root/drivers/ata/sata_mv.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. writelfl
  2. mv_hc_from_port
  3. mv_hardport_from_port
  4. mv_hc_base
  5. mv_hc_base_from_port
  6. mv_port_base
  7. mv5_phy_base
  8. mv_host_base
  9. mv_ap_base
  10. mv_get_hc_count
  11. mv_save_cached_regs
  12. mv_write_cached_reg
  13. mv_set_edma_ptrs
  14. mv_write_main_irq_mask
  15. mv_set_main_irq_mask
  16. mv_enable_port_irqs
  17. mv_clear_and_enable_port_irqs
  18. mv_set_irq_coalescing
  19. mv_start_edma
  20. mv_wait_for_edma_empty_idle
  21. mv_stop_edma_engine
  22. mv_stop_edma
  23. mv_dump_mem
  24. mv_dump_pci_cfg
  25. mv_dump_all_regs
  26. mv_scr_offset
  27. mv_scr_read
  28. mv_scr_write
  29. mv6_dev_config
  30. mv_qc_defer
  31. mv_config_fbs
  32. mv_60x1_errata_sata25
  33. mv_bmdma_enable_iie
  34. mv_soc_led_blink_enable
  35. mv_soc_led_blink_disable
  36. mv_edma_cfg
  37. mv_port_free_dma_mem
  38. mv_port_start
  39. mv_port_stop
  40. mv_fill_sg
  41. mv_crqb_pack_cmd
  42. mv_sff_irq_clear
  43. mv_check_atapi_dma
  44. mv_bmdma_setup
  45. mv_bmdma_start
  46. mv_bmdma_stop_ap
  47. mv_bmdma_stop
  48. mv_bmdma_status
  49. mv_rw_multi_errata_sata24
  50. mv_qc_prep
  51. mv_qc_prep_iie
  52. mv_sff_check_status
  53. mv_send_fis
  54. mv_qc_issue_fis
  55. mv_qc_issue
  56. mv_get_active_qc
  57. mv_pmp_error_handler
  58. mv_get_err_pmp_map
  59. mv_pmp_eh_prep
  60. mv_req_q_empty
  61. mv_handle_fbs_ncq_dev_err
  62. mv_handle_fbs_non_ncq_dev_err
  63. mv_handle_dev_err
  64. mv_unexpected_intr
  65. mv_err_intr
  66. mv_process_crpb_response
  67. mv_process_crpb_entries
  68. mv_port_intr
  69. mv_host_intr
  70. mv_pci_error
  71. mv_interrupt
  72. mv5_scr_offset
  73. mv5_scr_read
  74. mv5_scr_write
  75. mv5_reset_bus
  76. mv5_reset_flash
  77. mv5_read_preamp
  78. mv5_enable_leds
  79. mv5_phy_errata
  80. mv5_reset_hc_port
  81. mv5_reset_one_hc
  82. mv5_reset_hc
  83. mv_reset_pci_bus
  84. mv6_reset_flash
  85. mv6_reset_hc
  86. mv6_read_preamp
  87. mv6_enable_leds
  88. mv6_phy_errata
  89. mv_soc_enable_leds
  90. mv_soc_read_preamp
  91. mv_soc_reset_hc_port
  92. mv_soc_reset_one_hc
  93. mv_soc_reset_hc
  94. mv_soc_reset_flash
  95. mv_soc_reset_bus
  96. mv_soc_65n_phy_errata
  97. soc_is_65n
  98. mv_setup_ifcfg
  99. mv_reset_channel
  100. mv_pmp_select
  101. mv_pmp_hardreset
  102. mv_softreset
  103. mv_hardreset
  104. mv_eh_freeze
  105. mv_eh_thaw
  106. mv_port_init
  107. mv_in_pcix_mode
  108. mv_pci_cut_through_okay
  109. mv_60x1b2_errata_pci7
  110. mv_chip_id
  111. mv_init_host
  112. mv_create_dma_pools
  113. mv_conf_mbus_windows
  114. mv_platform_probe
  115. mv_platform_remove
  116. mv_platform_suspend
  117. mv_platform_resume
  118. mv_print_info
  119. mv_pci_init_one
  120. mv_pci_device_resume
  121. mv_init
  122. mv_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * sata_mv.c - Marvell SATA support
   4  *
   5  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
   6  * Copyright 2005: EMC Corporation, all rights reserved.
   7  * Copyright 2005 Red Hat, Inc.  All rights reserved.
   8  *
   9  * Originally written by Brett Russ.
  10  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  11  *
  12  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  13  */
  14 
  15 /*
  16  * sata_mv TODO list:
  17  *
  18  * --> Develop a low-power-consumption strategy, and implement it.
  19  *
  20  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  21  *
  22  * --> [Experiment, Marvell value added] Is it possible to use target
  23  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
  24  *       creating LibATA target mode support would be very interesting.
  25  *
  26  *       Target mode, for those without docs, is the ability to directly
  27  *       connect two SATA ports.
  28  */
  29 
  30 /*
  31  * 80x1-B2 errata PCI#11:
  32  *
  33  * Users of the 6041/6081 Rev.B2 chips (current is C0)
  34  * should be careful to insert those cards only onto PCI-X bus #0,
  35  * and only in device slots 0..7, not higher.  The chips may not
  36  * work correctly otherwise  (note: this is a pretty rare condition).
  37  */
  38 
  39 #include <linux/kernel.h>
  40 #include <linux/module.h>
  41 #include <linux/pci.h>
  42 #include <linux/init.h>
  43 #include <linux/blkdev.h>
  44 #include <linux/delay.h>
  45 #include <linux/interrupt.h>
  46 #include <linux/dmapool.h>
  47 #include <linux/dma-mapping.h>
  48 #include <linux/device.h>
  49 #include <linux/clk.h>
  50 #include <linux/phy/phy.h>
  51 #include <linux/platform_device.h>
  52 #include <linux/ata_platform.h>
  53 #include <linux/mbus.h>
  54 #include <linux/bitops.h>
  55 #include <linux/gfp.h>
  56 #include <linux/of.h>
  57 #include <linux/of_irq.h>
  58 #include <scsi/scsi_host.h>
  59 #include <scsi/scsi_cmnd.h>
  60 #include <scsi/scsi_device.h>
  61 #include <linux/libata.h>
  62 
  63 #define DRV_NAME        "sata_mv"
  64 #define DRV_VERSION     "1.28"
  65 
  66 /*
  67  * module options
  68  */
  69 
  70 #ifdef CONFIG_PCI
  71 static int msi;
  72 module_param(msi, int, S_IRUGO);
  73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  74 #endif
  75 
  76 static int irq_coalescing_io_count;
  77 module_param(irq_coalescing_io_count, int, S_IRUGO);
  78 MODULE_PARM_DESC(irq_coalescing_io_count,
  79                  "IRQ coalescing I/O count threshold (0..255)");
  80 
  81 static int irq_coalescing_usecs;
  82 module_param(irq_coalescing_usecs, int, S_IRUGO);
  83 MODULE_PARM_DESC(irq_coalescing_usecs,
  84                  "IRQ coalescing time threshold in usecs");
  85 
  86 enum {
  87         /* BAR's are enumerated in terms of pci_resource_start() terms */
  88         MV_PRIMARY_BAR          = 0,    /* offset 0x10: memory space */
  89         MV_IO_BAR               = 2,    /* offset 0x18: IO space */
  90         MV_MISC_BAR             = 3,    /* offset 0x1c: FLASH, NVRAM, SRAM */
  91 
  92         MV_MAJOR_REG_AREA_SZ    = 0x10000,      /* 64KB */
  93         MV_MINOR_REG_AREA_SZ    = 0x2000,       /* 8KB */
  94 
  95         /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
  96         COAL_CLOCKS_PER_USEC    = 150,          /* for calculating COAL_TIMEs */
  97         MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
  98         MAX_COAL_IO_COUNT       = 255,          /* completed I/O count */
  99 
 100         MV_PCI_REG_BASE         = 0,
 101 
 102         /*
 103          * Per-chip ("all ports") interrupt coalescing feature.
 104          * This is only for GEN_II / GEN_IIE hardware.
 105          *
 106          * Coalescing defers the interrupt until either the IO_THRESHOLD
 107          * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 108          */
 109         COAL_REG_BASE           = 0x18000,
 110         IRQ_COAL_CAUSE          = (COAL_REG_BASE + 0x08),
 111         ALL_PORTS_COAL_IRQ      = (1 << 4),     /* all ports irq event */
 112 
 113         IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
 114         IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
 115 
 116         /*
 117          * Registers for the (unused here) transaction coalescing feature:
 118          */
 119         TRAN_COAL_CAUSE_LO      = (COAL_REG_BASE + 0x88),
 120         TRAN_COAL_CAUSE_HI      = (COAL_REG_BASE + 0x8c),
 121 
 122         SATAHC0_REG_BASE        = 0x20000,
 123         FLASH_CTL               = 0x1046c,
 124         GPIO_PORT_CTL           = 0x104f0,
 125         RESET_CFG               = 0x180d8,
 126 
 127         MV_PCI_REG_SZ           = MV_MAJOR_REG_AREA_SZ,
 128         MV_SATAHC_REG_SZ        = MV_MAJOR_REG_AREA_SZ,
 129         MV_SATAHC_ARBTR_REG_SZ  = MV_MINOR_REG_AREA_SZ,         /* arbiter */
 130         MV_PORT_REG_SZ          = MV_MINOR_REG_AREA_SZ,
 131 
 132         MV_MAX_Q_DEPTH          = 32,
 133         MV_MAX_Q_DEPTH_MASK     = MV_MAX_Q_DEPTH - 1,
 134 
 135         /* CRQB needs alignment on a 1KB boundary. Size == 1KB
 136          * CRPB needs alignment on a 256B boundary. Size == 256B
 137          * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
 138          */
 139         MV_CRQB_Q_SZ            = (32 * MV_MAX_Q_DEPTH),
 140         MV_CRPB_Q_SZ            = (8 * MV_MAX_Q_DEPTH),
 141         MV_MAX_SG_CT            = 256,
 142         MV_SG_TBL_SZ            = (16 * MV_MAX_SG_CT),
 143 
 144         /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
 145         MV_PORT_HC_SHIFT        = 2,
 146         MV_PORTS_PER_HC         = (1 << MV_PORT_HC_SHIFT), /* 4 */
 147         /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
 148         MV_PORT_MASK            = (MV_PORTS_PER_HC - 1),   /* 3 */
 149 
 150         /* Host Flags */
 151         MV_FLAG_DUAL_HC         = (1 << 30),  /* two SATA Host Controllers */
 152 
 153         MV_COMMON_FLAGS         = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
 154 
 155         MV_GEN_I_FLAGS          = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
 156 
 157         MV_GEN_II_FLAGS         = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
 158                                   ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
 159 
 160         MV_GEN_IIE_FLAGS        = MV_GEN_II_FLAGS | ATA_FLAG_AN,
 161 
 162         CRQB_FLAG_READ          = (1 << 0),
 163         CRQB_TAG_SHIFT          = 1,
 164         CRQB_IOID_SHIFT         = 6,    /* CRQB Gen-II/IIE IO Id shift */
 165         CRQB_PMP_SHIFT          = 12,   /* CRQB Gen-II/IIE PMP shift */
 166         CRQB_HOSTQ_SHIFT        = 17,   /* CRQB Gen-II/IIE HostQueTag shift */
 167         CRQB_CMD_ADDR_SHIFT     = 8,
 168         CRQB_CMD_CS             = (0x2 << 11),
 169         CRQB_CMD_LAST           = (1 << 15),
 170 
 171         CRPB_FLAG_STATUS_SHIFT  = 8,
 172         CRPB_IOID_SHIFT_6       = 5,    /* CRPB Gen-II IO Id shift */
 173         CRPB_IOID_SHIFT_7       = 7,    /* CRPB Gen-IIE IO Id shift */
 174 
 175         EPRD_FLAG_END_OF_TBL    = (1 << 31),
 176 
 177         /* PCI interface registers */
 178 
 179         MV_PCI_COMMAND          = 0xc00,
 180         MV_PCI_COMMAND_MWRCOM   = (1 << 4),     /* PCI Master Write Combining */
 181         MV_PCI_COMMAND_MRDTRIG  = (1 << 7),     /* PCI Master Read Trigger */
 182 
 183         PCI_MAIN_CMD_STS        = 0xd30,
 184         STOP_PCI_MASTER         = (1 << 2),
 185         PCI_MASTER_EMPTY        = (1 << 3),
 186         GLOB_SFT_RST            = (1 << 4),
 187 
 188         MV_PCI_MODE             = 0xd00,
 189         MV_PCI_MODE_MASK        = 0x30,
 190 
 191         MV_PCI_EXP_ROM_BAR_CTL  = 0xd2c,
 192         MV_PCI_DISC_TIMER       = 0xd04,
 193         MV_PCI_MSI_TRIGGER      = 0xc38,
 194         MV_PCI_SERR_MASK        = 0xc28,
 195         MV_PCI_XBAR_TMOUT       = 0x1d04,
 196         MV_PCI_ERR_LOW_ADDRESS  = 0x1d40,
 197         MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
 198         MV_PCI_ERR_ATTRIBUTE    = 0x1d48,
 199         MV_PCI_ERR_COMMAND      = 0x1d50,
 200 
 201         PCI_IRQ_CAUSE           = 0x1d58,
 202         PCI_IRQ_MASK            = 0x1d5c,
 203         PCI_UNMASK_ALL_IRQS     = 0x7fffff,     /* bits 22-0 */
 204 
 205         PCIE_IRQ_CAUSE          = 0x1900,
 206         PCIE_IRQ_MASK           = 0x1910,
 207         PCIE_UNMASK_ALL_IRQS    = 0x40a,        /* assorted bits */
 208 
 209         /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
 210         PCI_HC_MAIN_IRQ_CAUSE   = 0x1d60,
 211         PCI_HC_MAIN_IRQ_MASK    = 0x1d64,
 212         SOC_HC_MAIN_IRQ_CAUSE   = 0x20020,
 213         SOC_HC_MAIN_IRQ_MASK    = 0x20024,
 214         ERR_IRQ                 = (1 << 0),     /* shift by (2 * port #) */
 215         DONE_IRQ                = (1 << 1),     /* shift by (2 * port #) */
 216         HC0_IRQ_PEND            = 0x1ff,        /* bits 0-8 = HC0's ports */
 217         HC_SHIFT                = 9,            /* bits 9-17 = HC1's ports */
 218         DONE_IRQ_0_3            = 0x000000aa,   /* DONE_IRQ ports 0,1,2,3 */
 219         DONE_IRQ_4_7            = (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
 220         PCI_ERR                 = (1 << 18),
 221         TRAN_COAL_LO_DONE       = (1 << 19),    /* transaction coalescing */
 222         TRAN_COAL_HI_DONE       = (1 << 20),    /* transaction coalescing */
 223         PORTS_0_3_COAL_DONE     = (1 << 8),     /* HC0 IRQ coalescing */
 224         PORTS_4_7_COAL_DONE     = (1 << 17),    /* HC1 IRQ coalescing */
 225         ALL_PORTS_COAL_DONE     = (1 << 21),    /* GEN_II(E) IRQ coalescing */
 226         GPIO_INT                = (1 << 22),
 227         SELF_INT                = (1 << 23),
 228         TWSI_INT                = (1 << 24),
 229         HC_MAIN_RSVD            = (0x7f << 25), /* bits 31-25 */
 230         HC_MAIN_RSVD_5          = (0x1fff << 19), /* bits 31-19 */
 231         HC_MAIN_RSVD_SOC        = (0x3fffffb << 6),     /* bits 31-9, 7-6 */
 232 
 233         /* SATAHC registers */
 234         HC_CFG                  = 0x00,
 235 
 236         HC_IRQ_CAUSE            = 0x14,
 237         DMA_IRQ                 = (1 << 0),     /* shift by port # */
 238         HC_COAL_IRQ             = (1 << 4),     /* IRQ coalescing */
 239         DEV_IRQ                 = (1 << 8),     /* shift by port # */
 240 
 241         /*
 242          * Per-HC (Host-Controller) interrupt coalescing feature.
 243          * This is present on all chip generations.
 244          *
 245          * Coalescing defers the interrupt until either the IO_THRESHOLD
 246          * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 247          */
 248         HC_IRQ_COAL_IO_THRESHOLD        = 0x000c,
 249         HC_IRQ_COAL_TIME_THRESHOLD      = 0x0010,
 250 
 251         SOC_LED_CTRL            = 0x2c,
 252         SOC_LED_CTRL_BLINK      = (1 << 0),     /* Active LED blink */
 253         SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),   /* Multiplex dev presence */
 254                                                 /*  with dev activity LED */
 255 
 256         /* Shadow block registers */
 257         SHD_BLK                 = 0x100,
 258         SHD_CTL_AST             = 0x20,         /* ofs from SHD_BLK */
 259 
 260         /* SATA registers */
 261         SATA_STATUS             = 0x300,  /* ctrl, err regs follow status */
 262         SATA_ACTIVE             = 0x350,
 263         FIS_IRQ_CAUSE           = 0x364,
 264         FIS_IRQ_CAUSE_AN        = (1 << 9),     /* async notification */
 265 
 266         LTMODE                  = 0x30c,        /* requires read-after-write */
 267         LTMODE_BIT8             = (1 << 8),     /* unknown, but necessary */
 268 
 269         PHY_MODE2               = 0x330,
 270         PHY_MODE3               = 0x310,
 271 
 272         PHY_MODE4               = 0x314,        /* requires read-after-write */
 273         PHY_MODE4_CFG_MASK      = 0x00000003,   /* phy internal config field */
 274         PHY_MODE4_CFG_VALUE     = 0x00000001,   /* phy internal config field */
 275         PHY_MODE4_RSVD_ZEROS    = 0x5de3fffa,   /* Gen2e always write zeros */
 276         PHY_MODE4_RSVD_ONES     = 0x00000005,   /* Gen2e always write ones */
 277 
 278         SATA_IFCTL              = 0x344,
 279         SATA_TESTCTL            = 0x348,
 280         SATA_IFSTAT             = 0x34c,
 281         VENDOR_UNIQUE_FIS       = 0x35c,
 282 
 283         FISCFG                  = 0x360,
 284         FISCFG_WAIT_DEV_ERR     = (1 << 8),     /* wait for host on DevErr */
 285         FISCFG_SINGLE_SYNC      = (1 << 16),    /* SYNC on DMA activation */
 286 
 287         PHY_MODE9_GEN2          = 0x398,
 288         PHY_MODE9_GEN1          = 0x39c,
 289         PHYCFG_OFS              = 0x3a0,        /* only in 65n devices */
 290 
 291         MV5_PHY_MODE            = 0x74,
 292         MV5_LTMODE              = 0x30,
 293         MV5_PHY_CTL             = 0x0C,
 294         SATA_IFCFG              = 0x050,
 295         LP_PHY_CTL              = 0x058,
 296         LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
 297         LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
 298         LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
 299         LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
 300         LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
 301 
 302         MV_M2_PREAMP_MASK       = 0x7e0,
 303 
 304         /* Port registers */
 305         EDMA_CFG                = 0,
 306         EDMA_CFG_Q_DEPTH        = 0x1f,         /* max device queue depth */
 307         EDMA_CFG_NCQ            = (1 << 5),     /* for R/W FPDMA queued */
 308         EDMA_CFG_NCQ_GO_ON_ERR  = (1 << 14),    /* continue on error */
 309         EDMA_CFG_RD_BRST_EXT    = (1 << 11),    /* read burst 512B */
 310         EDMA_CFG_WR_BUFF_LEN    = (1 << 13),    /* write buffer 512B */
 311         EDMA_CFG_EDMA_FBS       = (1 << 16),    /* EDMA FIS-Based Switching */
 312         EDMA_CFG_FBS            = (1 << 26),    /* FIS-Based Switching */
 313 
 314         EDMA_ERR_IRQ_CAUSE      = 0x8,
 315         EDMA_ERR_IRQ_MASK       = 0xc,
 316         EDMA_ERR_D_PAR          = (1 << 0),     /* UDMA data parity err */
 317         EDMA_ERR_PRD_PAR        = (1 << 1),     /* UDMA PRD parity err */
 318         EDMA_ERR_DEV            = (1 << 2),     /* device error */
 319         EDMA_ERR_DEV_DCON       = (1 << 3),     /* device disconnect */
 320         EDMA_ERR_DEV_CON        = (1 << 4),     /* device connected */
 321         EDMA_ERR_SERR           = (1 << 5),     /* SError bits [WBDST] raised */
 322         EDMA_ERR_SELF_DIS       = (1 << 7),     /* Gen II/IIE self-disable */
 323         EDMA_ERR_SELF_DIS_5     = (1 << 8),     /* Gen I self-disable */
 324         EDMA_ERR_BIST_ASYNC     = (1 << 8),     /* BIST FIS or Async Notify */
 325         EDMA_ERR_TRANS_IRQ_7    = (1 << 8),     /* Gen IIE transprt layer irq */
 326         EDMA_ERR_CRQB_PAR       = (1 << 9),     /* CRQB parity error */
 327         EDMA_ERR_CRPB_PAR       = (1 << 10),    /* CRPB parity error */
 328         EDMA_ERR_INTRL_PAR      = (1 << 11),    /* internal parity error */
 329         EDMA_ERR_IORDY          = (1 << 12),    /* IORdy timeout */
 330 
 331         EDMA_ERR_LNK_CTRL_RX    = (0xf << 13),  /* link ctrl rx error */
 332         EDMA_ERR_LNK_CTRL_RX_0  = (1 << 13),    /* transient: CRC err */
 333         EDMA_ERR_LNK_CTRL_RX_1  = (1 << 14),    /* transient: FIFO err */
 334         EDMA_ERR_LNK_CTRL_RX_2  = (1 << 15),    /* fatal: caught SYNC */
 335         EDMA_ERR_LNK_CTRL_RX_3  = (1 << 16),    /* transient: FIS rx err */
 336 
 337         EDMA_ERR_LNK_DATA_RX    = (0xf << 17),  /* link data rx error */
 338 
 339         EDMA_ERR_LNK_CTRL_TX    = (0x1f << 21), /* link ctrl tx error */
 340         EDMA_ERR_LNK_CTRL_TX_0  = (1 << 21),    /* transient: CRC err */
 341         EDMA_ERR_LNK_CTRL_TX_1  = (1 << 22),    /* transient: FIFO err */
 342         EDMA_ERR_LNK_CTRL_TX_2  = (1 << 23),    /* transient: caught SYNC */
 343         EDMA_ERR_LNK_CTRL_TX_3  = (1 << 24),    /* transient: caught DMAT */
 344         EDMA_ERR_LNK_CTRL_TX_4  = (1 << 25),    /* transient: FIS collision */
 345 
 346         EDMA_ERR_LNK_DATA_TX    = (0x1f << 26), /* link data tx error */
 347 
 348         EDMA_ERR_TRANS_PROTO    = (1 << 31),    /* transport protocol error */
 349         EDMA_ERR_OVERRUN_5      = (1 << 5),
 350         EDMA_ERR_UNDERRUN_5     = (1 << 6),
 351 
 352         EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
 353                                   EDMA_ERR_LNK_CTRL_RX_1 |
 354                                   EDMA_ERR_LNK_CTRL_RX_3 |
 355                                   EDMA_ERR_LNK_CTRL_TX,
 356 
 357         EDMA_EH_FREEZE          = EDMA_ERR_D_PAR |
 358                                   EDMA_ERR_PRD_PAR |
 359                                   EDMA_ERR_DEV_DCON |
 360                                   EDMA_ERR_DEV_CON |
 361                                   EDMA_ERR_SERR |
 362                                   EDMA_ERR_SELF_DIS |
 363                                   EDMA_ERR_CRQB_PAR |
 364                                   EDMA_ERR_CRPB_PAR |
 365                                   EDMA_ERR_INTRL_PAR |
 366                                   EDMA_ERR_IORDY |
 367                                   EDMA_ERR_LNK_CTRL_RX_2 |
 368                                   EDMA_ERR_LNK_DATA_RX |
 369                                   EDMA_ERR_LNK_DATA_TX |
 370                                   EDMA_ERR_TRANS_PROTO,
 371 
 372         EDMA_EH_FREEZE_5        = EDMA_ERR_D_PAR |
 373                                   EDMA_ERR_PRD_PAR |
 374                                   EDMA_ERR_DEV_DCON |
 375                                   EDMA_ERR_DEV_CON |
 376                                   EDMA_ERR_OVERRUN_5 |
 377                                   EDMA_ERR_UNDERRUN_5 |
 378                                   EDMA_ERR_SELF_DIS_5 |
 379                                   EDMA_ERR_CRQB_PAR |
 380                                   EDMA_ERR_CRPB_PAR |
 381                                   EDMA_ERR_INTRL_PAR |
 382                                   EDMA_ERR_IORDY,
 383 
 384         EDMA_REQ_Q_BASE_HI      = 0x10,
 385         EDMA_REQ_Q_IN_PTR       = 0x14,         /* also contains BASE_LO */
 386 
 387         EDMA_REQ_Q_OUT_PTR      = 0x18,
 388         EDMA_REQ_Q_PTR_SHIFT    = 5,
 389 
 390         EDMA_RSP_Q_BASE_HI      = 0x1c,
 391         EDMA_RSP_Q_IN_PTR       = 0x20,
 392         EDMA_RSP_Q_OUT_PTR      = 0x24,         /* also contains BASE_LO */
 393         EDMA_RSP_Q_PTR_SHIFT    = 3,
 394 
 395         EDMA_CMD                = 0x28,         /* EDMA command register */
 396         EDMA_EN                 = (1 << 0),     /* enable EDMA */
 397         EDMA_DS                 = (1 << 1),     /* disable EDMA; self-negated */
 398         EDMA_RESET              = (1 << 2),     /* reset eng/trans/link/phy */
 399 
 400         EDMA_STATUS             = 0x30,         /* EDMA engine status */
 401         EDMA_STATUS_CACHE_EMPTY = (1 << 6),     /* GenIIe command cache empty */
 402         EDMA_STATUS_IDLE        = (1 << 7),     /* GenIIe EDMA enabled/idle */
 403 
 404         EDMA_IORDY_TMOUT        = 0x34,
 405         EDMA_ARB_CFG            = 0x38,
 406 
 407         EDMA_HALTCOND           = 0x60,         /* GenIIe halt conditions */
 408         EDMA_UNKNOWN_RSVD       = 0x6C,         /* GenIIe unknown/reserved */
 409 
 410         BMDMA_CMD               = 0x224,        /* bmdma command register */
 411         BMDMA_STATUS            = 0x228,        /* bmdma status register */
 412         BMDMA_PRD_LOW           = 0x22c,        /* bmdma PRD addr 31:0 */
 413         BMDMA_PRD_HIGH          = 0x230,        /* bmdma PRD addr 63:32 */
 414 
 415         /* Host private flags (hp_flags) */
 416         MV_HP_FLAG_MSI          = (1 << 0),
 417         MV_HP_ERRATA_50XXB0     = (1 << 1),
 418         MV_HP_ERRATA_50XXB2     = (1 << 2),
 419         MV_HP_ERRATA_60X1B2     = (1 << 3),
 420         MV_HP_ERRATA_60X1C0     = (1 << 4),
 421         MV_HP_GEN_I             = (1 << 6),     /* Generation I: 50xx */
 422         MV_HP_GEN_II            = (1 << 7),     /* Generation II: 60xx */
 423         MV_HP_GEN_IIE           = (1 << 8),     /* Generation IIE: 6042/7042 */
 424         MV_HP_PCIE              = (1 << 9),     /* PCIe bus/regs: 7042 */
 425         MV_HP_CUT_THROUGH       = (1 << 10),    /* can use EDMA cut-through */
 426         MV_HP_FLAG_SOC          = (1 << 11),    /* SystemOnChip, no PCI */
 427         MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),   /* is led blinking enabled? */
 428         MV_HP_FIX_LP_PHY_CTL    = (1 << 13),    /* fix speed in LP_PHY_CTL ? */
 429 
 430         /* Port private flags (pp_flags) */
 431         MV_PP_FLAG_EDMA_EN      = (1 << 0),     /* is EDMA engine enabled? */
 432         MV_PP_FLAG_NCQ_EN       = (1 << 1),     /* is EDMA set up for NCQ? */
 433         MV_PP_FLAG_FBS_EN       = (1 << 2),     /* is EDMA set up for FBS? */
 434         MV_PP_FLAG_DELAYED_EH   = (1 << 3),     /* delayed dev err handling */
 435         MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),    /* ignore initial ATA_DRDY */
 436 };
 437 
 438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
 439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
 440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
 441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
 442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
 443 
 444 #define WINDOW_CTRL(i)          (0x20030 + ((i) << 4))
 445 #define WINDOW_BASE(i)          (0x20034 + ((i) << 4))
 446 
 447 enum {
 448         /* DMA boundary 0xffff is required by the s/g splitting
 449          * we need on /length/ in mv_fill-sg().
 450          */
 451         MV_DMA_BOUNDARY         = 0xffffU,
 452 
 453         /* mask of register bits containing lower 32 bits
 454          * of EDMA request queue DMA address
 455          */
 456         EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
 457 
 458         /* ditto, for response queue */
 459         EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
 460 };
 461 
 462 enum chip_type {
 463         chip_504x,
 464         chip_508x,
 465         chip_5080,
 466         chip_604x,
 467         chip_608x,
 468         chip_6042,
 469         chip_7042,
 470         chip_soc,
 471 };
 472 
 473 /* Command ReQuest Block: 32B */
 474 struct mv_crqb {
 475         __le32                  sg_addr;
 476         __le32                  sg_addr_hi;
 477         __le16                  ctrl_flags;
 478         __le16                  ata_cmd[11];
 479 };
 480 
 481 struct mv_crqb_iie {
 482         __le32                  addr;
 483         __le32                  addr_hi;
 484         __le32                  flags;
 485         __le32                  len;
 486         __le32                  ata_cmd[4];
 487 };
 488 
 489 /* Command ResPonse Block: 8B */
 490 struct mv_crpb {
 491         __le16                  id;
 492         __le16                  flags;
 493         __le32                  tmstmp;
 494 };
 495 
 496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
 497 struct mv_sg {
 498         __le32                  addr;
 499         __le32                  flags_size;
 500         __le32                  addr_hi;
 501         __le32                  reserved;
 502 };
 503 
 504 /*
 505  * We keep a local cache of a few frequently accessed port
 506  * registers here, to avoid having to read them (very slow)
 507  * when switching between EDMA and non-EDMA modes.
 508  */
 509 struct mv_cached_regs {
 510         u32                     fiscfg;
 511         u32                     ltmode;
 512         u32                     haltcond;
 513         u32                     unknown_rsvd;
 514 };
 515 
 516 struct mv_port_priv {
 517         struct mv_crqb          *crqb;
 518         dma_addr_t              crqb_dma;
 519         struct mv_crpb          *crpb;
 520         dma_addr_t              crpb_dma;
 521         struct mv_sg            *sg_tbl[MV_MAX_Q_DEPTH];
 522         dma_addr_t              sg_tbl_dma[MV_MAX_Q_DEPTH];
 523 
 524         unsigned int            req_idx;
 525         unsigned int            resp_idx;
 526 
 527         u32                     pp_flags;
 528         struct mv_cached_regs   cached;
 529         unsigned int            delayed_eh_pmp_map;
 530 };
 531 
 532 struct mv_port_signal {
 533         u32                     amps;
 534         u32                     pre;
 535 };
 536 
 537 struct mv_host_priv {
 538         u32                     hp_flags;
 539         unsigned int            board_idx;
 540         u32                     main_irq_mask;
 541         struct mv_port_signal   signal[8];
 542         const struct mv_hw_ops  *ops;
 543         int                     n_ports;
 544         void __iomem            *base;
 545         void __iomem            *main_irq_cause_addr;
 546         void __iomem            *main_irq_mask_addr;
 547         u32                     irq_cause_offset;
 548         u32                     irq_mask_offset;
 549         u32                     unmask_all_irqs;
 550 
 551         /*
 552          * Needed on some devices that require their clocks to be enabled.
 553          * These are optional: if the platform device does not have any
 554          * clocks, they won't be used.  Also, if the underlying hardware
 555          * does not support the common clock framework (CONFIG_HAVE_CLK=n),
 556          * all the clock operations become no-ops (see clk.h).
 557          */
 558         struct clk              *clk;
 559         struct clk              **port_clks;
 560         /*
 561          * Some devices have a SATA PHY which can be enabled/disabled
 562          * in order to save power. These are optional: if the platform
 563          * devices does not have any phy, they won't be used.
 564          */
 565         struct phy              **port_phys;
 566         /*
 567          * These consistent DMA memory pools give us guaranteed
 568          * alignment for hardware-accessed data structures,
 569          * and less memory waste in accomplishing the alignment.
 570          */
 571         struct dma_pool         *crqb_pool;
 572         struct dma_pool         *crpb_pool;
 573         struct dma_pool         *sg_tbl_pool;
 574 };
 575 
 576 struct mv_hw_ops {
 577         void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
 578                            unsigned int port);
 579         void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
 580         void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
 581                            void __iomem *mmio);
 582         int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
 583                         unsigned int n_hc);
 584         void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
 585         void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
 586 };
 587 
 588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 592 static int mv_port_start(struct ata_port *ap);
 593 static void mv_port_stop(struct ata_port *ap);
 594 static int mv_qc_defer(struct ata_queued_cmd *qc);
 595 static void mv_qc_prep(struct ata_queued_cmd *qc);
 596 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
 597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
 598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
 599                         unsigned long deadline);
 600 static void mv_eh_freeze(struct ata_port *ap);
 601 static void mv_eh_thaw(struct ata_port *ap);
 602 static void mv6_dev_config(struct ata_device *dev);
 603 
 604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 605                            unsigned int port);
 606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
 608                            void __iomem *mmio);
 609 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 610                         unsigned int n_hc);
 611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
 613 
 614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 615                            unsigned int port);
 616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
 618                            void __iomem *mmio);
 619 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 620                         unsigned int n_hc);
 621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
 623                                       void __iomem *mmio);
 624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
 625                                       void __iomem *mmio);
 626 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
 627                                   void __iomem *mmio, unsigned int n_hc);
 628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
 629                                       void __iomem *mmio);
 630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
 631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
 632                                   void __iomem *mmio, unsigned int port);
 633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
 634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
 635                              unsigned int port_no);
 636 static int mv_stop_edma(struct ata_port *ap);
 637 static int mv_stop_edma_engine(void __iomem *port_mmio);
 638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
 639 
 640 static void mv_pmp_select(struct ata_port *ap, int pmp);
 641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
 642                                 unsigned long deadline);
 643 static int  mv_softreset(struct ata_link *link, unsigned int *class,
 644                                 unsigned long deadline);
 645 static void mv_pmp_error_handler(struct ata_port *ap);
 646 static void mv_process_crpb_entries(struct ata_port *ap,
 647                                         struct mv_port_priv *pp);
 648 
 649 static void mv_sff_irq_clear(struct ata_port *ap);
 650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
 651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
 652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
 653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
 654 static u8   mv_bmdma_status(struct ata_port *ap);
 655 static u8 mv_sff_check_status(struct ata_port *ap);
 656 
 657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
 658  * because we have to allow room for worst case splitting of
 659  * PRDs for 64K boundaries in mv_fill_sg().
 660  */
 661 #ifdef CONFIG_PCI
 662 static struct scsi_host_template mv5_sht = {
 663         ATA_BASE_SHT(DRV_NAME),
 664         .sg_tablesize           = MV_MAX_SG_CT / 2,
 665         .dma_boundary           = MV_DMA_BOUNDARY,
 666 };
 667 #endif
 668 static struct scsi_host_template mv6_sht = {
 669         ATA_NCQ_SHT(DRV_NAME),
 670         .can_queue              = MV_MAX_Q_DEPTH - 1,
 671         .sg_tablesize           = MV_MAX_SG_CT / 2,
 672         .dma_boundary           = MV_DMA_BOUNDARY,
 673 };
 674 
 675 static struct ata_port_operations mv5_ops = {
 676         .inherits               = &ata_sff_port_ops,
 677 
 678         .lost_interrupt         = ATA_OP_NULL,
 679 
 680         .qc_defer               = mv_qc_defer,
 681         .qc_prep                = mv_qc_prep,
 682         .qc_issue               = mv_qc_issue,
 683 
 684         .freeze                 = mv_eh_freeze,
 685         .thaw                   = mv_eh_thaw,
 686         .hardreset              = mv_hardreset,
 687 
 688         .scr_read               = mv5_scr_read,
 689         .scr_write              = mv5_scr_write,
 690 
 691         .port_start             = mv_port_start,
 692         .port_stop              = mv_port_stop,
 693 };
 694 
 695 static struct ata_port_operations mv6_ops = {
 696         .inherits               = &ata_bmdma_port_ops,
 697 
 698         .lost_interrupt         = ATA_OP_NULL,
 699 
 700         .qc_defer               = mv_qc_defer,
 701         .qc_prep                = mv_qc_prep,
 702         .qc_issue               = mv_qc_issue,
 703 
 704         .dev_config             = mv6_dev_config,
 705 
 706         .freeze                 = mv_eh_freeze,
 707         .thaw                   = mv_eh_thaw,
 708         .hardreset              = mv_hardreset,
 709         .softreset              = mv_softreset,
 710         .pmp_hardreset          = mv_pmp_hardreset,
 711         .pmp_softreset          = mv_softreset,
 712         .error_handler          = mv_pmp_error_handler,
 713 
 714         .scr_read               = mv_scr_read,
 715         .scr_write              = mv_scr_write,
 716 
 717         .sff_check_status       = mv_sff_check_status,
 718         .sff_irq_clear          = mv_sff_irq_clear,
 719         .check_atapi_dma        = mv_check_atapi_dma,
 720         .bmdma_setup            = mv_bmdma_setup,
 721         .bmdma_start            = mv_bmdma_start,
 722         .bmdma_stop             = mv_bmdma_stop,
 723         .bmdma_status           = mv_bmdma_status,
 724 
 725         .port_start             = mv_port_start,
 726         .port_stop              = mv_port_stop,
 727 };
 728 
 729 static struct ata_port_operations mv_iie_ops = {
 730         .inherits               = &mv6_ops,
 731         .dev_config             = ATA_OP_NULL,
 732         .qc_prep                = mv_qc_prep_iie,
 733 };
 734 
 735 static const struct ata_port_info mv_port_info[] = {
 736         {  /* chip_504x */
 737                 .flags          = MV_GEN_I_FLAGS,
 738                 .pio_mask       = ATA_PIO4,
 739                 .udma_mask      = ATA_UDMA6,
 740                 .port_ops       = &mv5_ops,
 741         },
 742         {  /* chip_508x */
 743                 .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 744                 .pio_mask       = ATA_PIO4,
 745                 .udma_mask      = ATA_UDMA6,
 746                 .port_ops       = &mv5_ops,
 747         },
 748         {  /* chip_5080 */
 749                 .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 750                 .pio_mask       = ATA_PIO4,
 751                 .udma_mask      = ATA_UDMA6,
 752                 .port_ops       = &mv5_ops,
 753         },
 754         {  /* chip_604x */
 755                 .flags          = MV_GEN_II_FLAGS,
 756                 .pio_mask       = ATA_PIO4,
 757                 .udma_mask      = ATA_UDMA6,
 758                 .port_ops       = &mv6_ops,
 759         },
 760         {  /* chip_608x */
 761                 .flags          = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
 762                 .pio_mask       = ATA_PIO4,
 763                 .udma_mask      = ATA_UDMA6,
 764                 .port_ops       = &mv6_ops,
 765         },
 766         {  /* chip_6042 */
 767                 .flags          = MV_GEN_IIE_FLAGS,
 768                 .pio_mask       = ATA_PIO4,
 769                 .udma_mask      = ATA_UDMA6,
 770                 .port_ops       = &mv_iie_ops,
 771         },
 772         {  /* chip_7042 */
 773                 .flags          = MV_GEN_IIE_FLAGS,
 774                 .pio_mask       = ATA_PIO4,
 775                 .udma_mask      = ATA_UDMA6,
 776                 .port_ops       = &mv_iie_ops,
 777         },
 778         {  /* chip_soc */
 779                 .flags          = MV_GEN_IIE_FLAGS,
 780                 .pio_mask       = ATA_PIO4,
 781                 .udma_mask      = ATA_UDMA6,
 782                 .port_ops       = &mv_iie_ops,
 783         },
 784 };
 785 
 786 static const struct pci_device_id mv_pci_tbl[] = {
 787         { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
 788         { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
 789         { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
 790         { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
 791         /* RocketRAID 1720/174x have different identifiers */
 792         { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
 793         { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
 794         { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
 795 
 796         { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
 797         { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
 798         { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
 799         { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
 800         { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
 801 
 802         { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
 803 
 804         /* Adaptec 1430SA */
 805         { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
 806 
 807         /* Marvell 7042 support */
 808         { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
 809 
 810         /* Highpoint RocketRAID PCIe series */
 811         { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
 812         { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
 813 
 814         { }                     /* terminate list */
 815 };
 816 
 817 static const struct mv_hw_ops mv5xxx_ops = {
 818         .phy_errata             = mv5_phy_errata,
 819         .enable_leds            = mv5_enable_leds,
 820         .read_preamp            = mv5_read_preamp,
 821         .reset_hc               = mv5_reset_hc,
 822         .reset_flash            = mv5_reset_flash,
 823         .reset_bus              = mv5_reset_bus,
 824 };
 825 
 826 static const struct mv_hw_ops mv6xxx_ops = {
 827         .phy_errata             = mv6_phy_errata,
 828         .enable_leds            = mv6_enable_leds,
 829         .read_preamp            = mv6_read_preamp,
 830         .reset_hc               = mv6_reset_hc,
 831         .reset_flash            = mv6_reset_flash,
 832         .reset_bus              = mv_reset_pci_bus,
 833 };
 834 
 835 static const struct mv_hw_ops mv_soc_ops = {
 836         .phy_errata             = mv6_phy_errata,
 837         .enable_leds            = mv_soc_enable_leds,
 838         .read_preamp            = mv_soc_read_preamp,
 839         .reset_hc               = mv_soc_reset_hc,
 840         .reset_flash            = mv_soc_reset_flash,
 841         .reset_bus              = mv_soc_reset_bus,
 842 };
 843 
 844 static const struct mv_hw_ops mv_soc_65n_ops = {
 845         .phy_errata             = mv_soc_65n_phy_errata,
 846         .enable_leds            = mv_soc_enable_leds,
 847         .reset_hc               = mv_soc_reset_hc,
 848         .reset_flash            = mv_soc_reset_flash,
 849         .reset_bus              = mv_soc_reset_bus,
 850 };
 851 
 852 /*
 853  * Functions
 854  */
 855 
 856 static inline void writelfl(unsigned long data, void __iomem *addr)
 857 {
 858         writel(data, addr);
 859         (void) readl(addr);     /* flush to avoid PCI posted write */
 860 }
 861 
 862 static inline unsigned int mv_hc_from_port(unsigned int port)
 863 {
 864         return port >> MV_PORT_HC_SHIFT;
 865 }
 866 
 867 static inline unsigned int mv_hardport_from_port(unsigned int port)
 868 {
 869         return port & MV_PORT_MASK;
 870 }
 871 
 872 /*
 873  * Consolidate some rather tricky bit shift calculations.
 874  * This is hot-path stuff, so not a function.
 875  * Simple code, with two return values, so macro rather than inline.
 876  *
 877  * port is the sole input, in range 0..7.
 878  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
 879  * hardport is the other output, in range 0..3.
 880  *
 881  * Note that port and hardport may be the same variable in some cases.
 882  */
 883 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)    \
 884 {                                                               \
 885         shift    = mv_hc_from_port(port) * HC_SHIFT;            \
 886         hardport = mv_hardport_from_port(port);                 \
 887         shift   += hardport * 2;                                \
 888 }
 889 
 890 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
 891 {
 892         return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
 893 }
 894 
 895 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
 896                                                  unsigned int port)
 897 {
 898         return mv_hc_base(base, mv_hc_from_port(port));
 899 }
 900 
 901 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
 902 {
 903         return  mv_hc_base_from_port(base, port) +
 904                 MV_SATAHC_ARBTR_REG_SZ +
 905                 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
 906 }
 907 
 908 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
 909 {
 910         void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
 911         unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
 912 
 913         return hc_mmio + ofs;
 914 }
 915 
 916 static inline void __iomem *mv_host_base(struct ata_host *host)
 917 {
 918         struct mv_host_priv *hpriv = host->private_data;
 919         return hpriv->base;
 920 }
 921 
 922 static inline void __iomem *mv_ap_base(struct ata_port *ap)
 923 {
 924         return mv_port_base(mv_host_base(ap->host), ap->port_no);
 925 }
 926 
 927 static inline int mv_get_hc_count(unsigned long port_flags)
 928 {
 929         return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
 930 }
 931 
 932 /**
 933  *      mv_save_cached_regs - (re-)initialize cached port registers
 934  *      @ap: the port whose registers we are caching
 935  *
 936  *      Initialize the local cache of port registers,
 937  *      so that reading them over and over again can
 938  *      be avoided on the hotter paths of this driver.
 939  *      This saves a few microseconds each time we switch
 940  *      to/from EDMA mode to perform (eg.) a drive cache flush.
 941  */
 942 static void mv_save_cached_regs(struct ata_port *ap)
 943 {
 944         void __iomem *port_mmio = mv_ap_base(ap);
 945         struct mv_port_priv *pp = ap->private_data;
 946 
 947         pp->cached.fiscfg = readl(port_mmio + FISCFG);
 948         pp->cached.ltmode = readl(port_mmio + LTMODE);
 949         pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
 950         pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
 951 }
 952 
 953 /**
 954  *      mv_write_cached_reg - write to a cached port register
 955  *      @addr: hardware address of the register
 956  *      @old: pointer to cached value of the register
 957  *      @new: new value for the register
 958  *
 959  *      Write a new value to a cached register,
 960  *      but only if the value is different from before.
 961  */
 962 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
 963 {
 964         if (new != *old) {
 965                 unsigned long laddr;
 966                 *old = new;
 967                 /*
 968                  * Workaround for 88SX60x1-B2 FEr SATA#13:
 969                  * Read-after-write is needed to prevent generating 64-bit
 970                  * write cycles on the PCI bus for SATA interface registers
 971                  * at offsets ending in 0x4 or 0xc.
 972                  *
 973                  * Looks like a lot of fuss, but it avoids an unnecessary
 974                  * +1 usec read-after-write delay for unaffected registers.
 975                  */
 976                 laddr = (unsigned long)addr & 0xffff;
 977                 if (laddr >= 0x300 && laddr <= 0x33c) {
 978                         laddr &= 0x000f;
 979                         if (laddr == 0x4 || laddr == 0xc) {
 980                                 writelfl(new, addr); /* read after write */
 981                                 return;
 982                         }
 983                 }
 984                 writel(new, addr); /* unaffected by the errata */
 985         }
 986 }
 987 
 988 static void mv_set_edma_ptrs(void __iomem *port_mmio,
 989                              struct mv_host_priv *hpriv,
 990                              struct mv_port_priv *pp)
 991 {
 992         u32 index;
 993 
 994         /*
 995          * initialize request queue
 996          */
 997         pp->req_idx &= MV_MAX_Q_DEPTH_MASK;     /* paranoia */
 998         index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
 999 
1000         WARN_ON(pp->crqb_dma & 0x3ff);
1001         writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1002         writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1003                  port_mmio + EDMA_REQ_Q_IN_PTR);
1004         writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1005 
1006         /*
1007          * initialize response queue
1008          */
1009         pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;    /* paranoia */
1010         index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1011 
1012         WARN_ON(pp->crpb_dma & 0xff);
1013         writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1014         writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1015         writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1016                  port_mmio + EDMA_RSP_Q_OUT_PTR);
1017 }
1018 
1019 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1020 {
1021         /*
1022          * When writing to the main_irq_mask in hardware,
1023          * we must ensure exclusivity between the interrupt coalescing bits
1024          * and the corresponding individual port DONE_IRQ bits.
1025          *
1026          * Note that this register is really an "IRQ enable" register,
1027          * not an "IRQ mask" register as Marvell's naming might suggest.
1028          */
1029         if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1030                 mask &= ~DONE_IRQ_0_3;
1031         if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1032                 mask &= ~DONE_IRQ_4_7;
1033         writelfl(mask, hpriv->main_irq_mask_addr);
1034 }
1035 
1036 static void mv_set_main_irq_mask(struct ata_host *host,
1037                                  u32 disable_bits, u32 enable_bits)
1038 {
1039         struct mv_host_priv *hpriv = host->private_data;
1040         u32 old_mask, new_mask;
1041 
1042         old_mask = hpriv->main_irq_mask;
1043         new_mask = (old_mask & ~disable_bits) | enable_bits;
1044         if (new_mask != old_mask) {
1045                 hpriv->main_irq_mask = new_mask;
1046                 mv_write_main_irq_mask(new_mask, hpriv);
1047         }
1048 }
1049 
1050 static void mv_enable_port_irqs(struct ata_port *ap,
1051                                      unsigned int port_bits)
1052 {
1053         unsigned int shift, hardport, port = ap->port_no;
1054         u32 disable_bits, enable_bits;
1055 
1056         MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1057 
1058         disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1059         enable_bits  = port_bits << shift;
1060         mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1061 }
1062 
1063 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1064                                           void __iomem *port_mmio,
1065                                           unsigned int port_irqs)
1066 {
1067         struct mv_host_priv *hpriv = ap->host->private_data;
1068         int hardport = mv_hardport_from_port(ap->port_no);
1069         void __iomem *hc_mmio = mv_hc_base_from_port(
1070                                 mv_host_base(ap->host), ap->port_no);
1071         u32 hc_irq_cause;
1072 
1073         /* clear EDMA event indicators, if any */
1074         writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1075 
1076         /* clear pending irq events */
1077         hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1078         writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1079 
1080         /* clear FIS IRQ Cause */
1081         if (IS_GEN_IIE(hpriv))
1082                 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1083 
1084         mv_enable_port_irqs(ap, port_irqs);
1085 }
1086 
1087 static void mv_set_irq_coalescing(struct ata_host *host,
1088                                   unsigned int count, unsigned int usecs)
1089 {
1090         struct mv_host_priv *hpriv = host->private_data;
1091         void __iomem *mmio = hpriv->base, *hc_mmio;
1092         u32 coal_enable = 0;
1093         unsigned long flags;
1094         unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1095         const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1096                                                         ALL_PORTS_COAL_DONE;
1097 
1098         /* Disable IRQ coalescing if either threshold is zero */
1099         if (!usecs || !count) {
1100                 clks = count = 0;
1101         } else {
1102                 /* Respect maximum limits of the hardware */
1103                 clks = usecs * COAL_CLOCKS_PER_USEC;
1104                 if (clks > MAX_COAL_TIME_THRESHOLD)
1105                         clks = MAX_COAL_TIME_THRESHOLD;
1106                 if (count > MAX_COAL_IO_COUNT)
1107                         count = MAX_COAL_IO_COUNT;
1108         }
1109 
1110         spin_lock_irqsave(&host->lock, flags);
1111         mv_set_main_irq_mask(host, coal_disable, 0);
1112 
1113         if (is_dual_hc && !IS_GEN_I(hpriv)) {
1114                 /*
1115                  * GEN_II/GEN_IIE with dual host controllers:
1116                  * one set of global thresholds for the entire chip.
1117                  */
1118                 writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1119                 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1120                 /* clear leftover coal IRQ bit */
1121                 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1122                 if (count)
1123                         coal_enable = ALL_PORTS_COAL_DONE;
1124                 clks = count = 0; /* force clearing of regular regs below */
1125         }
1126 
1127         /*
1128          * All chips: independent thresholds for each HC on the chip.
1129          */
1130         hc_mmio = mv_hc_base_from_port(mmio, 0);
1131         writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1132         writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1133         writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1134         if (count)
1135                 coal_enable |= PORTS_0_3_COAL_DONE;
1136         if (is_dual_hc) {
1137                 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1138                 writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1139                 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1140                 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1141                 if (count)
1142                         coal_enable |= PORTS_4_7_COAL_DONE;
1143         }
1144 
1145         mv_set_main_irq_mask(host, 0, coal_enable);
1146         spin_unlock_irqrestore(&host->lock, flags);
1147 }
1148 
1149 /**
1150  *      mv_start_edma - Enable eDMA engine
1151  *      @base: port base address
1152  *      @pp: port private data
1153  *
1154  *      Verify the local cache of the eDMA state is accurate with a
1155  *      WARN_ON.
1156  *
1157  *      LOCKING:
1158  *      Inherited from caller.
1159  */
1160 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1161                          struct mv_port_priv *pp, u8 protocol)
1162 {
1163         int want_ncq = (protocol == ATA_PROT_NCQ);
1164 
1165         if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1166                 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1167                 if (want_ncq != using_ncq)
1168                         mv_stop_edma(ap);
1169         }
1170         if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1171                 struct mv_host_priv *hpriv = ap->host->private_data;
1172 
1173                 mv_edma_cfg(ap, want_ncq, 1);
1174 
1175                 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1176                 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1177 
1178                 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1179                 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1180         }
1181 }
1182 
1183 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1184 {
1185         void __iomem *port_mmio = mv_ap_base(ap);
1186         const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1187         const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1188         int i;
1189 
1190         /*
1191          * Wait for the EDMA engine to finish transactions in progress.
1192          * No idea what a good "timeout" value might be, but measurements
1193          * indicate that it often requires hundreds of microseconds
1194          * with two drives in-use.  So we use the 15msec value above
1195          * as a rough guess at what even more drives might require.
1196          */
1197         for (i = 0; i < timeout; ++i) {
1198                 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1199                 if ((edma_stat & empty_idle) == empty_idle)
1200                         break;
1201                 udelay(per_loop);
1202         }
1203         /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1204 }
1205 
1206 /**
1207  *      mv_stop_edma_engine - Disable eDMA engine
1208  *      @port_mmio: io base address
1209  *
1210  *      LOCKING:
1211  *      Inherited from caller.
1212  */
1213 static int mv_stop_edma_engine(void __iomem *port_mmio)
1214 {
1215         int i;
1216 
1217         /* Disable eDMA.  The disable bit auto clears. */
1218         writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1219 
1220         /* Wait for the chip to confirm eDMA is off. */
1221         for (i = 10000; i > 0; i--) {
1222                 u32 reg = readl(port_mmio + EDMA_CMD);
1223                 if (!(reg & EDMA_EN))
1224                         return 0;
1225                 udelay(10);
1226         }
1227         return -EIO;
1228 }
1229 
1230 static int mv_stop_edma(struct ata_port *ap)
1231 {
1232         void __iomem *port_mmio = mv_ap_base(ap);
1233         struct mv_port_priv *pp = ap->private_data;
1234         int err = 0;
1235 
1236         if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1237                 return 0;
1238         pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1239         mv_wait_for_edma_empty_idle(ap);
1240         if (mv_stop_edma_engine(port_mmio)) {
1241                 ata_port_err(ap, "Unable to stop eDMA\n");
1242                 err = -EIO;
1243         }
1244         mv_edma_cfg(ap, 0, 0);
1245         return err;
1246 }
1247 
1248 #ifdef ATA_DEBUG
1249 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1250 {
1251         int b, w;
1252         for (b = 0; b < bytes; ) {
1253                 DPRINTK("%p: ", start + b);
1254                 for (w = 0; b < bytes && w < 4; w++) {
1255                         printk("%08x ", readl(start + b));
1256                         b += sizeof(u32);
1257                 }
1258                 printk("\n");
1259         }
1260 }
1261 #endif
1262 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1263 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1264 {
1265 #ifdef ATA_DEBUG
1266         int b, w;
1267         u32 dw;
1268         for (b = 0; b < bytes; ) {
1269                 DPRINTK("%02x: ", b);
1270                 for (w = 0; b < bytes && w < 4; w++) {
1271                         (void) pci_read_config_dword(pdev, b, &dw);
1272                         printk("%08x ", dw);
1273                         b += sizeof(u32);
1274                 }
1275                 printk("\n");
1276         }
1277 #endif
1278 }
1279 #endif
1280 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1281                              struct pci_dev *pdev)
1282 {
1283 #ifdef ATA_DEBUG
1284         void __iomem *hc_base = mv_hc_base(mmio_base,
1285                                            port >> MV_PORT_HC_SHIFT);
1286         void __iomem *port_base;
1287         int start_port, num_ports, p, start_hc, num_hcs, hc;
1288 
1289         if (0 > port) {
1290                 start_hc = start_port = 0;
1291                 num_ports = 8;          /* shld be benign for 4 port devs */
1292                 num_hcs = 2;
1293         } else {
1294                 start_hc = port >> MV_PORT_HC_SHIFT;
1295                 start_port = port;
1296                 num_ports = num_hcs = 1;
1297         }
1298         DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1299                 num_ports > 1 ? num_ports - 1 : start_port);
1300 
1301         if (NULL != pdev) {
1302                 DPRINTK("PCI config space regs:\n");
1303                 mv_dump_pci_cfg(pdev, 0x68);
1304         }
1305         DPRINTK("PCI regs:\n");
1306         mv_dump_mem(mmio_base+0xc00, 0x3c);
1307         mv_dump_mem(mmio_base+0xd00, 0x34);
1308         mv_dump_mem(mmio_base+0xf00, 0x4);
1309         mv_dump_mem(mmio_base+0x1d00, 0x6c);
1310         for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1311                 hc_base = mv_hc_base(mmio_base, hc);
1312                 DPRINTK("HC regs (HC %i):\n", hc);
1313                 mv_dump_mem(hc_base, 0x1c);
1314         }
1315         for (p = start_port; p < start_port + num_ports; p++) {
1316                 port_base = mv_port_base(mmio_base, p);
1317                 DPRINTK("EDMA regs (port %i):\n", p);
1318                 mv_dump_mem(port_base, 0x54);
1319                 DPRINTK("SATA regs (port %i):\n", p);
1320                 mv_dump_mem(port_base+0x300, 0x60);
1321         }
1322 #endif
1323 }
1324 
1325 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1326 {
1327         unsigned int ofs;
1328 
1329         switch (sc_reg_in) {
1330         case SCR_STATUS:
1331         case SCR_CONTROL:
1332         case SCR_ERROR:
1333                 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1334                 break;
1335         case SCR_ACTIVE:
1336                 ofs = SATA_ACTIVE;   /* active is not with the others */
1337                 break;
1338         default:
1339                 ofs = 0xffffffffU;
1340                 break;
1341         }
1342         return ofs;
1343 }
1344 
1345 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1346 {
1347         unsigned int ofs = mv_scr_offset(sc_reg_in);
1348 
1349         if (ofs != 0xffffffffU) {
1350                 *val = readl(mv_ap_base(link->ap) + ofs);
1351                 return 0;
1352         } else
1353                 return -EINVAL;
1354 }
1355 
1356 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1357 {
1358         unsigned int ofs = mv_scr_offset(sc_reg_in);
1359 
1360         if (ofs != 0xffffffffU) {
1361                 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1362                 struct mv_host_priv *hpriv = link->ap->host->private_data;
1363                 if (sc_reg_in == SCR_CONTROL) {
1364                         /*
1365                          * Workaround for 88SX60x1 FEr SATA#26:
1366                          *
1367                          * COMRESETs have to take care not to accidentally
1368                          * put the drive to sleep when writing SCR_CONTROL.
1369                          * Setting bits 12..15 prevents this problem.
1370                          *
1371                          * So if we see an outbound COMMRESET, set those bits.
1372                          * Ditto for the followup write that clears the reset.
1373                          *
1374                          * The proprietary driver does this for
1375                          * all chip versions, and so do we.
1376                          */
1377                         if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1378                                 val |= 0xf000;
1379 
1380                         if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1381                                 void __iomem *lp_phy_addr =
1382                                         mv_ap_base(link->ap) + LP_PHY_CTL;
1383                                 /*
1384                                  * Set PHY speed according to SControl speed.
1385                                  */
1386                                 u32 lp_phy_val =
1387                                         LP_PHY_CTL_PIN_PU_PLL |
1388                                         LP_PHY_CTL_PIN_PU_RX  |
1389                                         LP_PHY_CTL_PIN_PU_TX;
1390 
1391                                 if ((val & 0xf0) != 0x10)
1392                                         lp_phy_val |=
1393                                                 LP_PHY_CTL_GEN_TX_3G |
1394                                                 LP_PHY_CTL_GEN_RX_3G;
1395 
1396                                 writelfl(lp_phy_val, lp_phy_addr);
1397                         }
1398                 }
1399                 writelfl(val, addr);
1400                 return 0;
1401         } else
1402                 return -EINVAL;
1403 }
1404 
1405 static void mv6_dev_config(struct ata_device *adev)
1406 {
1407         /*
1408          * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1409          *
1410          * Gen-II does not support NCQ over a port multiplier
1411          *  (no FIS-based switching).
1412          */
1413         if (adev->flags & ATA_DFLAG_NCQ) {
1414                 if (sata_pmp_attached(adev->link->ap)) {
1415                         adev->flags &= ~ATA_DFLAG_NCQ;
1416                         ata_dev_info(adev,
1417                                 "NCQ disabled for command-based switching\n");
1418                 }
1419         }
1420 }
1421 
1422 static int mv_qc_defer(struct ata_queued_cmd *qc)
1423 {
1424         struct ata_link *link = qc->dev->link;
1425         struct ata_port *ap = link->ap;
1426         struct mv_port_priv *pp = ap->private_data;
1427 
1428         /*
1429          * Don't allow new commands if we're in a delayed EH state
1430          * for NCQ and/or FIS-based switching.
1431          */
1432         if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1433                 return ATA_DEFER_PORT;
1434 
1435         /* PIO commands need exclusive link: no other commands [DMA or PIO]
1436          * can run concurrently.
1437          * set excl_link when we want to send a PIO command in DMA mode
1438          * or a non-NCQ command in NCQ mode.
1439          * When we receive a command from that link, and there are no
1440          * outstanding commands, mark a flag to clear excl_link and let
1441          * the command go through.
1442          */
1443         if (unlikely(ap->excl_link)) {
1444                 if (link == ap->excl_link) {
1445                         if (ap->nr_active_links)
1446                                 return ATA_DEFER_PORT;
1447                         qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1448                         return 0;
1449                 } else
1450                         return ATA_DEFER_PORT;
1451         }
1452 
1453         /*
1454          * If the port is completely idle, then allow the new qc.
1455          */
1456         if (ap->nr_active_links == 0)
1457                 return 0;
1458 
1459         /*
1460          * The port is operating in host queuing mode (EDMA) with NCQ
1461          * enabled, allow multiple NCQ commands.  EDMA also allows
1462          * queueing multiple DMA commands but libata core currently
1463          * doesn't allow it.
1464          */
1465         if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1466             (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1467                 if (ata_is_ncq(qc->tf.protocol))
1468                         return 0;
1469                 else {
1470                         ap->excl_link = link;
1471                         return ATA_DEFER_PORT;
1472                 }
1473         }
1474 
1475         return ATA_DEFER_PORT;
1476 }
1477 
1478 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1479 {
1480         struct mv_port_priv *pp = ap->private_data;
1481         void __iomem *port_mmio;
1482 
1483         u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1484         u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1485         u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1486 
1487         ltmode   = *old_ltmode & ~LTMODE_BIT8;
1488         haltcond = *old_haltcond | EDMA_ERR_DEV;
1489 
1490         if (want_fbs) {
1491                 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1492                 ltmode = *old_ltmode | LTMODE_BIT8;
1493                 if (want_ncq)
1494                         haltcond &= ~EDMA_ERR_DEV;
1495                 else
1496                         fiscfg |=  FISCFG_WAIT_DEV_ERR;
1497         } else {
1498                 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1499         }
1500 
1501         port_mmio = mv_ap_base(ap);
1502         mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1503         mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1504         mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1505 }
1506 
1507 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1508 {
1509         struct mv_host_priv *hpriv = ap->host->private_data;
1510         u32 old, new;
1511 
1512         /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1513         old = readl(hpriv->base + GPIO_PORT_CTL);
1514         if (want_ncq)
1515                 new = old | (1 << 22);
1516         else
1517                 new = old & ~(1 << 22);
1518         if (new != old)
1519                 writel(new, hpriv->base + GPIO_PORT_CTL);
1520 }
1521 
1522 /**
1523  *      mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1524  *      @ap: Port being initialized
1525  *
1526  *      There are two DMA modes on these chips:  basic DMA, and EDMA.
1527  *
1528  *      Bit-0 of the "EDMA RESERVED" register enables/disables use
1529  *      of basic DMA on the GEN_IIE versions of the chips.
1530  *
1531  *      This bit survives EDMA resets, and must be set for basic DMA
1532  *      to function, and should be cleared when EDMA is active.
1533  */
1534 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1535 {
1536         struct mv_port_priv *pp = ap->private_data;
1537         u32 new, *old = &pp->cached.unknown_rsvd;
1538 
1539         if (enable_bmdma)
1540                 new = *old | 1;
1541         else
1542                 new = *old & ~1;
1543         mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1544 }
1545 
1546 /*
1547  * SOC chips have an issue whereby the HDD LEDs don't always blink
1548  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1549  * of the SOC takes care of it, generating a steady blink rate when
1550  * any drive on the chip is active.
1551  *
1552  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1553  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1554  *
1555  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1556  * LED operation works then, and provides better (more accurate) feedback.
1557  *
1558  * Note that this code assumes that an SOC never has more than one HC onboard.
1559  */
1560 static void mv_soc_led_blink_enable(struct ata_port *ap)
1561 {
1562         struct ata_host *host = ap->host;
1563         struct mv_host_priv *hpriv = host->private_data;
1564         void __iomem *hc_mmio;
1565         u32 led_ctrl;
1566 
1567         if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1568                 return;
1569         hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1570         hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1571         led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1572         writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1573 }
1574 
1575 static void mv_soc_led_blink_disable(struct ata_port *ap)
1576 {
1577         struct ata_host *host = ap->host;
1578         struct mv_host_priv *hpriv = host->private_data;
1579         void __iomem *hc_mmio;
1580         u32 led_ctrl;
1581         unsigned int port;
1582 
1583         if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1584                 return;
1585 
1586         /* disable led-blink only if no ports are using NCQ */
1587         for (port = 0; port < hpriv->n_ports; port++) {
1588                 struct ata_port *this_ap = host->ports[port];
1589                 struct mv_port_priv *pp = this_ap->private_data;
1590 
1591                 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1592                         return;
1593         }
1594 
1595         hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1596         hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1597         led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1598         writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1599 }
1600 
1601 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1602 {
1603         u32 cfg;
1604         struct mv_port_priv *pp    = ap->private_data;
1605         struct mv_host_priv *hpriv = ap->host->private_data;
1606         void __iomem *port_mmio    = mv_ap_base(ap);
1607 
1608         /* set up non-NCQ EDMA configuration */
1609         cfg = EDMA_CFG_Q_DEPTH;         /* always 0x1f for *all* chips */
1610         pp->pp_flags &=
1611           ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1612 
1613         if (IS_GEN_I(hpriv))
1614                 cfg |= (1 << 8);        /* enab config burst size mask */
1615 
1616         else if (IS_GEN_II(hpriv)) {
1617                 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1618                 mv_60x1_errata_sata25(ap, want_ncq);
1619 
1620         } else if (IS_GEN_IIE(hpriv)) {
1621                 int want_fbs = sata_pmp_attached(ap);
1622                 /*
1623                  * Possible future enhancement:
1624                  *
1625                  * The chip can use FBS with non-NCQ, if we allow it,
1626                  * But first we need to have the error handling in place
1627                  * for this mode (datasheet section 7.3.15.4.2.3).
1628                  * So disallow non-NCQ FBS for now.
1629                  */
1630                 want_fbs &= want_ncq;
1631 
1632                 mv_config_fbs(ap, want_ncq, want_fbs);
1633 
1634                 if (want_fbs) {
1635                         pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1636                         cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1637                 }
1638 
1639                 cfg |= (1 << 23);       /* do not mask PM field in rx'd FIS */
1640                 if (want_edma) {
1641                         cfg |= (1 << 22); /* enab 4-entry host queue cache */
1642                         if (!IS_SOC(hpriv))
1643                                 cfg |= (1 << 18); /* enab early completion */
1644                 }
1645                 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1646                         cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1647                 mv_bmdma_enable_iie(ap, !want_edma);
1648 
1649                 if (IS_SOC(hpriv)) {
1650                         if (want_ncq)
1651                                 mv_soc_led_blink_enable(ap);
1652                         else
1653                                 mv_soc_led_blink_disable(ap);
1654                 }
1655         }
1656 
1657         if (want_ncq) {
1658                 cfg |= EDMA_CFG_NCQ;
1659                 pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1660         }
1661 
1662         writelfl(cfg, port_mmio + EDMA_CFG);
1663 }
1664 
1665 static void mv_port_free_dma_mem(struct ata_port *ap)
1666 {
1667         struct mv_host_priv *hpriv = ap->host->private_data;
1668         struct mv_port_priv *pp = ap->private_data;
1669         int tag;
1670 
1671         if (pp->crqb) {
1672                 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1673                 pp->crqb = NULL;
1674         }
1675         if (pp->crpb) {
1676                 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1677                 pp->crpb = NULL;
1678         }
1679         /*
1680          * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1681          * For later hardware, we have one unique sg_tbl per NCQ tag.
1682          */
1683         for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1684                 if (pp->sg_tbl[tag]) {
1685                         if (tag == 0 || !IS_GEN_I(hpriv))
1686                                 dma_pool_free(hpriv->sg_tbl_pool,
1687                                               pp->sg_tbl[tag],
1688                                               pp->sg_tbl_dma[tag]);
1689                         pp->sg_tbl[tag] = NULL;
1690                 }
1691         }
1692 }
1693 
1694 /**
1695  *      mv_port_start - Port specific init/start routine.
1696  *      @ap: ATA channel to manipulate
1697  *
1698  *      Allocate and point to DMA memory, init port private memory,
1699  *      zero indices.
1700  *
1701  *      LOCKING:
1702  *      Inherited from caller.
1703  */
1704 static int mv_port_start(struct ata_port *ap)
1705 {
1706         struct device *dev = ap->host->dev;
1707         struct mv_host_priv *hpriv = ap->host->private_data;
1708         struct mv_port_priv *pp;
1709         unsigned long flags;
1710         int tag;
1711 
1712         pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1713         if (!pp)
1714                 return -ENOMEM;
1715         ap->private_data = pp;
1716 
1717         pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1718         if (!pp->crqb)
1719                 return -ENOMEM;
1720 
1721         pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1722         if (!pp->crpb)
1723                 goto out_port_free_dma_mem;
1724 
1725         /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1726         if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1727                 ap->flags |= ATA_FLAG_AN;
1728         /*
1729          * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1730          * For later hardware, we need one unique sg_tbl per NCQ tag.
1731          */
1732         for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1733                 if (tag == 0 || !IS_GEN_I(hpriv)) {
1734                         pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1735                                               GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1736                         if (!pp->sg_tbl[tag])
1737                                 goto out_port_free_dma_mem;
1738                 } else {
1739                         pp->sg_tbl[tag]     = pp->sg_tbl[0];
1740                         pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1741                 }
1742         }
1743 
1744         spin_lock_irqsave(ap->lock, flags);
1745         mv_save_cached_regs(ap);
1746         mv_edma_cfg(ap, 0, 0);
1747         spin_unlock_irqrestore(ap->lock, flags);
1748 
1749         return 0;
1750 
1751 out_port_free_dma_mem:
1752         mv_port_free_dma_mem(ap);
1753         return -ENOMEM;
1754 }
1755 
1756 /**
1757  *      mv_port_stop - Port specific cleanup/stop routine.
1758  *      @ap: ATA channel to manipulate
1759  *
1760  *      Stop DMA, cleanup port memory.
1761  *
1762  *      LOCKING:
1763  *      This routine uses the host lock to protect the DMA stop.
1764  */
1765 static void mv_port_stop(struct ata_port *ap)
1766 {
1767         unsigned long flags;
1768 
1769         spin_lock_irqsave(ap->lock, flags);
1770         mv_stop_edma(ap);
1771         mv_enable_port_irqs(ap, 0);
1772         spin_unlock_irqrestore(ap->lock, flags);
1773         mv_port_free_dma_mem(ap);
1774 }
1775 
1776 /**
1777  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1778  *      @qc: queued command whose SG list to source from
1779  *
1780  *      Populate the SG list and mark the last entry.
1781  *
1782  *      LOCKING:
1783  *      Inherited from caller.
1784  */
1785 static void mv_fill_sg(struct ata_queued_cmd *qc)
1786 {
1787         struct mv_port_priv *pp = qc->ap->private_data;
1788         struct scatterlist *sg;
1789         struct mv_sg *mv_sg, *last_sg = NULL;
1790         unsigned int si;
1791 
1792         mv_sg = pp->sg_tbl[qc->hw_tag];
1793         for_each_sg(qc->sg, sg, qc->n_elem, si) {
1794                 dma_addr_t addr = sg_dma_address(sg);
1795                 u32 sg_len = sg_dma_len(sg);
1796 
1797                 while (sg_len) {
1798                         u32 offset = addr & 0xffff;
1799                         u32 len = sg_len;
1800 
1801                         if (offset + len > 0x10000)
1802                                 len = 0x10000 - offset;
1803 
1804                         mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1805                         mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1806                         mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1807                         mv_sg->reserved = 0;
1808 
1809                         sg_len -= len;
1810                         addr += len;
1811 
1812                         last_sg = mv_sg;
1813                         mv_sg++;
1814                 }
1815         }
1816 
1817         if (likely(last_sg))
1818                 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1819         mb(); /* ensure data structure is visible to the chipset */
1820 }
1821 
1822 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1823 {
1824         u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1825                 (last ? CRQB_CMD_LAST : 0);
1826         *cmdw = cpu_to_le16(tmp);
1827 }
1828 
1829 /**
1830  *      mv_sff_irq_clear - Clear hardware interrupt after DMA.
1831  *      @ap: Port associated with this ATA transaction.
1832  *
1833  *      We need this only for ATAPI bmdma transactions,
1834  *      as otherwise we experience spurious interrupts
1835  *      after libata-sff handles the bmdma interrupts.
1836  */
1837 static void mv_sff_irq_clear(struct ata_port *ap)
1838 {
1839         mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1840 }
1841 
1842 /**
1843  *      mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1844  *      @qc: queued command to check for chipset/DMA compatibility.
1845  *
1846  *      The bmdma engines cannot handle speculative data sizes
1847  *      (bytecount under/over flow).  So only allow DMA for
1848  *      data transfer commands with known data sizes.
1849  *
1850  *      LOCKING:
1851  *      Inherited from caller.
1852  */
1853 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1854 {
1855         struct scsi_cmnd *scmd = qc->scsicmd;
1856 
1857         if (scmd) {
1858                 switch (scmd->cmnd[0]) {
1859                 case READ_6:
1860                 case READ_10:
1861                 case READ_12:
1862                 case WRITE_6:
1863                 case WRITE_10:
1864                 case WRITE_12:
1865                 case GPCMD_READ_CD:
1866                 case GPCMD_SEND_DVD_STRUCTURE:
1867                 case GPCMD_SEND_CUE_SHEET:
1868                         return 0; /* DMA is safe */
1869                 }
1870         }
1871         return -EOPNOTSUPP; /* use PIO instead */
1872 }
1873 
1874 /**
1875  *      mv_bmdma_setup - Set up BMDMA transaction
1876  *      @qc: queued command to prepare DMA for.
1877  *
1878  *      LOCKING:
1879  *      Inherited from caller.
1880  */
1881 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1882 {
1883         struct ata_port *ap = qc->ap;
1884         void __iomem *port_mmio = mv_ap_base(ap);
1885         struct mv_port_priv *pp = ap->private_data;
1886 
1887         mv_fill_sg(qc);
1888 
1889         /* clear all DMA cmd bits */
1890         writel(0, port_mmio + BMDMA_CMD);
1891 
1892         /* load PRD table addr. */
1893         writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1894                 port_mmio + BMDMA_PRD_HIGH);
1895         writelfl(pp->sg_tbl_dma[qc->hw_tag],
1896                 port_mmio + BMDMA_PRD_LOW);
1897 
1898         /* issue r/w command */
1899         ap->ops->sff_exec_command(ap, &qc->tf);
1900 }
1901 
1902 /**
1903  *      mv_bmdma_start - Start a BMDMA transaction
1904  *      @qc: queued command to start DMA on.
1905  *
1906  *      LOCKING:
1907  *      Inherited from caller.
1908  */
1909 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1910 {
1911         struct ata_port *ap = qc->ap;
1912         void __iomem *port_mmio = mv_ap_base(ap);
1913         unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1914         u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1915 
1916         /* start host DMA transaction */
1917         writelfl(cmd, port_mmio + BMDMA_CMD);
1918 }
1919 
1920 /**
1921  *      mv_bmdma_stop - Stop BMDMA transfer
1922  *      @qc: queued command to stop DMA on.
1923  *
1924  *      Clears the ATA_DMA_START flag in the bmdma control register
1925  *
1926  *      LOCKING:
1927  *      Inherited from caller.
1928  */
1929 static void mv_bmdma_stop_ap(struct ata_port *ap)
1930 {
1931         void __iomem *port_mmio = mv_ap_base(ap);
1932         u32 cmd;
1933 
1934         /* clear start/stop bit */
1935         cmd = readl(port_mmio + BMDMA_CMD);
1936         if (cmd & ATA_DMA_START) {
1937                 cmd &= ~ATA_DMA_START;
1938                 writelfl(cmd, port_mmio + BMDMA_CMD);
1939 
1940                 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1941                 ata_sff_dma_pause(ap);
1942         }
1943 }
1944 
1945 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1946 {
1947         mv_bmdma_stop_ap(qc->ap);
1948 }
1949 
1950 /**
1951  *      mv_bmdma_status - Read BMDMA status
1952  *      @ap: port for which to retrieve DMA status.
1953  *
1954  *      Read and return equivalent of the sff BMDMA status register.
1955  *
1956  *      LOCKING:
1957  *      Inherited from caller.
1958  */
1959 static u8 mv_bmdma_status(struct ata_port *ap)
1960 {
1961         void __iomem *port_mmio = mv_ap_base(ap);
1962         u32 reg, status;
1963 
1964         /*
1965          * Other bits are valid only if ATA_DMA_ACTIVE==0,
1966          * and the ATA_DMA_INTR bit doesn't exist.
1967          */
1968         reg = readl(port_mmio + BMDMA_STATUS);
1969         if (reg & ATA_DMA_ACTIVE)
1970                 status = ATA_DMA_ACTIVE;
1971         else if (reg & ATA_DMA_ERR)
1972                 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1973         else {
1974                 /*
1975                  * Just because DMA_ACTIVE is 0 (DMA completed),
1976                  * this does _not_ mean the device is "done".
1977                  * So we should not yet be signalling ATA_DMA_INTR
1978                  * in some cases.  Eg. DSM/TRIM, and perhaps others.
1979                  */
1980                 mv_bmdma_stop_ap(ap);
1981                 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1982                         status = 0;
1983                 else
1984                         status = ATA_DMA_INTR;
1985         }
1986         return status;
1987 }
1988 
1989 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1990 {
1991         struct ata_taskfile *tf = &qc->tf;
1992         /*
1993          * Workaround for 88SX60x1 FEr SATA#24.
1994          *
1995          * Chip may corrupt WRITEs if multi_count >= 4kB.
1996          * Note that READs are unaffected.
1997          *
1998          * It's not clear if this errata really means "4K bytes",
1999          * or if it always happens for multi_count > 7
2000          * regardless of device sector_size.
2001          *
2002          * So, for safety, any write with multi_count > 7
2003          * gets converted here into a regular PIO write instead:
2004          */
2005         if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2006                 if (qc->dev->multi_count > 7) {
2007                         switch (tf->command) {
2008                         case ATA_CMD_WRITE_MULTI:
2009                                 tf->command = ATA_CMD_PIO_WRITE;
2010                                 break;
2011                         case ATA_CMD_WRITE_MULTI_FUA_EXT:
2012                                 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2013                                 /* fall through */
2014                         case ATA_CMD_WRITE_MULTI_EXT:
2015                                 tf->command = ATA_CMD_PIO_WRITE_EXT;
2016                                 break;
2017                         }
2018                 }
2019         }
2020 }
2021 
2022 /**
2023  *      mv_qc_prep - Host specific command preparation.
2024  *      @qc: queued command to prepare
2025  *
2026  *      This routine simply redirects to the general purpose routine
2027  *      if command is not DMA.  Else, it handles prep of the CRQB
2028  *      (command request block), does some sanity checking, and calls
2029  *      the SG load routine.
2030  *
2031  *      LOCKING:
2032  *      Inherited from caller.
2033  */
2034 static void mv_qc_prep(struct ata_queued_cmd *qc)
2035 {
2036         struct ata_port *ap = qc->ap;
2037         struct mv_port_priv *pp = ap->private_data;
2038         __le16 *cw;
2039         struct ata_taskfile *tf = &qc->tf;
2040         u16 flags = 0;
2041         unsigned in_index;
2042 
2043         switch (tf->protocol) {
2044         case ATA_PROT_DMA:
2045                 if (tf->command == ATA_CMD_DSM)
2046                         return;
2047                 /* fall-thru */
2048         case ATA_PROT_NCQ:
2049                 break;  /* continue below */
2050         case ATA_PROT_PIO:
2051                 mv_rw_multi_errata_sata24(qc);
2052                 return;
2053         default:
2054                 return;
2055         }
2056 
2057         /* Fill in command request block
2058          */
2059         if (!(tf->flags & ATA_TFLAG_WRITE))
2060                 flags |= CRQB_FLAG_READ;
2061         WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2062         flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2063         flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2064 
2065         /* get current queue index from software */
2066         in_index = pp->req_idx;
2067 
2068         pp->crqb[in_index].sg_addr =
2069                 cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2070         pp->crqb[in_index].sg_addr_hi =
2071                 cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2072         pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2073 
2074         cw = &pp->crqb[in_index].ata_cmd[0];
2075 
2076         /* Sadly, the CRQB cannot accommodate all registers--there are
2077          * only 11 bytes...so we must pick and choose required
2078          * registers based on the command.  So, we drop feature and
2079          * hob_feature for [RW] DMA commands, but they are needed for
2080          * NCQ.  NCQ will drop hob_nsect, which is not needed there
2081          * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2082          */
2083         switch (tf->command) {
2084         case ATA_CMD_READ:
2085         case ATA_CMD_READ_EXT:
2086         case ATA_CMD_WRITE:
2087         case ATA_CMD_WRITE_EXT:
2088         case ATA_CMD_WRITE_FUA_EXT:
2089                 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2090                 break;
2091         case ATA_CMD_FPDMA_READ:
2092         case ATA_CMD_FPDMA_WRITE:
2093                 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2094                 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2095                 break;
2096         default:
2097                 /* The only other commands EDMA supports in non-queued and
2098                  * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2099                  * of which are defined/used by Linux.  If we get here, this
2100                  * driver needs work.
2101                  *
2102                  * FIXME: modify libata to give qc_prep a return value and
2103                  * return error here.
2104                  */
2105                 BUG_ON(tf->command);
2106                 break;
2107         }
2108         mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2109         mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2110         mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2111         mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2112         mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2113         mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2114         mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2115         mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2116         mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);    /* last */
2117 
2118         if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2119                 return;
2120         mv_fill_sg(qc);
2121 }
2122 
2123 /**
2124  *      mv_qc_prep_iie - Host specific command preparation.
2125  *      @qc: queued command to prepare
2126  *
2127  *      This routine simply redirects to the general purpose routine
2128  *      if command is not DMA.  Else, it handles prep of the CRQB
2129  *      (command request block), does some sanity checking, and calls
2130  *      the SG load routine.
2131  *
2132  *      LOCKING:
2133  *      Inherited from caller.
2134  */
2135 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2136 {
2137         struct ata_port *ap = qc->ap;
2138         struct mv_port_priv *pp = ap->private_data;
2139         struct mv_crqb_iie *crqb;
2140         struct ata_taskfile *tf = &qc->tf;
2141         unsigned in_index;
2142         u32 flags = 0;
2143 
2144         if ((tf->protocol != ATA_PROT_DMA) &&
2145             (tf->protocol != ATA_PROT_NCQ))
2146                 return;
2147         if (tf->command == ATA_CMD_DSM)
2148                 return;  /* use bmdma for this */
2149 
2150         /* Fill in Gen IIE command request block */
2151         if (!(tf->flags & ATA_TFLAG_WRITE))
2152                 flags |= CRQB_FLAG_READ;
2153 
2154         WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2155         flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2156         flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2157         flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2158 
2159         /* get current queue index from software */
2160         in_index = pp->req_idx;
2161 
2162         crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2163         crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2164         crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2165         crqb->flags = cpu_to_le32(flags);
2166 
2167         crqb->ata_cmd[0] = cpu_to_le32(
2168                         (tf->command << 16) |
2169                         (tf->feature << 24)
2170                 );
2171         crqb->ata_cmd[1] = cpu_to_le32(
2172                         (tf->lbal << 0) |
2173                         (tf->lbam << 8) |
2174                         (tf->lbah << 16) |
2175                         (tf->device << 24)
2176                 );
2177         crqb->ata_cmd[2] = cpu_to_le32(
2178                         (tf->hob_lbal << 0) |
2179                         (tf->hob_lbam << 8) |
2180                         (tf->hob_lbah << 16) |
2181                         (tf->hob_feature << 24)
2182                 );
2183         crqb->ata_cmd[3] = cpu_to_le32(
2184                         (tf->nsect << 0) |
2185                         (tf->hob_nsect << 8)
2186                 );
2187 
2188         if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2189                 return;
2190         mv_fill_sg(qc);
2191 }
2192 
2193 /**
2194  *      mv_sff_check_status - fetch device status, if valid
2195  *      @ap: ATA port to fetch status from
2196  *
2197  *      When using command issue via mv_qc_issue_fis(),
2198  *      the initial ATA_BUSY state does not show up in the
2199  *      ATA status (shadow) register.  This can confuse libata!
2200  *
2201  *      So we have a hook here to fake ATA_BUSY for that situation,
2202  *      until the first time a BUSY, DRQ, or ERR bit is seen.
2203  *
2204  *      The rest of the time, it simply returns the ATA status register.
2205  */
2206 static u8 mv_sff_check_status(struct ata_port *ap)
2207 {
2208         u8 stat = ioread8(ap->ioaddr.status_addr);
2209         struct mv_port_priv *pp = ap->private_data;
2210 
2211         if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2212                 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2213                         pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2214                 else
2215                         stat = ATA_BUSY;
2216         }
2217         return stat;
2218 }
2219 
2220 /**
2221  *      mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2222  *      @fis: fis to be sent
2223  *      @nwords: number of 32-bit words in the fis
2224  */
2225 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2226 {
2227         void __iomem *port_mmio = mv_ap_base(ap);
2228         u32 ifctl, old_ifctl, ifstat;
2229         int i, timeout = 200, final_word = nwords - 1;
2230 
2231         /* Initiate FIS transmission mode */
2232         old_ifctl = readl(port_mmio + SATA_IFCTL);
2233         ifctl = 0x100 | (old_ifctl & 0xf);
2234         writelfl(ifctl, port_mmio + SATA_IFCTL);
2235 
2236         /* Send all words of the FIS except for the final word */
2237         for (i = 0; i < final_word; ++i)
2238                 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2239 
2240         /* Flag end-of-transmission, and then send the final word */
2241         writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2242         writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2243 
2244         /*
2245          * Wait for FIS transmission to complete.
2246          * This typically takes just a single iteration.
2247          */
2248         do {
2249                 ifstat = readl(port_mmio + SATA_IFSTAT);
2250         } while (!(ifstat & 0x1000) && --timeout);
2251 
2252         /* Restore original port configuration */
2253         writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2254 
2255         /* See if it worked */
2256         if ((ifstat & 0x3000) != 0x1000) {
2257                 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2258                               __func__, ifstat);
2259                 return AC_ERR_OTHER;
2260         }
2261         return 0;
2262 }
2263 
2264 /**
2265  *      mv_qc_issue_fis - Issue a command directly as a FIS
2266  *      @qc: queued command to start
2267  *
2268  *      Note that the ATA shadow registers are not updated
2269  *      after command issue, so the device will appear "READY"
2270  *      if polled, even while it is BUSY processing the command.
2271  *
2272  *      So we use a status hook to fake ATA_BUSY until the drive changes state.
2273  *
2274  *      Note: we don't get updated shadow regs on *completion*
2275  *      of non-data commands. So avoid sending them via this function,
2276  *      as they will appear to have completed immediately.
2277  *
2278  *      GEN_IIE has special registers that we could get the result tf from,
2279  *      but earlier chipsets do not.  For now, we ignore those registers.
2280  */
2281 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2282 {
2283         struct ata_port *ap = qc->ap;
2284         struct mv_port_priv *pp = ap->private_data;
2285         struct ata_link *link = qc->dev->link;
2286         u32 fis[5];
2287         int err = 0;
2288 
2289         ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2290         err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2291         if (err)
2292                 return err;
2293 
2294         switch (qc->tf.protocol) {
2295         case ATAPI_PROT_PIO:
2296                 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2297                 /* fall through */
2298         case ATAPI_PROT_NODATA:
2299                 ap->hsm_task_state = HSM_ST_FIRST;
2300                 break;
2301         case ATA_PROT_PIO:
2302                 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2303                 if (qc->tf.flags & ATA_TFLAG_WRITE)
2304                         ap->hsm_task_state = HSM_ST_FIRST;
2305                 else
2306                         ap->hsm_task_state = HSM_ST;
2307                 break;
2308         default:
2309                 ap->hsm_task_state = HSM_ST_LAST;
2310                 break;
2311         }
2312 
2313         if (qc->tf.flags & ATA_TFLAG_POLLING)
2314                 ata_sff_queue_pio_task(link, 0);
2315         return 0;
2316 }
2317 
2318 /**
2319  *      mv_qc_issue - Initiate a command to the host
2320  *      @qc: queued command to start
2321  *
2322  *      This routine simply redirects to the general purpose routine
2323  *      if command is not DMA.  Else, it sanity checks our local
2324  *      caches of the request producer/consumer indices then enables
2325  *      DMA and bumps the request producer index.
2326  *
2327  *      LOCKING:
2328  *      Inherited from caller.
2329  */
2330 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2331 {
2332         static int limit_warnings = 10;
2333         struct ata_port *ap = qc->ap;
2334         void __iomem *port_mmio = mv_ap_base(ap);
2335         struct mv_port_priv *pp = ap->private_data;
2336         u32 in_index;
2337         unsigned int port_irqs;
2338 
2339         pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2340 
2341         switch (qc->tf.protocol) {
2342         case ATA_PROT_DMA:
2343                 if (qc->tf.command == ATA_CMD_DSM) {
2344                         if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2345                                 return AC_ERR_OTHER;
2346                         break;  /* use bmdma for this */
2347                 }
2348                 /* fall thru */
2349         case ATA_PROT_NCQ:
2350                 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2351                 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2352                 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2353 
2354                 /* Write the request in pointer to kick the EDMA to life */
2355                 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2356                                         port_mmio + EDMA_REQ_Q_IN_PTR);
2357                 return 0;
2358 
2359         case ATA_PROT_PIO:
2360                 /*
2361                  * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2362                  *
2363                  * Someday, we might implement special polling workarounds
2364                  * for these, but it all seems rather unnecessary since we
2365                  * normally use only DMA for commands which transfer more
2366                  * than a single block of data.
2367                  *
2368                  * Much of the time, this could just work regardless.
2369                  * So for now, just log the incident, and allow the attempt.
2370                  */
2371                 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2372                         --limit_warnings;
2373                         ata_link_warn(qc->dev->link, DRV_NAME
2374                                       ": attempting PIO w/multiple DRQ: "
2375                                       "this may fail due to h/w errata\n");
2376                 }
2377                 /* fall through */
2378         case ATA_PROT_NODATA:
2379         case ATAPI_PROT_PIO:
2380         case ATAPI_PROT_NODATA:
2381                 if (ap->flags & ATA_FLAG_PIO_POLLING)
2382                         qc->tf.flags |= ATA_TFLAG_POLLING;
2383                 break;
2384         }
2385 
2386         if (qc->tf.flags & ATA_TFLAG_POLLING)
2387                 port_irqs = ERR_IRQ;    /* mask device interrupt when polling */
2388         else
2389                 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2390 
2391         /*
2392          * We're about to send a non-EDMA capable command to the
2393          * port.  Turn off EDMA so there won't be problems accessing
2394          * shadow block, etc registers.
2395          */
2396         mv_stop_edma(ap);
2397         mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2398         mv_pmp_select(ap, qc->dev->link->pmp);
2399 
2400         if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2401                 struct mv_host_priv *hpriv = ap->host->private_data;
2402                 /*
2403                  * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2404                  *
2405                  * After any NCQ error, the READ_LOG_EXT command
2406                  * from libata-eh *must* use mv_qc_issue_fis().
2407                  * Otherwise it might fail, due to chip errata.
2408                  *
2409                  * Rather than special-case it, we'll just *always*
2410                  * use this method here for READ_LOG_EXT, making for
2411                  * easier testing.
2412                  */
2413                 if (IS_GEN_II(hpriv))
2414                         return mv_qc_issue_fis(qc);
2415         }
2416         return ata_bmdma_qc_issue(qc);
2417 }
2418 
2419 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2420 {
2421         struct mv_port_priv *pp = ap->private_data;
2422         struct ata_queued_cmd *qc;
2423 
2424         if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2425                 return NULL;
2426         qc = ata_qc_from_tag(ap, ap->link.active_tag);
2427         if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2428                 return qc;
2429         return NULL;
2430 }
2431 
2432 static void mv_pmp_error_handler(struct ata_port *ap)
2433 {
2434         unsigned int pmp, pmp_map;
2435         struct mv_port_priv *pp = ap->private_data;
2436 
2437         if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2438                 /*
2439                  * Perform NCQ error analysis on failed PMPs
2440                  * before we freeze the port entirely.
2441                  *
2442                  * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2443                  */
2444                 pmp_map = pp->delayed_eh_pmp_map;
2445                 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2446                 for (pmp = 0; pmp_map != 0; pmp++) {
2447                         unsigned int this_pmp = (1 << pmp);
2448                         if (pmp_map & this_pmp) {
2449                                 struct ata_link *link = &ap->pmp_link[pmp];
2450                                 pmp_map &= ~this_pmp;
2451                                 ata_eh_analyze_ncq_error(link);
2452                         }
2453                 }
2454                 ata_port_freeze(ap);
2455         }
2456         sata_pmp_error_handler(ap);
2457 }
2458 
2459 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2460 {
2461         void __iomem *port_mmio = mv_ap_base(ap);
2462 
2463         return readl(port_mmio + SATA_TESTCTL) >> 16;
2464 }
2465 
2466 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2467 {
2468         unsigned int pmp;
2469 
2470         /*
2471          * Initialize EH info for PMPs which saw device errors
2472          */
2473         for (pmp = 0; pmp_map != 0; pmp++) {
2474                 unsigned int this_pmp = (1 << pmp);
2475                 if (pmp_map & this_pmp) {
2476                         struct ata_link *link = &ap->pmp_link[pmp];
2477                         struct ata_eh_info *ehi = &link->eh_info;
2478 
2479                         pmp_map &= ~this_pmp;
2480                         ata_ehi_clear_desc(ehi);
2481                         ata_ehi_push_desc(ehi, "dev err");
2482                         ehi->err_mask |= AC_ERR_DEV;
2483                         ehi->action |= ATA_EH_RESET;
2484                         ata_link_abort(link);
2485                 }
2486         }
2487 }
2488 
2489 static int mv_req_q_empty(struct ata_port *ap)
2490 {
2491         void __iomem *port_mmio = mv_ap_base(ap);
2492         u32 in_ptr, out_ptr;
2493 
2494         in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2495                         >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2496         out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2497                         >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2498         return (in_ptr == out_ptr);     /* 1 == queue_is_empty */
2499 }
2500 
2501 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2502 {
2503         struct mv_port_priv *pp = ap->private_data;
2504         int failed_links;
2505         unsigned int old_map, new_map;
2506 
2507         /*
2508          * Device error during FBS+NCQ operation:
2509          *
2510          * Set a port flag to prevent further I/O being enqueued.
2511          * Leave the EDMA running to drain outstanding commands from this port.
2512          * Perform the post-mortem/EH only when all responses are complete.
2513          * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2514          */
2515         if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2516                 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2517                 pp->delayed_eh_pmp_map = 0;
2518         }
2519         old_map = pp->delayed_eh_pmp_map;
2520         new_map = old_map | mv_get_err_pmp_map(ap);
2521 
2522         if (old_map != new_map) {
2523                 pp->delayed_eh_pmp_map = new_map;
2524                 mv_pmp_eh_prep(ap, new_map & ~old_map);
2525         }
2526         failed_links = hweight16(new_map);
2527 
2528         ata_port_info(ap,
2529                       "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2530                       __func__, pp->delayed_eh_pmp_map,
2531                       ap->qc_active, failed_links,
2532                       ap->nr_active_links);
2533 
2534         if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2535                 mv_process_crpb_entries(ap, pp);
2536                 mv_stop_edma(ap);
2537                 mv_eh_freeze(ap);
2538                 ata_port_info(ap, "%s: done\n", __func__);
2539                 return 1;       /* handled */
2540         }
2541         ata_port_info(ap, "%s: waiting\n", __func__);
2542         return 1;       /* handled */
2543 }
2544 
2545 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2546 {
2547         /*
2548          * Possible future enhancement:
2549          *
2550          * FBS+non-NCQ operation is not yet implemented.
2551          * See related notes in mv_edma_cfg().
2552          *
2553          * Device error during FBS+non-NCQ operation:
2554          *
2555          * We need to snapshot the shadow registers for each failed command.
2556          * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2557          */
2558         return 0;       /* not handled */
2559 }
2560 
2561 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2562 {
2563         struct mv_port_priv *pp = ap->private_data;
2564 
2565         if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2566                 return 0;       /* EDMA was not active: not handled */
2567         if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2568                 return 0;       /* FBS was not active: not handled */
2569 
2570         if (!(edma_err_cause & EDMA_ERR_DEV))
2571                 return 0;       /* non DEV error: not handled */
2572         edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2573         if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2574                 return 0;       /* other problems: not handled */
2575 
2576         if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2577                 /*
2578                  * EDMA should NOT have self-disabled for this case.
2579                  * If it did, then something is wrong elsewhere,
2580                  * and we cannot handle it here.
2581                  */
2582                 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2583                         ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2584                                       __func__, edma_err_cause, pp->pp_flags);
2585                         return 0; /* not handled */
2586                 }
2587                 return mv_handle_fbs_ncq_dev_err(ap);
2588         } else {
2589                 /*
2590                  * EDMA should have self-disabled for this case.
2591                  * If it did not, then something is wrong elsewhere,
2592                  * and we cannot handle it here.
2593                  */
2594                 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2595                         ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2596                                       __func__, edma_err_cause, pp->pp_flags);
2597                         return 0; /* not handled */
2598                 }
2599                 return mv_handle_fbs_non_ncq_dev_err(ap);
2600         }
2601         return 0;       /* not handled */
2602 }
2603 
2604 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2605 {
2606         struct ata_eh_info *ehi = &ap->link.eh_info;
2607         char *when = "idle";
2608 
2609         ata_ehi_clear_desc(ehi);
2610         if (edma_was_enabled) {
2611                 when = "EDMA enabled";
2612         } else {
2613                 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2614                 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2615                         when = "polling";
2616         }
2617         ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2618         ehi->err_mask |= AC_ERR_OTHER;
2619         ehi->action   |= ATA_EH_RESET;
2620         ata_port_freeze(ap);
2621 }
2622 
2623 /**
2624  *      mv_err_intr - Handle error interrupts on the port
2625  *      @ap: ATA channel to manipulate
2626  *
2627  *      Most cases require a full reset of the chip's state machine,
2628  *      which also performs a COMRESET.
2629  *      Also, if the port disabled DMA, update our cached copy to match.
2630  *
2631  *      LOCKING:
2632  *      Inherited from caller.
2633  */
2634 static void mv_err_intr(struct ata_port *ap)
2635 {
2636         void __iomem *port_mmio = mv_ap_base(ap);
2637         u32 edma_err_cause, eh_freeze_mask, serr = 0;
2638         u32 fis_cause = 0;
2639         struct mv_port_priv *pp = ap->private_data;
2640         struct mv_host_priv *hpriv = ap->host->private_data;
2641         unsigned int action = 0, err_mask = 0;
2642         struct ata_eh_info *ehi = &ap->link.eh_info;
2643         struct ata_queued_cmd *qc;
2644         int abort = 0;
2645 
2646         /*
2647          * Read and clear the SError and err_cause bits.
2648          * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2649          * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2650          */
2651         sata_scr_read(&ap->link, SCR_ERROR, &serr);
2652         sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2653 
2654         edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2655         if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2656                 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2657                 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2658         }
2659         writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2660 
2661         if (edma_err_cause & EDMA_ERR_DEV) {
2662                 /*
2663                  * Device errors during FIS-based switching operation
2664                  * require special handling.
2665                  */
2666                 if (mv_handle_dev_err(ap, edma_err_cause))
2667                         return;
2668         }
2669 
2670         qc = mv_get_active_qc(ap);
2671         ata_ehi_clear_desc(ehi);
2672         ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2673                           edma_err_cause, pp->pp_flags);
2674 
2675         if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2676                 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2677                 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2678                         u32 ec = edma_err_cause &
2679                                ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2680                         sata_async_notification(ap);
2681                         if (!ec)
2682                                 return; /* Just an AN; no need for the nukes */
2683                         ata_ehi_push_desc(ehi, "SDB notify");
2684                 }
2685         }
2686         /*
2687          * All generations share these EDMA error cause bits:
2688          */
2689         if (edma_err_cause & EDMA_ERR_DEV) {
2690                 err_mask |= AC_ERR_DEV;
2691                 action |= ATA_EH_RESET;
2692                 ata_ehi_push_desc(ehi, "dev error");
2693         }
2694         if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2695                         EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2696                         EDMA_ERR_INTRL_PAR)) {
2697                 err_mask |= AC_ERR_ATA_BUS;
2698                 action |= ATA_EH_RESET;
2699                 ata_ehi_push_desc(ehi, "parity error");
2700         }
2701         if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2702                 ata_ehi_hotplugged(ehi);
2703                 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2704                         "dev disconnect" : "dev connect");
2705                 action |= ATA_EH_RESET;
2706         }
2707 
2708         /*
2709          * Gen-I has a different SELF_DIS bit,
2710          * different FREEZE bits, and no SERR bit:
2711          */
2712         if (IS_GEN_I(hpriv)) {
2713                 eh_freeze_mask = EDMA_EH_FREEZE_5;
2714                 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2715                         pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2716                         ata_ehi_push_desc(ehi, "EDMA self-disable");
2717                 }
2718         } else {
2719                 eh_freeze_mask = EDMA_EH_FREEZE;
2720                 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2721                         pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2722                         ata_ehi_push_desc(ehi, "EDMA self-disable");
2723                 }
2724                 if (edma_err_cause & EDMA_ERR_SERR) {
2725                         ata_ehi_push_desc(ehi, "SError=%08x", serr);
2726                         err_mask |= AC_ERR_ATA_BUS;
2727                         action |= ATA_EH_RESET;
2728                 }
2729         }
2730 
2731         if (!err_mask) {
2732                 err_mask = AC_ERR_OTHER;
2733                 action |= ATA_EH_RESET;
2734         }
2735 
2736         ehi->serror |= serr;
2737         ehi->action |= action;
2738 
2739         if (qc)
2740                 qc->err_mask |= err_mask;
2741         else
2742                 ehi->err_mask |= err_mask;
2743 
2744         if (err_mask == AC_ERR_DEV) {
2745                 /*
2746                  * Cannot do ata_port_freeze() here,
2747                  * because it would kill PIO access,
2748                  * which is needed for further diagnosis.
2749                  */
2750                 mv_eh_freeze(ap);
2751                 abort = 1;
2752         } else if (edma_err_cause & eh_freeze_mask) {
2753                 /*
2754                  * Note to self: ata_port_freeze() calls ata_port_abort()
2755                  */
2756                 ata_port_freeze(ap);
2757         } else {
2758                 abort = 1;
2759         }
2760 
2761         if (abort) {
2762                 if (qc)
2763                         ata_link_abort(qc->dev->link);
2764                 else
2765                         ata_port_abort(ap);
2766         }
2767 }
2768 
2769 static bool mv_process_crpb_response(struct ata_port *ap,
2770                 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2771 {
2772         u8 ata_status;
2773         u16 edma_status = le16_to_cpu(response->flags);
2774 
2775         /*
2776          * edma_status from a response queue entry:
2777          *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2778          *   MSB is saved ATA status from command completion.
2779          */
2780         if (!ncq_enabled) {
2781                 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2782                 if (err_cause) {
2783                         /*
2784                          * Error will be seen/handled by
2785                          * mv_err_intr().  So do nothing at all here.
2786                          */
2787                         return false;
2788                 }
2789         }
2790         ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2791         if (!ac_err_mask(ata_status))
2792                 return true;
2793         /* else: leave it for mv_err_intr() */
2794         return false;
2795 }
2796 
2797 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2798 {
2799         void __iomem *port_mmio = mv_ap_base(ap);
2800         struct mv_host_priv *hpriv = ap->host->private_data;
2801         u32 in_index;
2802         bool work_done = false;
2803         u32 done_mask = 0;
2804         int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2805 
2806         /* Get the hardware queue position index */
2807         in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2808                         >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2809 
2810         /* Process new responses from since the last time we looked */
2811         while (in_index != pp->resp_idx) {
2812                 unsigned int tag;
2813                 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2814 
2815                 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2816 
2817                 if (IS_GEN_I(hpriv)) {
2818                         /* 50xx: no NCQ, only one command active at a time */
2819                         tag = ap->link.active_tag;
2820                 } else {
2821                         /* Gen II/IIE: get command tag from CRPB entry */
2822                         tag = le16_to_cpu(response->id) & 0x1f;
2823                 }
2824                 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2825                         done_mask |= 1 << tag;
2826                 work_done = true;
2827         }
2828 
2829         if (work_done) {
2830                 ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2831 
2832                 /* Update the software queue position index in hardware */
2833                 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2834                          (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2835                          port_mmio + EDMA_RSP_Q_OUT_PTR);
2836         }
2837 }
2838 
2839 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2840 {
2841         struct mv_port_priv *pp;
2842         int edma_was_enabled;
2843 
2844         /*
2845          * Grab a snapshot of the EDMA_EN flag setting,
2846          * so that we have a consistent view for this port,
2847          * even if something we call of our routines changes it.
2848          */
2849         pp = ap->private_data;
2850         edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2851         /*
2852          * Process completed CRPB response(s) before other events.
2853          */
2854         if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2855                 mv_process_crpb_entries(ap, pp);
2856                 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2857                         mv_handle_fbs_ncq_dev_err(ap);
2858         }
2859         /*
2860          * Handle chip-reported errors, or continue on to handle PIO.
2861          */
2862         if (unlikely(port_cause & ERR_IRQ)) {
2863                 mv_err_intr(ap);
2864         } else if (!edma_was_enabled) {
2865                 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2866                 if (qc)
2867                         ata_bmdma_port_intr(ap, qc);
2868                 else
2869                         mv_unexpected_intr(ap, edma_was_enabled);
2870         }
2871 }
2872 
2873 /**
2874  *      mv_host_intr - Handle all interrupts on the given host controller
2875  *      @host: host specific structure
2876  *      @main_irq_cause: Main interrupt cause register for the chip.
2877  *
2878  *      LOCKING:
2879  *      Inherited from caller.
2880  */
2881 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2882 {
2883         struct mv_host_priv *hpriv = host->private_data;
2884         void __iomem *mmio = hpriv->base, *hc_mmio;
2885         unsigned int handled = 0, port;
2886 
2887         /* If asserted, clear the "all ports" IRQ coalescing bit */
2888         if (main_irq_cause & ALL_PORTS_COAL_DONE)
2889                 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2890 
2891         for (port = 0; port < hpriv->n_ports; port++) {
2892                 struct ata_port *ap = host->ports[port];
2893                 unsigned int p, shift, hardport, port_cause;
2894 
2895                 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2896                 /*
2897                  * Each hc within the host has its own hc_irq_cause register,
2898                  * where the interrupting ports bits get ack'd.
2899                  */
2900                 if (hardport == 0) {    /* first port on this hc ? */
2901                         u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2902                         u32 port_mask, ack_irqs;
2903                         /*
2904                          * Skip this entire hc if nothing pending for any ports
2905                          */
2906                         if (!hc_cause) {
2907                                 port += MV_PORTS_PER_HC - 1;
2908                                 continue;
2909                         }
2910                         /*
2911                          * We don't need/want to read the hc_irq_cause register,
2912                          * because doing so hurts performance, and
2913                          * main_irq_cause already gives us everything we need.
2914                          *
2915                          * But we do have to *write* to the hc_irq_cause to ack
2916                          * the ports that we are handling this time through.
2917                          *
2918                          * This requires that we create a bitmap for those
2919                          * ports which interrupted us, and use that bitmap
2920                          * to ack (only) those ports via hc_irq_cause.
2921                          */
2922                         ack_irqs = 0;
2923                         if (hc_cause & PORTS_0_3_COAL_DONE)
2924                                 ack_irqs = HC_COAL_IRQ;
2925                         for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2926                                 if ((port + p) >= hpriv->n_ports)
2927                                         break;
2928                                 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2929                                 if (hc_cause & port_mask)
2930                                         ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2931                         }
2932                         hc_mmio = mv_hc_base_from_port(mmio, port);
2933                         writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2934                         handled = 1;
2935                 }
2936                 /*
2937                  * Handle interrupts signalled for this port:
2938                  */
2939                 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2940                 if (port_cause)
2941                         mv_port_intr(ap, port_cause);
2942         }
2943         return handled;
2944 }
2945 
2946 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2947 {
2948         struct mv_host_priv *hpriv = host->private_data;
2949         struct ata_port *ap;
2950         struct ata_queued_cmd *qc;
2951         struct ata_eh_info *ehi;
2952         unsigned int i, err_mask, printed = 0;
2953         u32 err_cause;
2954 
2955         err_cause = readl(mmio + hpriv->irq_cause_offset);
2956 
2957         dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2958 
2959         DPRINTK("All regs @ PCI error\n");
2960         mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2961 
2962         writelfl(0, mmio + hpriv->irq_cause_offset);
2963 
2964         for (i = 0; i < host->n_ports; i++) {
2965                 ap = host->ports[i];
2966                 if (!ata_link_offline(&ap->link)) {
2967                         ehi = &ap->link.eh_info;
2968                         ata_ehi_clear_desc(ehi);
2969                         if (!printed++)
2970                                 ata_ehi_push_desc(ehi,
2971                                         "PCI err cause 0x%08x", err_cause);
2972                         err_mask = AC_ERR_HOST_BUS;
2973                         ehi->action = ATA_EH_RESET;
2974                         qc = ata_qc_from_tag(ap, ap->link.active_tag);
2975                         if (qc)
2976                                 qc->err_mask |= err_mask;
2977                         else
2978                                 ehi->err_mask |= err_mask;
2979 
2980                         ata_port_freeze(ap);
2981                 }
2982         }
2983         return 1;       /* handled */
2984 }
2985 
2986 /**
2987  *      mv_interrupt - Main interrupt event handler
2988  *      @irq: unused
2989  *      @dev_instance: private data; in this case the host structure
2990  *
2991  *      Read the read only register to determine if any host
2992  *      controllers have pending interrupts.  If so, call lower level
2993  *      routine to handle.  Also check for PCI errors which are only
2994  *      reported here.
2995  *
2996  *      LOCKING:
2997  *      This routine holds the host lock while processing pending
2998  *      interrupts.
2999  */
3000 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3001 {
3002         struct ata_host *host = dev_instance;
3003         struct mv_host_priv *hpriv = host->private_data;
3004         unsigned int handled = 0;
3005         int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3006         u32 main_irq_cause, pending_irqs;
3007 
3008         spin_lock(&host->lock);
3009 
3010         /* for MSI:  block new interrupts while in here */
3011         if (using_msi)
3012                 mv_write_main_irq_mask(0, hpriv);
3013 
3014         main_irq_cause = readl(hpriv->main_irq_cause_addr);
3015         pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3016         /*
3017          * Deal with cases where we either have nothing pending, or have read
3018          * a bogus register value which can indicate HW removal or PCI fault.
3019          */
3020         if (pending_irqs && main_irq_cause != 0xffffffffU) {
3021                 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3022                         handled = mv_pci_error(host, hpriv->base);
3023                 else
3024                         handled = mv_host_intr(host, pending_irqs);
3025         }
3026 
3027         /* for MSI: unmask; interrupt cause bits will retrigger now */
3028         if (using_msi)
3029                 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3030 
3031         spin_unlock(&host->lock);
3032 
3033         return IRQ_RETVAL(handled);
3034 }
3035 
3036 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3037 {
3038         unsigned int ofs;
3039 
3040         switch (sc_reg_in) {
3041         case SCR_STATUS:
3042         case SCR_ERROR:
3043         case SCR_CONTROL:
3044                 ofs = sc_reg_in * sizeof(u32);
3045                 break;
3046         default:
3047                 ofs = 0xffffffffU;
3048                 break;
3049         }
3050         return ofs;
3051 }
3052 
3053 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3054 {
3055         struct mv_host_priv *hpriv = link->ap->host->private_data;
3056         void __iomem *mmio = hpriv->base;
3057         void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3058         unsigned int ofs = mv5_scr_offset(sc_reg_in);
3059 
3060         if (ofs != 0xffffffffU) {
3061                 *val = readl(addr + ofs);
3062                 return 0;
3063         } else
3064                 return -EINVAL;
3065 }
3066 
3067 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3068 {
3069         struct mv_host_priv *hpriv = link->ap->host->private_data;
3070         void __iomem *mmio = hpriv->base;
3071         void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3072         unsigned int ofs = mv5_scr_offset(sc_reg_in);
3073 
3074         if (ofs != 0xffffffffU) {
3075                 writelfl(val, addr + ofs);
3076                 return 0;
3077         } else
3078                 return -EINVAL;
3079 }
3080 
3081 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3082 {
3083         struct pci_dev *pdev = to_pci_dev(host->dev);
3084         int early_5080;
3085 
3086         early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3087 
3088         if (!early_5080) {
3089                 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3090                 tmp |= (1 << 0);
3091                 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3092         }
3093 
3094         mv_reset_pci_bus(host, mmio);
3095 }
3096 
3097 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3098 {
3099         writel(0x0fcfffff, mmio + FLASH_CTL);
3100 }
3101 
3102 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3103                            void __iomem *mmio)
3104 {
3105         void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3106         u32 tmp;
3107 
3108         tmp = readl(phy_mmio + MV5_PHY_MODE);
3109 
3110         hpriv->signal[idx].pre = tmp & 0x1800;  /* bits 12:11 */
3111         hpriv->signal[idx].amps = tmp & 0xe0;   /* bits 7:5 */
3112 }
3113 
3114 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3115 {
3116         u32 tmp;
3117 
3118         writel(0, mmio + GPIO_PORT_CTL);
3119 
3120         /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3121 
3122         tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3123         tmp |= ~(1 << 0);
3124         writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3125 }
3126 
3127 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3128                            unsigned int port)
3129 {
3130         void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3131         const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3132         u32 tmp;
3133         int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3134 
3135         if (fix_apm_sq) {
3136                 tmp = readl(phy_mmio + MV5_LTMODE);
3137                 tmp |= (1 << 19);
3138                 writel(tmp, phy_mmio + MV5_LTMODE);
3139 
3140                 tmp = readl(phy_mmio + MV5_PHY_CTL);
3141                 tmp &= ~0x3;
3142                 tmp |= 0x1;
3143                 writel(tmp, phy_mmio + MV5_PHY_CTL);
3144         }
3145 
3146         tmp = readl(phy_mmio + MV5_PHY_MODE);
3147         tmp &= ~mask;
3148         tmp |= hpriv->signal[port].pre;
3149         tmp |= hpriv->signal[port].amps;
3150         writel(tmp, phy_mmio + MV5_PHY_MODE);
3151 }
3152 
3153 
3154 #undef ZERO
3155 #define ZERO(reg) writel(0, port_mmio + (reg))
3156 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3157                              unsigned int port)
3158 {
3159         void __iomem *port_mmio = mv_port_base(mmio, port);
3160 
3161         mv_reset_channel(hpriv, mmio, port);
3162 
3163         ZERO(0x028);    /* command */
3164         writel(0x11f, port_mmio + EDMA_CFG);
3165         ZERO(0x004);    /* timer */
3166         ZERO(0x008);    /* irq err cause */
3167         ZERO(0x00c);    /* irq err mask */
3168         ZERO(0x010);    /* rq bah */
3169         ZERO(0x014);    /* rq inp */
3170         ZERO(0x018);    /* rq outp */
3171         ZERO(0x01c);    /* respq bah */
3172         ZERO(0x024);    /* respq outp */
3173         ZERO(0x020);    /* respq inp */
3174         ZERO(0x02c);    /* test control */
3175         writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3176 }
3177 #undef ZERO
3178 
3179 #define ZERO(reg) writel(0, hc_mmio + (reg))
3180 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3181                         unsigned int hc)
3182 {
3183         void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3184         u32 tmp;
3185 
3186         ZERO(0x00c);
3187         ZERO(0x010);
3188         ZERO(0x014);
3189         ZERO(0x018);
3190 
3191         tmp = readl(hc_mmio + 0x20);
3192         tmp &= 0x1c1c1c1c;
3193         tmp |= 0x03030303;
3194         writel(tmp, hc_mmio + 0x20);
3195 }
3196 #undef ZERO
3197 
3198 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3199                         unsigned int n_hc)
3200 {
3201         unsigned int hc, port;
3202 
3203         for (hc = 0; hc < n_hc; hc++) {
3204                 for (port = 0; port < MV_PORTS_PER_HC; port++)
3205                         mv5_reset_hc_port(hpriv, mmio,
3206                                           (hc * MV_PORTS_PER_HC) + port);
3207 
3208                 mv5_reset_one_hc(hpriv, mmio, hc);
3209         }
3210 
3211         return 0;
3212 }
3213 
3214 #undef ZERO
3215 #define ZERO(reg) writel(0, mmio + (reg))
3216 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3217 {
3218         struct mv_host_priv *hpriv = host->private_data;
3219         u32 tmp;
3220 
3221         tmp = readl(mmio + MV_PCI_MODE);
3222         tmp &= 0xff00ffff;
3223         writel(tmp, mmio + MV_PCI_MODE);
3224 
3225         ZERO(MV_PCI_DISC_TIMER);
3226         ZERO(MV_PCI_MSI_TRIGGER);
3227         writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3228         ZERO(MV_PCI_SERR_MASK);
3229         ZERO(hpriv->irq_cause_offset);
3230         ZERO(hpriv->irq_mask_offset);
3231         ZERO(MV_PCI_ERR_LOW_ADDRESS);
3232         ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3233         ZERO(MV_PCI_ERR_ATTRIBUTE);
3234         ZERO(MV_PCI_ERR_COMMAND);
3235 }
3236 #undef ZERO
3237 
3238 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3239 {
3240         u32 tmp;
3241 
3242         mv5_reset_flash(hpriv, mmio);
3243 
3244         tmp = readl(mmio + GPIO_PORT_CTL);
3245         tmp &= 0x3;
3246         tmp |= (1 << 5) | (1 << 6);
3247         writel(tmp, mmio + GPIO_PORT_CTL);
3248 }
3249 
3250 /**
3251  *      mv6_reset_hc - Perform the 6xxx global soft reset
3252  *      @mmio: base address of the HBA
3253  *
3254  *      This routine only applies to 6xxx parts.
3255  *
3256  *      LOCKING:
3257  *      Inherited from caller.
3258  */
3259 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3260                         unsigned int n_hc)
3261 {
3262         void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3263         int i, rc = 0;
3264         u32 t;
3265 
3266         /* Following procedure defined in PCI "main command and status
3267          * register" table.
3268          */
3269         t = readl(reg);
3270         writel(t | STOP_PCI_MASTER, reg);
3271 
3272         for (i = 0; i < 1000; i++) {
3273                 udelay(1);
3274                 t = readl(reg);
3275                 if (PCI_MASTER_EMPTY & t)
3276                         break;
3277         }
3278         if (!(PCI_MASTER_EMPTY & t)) {
3279                 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3280                 rc = 1;
3281                 goto done;
3282         }
3283 
3284         /* set reset */
3285         i = 5;
3286         do {
3287                 writel(t | GLOB_SFT_RST, reg);
3288                 t = readl(reg);
3289                 udelay(1);
3290         } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3291 
3292         if (!(GLOB_SFT_RST & t)) {
3293                 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3294                 rc = 1;
3295                 goto done;
3296         }
3297 
3298         /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3299         i = 5;
3300         do {
3301                 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3302                 t = readl(reg);
3303                 udelay(1);
3304         } while ((GLOB_SFT_RST & t) && (i-- > 0));
3305 
3306         if (GLOB_SFT_RST & t) {
3307                 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3308                 rc = 1;
3309         }
3310 done:
3311         return rc;
3312 }
3313 
3314 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3315                            void __iomem *mmio)
3316 {
3317         void __iomem *port_mmio;
3318         u32 tmp;
3319 
3320         tmp = readl(mmio + RESET_CFG);
3321         if ((tmp & (1 << 0)) == 0) {
3322                 hpriv->signal[idx].amps = 0x7 << 8;
3323                 hpriv->signal[idx].pre = 0x1 << 5;
3324                 return;
3325         }
3326 
3327         port_mmio = mv_port_base(mmio, idx);
3328         tmp = readl(port_mmio + PHY_MODE2);
3329 
3330         hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3331         hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3332 }
3333 
3334 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3335 {
3336         writel(0x00000060, mmio + GPIO_PORT_CTL);
3337 }
3338 
3339 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3340                            unsigned int port)
3341 {
3342         void __iomem *port_mmio = mv_port_base(mmio, port);
3343 
3344         u32 hp_flags = hpriv->hp_flags;
3345         int fix_phy_mode2 =
3346                 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3347         int fix_phy_mode4 =
3348                 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3349         u32 m2, m3;
3350 
3351         if (fix_phy_mode2) {
3352                 m2 = readl(port_mmio + PHY_MODE2);
3353                 m2 &= ~(1 << 16);
3354                 m2 |= (1 << 31);
3355                 writel(m2, port_mmio + PHY_MODE2);
3356 
3357                 udelay(200);
3358 
3359                 m2 = readl(port_mmio + PHY_MODE2);
3360                 m2 &= ~((1 << 16) | (1 << 31));
3361                 writel(m2, port_mmio + PHY_MODE2);
3362 
3363                 udelay(200);
3364         }
3365 
3366         /*
3367          * Gen-II/IIe PHY_MODE3 errata RM#2:
3368          * Achieves better receiver noise performance than the h/w default:
3369          */
3370         m3 = readl(port_mmio + PHY_MODE3);
3371         m3 = (m3 & 0x1f) | (0x5555601 << 5);
3372 
3373         /* Guideline 88F5182 (GL# SATA-S11) */
3374         if (IS_SOC(hpriv))
3375                 m3 &= ~0x1c;
3376 
3377         if (fix_phy_mode4) {
3378                 u32 m4 = readl(port_mmio + PHY_MODE4);
3379                 /*
3380                  * Enforce reserved-bit restrictions on GenIIe devices only.
3381                  * For earlier chipsets, force only the internal config field
3382                  *  (workaround for errata FEr SATA#10 part 1).
3383                  */
3384                 if (IS_GEN_IIE(hpriv))
3385                         m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3386                 else
3387                         m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3388                 writel(m4, port_mmio + PHY_MODE4);
3389         }
3390         /*
3391          * Workaround for 60x1-B2 errata SATA#13:
3392          * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3393          * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3394          * Or ensure we use writelfl() when writing PHY_MODE4.
3395          */
3396         writel(m3, port_mmio + PHY_MODE3);
3397 
3398         /* Revert values of pre-emphasis and signal amps to the saved ones */
3399         m2 = readl(port_mmio + PHY_MODE2);
3400 
3401         m2 &= ~MV_M2_PREAMP_MASK;
3402         m2 |= hpriv->signal[port].amps;
3403         m2 |= hpriv->signal[port].pre;
3404         m2 &= ~(1 << 16);
3405 
3406         /* according to mvSata 3.6.1, some IIE values are fixed */
3407         if (IS_GEN_IIE(hpriv)) {
3408                 m2 &= ~0xC30FF01F;
3409                 m2 |= 0x0000900F;
3410         }
3411 
3412         writel(m2, port_mmio + PHY_MODE2);
3413 }
3414 
3415 /* TODO: use the generic LED interface to configure the SATA Presence */
3416 /* & Acitivy LEDs on the board */
3417 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3418                                       void __iomem *mmio)
3419 {
3420         return;
3421 }
3422 
3423 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3424                            void __iomem *mmio)
3425 {
3426         void __iomem *port_mmio;
3427         u32 tmp;
3428 
3429         port_mmio = mv_port_base(mmio, idx);
3430         tmp = readl(port_mmio + PHY_MODE2);
3431 
3432         hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3433         hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3434 }
3435 
3436 #undef ZERO
3437 #define ZERO(reg) writel(0, port_mmio + (reg))
3438 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3439                                         void __iomem *mmio, unsigned int port)
3440 {
3441         void __iomem *port_mmio = mv_port_base(mmio, port);
3442 
3443         mv_reset_channel(hpriv, mmio, port);
3444 
3445         ZERO(0x028);            /* command */
3446         writel(0x101f, port_mmio + EDMA_CFG);
3447         ZERO(0x004);            /* timer */
3448         ZERO(0x008);            /* irq err cause */
3449         ZERO(0x00c);            /* irq err mask */
3450         ZERO(0x010);            /* rq bah */
3451         ZERO(0x014);            /* rq inp */
3452         ZERO(0x018);            /* rq outp */
3453         ZERO(0x01c);            /* respq bah */
3454         ZERO(0x024);            /* respq outp */
3455         ZERO(0x020);            /* respq inp */
3456         ZERO(0x02c);            /* test control */
3457         writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3458 }
3459 
3460 #undef ZERO
3461 
3462 #define ZERO(reg) writel(0, hc_mmio + (reg))
3463 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3464                                        void __iomem *mmio)
3465 {
3466         void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3467 
3468         ZERO(0x00c);
3469         ZERO(0x010);
3470         ZERO(0x014);
3471 
3472 }
3473 
3474 #undef ZERO
3475 
3476 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3477                                   void __iomem *mmio, unsigned int n_hc)
3478 {
3479         unsigned int port;
3480 
3481         for (port = 0; port < hpriv->n_ports; port++)
3482                 mv_soc_reset_hc_port(hpriv, mmio, port);
3483 
3484         mv_soc_reset_one_hc(hpriv, mmio);
3485 
3486         return 0;
3487 }
3488 
3489 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3490                                       void __iomem *mmio)
3491 {
3492         return;
3493 }
3494 
3495 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3496 {
3497         return;
3498 }
3499 
3500 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3501                                   void __iomem *mmio, unsigned int port)
3502 {
3503         void __iomem *port_mmio = mv_port_base(mmio, port);
3504         u32     reg;
3505 
3506         reg = readl(port_mmio + PHY_MODE3);
3507         reg &= ~(0x3 << 27);    /* SELMUPF (bits 28:27) to 1 */
3508         reg |= (0x1 << 27);
3509         reg &= ~(0x3 << 29);    /* SELMUPI (bits 30:29) to 1 */
3510         reg |= (0x1 << 29);
3511         writel(reg, port_mmio + PHY_MODE3);
3512 
3513         reg = readl(port_mmio + PHY_MODE4);
3514         reg &= ~0x1;    /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3515         reg |= (0x1 << 16);
3516         writel(reg, port_mmio + PHY_MODE4);
3517 
3518         reg = readl(port_mmio + PHY_MODE9_GEN2);
3519         reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3520         reg |= 0x8;
3521         reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3522         writel(reg, port_mmio + PHY_MODE9_GEN2);
3523 
3524         reg = readl(port_mmio + PHY_MODE9_GEN1);
3525         reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3526         reg |= 0x8;
3527         reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3528         writel(reg, port_mmio + PHY_MODE9_GEN1);
3529 }
3530 
3531 /**
3532  *      soc_is_65 - check if the soc is 65 nano device
3533  *
3534  *      Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3535  *      register, this register should contain non-zero value and it exists only
3536  *      in the 65 nano devices, when reading it from older devices we get 0.
3537  */
3538 static bool soc_is_65n(struct mv_host_priv *hpriv)
3539 {
3540         void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3541 
3542         if (readl(port0_mmio + PHYCFG_OFS))
3543                 return true;
3544         return false;
3545 }
3546 
3547 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3548 {
3549         u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3550 
3551         ifcfg = (ifcfg & 0xf7f) | 0x9b1000;     /* from chip spec */
3552         if (want_gen2i)
3553                 ifcfg |= (1 << 7);              /* enable gen2i speed */
3554         writelfl(ifcfg, port_mmio + SATA_IFCFG);
3555 }
3556 
3557 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3558                              unsigned int port_no)
3559 {
3560         void __iomem *port_mmio = mv_port_base(mmio, port_no);
3561 
3562         /*
3563          * The datasheet warns against setting EDMA_RESET when EDMA is active
3564          * (but doesn't say what the problem might be).  So we first try
3565          * to disable the EDMA engine before doing the EDMA_RESET operation.
3566          */
3567         mv_stop_edma_engine(port_mmio);
3568         writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3569 
3570         if (!IS_GEN_I(hpriv)) {
3571                 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3572                 mv_setup_ifcfg(port_mmio, 1);
3573         }
3574         /*
3575          * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3576          * link, and physical layers.  It resets all SATA interface registers
3577          * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3578          */
3579         writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3580         udelay(25);     /* allow reset propagation */
3581         writelfl(0, port_mmio + EDMA_CMD);
3582 
3583         hpriv->ops->phy_errata(hpriv, mmio, port_no);
3584 
3585         if (IS_GEN_I(hpriv))
3586                 usleep_range(500, 1000);
3587 }
3588 
3589 static void mv_pmp_select(struct ata_port *ap, int pmp)
3590 {
3591         if (sata_pmp_supported(ap)) {
3592                 void __iomem *port_mmio = mv_ap_base(ap);
3593                 u32 reg = readl(port_mmio + SATA_IFCTL);
3594                 int old = reg & 0xf;
3595 
3596                 if (old != pmp) {
3597                         reg = (reg & ~0xf) | pmp;
3598                         writelfl(reg, port_mmio + SATA_IFCTL);
3599                 }
3600         }
3601 }
3602 
3603 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3604                                 unsigned long deadline)
3605 {
3606         mv_pmp_select(link->ap, sata_srst_pmp(link));
3607         return sata_std_hardreset(link, class, deadline);
3608 }
3609 
3610 static int mv_softreset(struct ata_link *link, unsigned int *class,
3611                                 unsigned long deadline)
3612 {
3613         mv_pmp_select(link->ap, sata_srst_pmp(link));
3614         return ata_sff_softreset(link, class, deadline);
3615 }
3616 
3617 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3618                         unsigned long deadline)
3619 {
3620         struct ata_port *ap = link->ap;
3621         struct mv_host_priv *hpriv = ap->host->private_data;
3622         struct mv_port_priv *pp = ap->private_data;
3623         void __iomem *mmio = hpriv->base;
3624         int rc, attempts = 0, extra = 0;
3625         u32 sstatus;
3626         bool online;
3627 
3628         mv_reset_channel(hpriv, mmio, ap->port_no);
3629         pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3630         pp->pp_flags &=
3631           ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3632 
3633         /* Workaround for errata FEr SATA#10 (part 2) */
3634         do {
3635                 const unsigned long *timing =
3636                                 sata_ehc_deb_timing(&link->eh_context);
3637 
3638                 rc = sata_link_hardreset(link, timing, deadline + extra,
3639                                          &online, NULL);
3640                 rc = online ? -EAGAIN : rc;
3641                 if (rc)
3642                         return rc;
3643                 sata_scr_read(link, SCR_STATUS, &sstatus);
3644                 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3645                         /* Force 1.5gb/s link speed and try again */
3646                         mv_setup_ifcfg(mv_ap_base(ap), 0);
3647                         if (time_after(jiffies + HZ, deadline))
3648                                 extra = HZ; /* only extend it once, max */
3649                 }
3650         } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3651         mv_save_cached_regs(ap);
3652         mv_edma_cfg(ap, 0, 0);
3653 
3654         return rc;
3655 }
3656 
3657 static void mv_eh_freeze(struct ata_port *ap)
3658 {
3659         mv_stop_edma(ap);
3660         mv_enable_port_irqs(ap, 0);
3661 }
3662 
3663 static void mv_eh_thaw(struct ata_port *ap)
3664 {
3665         struct mv_host_priv *hpriv = ap->host->private_data;
3666         unsigned int port = ap->port_no;
3667         unsigned int hardport = mv_hardport_from_port(port);
3668         void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3669         void __iomem *port_mmio = mv_ap_base(ap);
3670         u32 hc_irq_cause;
3671 
3672         /* clear EDMA errors on this port */
3673         writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3674 
3675         /* clear pending irq events */
3676         hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3677         writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3678 
3679         mv_enable_port_irqs(ap, ERR_IRQ);
3680 }
3681 
3682 /**
3683  *      mv_port_init - Perform some early initialization on a single port.
3684  *      @port: libata data structure storing shadow register addresses
3685  *      @port_mmio: base address of the port
3686  *
3687  *      Initialize shadow register mmio addresses, clear outstanding
3688  *      interrupts on the port, and unmask interrupts for the future
3689  *      start of the port.
3690  *
3691  *      LOCKING:
3692  *      Inherited from caller.
3693  */
3694 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3695 {
3696         void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3697 
3698         /* PIO related setup
3699          */
3700         port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3701         port->error_addr =
3702                 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3703         port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3704         port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3705         port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3706         port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3707         port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3708         port->status_addr =
3709                 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3710         /* special case: control/altstatus doesn't have ATA_REG_ address */
3711         port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3712 
3713         /* Clear any currently outstanding port interrupt conditions */
3714         serr = port_mmio + mv_scr_offset(SCR_ERROR);
3715         writelfl(readl(serr), serr);
3716         writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3717 
3718         /* unmask all non-transient EDMA error interrupts */
3719         writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3720 
3721         VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3722                 readl(port_mmio + EDMA_CFG),
3723                 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3724                 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3725 }
3726 
3727 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3728 {
3729         struct mv_host_priv *hpriv = host->private_data;
3730         void __iomem *mmio = hpriv->base;
3731         u32 reg;
3732 
3733         if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3734                 return 0;       /* not PCI-X capable */
3735         reg = readl(mmio + MV_PCI_MODE);
3736         if ((reg & MV_PCI_MODE_MASK) == 0)
3737                 return 0;       /* conventional PCI mode */
3738         return 1;       /* chip is in PCI-X mode */
3739 }
3740 
3741 static int mv_pci_cut_through_okay(struct ata_host *host)
3742 {
3743         struct mv_host_priv *hpriv = host->private_data;
3744         void __iomem *mmio = hpriv->base;
3745         u32 reg;
3746 
3747         if (!mv_in_pcix_mode(host)) {
3748                 reg = readl(mmio + MV_PCI_COMMAND);
3749                 if (reg & MV_PCI_COMMAND_MRDTRIG)
3750                         return 0; /* not okay */
3751         }
3752         return 1; /* okay */
3753 }
3754 
3755 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3756 {
3757         struct mv_host_priv *hpriv = host->private_data;
3758         void __iomem *mmio = hpriv->base;
3759 
3760         /* workaround for 60x1-B2 errata PCI#7 */
3761         if (mv_in_pcix_mode(host)) {
3762                 u32 reg = readl(mmio + MV_PCI_COMMAND);
3763                 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3764         }
3765 }
3766 
3767 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3768 {
3769         struct pci_dev *pdev = to_pci_dev(host->dev);
3770         struct mv_host_priv *hpriv = host->private_data;
3771         u32 hp_flags = hpriv->hp_flags;
3772 
3773         switch (board_idx) {
3774         case chip_5080:
3775                 hpriv->ops = &mv5xxx_ops;
3776                 hp_flags |= MV_HP_GEN_I;
3777 
3778                 switch (pdev->revision) {
3779                 case 0x1:
3780                         hp_flags |= MV_HP_ERRATA_50XXB0;
3781                         break;
3782                 case 0x3:
3783                         hp_flags |= MV_HP_ERRATA_50XXB2;
3784                         break;
3785                 default:
3786                         dev_warn(&pdev->dev,
3787                                  "Applying 50XXB2 workarounds to unknown rev\n");
3788                         hp_flags |= MV_HP_ERRATA_50XXB2;
3789                         break;
3790                 }
3791                 break;
3792 
3793         case chip_504x:
3794         case chip_508x:
3795                 hpriv->ops = &mv5xxx_ops;
3796                 hp_flags |= MV_HP_GEN_I;
3797 
3798                 switch (pdev->revision) {
3799                 case 0x0:
3800                         hp_flags |= MV_HP_ERRATA_50XXB0;
3801                         break;
3802                 case 0x3:
3803                         hp_flags |= MV_HP_ERRATA_50XXB2;
3804                         break;
3805                 default:
3806                         dev_warn(&pdev->dev,
3807                                  "Applying B2 workarounds to unknown rev\n");
3808                         hp_flags |= MV_HP_ERRATA_50XXB2;
3809                         break;
3810                 }
3811                 break;
3812 
3813         case chip_604x:
3814         case chip_608x:
3815                 hpriv->ops = &mv6xxx_ops;
3816                 hp_flags |= MV_HP_GEN_II;
3817 
3818                 switch (pdev->revision) {
3819                 case 0x7:
3820                         mv_60x1b2_errata_pci7(host);
3821                         hp_flags |= MV_HP_ERRATA_60X1B2;
3822                         break;
3823                 case 0x9:
3824                         hp_flags |= MV_HP_ERRATA_60X1C0;
3825                         break;
3826                 default:
3827                         dev_warn(&pdev->dev,
3828                                  "Applying B2 workarounds to unknown rev\n");
3829                         hp_flags |= MV_HP_ERRATA_60X1B2;
3830                         break;
3831                 }
3832                 break;
3833 
3834         case chip_7042:
3835                 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3836                 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3837                     (pdev->device == 0x2300 || pdev->device == 0x2310))
3838                 {
3839                         /*
3840                          * Highpoint RocketRAID PCIe 23xx series cards:
3841                          *
3842                          * Unconfigured drives are treated as "Legacy"
3843                          * by the BIOS, and it overwrites sector 8 with
3844                          * a "Lgcy" metadata block prior to Linux boot.
3845                          *
3846                          * Configured drives (RAID or JBOD) leave sector 8
3847                          * alone, but instead overwrite a high numbered
3848                          * sector for the RAID metadata.  This sector can
3849                          * be determined exactly, by truncating the physical
3850                          * drive capacity to a nice even GB value.
3851                          *
3852                          * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3853                          *
3854                          * Warn the user, lest they think we're just buggy.
3855                          */
3856                         printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3857                                 " BIOS CORRUPTS DATA on all attached drives,"
3858                                 " regardless of if/how they are configured."
3859                                 " BEWARE!\n");
3860                         printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3861                                 " use sectors 8-9 on \"Legacy\" drives,"
3862                                 " and avoid the final two gigabytes on"
3863                                 " all RocketRAID BIOS initialized drives.\n");
3864                 }
3865                 /* fall through */
3866         case chip_6042:
3867                 hpriv->ops = &mv6xxx_ops;
3868                 hp_flags |= MV_HP_GEN_IIE;
3869                 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3870                         hp_flags |= MV_HP_CUT_THROUGH;
3871 
3872                 switch (pdev->revision) {
3873                 case 0x2: /* Rev.B0: the first/only public release */
3874                         hp_flags |= MV_HP_ERRATA_60X1C0;
3875                         break;
3876                 default:
3877                         dev_warn(&pdev->dev,
3878                                  "Applying 60X1C0 workarounds to unknown rev\n");
3879                         hp_flags |= MV_HP_ERRATA_60X1C0;
3880                         break;
3881                 }
3882                 break;
3883         case chip_soc:
3884                 if (soc_is_65n(hpriv))
3885                         hpriv->ops = &mv_soc_65n_ops;
3886                 else
3887                         hpriv->ops = &mv_soc_ops;
3888                 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3889                         MV_HP_ERRATA_60X1C0;
3890                 break;
3891 
3892         default:
3893                 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3894                 return 1;
3895         }
3896 
3897         hpriv->hp_flags = hp_flags;
3898         if (hp_flags & MV_HP_PCIE) {
3899                 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3900                 hpriv->irq_mask_offset  = PCIE_IRQ_MASK;
3901                 hpriv->unmask_all_irqs  = PCIE_UNMASK_ALL_IRQS;
3902         } else {
3903                 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3904                 hpriv->irq_mask_offset  = PCI_IRQ_MASK;
3905                 hpriv->unmask_all_irqs  = PCI_UNMASK_ALL_IRQS;
3906         }
3907 
3908         return 0;
3909 }
3910 
3911 /**
3912  *      mv_init_host - Perform some early initialization of the host.
3913  *      @host: ATA host to initialize
3914  *
3915  *      If possible, do an early global reset of the host.  Then do
3916  *      our port init and clear/unmask all/relevant host interrupts.
3917  *
3918  *      LOCKING:
3919  *      Inherited from caller.
3920  */
3921 static int mv_init_host(struct ata_host *host)
3922 {
3923         int rc = 0, n_hc, port, hc;
3924         struct mv_host_priv *hpriv = host->private_data;
3925         void __iomem *mmio = hpriv->base;
3926 
3927         rc = mv_chip_id(host, hpriv->board_idx);
3928         if (rc)
3929                 goto done;
3930 
3931         if (IS_SOC(hpriv)) {
3932                 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3933                 hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3934         } else {
3935                 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3936                 hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3937         }
3938 
3939         /* initialize shadow irq mask with register's value */
3940         hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3941 
3942         /* global interrupt mask: 0 == mask everything */
3943         mv_set_main_irq_mask(host, ~0, 0);
3944 
3945         n_hc = mv_get_hc_count(host->ports[0]->flags);
3946 
3947         for (port = 0; port < host->n_ports; port++)
3948                 if (hpriv->ops->read_preamp)
3949                         hpriv->ops->read_preamp(hpriv, port, mmio);
3950 
3951         rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3952         if (rc)
3953                 goto done;
3954 
3955         hpriv->ops->reset_flash(hpriv, mmio);
3956         hpriv->ops->reset_bus(host, mmio);
3957         hpriv->ops->enable_leds(hpriv, mmio);
3958 
3959         for (port = 0; port < host->n_ports; port++) {
3960                 struct ata_port *ap = host->ports[port];
3961                 void __iomem *port_mmio = mv_port_base(mmio, port);
3962 
3963                 mv_port_init(&ap->ioaddr, port_mmio);
3964         }
3965 
3966         for (hc = 0; hc < n_hc; hc++) {
3967                 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3968 
3969                 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3970                         "(before clear)=0x%08x\n", hc,
3971                         readl(hc_mmio + HC_CFG),
3972                         readl(hc_mmio + HC_IRQ_CAUSE));
3973 
3974                 /* Clear any currently outstanding hc interrupt conditions */
3975                 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3976         }
3977 
3978         if (!IS_SOC(hpriv)) {
3979                 /* Clear any currently outstanding host interrupt conditions */
3980                 writelfl(0, mmio + hpriv->irq_cause_offset);
3981 
3982                 /* and unmask interrupt generation for host regs */
3983                 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3984         }
3985 
3986         /*
3987          * enable only global host interrupts for now.
3988          * The per-port interrupts get done later as ports are set up.
3989          */
3990         mv_set_main_irq_mask(host, 0, PCI_ERR);
3991         mv_set_irq_coalescing(host, irq_coalescing_io_count,
3992                                     irq_coalescing_usecs);
3993 done:
3994         return rc;
3995 }
3996 
3997 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3998 {
3999         hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4000                                                              MV_CRQB_Q_SZ, 0);
4001         if (!hpriv->crqb_pool)
4002                 return -ENOMEM;
4003 
4004         hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4005                                                              MV_CRPB_Q_SZ, 0);
4006         if (!hpriv->crpb_pool)
4007                 return -ENOMEM;
4008 
4009         hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4010                                                              MV_SG_TBL_SZ, 0);
4011         if (!hpriv->sg_tbl_pool)
4012                 return -ENOMEM;
4013 
4014         return 0;
4015 }
4016 
4017 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4018                                  const struct mbus_dram_target_info *dram)
4019 {
4020         int i;
4021 
4022         for (i = 0; i < 4; i++) {
4023                 writel(0, hpriv->base + WINDOW_CTRL(i));
4024                 writel(0, hpriv->base + WINDOW_BASE(i));
4025         }
4026 
4027         for (i = 0; i < dram->num_cs; i++) {
4028                 const struct mbus_dram_window *cs = dram->cs + i;
4029 
4030                 writel(((cs->size - 1) & 0xffff0000) |
4031                         (cs->mbus_attr << 8) |
4032                         (dram->mbus_dram_target_id << 4) | 1,
4033                         hpriv->base + WINDOW_CTRL(i));
4034                 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4035         }
4036 }
4037 
4038 /**
4039  *      mv_platform_probe - handle a positive probe of an soc Marvell
4040  *      host
4041  *      @pdev: platform device found
4042  *
4043  *      LOCKING:
4044  *      Inherited from caller.
4045  */
4046 static int mv_platform_probe(struct platform_device *pdev)
4047 {
4048         const struct mv_sata_platform_data *mv_platform_data;
4049         const struct mbus_dram_target_info *dram;
4050         const struct ata_port_info *ppi[] =
4051             { &mv_port_info[chip_soc], NULL };
4052         struct ata_host *host;
4053         struct mv_host_priv *hpriv;
4054         struct resource *res;
4055         int n_ports = 0, irq = 0;
4056         int rc;
4057         int port;
4058 
4059         ata_print_version_once(&pdev->dev, DRV_VERSION);
4060 
4061         /*
4062          * Simple resource validation ..
4063          */
4064         if (unlikely(pdev->num_resources != 2)) {
4065                 dev_err(&pdev->dev, "invalid number of resources\n");
4066                 return -EINVAL;
4067         }
4068 
4069         /*
4070          * Get the register base first
4071          */
4072         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4073         if (res == NULL)
4074                 return -EINVAL;
4075 
4076         /* allocate host */
4077         if (pdev->dev.of_node) {
4078                 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4079                                            &n_ports);
4080                 if (rc) {
4081                         dev_err(&pdev->dev,
4082                                 "error parsing nr-ports property: %d\n", rc);
4083                         return rc;
4084                 }
4085 
4086                 if (n_ports <= 0) {
4087                         dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4088                                 n_ports);
4089                         return -EINVAL;
4090                 }
4091 
4092                 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4093         } else {
4094                 mv_platform_data = dev_get_platdata(&pdev->dev);
4095                 n_ports = mv_platform_data->n_ports;
4096                 irq = platform_get_irq(pdev, 0);
4097         }
4098 
4099         host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4100         hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4101 
4102         if (!host || !hpriv)
4103                 return -ENOMEM;
4104         hpriv->port_clks = devm_kcalloc(&pdev->dev,
4105                                         n_ports, sizeof(struct clk *),
4106                                         GFP_KERNEL);
4107         if (!hpriv->port_clks)
4108                 return -ENOMEM;
4109         hpriv->port_phys = devm_kcalloc(&pdev->dev,
4110                                         n_ports, sizeof(struct phy *),
4111                                         GFP_KERNEL);
4112         if (!hpriv->port_phys)
4113                 return -ENOMEM;
4114         host->private_data = hpriv;
4115         hpriv->board_idx = chip_soc;
4116 
4117         host->iomap = NULL;
4118         hpriv->base = devm_ioremap(&pdev->dev, res->start,
4119                                    resource_size(res));
4120         if (!hpriv->base)
4121                 return -ENOMEM;
4122 
4123         hpriv->base -= SATAHC0_REG_BASE;
4124 
4125         hpriv->clk = clk_get(&pdev->dev, NULL);
4126         if (IS_ERR(hpriv->clk))
4127                 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4128         else
4129                 clk_prepare_enable(hpriv->clk);
4130 
4131         for (port = 0; port < n_ports; port++) {
4132                 char port_number[16];
4133                 sprintf(port_number, "%d", port);
4134                 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4135                 if (!IS_ERR(hpriv->port_clks[port]))
4136                         clk_prepare_enable(hpriv->port_clks[port]);
4137 
4138                 sprintf(port_number, "port%d", port);
4139                 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4140                                                                port_number);
4141                 if (IS_ERR(hpriv->port_phys[port])) {
4142                         rc = PTR_ERR(hpriv->port_phys[port]);
4143                         hpriv->port_phys[port] = NULL;
4144                         if (rc != -EPROBE_DEFER)
4145                                 dev_warn(&pdev->dev, "error getting phy %d", rc);
4146 
4147                         /* Cleanup only the initialized ports */
4148                         hpriv->n_ports = port;
4149                         goto err;
4150                 } else
4151                         phy_power_on(hpriv->port_phys[port]);
4152         }
4153 
4154         /* All the ports have been initialized */
4155         hpriv->n_ports = n_ports;
4156 
4157         /*
4158          * (Re-)program MBUS remapping windows if we are asked to.
4159          */
4160         dram = mv_mbus_dram_info();
4161         if (dram)
4162                 mv_conf_mbus_windows(hpriv, dram);
4163 
4164         rc = mv_create_dma_pools(hpriv, &pdev->dev);
4165         if (rc)
4166                 goto err;
4167 
4168         /*
4169          * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4170          * updated in the LP_PHY_CTL register.
4171          */
4172         if (pdev->dev.of_node &&
4173                 of_device_is_compatible(pdev->dev.of_node,
4174                                         "marvell,armada-370-sata"))
4175                 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4176 
4177         /* initialize adapter */
4178         rc = mv_init_host(host);
4179         if (rc)
4180                 goto err;
4181 
4182         dev_info(&pdev->dev, "slots %u ports %d\n",
4183                  (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4184 
4185         rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4186         if (!rc)
4187                 return 0;
4188 
4189 err:
4190         if (!IS_ERR(hpriv->clk)) {
4191                 clk_disable_unprepare(hpriv->clk);
4192                 clk_put(hpriv->clk);
4193         }
4194         for (port = 0; port < hpriv->n_ports; port++) {
4195                 if (!IS_ERR(hpriv->port_clks[port])) {
4196                         clk_disable_unprepare(hpriv->port_clks[port]);
4197                         clk_put(hpriv->port_clks[port]);
4198                 }
4199                 phy_power_off(hpriv->port_phys[port]);
4200         }
4201 
4202         return rc;
4203 }
4204 
4205 /*
4206  *
4207  *      mv_platform_remove    -       unplug a platform interface
4208  *      @pdev: platform device
4209  *
4210  *      A platform bus SATA device has been unplugged. Perform the needed
4211  *      cleanup. Also called on module unload for any active devices.
4212  */
4213 static int mv_platform_remove(struct platform_device *pdev)
4214 {
4215         struct ata_host *host = platform_get_drvdata(pdev);
4216         struct mv_host_priv *hpriv = host->private_data;
4217         int port;
4218         ata_host_detach(host);
4219 
4220         if (!IS_ERR(hpriv->clk)) {
4221                 clk_disable_unprepare(hpriv->clk);
4222                 clk_put(hpriv->clk);
4223         }
4224         for (port = 0; port < host->n_ports; port++) {
4225                 if (!IS_ERR(hpriv->port_clks[port])) {
4226                         clk_disable_unprepare(hpriv->port_clks[port]);
4227                         clk_put(hpriv->port_clks[port]);
4228                 }
4229                 phy_power_off(hpriv->port_phys[port]);
4230         }
4231         return 0;
4232 }
4233 
4234 #ifdef CONFIG_PM_SLEEP
4235 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4236 {
4237         struct ata_host *host = platform_get_drvdata(pdev);
4238         if (host)
4239                 return ata_host_suspend(host, state);
4240         else
4241                 return 0;
4242 }
4243 
4244 static int mv_platform_resume(struct platform_device *pdev)
4245 {
4246         struct ata_host *host = platform_get_drvdata(pdev);
4247         const struct mbus_dram_target_info *dram;
4248         int ret;
4249 
4250         if (host) {
4251                 struct mv_host_priv *hpriv = host->private_data;
4252 
4253                 /*
4254                  * (Re-)program MBUS remapping windows if we are asked to.
4255                  */
4256                 dram = mv_mbus_dram_info();
4257                 if (dram)
4258                         mv_conf_mbus_windows(hpriv, dram);
4259 
4260                 /* initialize adapter */
4261                 ret = mv_init_host(host);
4262                 if (ret) {
4263                         printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4264                         return ret;
4265                 }
4266                 ata_host_resume(host);
4267         }
4268 
4269         return 0;
4270 }
4271 #else
4272 #define mv_platform_suspend NULL
4273 #define mv_platform_resume NULL
4274 #endif
4275 
4276 #ifdef CONFIG_OF
4277 static const struct of_device_id mv_sata_dt_ids[] = {
4278         { .compatible = "marvell,armada-370-sata", },
4279         { .compatible = "marvell,orion-sata", },
4280         {},
4281 };
4282 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4283 #endif
4284 
4285 static struct platform_driver mv_platform_driver = {
4286         .probe          = mv_platform_probe,
4287         .remove         = mv_platform_remove,
4288         .suspend        = mv_platform_suspend,
4289         .resume         = mv_platform_resume,
4290         .driver         = {
4291                 .name = DRV_NAME,
4292                 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4293         },
4294 };
4295 
4296 
4297 #ifdef CONFIG_PCI
4298 static int mv_pci_init_one(struct pci_dev *pdev,
4299                            const struct pci_device_id *ent);
4300 #ifdef CONFIG_PM_SLEEP
4301 static int mv_pci_device_resume(struct pci_dev *pdev);
4302 #endif
4303 
4304 
4305 static struct pci_driver mv_pci_driver = {
4306         .name                   = DRV_NAME,
4307         .id_table               = mv_pci_tbl,
4308         .probe                  = mv_pci_init_one,
4309         .remove                 = ata_pci_remove_one,
4310 #ifdef CONFIG_PM_SLEEP
4311         .suspend                = ata_pci_device_suspend,
4312         .resume                 = mv_pci_device_resume,
4313 #endif
4314 
4315 };
4316 
4317 /**
4318  *      mv_print_info - Dump key info to kernel log for perusal.
4319  *      @host: ATA host to print info about
4320  *
4321  *      FIXME: complete this.
4322  *
4323  *      LOCKING:
4324  *      Inherited from caller.
4325  */
4326 static void mv_print_info(struct ata_host *host)
4327 {
4328         struct pci_dev *pdev = to_pci_dev(host->dev);
4329         struct mv_host_priv *hpriv = host->private_data;
4330         u8 scc;
4331         const char *scc_s, *gen;
4332 
4333         /* Use this to determine the HW stepping of the chip so we know
4334          * what errata to workaround
4335          */
4336         pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4337         if (scc == 0)
4338                 scc_s = "SCSI";
4339         else if (scc == 0x01)
4340                 scc_s = "RAID";
4341         else
4342                 scc_s = "?";
4343 
4344         if (IS_GEN_I(hpriv))
4345                 gen = "I";
4346         else if (IS_GEN_II(hpriv))
4347                 gen = "II";
4348         else if (IS_GEN_IIE(hpriv))
4349                 gen = "IIE";
4350         else
4351                 gen = "?";
4352 
4353         dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4354                  gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4355                  scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4356 }
4357 
4358 /**
4359  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4360  *      @pdev: PCI device found
4361  *      @ent: PCI device ID entry for the matched host
4362  *
4363  *      LOCKING:
4364  *      Inherited from caller.
4365  */
4366 static int mv_pci_init_one(struct pci_dev *pdev,
4367                            const struct pci_device_id *ent)
4368 {
4369         unsigned int board_idx = (unsigned int)ent->driver_data;
4370         const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4371         struct ata_host *host;
4372         struct mv_host_priv *hpriv;
4373         int n_ports, port, rc;
4374 
4375         ata_print_version_once(&pdev->dev, DRV_VERSION);
4376 
4377         /* allocate host */
4378         n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4379 
4380         host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4381         hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4382         if (!host || !hpriv)
4383                 return -ENOMEM;
4384         host->private_data = hpriv;
4385         hpriv->n_ports = n_ports;
4386         hpriv->board_idx = board_idx;
4387 
4388         /* acquire resources */
4389         rc = pcim_enable_device(pdev);
4390         if (rc)
4391                 return rc;
4392 
4393         rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4394         if (rc == -EBUSY)
4395                 pcim_pin_device(pdev);
4396         if (rc)
4397                 return rc;
4398         host->iomap = pcim_iomap_table(pdev);
4399         hpriv->base = host->iomap[MV_PRIMARY_BAR];
4400 
4401         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4402         if (rc) {
4403                 dev_err(&pdev->dev, "DMA enable failed\n");
4404                 return rc;
4405         }
4406 
4407         rc = mv_create_dma_pools(hpriv, &pdev->dev);
4408         if (rc)
4409                 return rc;
4410 
4411         for (port = 0; port < host->n_ports; port++) {
4412                 struct ata_port *ap = host->ports[port];
4413                 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4414                 unsigned int offset = port_mmio - hpriv->base;
4415 
4416                 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4417                 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4418         }
4419 
4420         /* initialize adapter */
4421         rc = mv_init_host(host);
4422         if (rc)
4423                 return rc;
4424 
4425         /* Enable message-switched interrupts, if requested */
4426         if (msi && pci_enable_msi(pdev) == 0)
4427                 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4428 
4429         mv_dump_pci_cfg(pdev, 0x68);
4430         mv_print_info(host);
4431 
4432         pci_set_master(pdev);
4433         pci_try_set_mwi(pdev);
4434         return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4435                                  IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4436 }
4437 
4438 #ifdef CONFIG_PM_SLEEP
4439 static int mv_pci_device_resume(struct pci_dev *pdev)
4440 {
4441         struct ata_host *host = pci_get_drvdata(pdev);
4442         int rc;
4443 
4444         rc = ata_pci_device_do_resume(pdev);
4445         if (rc)
4446                 return rc;
4447 
4448         /* initialize adapter */
4449         rc = mv_init_host(host);
4450         if (rc)
4451                 return rc;
4452 
4453         ata_host_resume(host);
4454 
4455         return 0;
4456 }
4457 #endif
4458 #endif
4459 
4460 static int __init mv_init(void)
4461 {
4462         int rc = -ENODEV;
4463 #ifdef CONFIG_PCI
4464         rc = pci_register_driver(&mv_pci_driver);
4465         if (rc < 0)
4466                 return rc;
4467 #endif
4468         rc = platform_driver_register(&mv_platform_driver);
4469 
4470 #ifdef CONFIG_PCI
4471         if (rc < 0)
4472                 pci_unregister_driver(&mv_pci_driver);
4473 #endif
4474         return rc;
4475 }
4476 
4477 static void __exit mv_exit(void)
4478 {
4479 #ifdef CONFIG_PCI
4480         pci_unregister_driver(&mv_pci_driver);
4481 #endif
4482         platform_driver_unregister(&mv_platform_driver);
4483 }
4484 
4485 MODULE_AUTHOR("Brett Russ");
4486 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4487 MODULE_LICENSE("GPL v2");
4488 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4489 MODULE_VERSION(DRV_VERSION);
4490 MODULE_ALIAS("platform:" DRV_NAME);
4491 
4492 module_init(mv_init);
4493 module_exit(mv_exit);

/* [<][>][^][v][top][bottom][index][help] */