See comments about 100 Mhz Uninorth 2...
 115  * Note that PIO_MASK and MDMA_MASK seem to overlap
 116  */
 117 #define TR_133_PIOREG_PIO_MASK          0xff000fff
 118 #define TR_133_PIOREG_MDMA_MASK         0x00fff800
 119 #define TR_133_UDMAREG_UDMA_MASK        0x0003ffff
 120 #define TR_133_UDMAREG_UDMA_EN          0x00000001
 121 
 122 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
 123  * this one yet, it appears as a pci device (106b/0033) on uninorth
 124  * internal PCI bus and it's clock is controlled like gem or fw. It
 125  * appears to be an evolution of keylargo ATA4 with a timing register
 126  * extended to 2 32bits registers and a similar DBDMA channel. Other
 127  * registers seem to exist but I can't tell much about them.
 128  * 
 129  * So far, I'm using pre-calculated tables for this extracted from
 130  * the values used by the MacOS X driver.
 131  * 
 132  * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
 133  * register controls the UDMA timings. At least, it seems bit 0
 134  * of this one enables UDMA vs. MDMA, and bits 4..7 are the
 135  * cycle time in units of 10ns. Bits 8..15 are used by I don't
 136  * know their meaning yet
 137  */
 138 #define TR_100_PIOREG_PIO_MASK          0xff000fff
 139 #define TR_100_PIOREG_MDMA_MASK         0x00fff000
 140 #define TR_100_UDMAREG_UDMA_MASK        0x0000ffff
 141 #define TR_100_UDMAREG_UDMA_EN          0x00000001
 142 
 143 
 144 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
 145  * 40 connector cable and to 4 on 80 connector one.
 146  * Clock unit is 15ns (66Mhz)
 147  * 
 148  * 3 Values can be programmed:
 149  *  - Write data setup, which appears to match the cycle time. They
 150  *    also call it DIOW setup.
 151  *  - Ready to pause time (from spec)
 152  *  - Address setup. That one is weird. I don't see where exactly
 153  *    it fits in UDMA cycles, I got it's name from an obscure piece
 154  *    of commented out code in Darwin. They leave it to 0, we do as
 155  *    well, despite a comment that would lead to think it has a
 156  *    min value of 45ns.
 157  * Apple also add 60ns to the write data setup (or cycle time ?) on
 158  * reads.
 159  */
 160 #define TR_66_UDMA_MASK                 0xfff00000
 161 #define TR_66_UDMA_EN                   0x00100000 /* Enable Ultra mode for DMA */
 162 #define TR_66_UDMA_ADDRSETUP_MASK       0xe0000000 /* Address setup */
 163 #define TR_66_UDMA_ADDRSETUP_SHIFT      29
 164 #define TR_66_UDMA_RDY2PAUS_MASK        0x1e000000 /* Ready 2 pause time */
 165 #define TR_66_UDMA_RDY2PAUS_SHIFT       25
 166 #define TR_66_UDMA_WRDATASETUP_MASK     0x01e00000 /* Write data setup time */
 167 #define TR_66_UDMA_WRDATASETUP_SHIFT    21
 168 #define TR_66_MDMA_MASK                 0x000ffc00
 169 #define TR_66_MDMA_RECOVERY_MASK        0x000f8000
 170 #define TR_66_MDMA_RECOVERY_SHIFT       15
 171 #define TR_66_MDMA_ACCESS_MASK          0x00007c00
 172 #define TR_66_MDMA_ACCESS_SHIFT         10
 173 #define TR_66_PIO_MASK                  0x000003ff
 174 #define TR_66_PIO_RECOVERY_MASK         0x000003e0
 175 #define TR_66_PIO_RECOVERY_SHIFT        5
 176 #define TR_66_PIO_ACCESS_MASK           0x0000001f
 177 #define TR_66_PIO_ACCESS_SHIFT          0
 178 
 179 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
 180  * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
 181  * 
 182  * The access time and recovery time can be programmed. Some older
 183  * Darwin code base limit OHare to 150ns cycle time. I decided to do
 184  * the same here fore safety against broken old hardware ;)
 185  * The HalfTick bit, when set, adds half a clock (15ns) to the access
 186  * time and removes one from recovery. It's not supported on KeyLargo
 187  * implementation afaik. The E bit appears to be set for PIO mode 0 and
 188  * is used to reach long timings used in this mode.
 189  */
 190 #define TR_33_MDMA_MASK                 0x003ff800
 191 #define TR_33_MDMA_RECOVERY_MASK        0x001f0000
 192 #define TR_33_MDMA_RECOVERY_SHIFT       16
 193 #define TR_33_MDMA_ACCESS_MASK          0x0000f800
 194 #define TR_33_MDMA_ACCESS_SHIFT         11
 195 #define TR_33_MDMA_HALFTICK             0x00200000
 196 #define TR_33_PIO_MASK                  0x000007ff
 197 #define TR_33_PIO_E                     0x00000400
 198 #define TR_33_PIO_RECOVERY_MASK         0x000003e0
 199 #define TR_33_PIO_RECOVERY_SHIFT        5
 200 #define TR_33_PIO_ACCESS_MASK           0x0000001f
 201 #define TR_33_PIO_ACCESS_SHIFT          0
 202 
 203 /*
 204  * Interrupt register definitions
 205  */
 206 #define IDE_INTR_DMA                    0x80000000
 207 #define IDE_INTR_DEVICE                 0x40000000
 208 
 209 /*
 210  * FCR Register on Kauai. Not sure what bit 0x4 is  ...
 211  */
 212 #define KAUAI_FCR_UATA_MAGIC            0x00000004
 213 #define KAUAI_FCR_UATA_RESET_N          0x00000002
 214 #define KAUAI_FCR_UATA_ENABLE           0x00000001
 215 
 216 /* Rounded Multiword DMA timings
 217  * 
 218  * I gave up finding a generic formula for all controller
 219  * types and instead, built tables based on timing values
 220  * used by Apple in Darwin's implementation.
 221  */
 222 struct mdma_timings_t {
 223         int     accessTime;
 224         int     recoveryTime;
 225         int     cycleTime;
 226 };
 227 
 228 struct mdma_timings_t mdma_timings_33[] =
 229 {
 230     { 240, 240, 480 },
 231     { 180, 180, 360 },
 232     { 135, 135, 270 },
 233     { 120, 120, 240 },
 234     { 105, 105, 210 },
 235     {  90,  90, 180 },
 236     {  75,  75, 150 },
 237     {  75,  45, 120 },
 238     {   0,   0,   0 }
 239 };
 240 
 241 struct mdma_timings_t mdma_timings_33k[] =
 242 {
 243     { 240, 240, 480 },
 244     { 180, 180, 360 },
 245     { 150, 150, 300 },
 246     { 120, 120, 240 },
 247     {  90, 120, 210 },
 248     {  90,  90, 180 },
 249     {  90,  60, 150 },
 250     {  90,  30, 120 },
 251     {   0,   0,   0 }
 252 };
 253 
 254 struct mdma_timings_t mdma_timings_66[] =
 255 {
 256     { 240, 240, 480 },
 257     { 180, 180, 360 },
 258     { 135, 135, 270 },
 259     { 120, 120, 240 },
 260     { 105, 105, 210 },
 261     {  90,  90, 180 },
 262     {  90,  75, 165 },
 263     {  75,  45, 120 },
 264     {   0,   0,   0 }
 265 };
 266 
 267 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
 268 struct {
 269         int     addrSetup; /* ??? */
 270         int     rdy2pause;
 271         int     wrDataSetup;
 272 } kl66_udma_timings[] =
 273 {
 274     {   0, 180,  120 }, /* Mode 0 */
 275     {   0, 150,  90 },  /*      1 */
 276     {   0, 120,  60 },  /*      2 */
 277     {   0, 90,   45 },  /*      3 */
 278     {   0, 90,   30 }   /*      4 */
 279 };
 280 
 281 /* UniNorth 2 ATA/100 timings */
 282 struct kauai_timing {
 283         int     cycle_time;
 284         u32     timing_reg;
 285 };
 286 
 287 static struct kauai_timing      kauai_pio_timings[] =
 288 {
 289         { 930   , 0x08000fff },
 290         { 600   , 0x08000a92 },
 291         { 383   , 0x0800060f },
 292         { 360   , 0x08000492 },
 293         { 330   , 0x0800048f },
 294         { 300   , 0x080003cf },
 295         { 270   , 0x080003cc },
 296         { 240   , 0x0800038b },
 297         { 239   , 0x0800030c },
 298         { 180   , 0x05000249 },
 299         { 120   , 0x04000148 },
 300         { 0     , 0 },
 301 };
 302 
 303 static struct kauai_timing      kauai_mdma_timings[] =
 304 {
 305         { 1260  , 0x00fff000 },
 306         { 480   , 0x00618000 },
 307         { 360   , 0x00492000 },
 308         { 270   , 0x0038e000 },
 309         { 240   , 0x0030c000 },
 310         { 210   , 0x002cb000 },
 311         { 180   , 0x00249000 },
 312         { 150   , 0x00209000 },
 313         { 120   , 0x00148000 },
 314         { 0     , 0 },
 315 };
 316 
 317 static struct kauai_timing      kauai_udma_timings[] =
 318 {
 319         { 120   , 0x000070c0 },
 320         { 90    , 0x00005d80 },
 321         { 60    , 0x00004a60 },
 322         { 45    , 0x00003a50 },
 323         { 30    , 0x00002a30 },
 324         { 20    , 0x00002921 },
 325         { 0     , 0 },
 326 };
 327 
 328 static struct kauai_timing      shasta_pio_timings[] =
 329 {
 330         { 930   , 0x08000fff },
 331         { 600   , 0x0A000c97 },
 332         { 383   , 0x07000712 },
 333         { 360   , 0x040003cd },
 334         { 330   , 0x040003cd },
 335         { 300   , 0x040003cd },
 336         { 270   , 0x040003cd },
 337         { 240   , 0x040003cd },
 338         { 239   , 0x040003cd },
 339         { 180   , 0x0400028b },
 340         { 120   , 0x0400010a },
 341         { 0     , 0 },
 342 };
 343 
 344 static struct kauai_timing      shasta_mdma_timings[] =
 345 {
 346         { 1260  , 0x00fff000 },
 347         { 480   , 0x00820800 },
 348         { 360   , 0x00820800 },
 349         { 270   , 0x00820800 },
 350         { 240   , 0x00820800 },
 351         { 210   , 0x00820800 },
 352         { 180   , 0x00820800 },
 353         { 150   , 0x0028b000 },
 354         { 120   , 0x001ca000 },
 355         { 0     , 0 },
 356 };
 357 
 358 static struct kauai_timing      shasta_udma133_timings[] =
 359 {
 360         { 120   , 0x00035901, },
 361         { 90    , 0x000348b1, },
 362         { 60    , 0x00033881, },
 363         { 45    , 0x00033861, },
 364         { 30    , 0x00033841, },
 365         { 20    , 0x00033031, },
 366         { 15    , 0x00033021, },
 367         { 0     , 0 },
 368 };
 369 
 370 
 371 static inline u32
 372 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
 373 {
 374         int i;
 375         
 376         for (i=0; table[i].cycle_time; i++)
 377                 if (cycle_time > table[i+1].cycle_time)
 378                         return table[i].timing_reg;
 379         BUG();
 380         return 0;
 381 }
 382 
 383 /* allow up to 256 DBDMA commands per xfer */
 384 #define MAX_DCMDS               256
 385 
 386 /* 
 387  * Wait 1s for disk to answer on IDE bus after a hard reset
 388  * of the device (via GPIO/FCR).
 389  * 
 390  * Some devices seem to "pollute" the bus even after dropping
 391  * the BSY bit (typically some combo drives slave on the UDMA
 392  * bus) after a hard reset. Since we hard reset all drives on
 393  * KeyLargo ATA66, we have to keep that delay around. I may end
 394  * up not hard resetting anymore on these and keep the delay only
 395  * for older interfaces instead (we have to reset when coming
 396  * from MacOS...) --BenH. 
 397  */
 398 #define IDE_WAKEUP_DELAY        (1*HZ)
 399 
 400 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
 401 
 402 #define PMAC_IDE_REG(x) \
 403         ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
 404 
 405 /*
 406  * Apply the timings of the proper unit (master/slave) to the shared
 407  * timing register when selecting that unit. This version is for
 408  * ASICs with a single timing register
 409  */
 410 static void pmac_ide_apply_timings(ide_drive_t *drive)
 411 {
 412         ide_hwif_t *hwif = drive->hwif;
 413         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 414 
 415         if (drive->dn & 1)
 416                 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
 417         else
 418                 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
 419         (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
 420 }
 421 
 422 /*
 423  * Apply the timings of the proper unit (master/slave) to the shared
 424  * timing register when selecting that unit. This version is for
 425  * ASICs with a dual timing register (Kauai)
 426  */
 427 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
 428 {
 429         ide_hwif_t *hwif = drive->hwif;
 430         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 431 
 432         if (drive->dn & 1) {
 433                 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 434                 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
 435         } else {
 436                 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 437                 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
 438         }
 439         (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 440 }
 441 
 442 /*
 443  * Force an update of controller timing values for a given drive
 444  */
 445 static void
 446 pmac_ide_do_update_timings(ide_drive_t *drive)
 447 {
 448         ide_hwif_t *hwif = drive->hwif;
 449         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 450 
 451         if (pmif->kind == controller_sh_ata6 ||
 452             pmif->kind == controller_un_ata6 ||
 453             pmif->kind == controller_k2_ata6)
 454                 pmac_ide_kauai_apply_timings(drive);
 455         else
 456                 pmac_ide_apply_timings(drive);
 457 }
 458 
 459 static void pmac_dev_select(ide_drive_t *drive)
 460 {
 461         pmac_ide_apply_timings(drive);
 462 
 463         writeb(drive->select | ATA_DEVICE_OBS,
 464                (void __iomem *)drive->hwif->io_ports.device_addr);
 465 }
 466 
 467 static void pmac_kauai_dev_select(ide_drive_t *drive)
 468 {
 469         pmac_ide_kauai_apply_timings(drive);
 470 
 471         writeb(drive->select | ATA_DEVICE_OBS,
 472                (void __iomem *)drive->hwif->io_ports.device_addr);
 473 }
 474 
 475 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
 476 {
 477         writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
 478         (void)readl((void __iomem *)(hwif->io_ports.data_addr
 479                                      + IDE_TIMING_CONFIG));
 480 }
 481 
 482 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
 483 {
 484         writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
 485         (void)readl((void __iomem *)(hwif->io_ports.data_addr
 486                                      + IDE_TIMING_CONFIG));
 487 }
 488 
 489 /*
 490  * Old tuning functions (called on hdparm -p), sets up drive PIO timings
 491  */
 492 static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
 493 {
 494         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 495         const u8 pio = drive->pio_mode - XFER_PIO_0;
 496         struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
 497         u32 *timings, t;
 498         unsigned accessTicks, recTicks;
 499         unsigned accessTime, recTime;
 500         unsigned int cycle_time;
 501 
 502         /* which drive is it ? */
 503         timings = &pmif->timings[drive->dn & 1];
 504         t = *timings;
 505 
 506         cycle_time = ide_pio_cycle_time(drive, pio);
 507 
 508         switch (pmif->kind) {
 509         case controller_sh_ata6: {
 510                 /* 133Mhz cell */
 511                 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
 512                 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
 513                 break;
 514                 }
 515         case controller_un_ata6:
 516         case controller_k2_ata6: {
 517                 /* 100Mhz cell */
 518                 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
 519                 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
 520                 break;
 521                 }
 522         case controller_kl_ata4:
 523                 /* 66Mhz cell */
 524                 recTime = cycle_time - tim->active - tim->setup;
 525                 recTime = max(recTime, 150U);
 526                 accessTime = tim->active;
 527                 accessTime = max(accessTime, 150U);
 528                 accessTicks = SYSCLK_TICKS_66(accessTime);
 529                 accessTicks = min(accessTicks, 0x1fU);
 530                 recTicks = SYSCLK_TICKS_66(recTime);
 531                 recTicks = min(recTicks, 0x1fU);
 532                 t = (t & ~TR_66_PIO_MASK) |
 533                         (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
 534                         (recTicks << TR_66_PIO_RECOVERY_SHIFT);
 535                 break;
 536         default: {
 537                 /* 33Mhz cell */
 538                 int ebit = 0;
 539                 recTime = cycle_time - tim->active - tim->setup;
 540                 recTime = max(recTime, 150U);
 541                 accessTime = tim->active;
 542                 accessTime = max(accessTime, 150U);
 543                 accessTicks = SYSCLK_TICKS(accessTime);
 544                 accessTicks = min(accessTicks, 0x1fU);
 545                 accessTicks = max(accessTicks, 4U);
 546                 recTicks = SYSCLK_TICKS(recTime);
 547                 recTicks = min(recTicks, 0x1fU);
 548                 recTicks = max(recTicks, 5U) - 4;
 549                 if (recTicks > 9) {
 550                         recTicks--; /* guess, but it's only for PIO0, so... */
 551                         ebit = 1;
 552                 }
 553                 t = (t & ~TR_33_PIO_MASK) |
 554                                 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
 555                                 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
 556                 if (ebit)
 557                         t |= TR_33_PIO_E;
 558                 break;
 559                 }
 560         }
 561 
 562 #ifdef IDE_PMAC_DEBUG
 563         printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
 564                 drive->name, pio,  *timings);
 565 #endif  
 566 
 567         *timings = t;
 568         pmac_ide_do_update_timings(drive);
 569 }
 570 
 571 /*
 572  * Calculate KeyLargo ATA/66 UDMA timings
 573  */
 574 static int
 575 set_timings_udma_ata4(u32 *timings, u8 speed)
 576 {
 577         unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
 578 
 579         if (speed > XFER_UDMA_4)
 580                 return 1;
 581 
 582         rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
 583         wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
 584         addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
 585 
 586         *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
 587                         (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | 
 588                         (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
 589                         (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
 590                         TR_66_UDMA_EN;
 591 #ifdef IDE_PMAC_DEBUG
 592         printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
 593                 speed & 0xf,  *timings);
 594 #endif  
 595 
 596         return 0;
 597 }
 598 
 599 /*
 600  * Calculate Kauai ATA/100 UDMA timings
 601  */
 602 static int
 603 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
 604 {
 605         struct ide_timing *t = ide_timing_find_mode(speed);
 606         u32 tr;
 607 
 608         if (speed > XFER_UDMA_5 || t == NULL)
 609                 return 1;
 610         tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
 611         *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
 612         *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
 613 
 614         return 0;
 615 }
 616 
 617 /*
 618  * Calculate Shasta ATA/133 UDMA timings
 619  */
 620 static int
 621 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
 622 {
 623         struct ide_timing *t = ide_timing_find_mode(speed);
 624         u32 tr;
 625 
 626         if (speed > XFER_UDMA_6 || t == NULL)
 627                 return 1;
 628         tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
 629         *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
 630         *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
 631 
 632         return 0;
 633 }
 634 
 635 /*
 636  * Calculate MDMA timings for all cells
 637  */
 638 static void
 639 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
 640                         u8 speed)
 641 {
 642         u16 *id = drive->id;
 643         int cycleTime, accessTime = 0, recTime = 0;
 644         unsigned accessTicks, recTicks;
 645         struct mdma_timings_t* tm = NULL;
 646         int i;
 647 
 648         /* Get default cycle time for mode */
 649         switch(speed & 0xf) {
 650                 case 0: cycleTime = 480; break;
 651                 case 1: cycleTime = 150; break;
 652                 case 2: cycleTime = 120; break;
 653                 default:
 654                         BUG();
 655                         break;
 656         }
 657 
 658         /* Check if drive provides explicit DMA cycle time */
 659         if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
 660                 cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
 661 
 662         /* OHare limits according to some old Apple sources */  
 663         if ((intf_type == controller_ohare) && (cycleTime < 150))
 664                 cycleTime = 150;
 665         /* Get the proper timing array for this controller */
 666         switch(intf_type) {
 667                 case controller_sh_ata6:
 668                 case controller_un_ata6:
 669                 case controller_k2_ata6:
 670                         break;
 671                 case controller_kl_ata4:
 672                         tm = mdma_timings_66;
 673                         break;
 674                 case controller_kl_ata3:
 675                         tm = mdma_timings_33k;
 676                         break;
 677                 default:
 678                         tm = mdma_timings_33;
 679                         break;
 680         }
 681         if (tm != NULL) {
 682                 /* Lookup matching access & recovery times */
 683                 i = -1;
 684                 for (;;) {
 685                         if (tm[i+1].cycleTime < cycleTime)
 686                                 break;
 687                         i++;
 688                 }
 689                 cycleTime = tm[i].cycleTime;
 690                 accessTime = tm[i].accessTime;
 691                 recTime = tm[i].recoveryTime;
 692 
 693 #ifdef IDE_PMAC_DEBUG
 694                 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
 695                         drive->name, cycleTime, accessTime, recTime);
 696 #endif
 697         }
 698         switch(intf_type) {
 699         case controller_sh_ata6: {
 700                 /* 133Mhz cell */
 701                 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
 702                 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
 703                 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
 704                 }
 705                 break;
 706         case controller_un_ata6:
 707         case controller_k2_ata6: {
 708                 /* 100Mhz cell */
 709                 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
 710                 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
 711                 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
 712                 }
 713                 break;
 714         case controller_kl_ata4:
 715                 /* 66Mhz cell */
 716                 accessTicks = SYSCLK_TICKS_66(accessTime);
 717                 accessTicks = min(accessTicks, 0x1fU);
 718                 accessTicks = max(accessTicks, 0x1U);
 719                 recTicks = SYSCLK_TICKS_66(recTime);
 720                 recTicks = min(recTicks, 0x1fU);
 721                 recTicks = max(recTicks, 0x3U);
 722                 /* Clear out mdma bits and disable udma */
 723                 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
 724                         (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
 725                         (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
 726                 break;
 727         case controller_kl_ata3:
 728                 /* 33Mhz cell on KeyLargo */
 729                 accessTicks = SYSCLK_TICKS(accessTime);
 730                 accessTicks = max(accessTicks, 1U);
 731                 accessTicks = min(accessTicks, 0x1fU);
 732                 accessTime = accessTicks * IDE_SYSCLK_NS;
 733                 recTicks = SYSCLK_TICKS(recTime);
 734                 recTicks = max(recTicks, 1U);
 735                 recTicks = min(recTicks, 0x1fU);
 736                 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
 737                                 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
 738                                 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
 739                 break;
 740         default: {
 741                 /* 33Mhz cell on others */
 742                 int halfTick = 0;
 743                 int origAccessTime = accessTime;
 744                 int origRecTime = recTime;
 745                 
 746                 accessTicks = SYSCLK_TICKS(accessTime);
 747                 accessTicks = max(accessTicks, 1U);
 748                 accessTicks = min(accessTicks, 0x1fU);
 749                 accessTime = accessTicks * IDE_SYSCLK_NS;
 750                 recTicks = SYSCLK_TICKS(recTime);
 751                 recTicks = max(recTicks, 2U) - 1;
 752                 recTicks = min(recTicks, 0x1fU);
 753                 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
 754                 if ((accessTicks > 1) &&
 755                     ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
 756                     ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
 757                         halfTick = 1;
 758                         accessTicks--;
 759                 }
 760                 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
 761                                 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
 762                                 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
 763                 if (halfTick)
 764                         *timings |= TR_33_MDMA_HALFTICK;
 765                 }
 766         }
 767 #ifdef IDE_PMAC_DEBUG
 768         printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
 769                 drive->name, speed & 0xf,  *timings);
 770 #endif  
 771 }
 772 
 773 static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
 774 {
 775         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 776         int ret = 0;
 777         u32 *timings, *timings2, tl[2];
 778         u8 unit = drive->dn & 1;
 779         const u8 speed = drive->dma_mode;
 780 
 781         timings = &pmif->timings[unit];
 782         timings2 = &pmif->timings[unit+2];
 783 
 784         /* Copy timings to local image */
 785         tl[0] = *timings;
 786         tl[1] = *timings2;
 787 
 788         if (speed >= XFER_UDMA_0) {
 789                 if (pmif->kind == controller_kl_ata4)
 790                         ret = set_timings_udma_ata4(&tl[0], speed);
 791                 else if (pmif->kind == controller_un_ata6
 792                          || pmif->kind == controller_k2_ata6)
 793                         ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
 794                 else if (pmif->kind == controller_sh_ata6)
 795                         ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
 796                 else
 797                         ret = -1;
 798         } else
 799                 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
 800 
 801         if (ret)
 802                 return;
 803 
 804         /* Apply timings to controller */
 805         *timings = tl[0];
 806         *timings2 = tl[1];
 807 
 808         pmac_ide_do_update_timings(drive);      
 809 }
 810 
 811 /*
 812  * Blast some well known "safe" values to the timing registers at init or
 813  * wakeup from sleep time, before we do real calculation
 814  */
 815 static void
 816 sanitize_timings(pmac_ide_hwif_t *pmif)
 817 {
 818         unsigned int value, value2 = 0;
 819         
 820         switch(pmif->kind) {
 821                 case controller_sh_ata6:
 822                         value = 0x0a820c97;
 823                         value2 = 0x00033031;
 824                         break;
 825                 case controller_un_ata6:
 826                 case controller_k2_ata6:
 827                         value = 0x08618a92;
 828                         value2 = 0x00002921;
 829                         break;
 830                 case controller_kl_ata4:
 831                         value = 0x0008438c;
 832                         break;
 833                 case controller_kl_ata3:
 834                         value = 0x00084526;
 835                         break;
 836                 case controller_heathrow:
 837                 case controller_ohare:
 838                 default:
 839                         value = 0x00074526;
 840                         break;
 841         }
 842         pmif->timings[0] = pmif->timings[1] = value;
 843         pmif->timings[2] = pmif->timings[3] = value2;
 844 }
 845 
 846 static int on_media_bay(pmac_ide_hwif_t *pmif)
 847 {
 848         return pmif->mdev && pmif->mdev->media_bay != NULL;
 849 }
 850 
 851 /* Suspend call back, should be called after the child devices
 852  * have actually been suspended
 853  */
 854 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
 855 {
 856         /* We clear the timings */
 857         pmif->timings[0] = 0;
 858         pmif->timings[1] = 0;
 859         
 860         disable_irq(pmif->irq);
 861 
 862         /* The media bay will handle itself just fine */
 863         if (on_media_bay(pmif))
 864                 return 0;
 865         
 866         /* Kauai has bus control FCRs directly here */
 867         if (pmif->kauai_fcr) {
 868                 u32 fcr = readl(pmif->kauai_fcr);
 869                 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
 870                 writel(fcr, pmif->kauai_fcr);
 871         }
 872 
 873         /* Disable the bus on older machines and the cell on kauai */
 874         ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
 875                             0);
 876 
 877         return 0;
 878 }
 879 
 880 /* Resume call back, should be called before the child devices
 881  * are resumed
 882  */
 883 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
 884 {
 885         /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
 886         if (!on_media_bay(pmif)) {
 887                 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
 888                 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
 889                 msleep(10);
 890                 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
 891 
 892                 /* Kauai has it different */
 893                 if (pmif->kauai_fcr) {
 894                         u32 fcr = readl(pmif->kauai_fcr);
 895                         fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
 896                         writel(fcr, pmif->kauai_fcr);
 897                 }
 898 
 899                 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
 900         }
 901 
 902         /* Sanitize drive timings */
 903         sanitize_timings(pmif);
 904 
 905         enable_irq(pmif->irq);
 906 
 907         return 0;
 908 }
 909 
 910 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
 911 {
 912         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 913         struct device_node *np = pmif->node;
 914         const char *cable = of_get_property(np, "cable-type", NULL);
 915         struct device_node *root = of_find_node_by_path("/");
 916         const char *model = of_get_property(root, "model", NULL);
 917 
 918         of_node_put(root);
 919         /* Get cable type from device-tree. */
 920         if (cable && !strncmp(cable, "80-", 3)) {
 921                 /* Some drives fail to detect 80c cable in PowerBook */
 922                 /* These machine use proprietary short IDE cable anyway */
 923                 if (!strncmp(model, "PowerBook", 9))
 924                         return ATA_CBL_PATA40_SHORT;
 925                 else
 926                         return ATA_CBL_PATA80;
 927         }
 928 
 929         /*
 930          * G5's seem to have incorrect cable type in device-tree.
 931          * Let's assume they have a 80 conductor cable, this seem
 932          * to be always the case unless the user mucked around.
 933          */
 934         if (of_device_is_compatible(np, "K2-UATA") ||
 935             of_device_is_compatible(np, "shasta-ata"))
 936                 return ATA_CBL_PATA80;
 937 
 938         return ATA_CBL_PATA40;
 939 }
 940 
 941 static void pmac_ide_init_dev(ide_drive_t *drive)
 942 {
 943         ide_hwif_t *hwif = drive->hwif;
 944         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 945 
 946         if (on_media_bay(pmif)) {
 947                 if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
 948                         drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
 949                         return;
 950                 }
 951                 drive->dev_flags |= IDE_DFLAG_NOPROBE;
 952         }
 953 }
 954 
 955 static const struct ide_tp_ops pmac_tp_ops = {
 956         .exec_command           = pmac_exec_command,
 957         .read_status            = ide_read_status,
 958         .read_altstatus         = ide_read_altstatus,
 959         .write_devctl           = pmac_write_devctl,
 960 
 961         .dev_select             = pmac_dev_select,
 962         .tf_load                = ide_tf_load,
 963         .tf_read                = ide_tf_read,
 964 
 965         .input_data             = ide_input_data,
 966         .output_data            = ide_output_data,
 967 };
 968 
 969 static const struct ide_tp_ops pmac_ata6_tp_ops = {
 970         .exec_command           = pmac_exec_command,
 971         .read_status            = ide_read_status,
 972         .read_altstatus         = ide_read_altstatus,
 973         .write_devctl           = pmac_write_devctl,
 974 
 975         .dev_select             = pmac_kauai_dev_select,
 976         .tf_load                = ide_tf_load,
 977         .tf_read                = ide_tf_read,
 978 
 979         .input_data             = ide_input_data,
 980         .output_data            = ide_output_data,
 981 };
 982 
 983 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
 984         .init_dev               = pmac_ide_init_dev,
 985         .set_pio_mode           = pmac_ide_set_pio_mode,
 986         .set_dma_mode           = pmac_ide_set_dma_mode,
 987         .cable_detect           = pmac_ide_cable_detect,
 988 };
 989 
 990 static const struct ide_port_ops pmac_ide_port_ops = {
 991         .init_dev               = pmac_ide_init_dev,
 992         .set_pio_mode           = pmac_ide_set_pio_mode,
 993         .set_dma_mode           = pmac_ide_set_dma_mode,
 994 };
 995 
 996 static const struct ide_dma_ops pmac_dma_ops;
 997 
 998 static const struct ide_port_info pmac_port_info = {
 999         .name                   = DRV_NAME,
1000         .init_dma               = pmac_ide_init_dma,
1001         .chipset                = ide_pmac,
1002         .tp_ops                 = &pmac_tp_ops,
1003         .port_ops               = &pmac_ide_port_ops,
1004         .dma_ops                = &pmac_dma_ops,
1005         .host_flags             = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1006                                   IDE_HFLAG_POST_SET_MODE |
1007                                   IDE_HFLAG_MMIO |
1008                                   IDE_HFLAG_UNMASK_IRQS,
1009         .pio_mask               = ATA_PIO4,
1010         .mwdma_mask             = ATA_MWDMA2,
1011 };
1012 
1013 /*
1014  * Setup, register & probe an IDE channel driven by this driver, this is
1015  * called by one of the 2 probe functions (macio or PCI).
1016  */
1017 static int pmac_ide_setup_device(pmac_ide_hwif_t *pmif, struct ide_hw *hw)
1018 {
1019         struct device_node *np = pmif->node;
1020         const int *bidp;
1021         struct ide_host *host;
1022         ide_hwif_t *hwif;
1023         struct ide_hw *hws[] = { hw };
1024         struct ide_port_info d = pmac_port_info;
1025         int rc;
1026 
1027         pmif->broken_dma = pmif->broken_dma_warn = 0;
1028         if (of_device_is_compatible(np, "shasta-ata")) {
1029                 pmif->kind = controller_sh_ata6;
1030                 d.tp_ops = &pmac_ata6_tp_ops;
1031                 d.port_ops = &pmac_ide_ata4_port_ops;
1032                 d.udma_mask = ATA_UDMA6;
1033         } else if (of_device_is_compatible(np, "kauai-ata")) {
1034                 pmif->kind = controller_un_ata6;
1035                 d.tp_ops = &pmac_ata6_tp_ops;
1036                 d.port_ops = &pmac_ide_ata4_port_ops;
1037                 d.udma_mask = ATA_UDMA5;
1038         } else if (of_device_is_compatible(np, "K2-UATA")) {
1039                 pmif->kind = controller_k2_ata6;
1040                 d.tp_ops = &pmac_ata6_tp_ops;
1041                 d.port_ops = &pmac_ide_ata4_port_ops;
1042                 d.udma_mask = ATA_UDMA5;
1043         } else if (of_device_is_compatible(np, "keylargo-ata")) {
1044                 if (of_node_name_eq(np, "ata-4")) {
1045                         pmif->kind = controller_kl_ata4;
1046                         d.port_ops = &pmac_ide_ata4_port_ops;
1047                         d.udma_mask = ATA_UDMA4;
1048                 } else
1049                         pmif->kind = controller_kl_ata3;
1050         } else if (of_device_is_compatible(np, "heathrow-ata")) {
1051                 pmif->kind = controller_heathrow;
1052         } else {
1053                 pmif->kind = controller_ohare;
1054                 pmif->broken_dma = 1;
1055         }
1056 
1057         bidp = of_get_property(np, "AAPL,bus-id", NULL);
1058         pmif->aapl_bus_id =  bidp ? *bidp : 0;
1059 
1060         /* On Kauai-type controllers, we make sure the FCR is correct */
1061         if (pmif->kauai_fcr)
1062                 writel(KAUAI_FCR_UATA_MAGIC |
1063                        KAUAI_FCR_UATA_RESET_N |
1064                        KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1065         
1066         /* Make sure we have sane timings */
1067         sanitize_timings(pmif);
1068 
1069         /* If we are on a media bay, wait for it to settle and lock it */
1070         if (pmif->mdev)
1071                 lock_media_bay(pmif->mdev->media_bay);
1072 
1073         host = ide_host_alloc(&d, hws, 1);
1074         if (host == NULL) {
1075                 rc = -ENOMEM;
1076                 goto bail;
1077         }
1078         hwif = pmif->hwif = host->ports[0];
1079 
1080         if (on_media_bay(pmif)) {
1081                 /* Fixup bus ID for media bay */
1082                 if (!bidp)
1083                         pmif->aapl_bus_id = 1;
1084         } else if (pmif->kind == controller_ohare) {
1085                 /* The code below is having trouble on some ohare machines
1086                  * (timing related ?). Until I can put my hand on one of these
1087                  * units, I keep the old way
1088                  */
1089                 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1090         } else {
1091                 /* This is necessary to enable IDE when net-booting */
1092                 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1093                 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1094                 msleep(10);
1095                 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1096                 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1097         }
1098 
1099         printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1100                "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1101                pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1102                on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1103 
1104         rc = ide_host_register(host, &d, hws);
1105         if (rc)
1106                 pmif->hwif = NULL;
1107 
1108         if (pmif->mdev)
1109                 unlock_media_bay(pmif->mdev->media_bay);
1110 
1111  bail:
1112         if (rc && host)
1113                 ide_host_free(host);
1114         return rc;
1115 }
1116 
1117 static void pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1118 {
1119         int i;
1120 
1121         for (i = 0; i < 8; ++i)
1122                 hw->io_ports_array[i] = base + i * 0x10;
1123 
1124         hw->io_ports.ctl_addr = base + 0x160;
1125 }
1126 
1127 /*
1128  * Attach to a macio probed interface
1129  */
1130 static int pmac_ide_macio_attach(struct macio_dev *mdev,
1131                                  const struct of_device_id *match)
1132 {
1133         void __iomem *base;
1134         unsigned long regbase;
1135         pmac_ide_hwif_t *pmif;
1136         int irq, rc;
1137         struct ide_hw hw;
1138 
1139         pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1140         if (pmif == NULL)
1141                 return -ENOMEM;
1142 
1143         if (macio_resource_count(mdev) == 0) {
1144                 printk(KERN_WARNING "ide-pmac: no address for %pOF\n",
1145                                     mdev->ofdev.dev.of_node);
1146                 rc = -ENXIO;
1147                 goto out_free_pmif;
1148         }
1149 
1150         /* Request memory resource for IO ports */
1151         if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1152                 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1153                                 "%pOF!\n", mdev->ofdev.dev.of_node);
1154                 rc = -EBUSY;
1155                 goto out_free_pmif;
1156         }
1157                         
1158         /* XXX This is bogus. Should be fixed in the registry by checking
1159          * the kind of host interrupt controller, a bit like gatwick
1160          * fixes in irq.c. That works well enough for the single case
1161          * where that happens though...
1162          */
1163         if (macio_irq_count(mdev) == 0) {
1164                 printk(KERN_WARNING "ide-pmac: no intrs for device %pOF, using "
1165                                     "13\n", mdev->ofdev.dev.of_node);
1166                 irq = irq_create_mapping(NULL, 13);
1167         } else
1168                 irq = macio_irq(mdev, 0);
1169 
1170         base = ioremap(macio_resource_start(mdev, 0), 0x400);
1171         regbase = (unsigned long) base;
1172 
1173         pmif->mdev = mdev;
1174         pmif->node = mdev->ofdev.dev.of_node;
1175         pmif->regbase = regbase;
1176         pmif->irq = irq;
1177         pmif->kauai_fcr = NULL;
1178 
1179         if (macio_resource_count(mdev) >= 2) {
1180                 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1181                         printk(KERN_WARNING "ide-pmac: can't request DMA "
1182                                             "resource for %pOF!\n",
1183                                             mdev->ofdev.dev.of_node);
1184                 else
1185                         pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1186         } else
1187                 pmif->dma_regs = NULL;
1188 
1189         dev_set_drvdata(&mdev->ofdev.dev, pmif);
1190 
1191         memset(&hw, 0, sizeof(hw));
1192         pmac_ide_init_ports(&hw, pmif->regbase);
1193         hw.irq = irq;
1194         hw.dev = &mdev->bus->pdev->dev;
1195         hw.parent = &mdev->ofdev.dev;
1196 
1197         rc = pmac_ide_setup_device(pmif, &hw);
1198         if (rc != 0) {
1199                 /* The inteface is released to the common IDE layer */
1200                 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1201                 iounmap(base);
1202                 if (pmif->dma_regs) {
1203                         iounmap(pmif->dma_regs);
1204                         macio_release_resource(mdev, 1);
1205                 }
1206                 macio_release_resource(mdev, 0);
1207                 kfree(pmif);
1208         }
1209 
1210         return rc;
1211 
1212 out_free_pmif:
1213         kfree(pmif);
1214         return rc;
1215 }
1216 
1217 static int
1218 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1219 {
1220         pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1221         int rc = 0;
1222 
1223         if (mesg.event != mdev->ofdev.dev.power.power_state.event
1224                         && (mesg.event & PM_EVENT_SLEEP)) {
1225                 rc = pmac_ide_do_suspend(pmif);
1226                 if (rc == 0)
1227                         mdev->ofdev.dev.power.power_state = mesg;
1228         }
1229 
1230         return rc;
1231 }
1232 
1233 static int
1234 pmac_ide_macio_resume(struct macio_dev *mdev)
1235 {
1236         pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1237         int rc = 0;
1238 
1239         if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1240                 rc = pmac_ide_do_resume(pmif);
1241                 if (rc == 0)
1242                         mdev->ofdev.dev.power.power_state = PMSG_ON;
1243         }
1244 
1245         return rc;
1246 }
1247 
1248 /*
1249  * Attach to a PCI probed interface
1250  */
1251 static int pmac_ide_pci_attach(struct pci_dev *pdev,
1252                                const struct pci_device_id *id)
1253 {
1254         struct device_node *np;
1255         pmac_ide_hwif_t *pmif;
1256         void __iomem *base;
1257         unsigned long rbase, rlen;
1258         int rc;
1259         struct ide_hw hw;
1260 
1261         np = pci_device_to_OF_node(pdev);
1262         if (np == NULL) {
1263                 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1264                 return -ENODEV;
1265         }
1266 
1267         pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1268         if (pmif == NULL)
1269                 return -ENOMEM;
1270 
1271         if (pci_enable_device(pdev)) {
1272                 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1273                                     "%pOF\n", np);
1274                 rc = -ENXIO;
1275                 goto out_free_pmif;
1276         }
1277         pci_set_master(pdev);
1278                         
1279         if (pci_request_regions(pdev, "Kauai ATA")) {
1280                 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1281                                 "%pOF\n", np);
1282                 rc = -ENXIO;
1283                 goto out_free_pmif;
1284         }
1285 
1286         pmif->mdev = NULL;
1287         pmif->node = np;
1288 
1289         rbase = pci_resource_start(pdev, 0);
1290         rlen = pci_resource_len(pdev, 0);
1291 
1292         base = ioremap(rbase, rlen);
1293         pmif->regbase = (unsigned long) base + 0x2000;
1294         pmif->dma_regs = base + 0x1000;
1295         pmif->kauai_fcr = base;
1296         pmif->irq = pdev->irq;
1297 
1298         pci_set_drvdata(pdev, pmif);
1299 
1300         memset(&hw, 0, sizeof(hw));
1301         pmac_ide_init_ports(&hw, pmif->regbase);
1302         hw.irq = pdev->irq;
1303         hw.dev = &pdev->dev;
1304 
1305         rc = pmac_ide_setup_device(pmif, &hw);
1306         if (rc != 0) {
1307                 /* The inteface is released to the common IDE layer */
1308                 iounmap(base);
1309                 pci_release_regions(pdev);
1310                 kfree(pmif);
1311         }
1312 
1313         return rc;
1314 
1315 out_free_pmif:
1316         kfree(pmif);
1317         return rc;
1318 }
1319 
1320 static int
1321 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1322 {
1323         pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1324         int rc = 0;
1325 
1326         if (mesg.event != pdev->dev.power.power_state.event
1327                         && (mesg.event & PM_EVENT_SLEEP)) {
1328                 rc = pmac_ide_do_suspend(pmif);
1329                 if (rc == 0)
1330                         pdev->dev.power.power_state = mesg;
1331         }
1332 
1333         return rc;
1334 }
1335 
1336 static int
1337 pmac_ide_pci_resume(struct pci_dev *pdev)
1338 {
1339         pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1340         int rc = 0;
1341 
1342         if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1343                 rc = pmac_ide_do_resume(pmif);
1344                 if (rc == 0)
1345                         pdev->dev.power.power_state = PMSG_ON;
1346         }
1347 
1348         return rc;
1349 }
1350 
1351 #ifdef CONFIG_PMAC_MEDIABAY
1352 static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1353 {
1354         pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1355 
1356         switch(mb_state) {
1357         case MB_CD:
1358                 if (!pmif->hwif->present)
1359                         ide_port_scan(pmif->hwif);
1360                 break;
1361         default:
1362                 if (pmif->hwif->present)
1363                         ide_port_unregister_devices(pmif->hwif);
1364         }
1365 }
1366 #endif /* CONFIG_PMAC_MEDIABAY */
1367 
1368 
1369 static struct of_device_id pmac_ide_macio_match[] = 
1370 {
1371         {
1372         .name           = "IDE",
1373         },
1374         {
1375         .name           = "ATA",
1376         },
1377         {
1378         .type           = "ide",
1379         },
1380         {
1381         .type           = "ata",
1382         },
1383         {},
1384 };
1385 
1386 static struct macio_driver pmac_ide_macio_driver = 
1387 {
1388         .driver = {
1389                 .name           = "ide-pmac",
1390                 .owner          = THIS_MODULE,
1391                 .of_match_table = pmac_ide_macio_match,
1392         },
1393         .probe          = pmac_ide_macio_attach,
1394         .suspend        = pmac_ide_macio_suspend,
1395         .resume         = pmac_ide_macio_resume,
1396 #ifdef CONFIG_PMAC_MEDIABAY
1397         .mediabay_event = pmac_ide_macio_mb_event,
1398 #endif
1399 };
1400 
1401 static const struct pci_device_id pmac_ide_pci_match[] = {
1402         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),    0 },
1403         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),  0 },
1404         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),    0 },
1405         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),       0 },
1406         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),    0 },
1407         {},
1408 };
1409 
1410 static struct pci_driver pmac_ide_pci_driver = {
1411         .name           = "ide-pmac",
1412         .id_table       = pmac_ide_pci_match,
1413         .probe          = pmac_ide_pci_attach,
1414         .suspend        = pmac_ide_pci_suspend,
1415         .resume         = pmac_ide_pci_resume,
1416 };
1417 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1418 
1419 int __init pmac_ide_probe(void)
1420 {
1421         int error;
1422 
1423         if (!machine_is(powermac))
1424                 return -ENODEV;
1425 
1426 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1427         error = pci_register_driver(&pmac_ide_pci_driver);
1428         if (error)
1429                 goto out;
1430         error = macio_register_driver(&pmac_ide_macio_driver);
1431         if (error) {
1432                 pci_unregister_driver(&pmac_ide_pci_driver);
1433                 goto out;
1434         }
1435 #else
1436         error = macio_register_driver(&pmac_ide_macio_driver);
1437         if (error)
1438                 goto out;
1439         error = pci_register_driver(&pmac_ide_pci_driver);
1440         if (error) {
1441                 macio_unregister_driver(&pmac_ide_macio_driver);
1442                 goto out;
1443         }
1444 #endif
1445 out:
1446         return error;
1447 }
1448 
1449 /*
1450  * pmac_ide_build_dmatable builds the DBDMA command list
1451  * for a transfer and sets the DBDMA channel to point to it.
1452  */
1453 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1454 {
1455         ide_hwif_t *hwif = drive->hwif;
1456         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1457         struct dbdma_cmd *table;
1458         volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1459         struct scatterlist *sg;
1460         int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1461         int i = cmd->sg_nents, count = 0;
1462 
1463         /* DMA table is already aligned */
1464         table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1465 
1466         /* Make sure DMA controller is stopped (necessary ?) */
1467         writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1468         while (readl(&dma->status) & RUN)
1469                 udelay(1);
1470 
1471         /* Build DBDMA commands list */
1472         sg = hwif->sg_table;
1473         while (i && sg_dma_len(sg)) {
1474                 u32 cur_addr;
1475                 u32 cur_len;
1476 
1477                 cur_addr = sg_dma_address(sg);
1478                 cur_len = sg_dma_len(sg);
1479 
1480                 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1481                         if (pmif->broken_dma_warn == 0) {
1482                                 printk(KERN_WARNING "%s: DMA on non aligned address, "
1483                                        "switching to PIO on Ohare chipset\n", drive->name);
1484                                 pmif->broken_dma_warn = 1;
1485                         }
1486                         return 0;
1487                 }
1488                 while (cur_len) {
1489                         unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1490 
1491                         if (count++ >= MAX_DCMDS) {
1492                                 printk(KERN_WARNING "%s: DMA table too small\n",
1493                                        drive->name);
1494                                 return 0;
1495                         }
1496                         table->command = cpu_to_le16(wr? OUTPUT_MORE: INPUT_MORE);
1497                         table->req_count = cpu_to_le16(tc);
1498                         table->phy_addr = cpu_to_le32(cur_addr);
1499                         table->cmd_dep = 0;
1500                         table->xfer_status = 0;
1501                         table->res_count = 0;
1502                         cur_addr += tc;
1503                         cur_len -= tc;
1504                         ++table;
1505                 }
1506                 sg = sg_next(sg);
1507                 i--;
1508         }
1509 
1510         /* convert the last command to an input/output last command */
1511         if (count) {
1512                 table[-1].command = cpu_to_le16(wr? OUTPUT_LAST: INPUT_LAST);
1513                 /* add the stop command to the end of the list */
1514                 memset(table, 0, sizeof(struct dbdma_cmd));
1515                 table->command = cpu_to_le16(DBDMA_STOP);
1516                 mb();
1517                 writel(hwif->dmatable_dma, &dma->cmdptr);
1518                 return 1;
1519         }
1520 
1521         printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1522 
1523         return 0; /* revert to PIO for this request */
1524 }
1525 
1526 /*
1527  * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1528  * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1529  */
1530 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1531 {
1532         ide_hwif_t *hwif = drive->hwif;
1533         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1534         u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1535         u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1536 
1537         if (pmac_ide_build_dmatable(drive, cmd) == 0)
1538                 return 1;
1539 
1540         /* Apple adds 60ns to wrDataSetup on reads */
1541         if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1542                 writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1543                         PMAC_IDE_REG(IDE_TIMING_CONFIG));
1544                 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1545         }
1546 
1547         return 0;
1548 }
1549 
1550 /*
1551  * Kick the DMA controller into life after the DMA command has been issued
1552  * to the drive.
1553  */
1554 static void
1555 pmac_ide_dma_start(ide_drive_t *drive)
1556 {
1557         ide_hwif_t *hwif = drive->hwif;
1558         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1559         volatile struct dbdma_regs __iomem *dma;
1560 
1561         dma = pmif->dma_regs;
1562 
1563         writel((RUN << 16) | RUN, &dma->control);
1564         /* Make sure it gets to the controller right now */
1565         (void)readl(&dma->control);
1566 }
1567 
1568 /*
1569  * After a DMA transfer, make sure the controller is stopped
1570  */
1571 static int
1572 pmac_ide_dma_end (ide_drive_t *drive)
1573 {
1574         ide_hwif_t *hwif = drive->hwif;
1575         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1576         volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1577         u32 dstat;
1578 
1579         dstat = readl(&dma->status);
1580         writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1581 
1582         /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1583          * in theory, but with ATAPI decices doing buffer underruns, that would
1584          * cause us to disable DMA, which isn't what we want
1585          */
1586         return (dstat & (RUN|DEAD)) != RUN;
1587 }
1588 
1589 /*
1590  * Check out that the interrupt we got was for us. We can't always know this
1591  * for sure with those Apple interfaces (well, we could on the recent ones but
1592  * that's not implemented yet), on the other hand, we don't have shared interrupts
1593  * so it's not really a problem
1594  */
1595 static int
1596 pmac_ide_dma_test_irq (ide_drive_t *drive)
1597 {
1598         ide_hwif_t *hwif = drive->hwif;
1599         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1600         volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1601         unsigned long status, timeout;
1602 
1603         /* We have to things to deal with here:
1604          * 
1605          * - The dbdma won't stop if the command was started
1606          * but completed with an error without transferring all
1607          * datas. This happens when bad blocks are met during
1608          * a multi-block transfer.
1609          * 
1610          * - The dbdma fifo hasn't yet finished flushing to
1611          * to system memory when the disk interrupt occurs.
1612          * 
1613          */
1614 
1615         /* If ACTIVE is cleared, the STOP command have passed and
1616          * transfer is complete.
1617          */
1618         status = readl(&dma->status);
1619         if (!(status & ACTIVE))
1620                 return 1;
1621 
1622         /* If dbdma didn't execute the STOP command yet, the
1623          * active bit is still set. We consider that we aren't
1624          * sharing interrupts (which is hopefully the case with
1625          * those controllers) and so we just try to flush the
1626          * channel for pending data in the fifo
1627          */
1628         udelay(1);
1629         writel((FLUSH << 16) | FLUSH, &dma->control);
1630         timeout = 0;
1631         for (;;) {
1632                 udelay(1);
1633                 status = readl(&dma->status);
1634                 if ((status & FLUSH) == 0)
1635                         break;
1636                 if (++timeout > 100) {
1637                         printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1638                                hwif->index);
1639                         break;
1640                 }
1641         }       
1642         return 1;
1643 }
1644 
1645 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1646 {
1647 }
1648 
1649 static void
1650 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1651 {
1652         ide_hwif_t *hwif = drive->hwif;
1653         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1654         volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1655         unsigned long status = readl(&dma->status);
1656 
1657         printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1658 }
1659 
1660 static const struct ide_dma_ops pmac_dma_ops = {
1661         .dma_host_set           = pmac_ide_dma_host_set,
1662         .dma_setup              = pmac_ide_dma_setup,
1663         .dma_start              = pmac_ide_dma_start,
1664         .dma_end                = pmac_ide_dma_end,
1665         .dma_test_irq           = pmac_ide_dma_test_irq,
1666         .dma_lost_irq           = pmac_ide_dma_lost_irq,
1667 };
1668 
1669 /*
1670  * Allocate the data structures needed for using DMA with an interface
1671  * and fill the proper list of functions pointers
1672  */
1673 static int pmac_ide_init_dma(ide_hwif_t *hwif, const struct ide_port_info *d)
1674 {
1675         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1676         struct pci_dev *dev = to_pci_dev(hwif->dev);
1677 
1678         /* We won't need pci_dev if we switch to generic consistent
1679          * DMA routines ...
1680          */
1681         if (dev == NULL || pmif->dma_regs == 0)
1682                 return -ENODEV;
1683         /*
1684          * Allocate space for the DBDMA commands.
1685          * The +2 is +1 for the stop command and +1 to allow for
1686          * aligning the start address to a multiple of 16 bytes.
1687          */
1688         pmif->dma_table_cpu = dma_alloc_coherent(&dev->dev,
1689                 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1690                 &hwif->dmatable_dma, GFP_KERNEL);
1691         if (pmif->dma_table_cpu == NULL) {
1692                 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1693                        hwif->name);
1694                 return -ENOMEM;
1695         }
1696 
1697         hwif->sg_max_nents = MAX_DCMDS;
1698 
1699         return 0;
1700 }
1701 
1702 module_init(pmac_ide_probe);
1703 
1704 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */