root/drivers/mtd/ubi/wl.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. wl_tree_add
  2. wl_entry_destroy
  3. do_work
  4. in_wl_tree
  5. in_pq
  6. prot_queue_add
  7. find_wl_entry
  8. find_mean_wl_entry
  9. wl_get_wle
  10. prot_queue_del
  11. sync_erase
  12. serve_prot_queue
  13. __schedule_ubi_work
  14. schedule_ubi_work
  15. schedule_erase
  16. do_sync_erase
  17. wear_leveling_worker
  18. ensure_wear_leveling
  19. __erase_worker
  20. erase_worker
  21. ubi_wl_put_peb
  22. ubi_wl_scrub_peb
  23. ubi_wl_flush
  24. scrub_possible
  25. ubi_bitflip_check
  26. tree_destroy
  27. ubi_thread
  28. shutdown_work
  29. erase_aeb
  30. ubi_wl_init
  31. protection_queue_destroy
  32. ubi_wl_close
  33. self_check_ec
  34. self_check_in_wl_tree
  35. self_check_in_pq
  36. get_peb_for_wl
  37. produce_free_peb
  38. ubi_wl_get_peb

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright (c) International Business Machines Corp., 2006
   4  *
   5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
   6  */
   7 
   8 /*
   9  * UBI wear-leveling sub-system.
  10  *
  11  * This sub-system is responsible for wear-leveling. It works in terms of
  12  * physical eraseblocks and erase counters and knows nothing about logical
  13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
  15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  17  *
  18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
  20  *
  21  * When physical eraseblocks are returned to the WL sub-system by means of the
  22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  23  * done asynchronously in context of the per-UBI device background thread,
  24  * which is also managed by the WL sub-system.
  25  *
  26  * The wear-leveling is ensured by means of moving the contents of used
  27  * physical eraseblocks with low erase counter to free physical eraseblocks
  28  * with high erase counter.
  29  *
  30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  31  * bad.
  32  *
  33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  34  * in a physical eraseblock, it has to be moved. Technically this is the same
  35  * as moving it for wear-leveling reasons.
  36  *
  37  * As it was said, for the UBI sub-system all physical eraseblocks are either
  38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
  41  *
  42  * When the WL sub-system returns a physical eraseblock, the physical
  43  * eraseblock is protected from being moved for some "time". For this reason,
  44  * the physical eraseblock is not directly moved from the @wl->free tree to the
  45  * @wl->used tree. There is a protection queue in between where this
  46  * physical eraseblock is temporarily stored (@wl->pq).
  47  *
  48  * All this protection stuff is needed because:
  49  *  o we don't want to move physical eraseblocks just after we have given them
  50  *    to the user; instead, we first want to let users fill them up with data;
  51  *
  52  *  o there is a chance that the user will put the physical eraseblock very
  53  *    soon, so it makes sense not to move it for some time, but wait.
  54  *
  55  * Physical eraseblocks stay protected only for limited time. But the "time" is
  56  * measured in erase cycles in this case. This is implemented with help of the
  57  * protection queue. Eraseblocks are put to the tail of this queue when they
  58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  59  * head of the queue on each erase operation (for any eraseblock). So the
  60  * length of the queue defines how may (global) erase cycles PEBs are protected.
  61  *
  62  * To put it differently, each physical eraseblock has 2 main states: free and
  63  * used. The former state corresponds to the @wl->free tree. The latter state
  64  * is split up on several sub-states:
  65  * o the WL movement is allowed (@wl->used tree);
  66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  67  *   erroneous - e.g., there was a read error;
  68  * o the WL movement is temporarily prohibited (@wl->pq queue);
  69  * o scrubbing is needed (@wl->scrub tree).
  70  *
  71  * Depending on the sub-state, wear-leveling entries of the used physical
  72  * eraseblocks may be kept in one of those structures.
  73  *
  74  * Note, in this implementation, we keep a small in-RAM object for each physical
  75  * eraseblock. This is surely not a scalable solution. But it appears to be good
  76  * enough for moderately large flashes and it is simple. In future, one may
  77  * re-work this sub-system and make it more scalable.
  78  *
  79  * At the moment this sub-system does not utilize the sequence number, which
  80  * was introduced relatively recently. But it would be wise to do this because
  81  * the sequence number of a logical eraseblock characterizes how old is it. For
  82  * example, when we move a PEB with low erase counter, and we need to pick the
  83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  84  * pick target PEB with an average EC if our PEB is not very "old". This is a
  85  * room for future re-works of the WL sub-system.
  86  */
  87 
  88 #include <linux/slab.h>
  89 #include <linux/crc32.h>
  90 #include <linux/freezer.h>
  91 #include <linux/kthread.h>
  92 #include "ubi.h"
  93 #include "wl.h"
  94 
  95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
  96 #define WL_RESERVED_PEBS 1
  97 
  98 /*
  99  * Maximum difference between two erase counters. If this threshold is
 100  * exceeded, the WL sub-system starts moving data from used physical
 101  * eraseblocks with low erase counter to free physical eraseblocks with high
 102  * erase counter.
 103  */
 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 105 
 106 /*
 107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
 108  * physical eraseblock to move to. The simplest way would be just to pick the
 109  * one with the highest erase counter. But in certain workloads this could lead
 110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 111  * situation when the picked physical eraseblock is constantly erased after the
 112  * data is written to it. So, we have a constant which limits the highest erase
 113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 114  * does not pick eraseblocks with erase counter greater than the lowest erase
 115  * counter plus %WL_FREE_MAX_DIFF.
 116  */
 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 118 
 119 /*
 120  * Maximum number of consecutive background thread failures which is enough to
 121  * switch to read-only mode.
 122  */
 123 #define WL_MAX_FAILURES 32
 124 
 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
 127                                  struct ubi_wl_entry *e, struct rb_root *root);
 128 static int self_check_in_pq(const struct ubi_device *ubi,
 129                             struct ubi_wl_entry *e);
 130 
 131 /**
 132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 133  * @e: the wear-leveling entry to add
 134  * @root: the root of the tree
 135  *
 136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 137  * the @ubi->used and @ubi->free RB-trees.
 138  */
 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 140 {
 141         struct rb_node **p, *parent = NULL;
 142 
 143         p = &root->rb_node;
 144         while (*p) {
 145                 struct ubi_wl_entry *e1;
 146 
 147                 parent = *p;
 148                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 149 
 150                 if (e->ec < e1->ec)
 151                         p = &(*p)->rb_left;
 152                 else if (e->ec > e1->ec)
 153                         p = &(*p)->rb_right;
 154                 else {
 155                         ubi_assert(e->pnum != e1->pnum);
 156                         if (e->pnum < e1->pnum)
 157                                 p = &(*p)->rb_left;
 158                         else
 159                                 p = &(*p)->rb_right;
 160                 }
 161         }
 162 
 163         rb_link_node(&e->u.rb, parent, p);
 164         rb_insert_color(&e->u.rb, root);
 165 }
 166 
 167 /**
 168  * wl_tree_destroy - destroy a wear-leveling entry.
 169  * @ubi: UBI device description object
 170  * @e: the wear-leveling entry to add
 171  *
 172  * This function destroys a wear leveling entry and removes
 173  * the reference from the lookup table.
 174  */
 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
 176 {
 177         ubi->lookuptbl[e->pnum] = NULL;
 178         kmem_cache_free(ubi_wl_entry_slab, e);
 179 }
 180 
 181 /**
 182  * do_work - do one pending work.
 183  * @ubi: UBI device description object
 184  *
 185  * This function returns zero in case of success and a negative error code in
 186  * case of failure.
 187  */
 188 static int do_work(struct ubi_device *ubi)
 189 {
 190         int err;
 191         struct ubi_work *wrk;
 192 
 193         cond_resched();
 194 
 195         /*
 196          * @ubi->work_sem is used to synchronize with the workers. Workers take
 197          * it in read mode, so many of them may be doing works at a time. But
 198          * the queue flush code has to be sure the whole queue of works is
 199          * done, and it takes the mutex in write mode.
 200          */
 201         down_read(&ubi->work_sem);
 202         spin_lock(&ubi->wl_lock);
 203         if (list_empty(&ubi->works)) {
 204                 spin_unlock(&ubi->wl_lock);
 205                 up_read(&ubi->work_sem);
 206                 return 0;
 207         }
 208 
 209         wrk = list_entry(ubi->works.next, struct ubi_work, list);
 210         list_del(&wrk->list);
 211         ubi->works_count -= 1;
 212         ubi_assert(ubi->works_count >= 0);
 213         spin_unlock(&ubi->wl_lock);
 214 
 215         /*
 216          * Call the worker function. Do not touch the work structure
 217          * after this call as it will have been freed or reused by that
 218          * time by the worker function.
 219          */
 220         err = wrk->func(ubi, wrk, 0);
 221         if (err)
 222                 ubi_err(ubi, "work failed with error code %d", err);
 223         up_read(&ubi->work_sem);
 224 
 225         return err;
 226 }
 227 
 228 /**
 229  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 230  * @e: the wear-leveling entry to check
 231  * @root: the root of the tree
 232  *
 233  * This function returns non-zero if @e is in the @root RB-tree and zero if it
 234  * is not.
 235  */
 236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 237 {
 238         struct rb_node *p;
 239 
 240         p = root->rb_node;
 241         while (p) {
 242                 struct ubi_wl_entry *e1;
 243 
 244                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 245 
 246                 if (e->pnum == e1->pnum) {
 247                         ubi_assert(e == e1);
 248                         return 1;
 249                 }
 250 
 251                 if (e->ec < e1->ec)
 252                         p = p->rb_left;
 253                 else if (e->ec > e1->ec)
 254                         p = p->rb_right;
 255                 else {
 256                         ubi_assert(e->pnum != e1->pnum);
 257                         if (e->pnum < e1->pnum)
 258                                 p = p->rb_left;
 259                         else
 260                                 p = p->rb_right;
 261                 }
 262         }
 263 
 264         return 0;
 265 }
 266 
 267 /**
 268  * in_pq - check if a wear-leveling entry is present in the protection queue.
 269  * @ubi: UBI device description object
 270  * @e: the wear-leveling entry to check
 271  *
 272  * This function returns non-zero if @e is in the protection queue and zero
 273  * if it is not.
 274  */
 275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
 276 {
 277         struct ubi_wl_entry *p;
 278         int i;
 279 
 280         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
 281                 list_for_each_entry(p, &ubi->pq[i], u.list)
 282                         if (p == e)
 283                                 return 1;
 284 
 285         return 0;
 286 }
 287 
 288 /**
 289  * prot_queue_add - add physical eraseblock to the protection queue.
 290  * @ubi: UBI device description object
 291  * @e: the physical eraseblock to add
 292  *
 293  * This function adds @e to the tail of the protection queue @ubi->pq, where
 294  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 295  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 296  * be locked.
 297  */
 298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 299 {
 300         int pq_tail = ubi->pq_head - 1;
 301 
 302         if (pq_tail < 0)
 303                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
 304         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 305         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 306         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 307 }
 308 
 309 /**
 310  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 311  * @ubi: UBI device description object
 312  * @root: the RB-tree where to look for
 313  * @diff: maximum possible difference from the smallest erase counter
 314  *
 315  * This function looks for a wear leveling entry with erase counter closest to
 316  * min + @diff, where min is the smallest erase counter.
 317  */
 318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 319                                           struct rb_root *root, int diff)
 320 {
 321         struct rb_node *p;
 322         struct ubi_wl_entry *e, *prev_e = NULL;
 323         int max;
 324 
 325         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 326         max = e->ec + diff;
 327 
 328         p = root->rb_node;
 329         while (p) {
 330                 struct ubi_wl_entry *e1;
 331 
 332                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 333                 if (e1->ec >= max)
 334                         p = p->rb_left;
 335                 else {
 336                         p = p->rb_right;
 337                         prev_e = e;
 338                         e = e1;
 339                 }
 340         }
 341 
 342         /* If no fastmap has been written and this WL entry can be used
 343          * as anchor PEB, hold it back and return the second best WL entry
 344          * such that fastmap can use the anchor PEB later. */
 345         if (prev_e && !ubi->fm_disabled &&
 346             !ubi->fm && e->pnum < UBI_FM_MAX_START)
 347                 return prev_e;
 348 
 349         return e;
 350 }
 351 
 352 /**
 353  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 354  * @ubi: UBI device description object
 355  * @root: the RB-tree where to look for
 356  *
 357  * This function looks for a wear leveling entry with medium erase counter,
 358  * but not greater or equivalent than the lowest erase counter plus
 359  * %WL_FREE_MAX_DIFF/2.
 360  */
 361 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 362                                                struct rb_root *root)
 363 {
 364         struct ubi_wl_entry *e, *first, *last;
 365 
 366         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 367         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 368 
 369         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 370                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 371 
 372                 /* If no fastmap has been written and this WL entry can be used
 373                  * as anchor PEB, hold it back and return the second best
 374                  * WL entry such that fastmap can use the anchor PEB later. */
 375                 e = may_reserve_for_fm(ubi, e, root);
 376         } else
 377                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
 378 
 379         return e;
 380 }
 381 
 382 /**
 383  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
 384  * refill_wl_user_pool().
 385  * @ubi: UBI device description object
 386  *
 387  * This function returns a a wear leveling entry in case of success and
 388  * NULL in case of failure.
 389  */
 390 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
 391 {
 392         struct ubi_wl_entry *e;
 393 
 394         e = find_mean_wl_entry(ubi, &ubi->free);
 395         if (!e) {
 396                 ubi_err(ubi, "no free eraseblocks");
 397                 return NULL;
 398         }
 399 
 400         self_check_in_wl_tree(ubi, e, &ubi->free);
 401 
 402         /*
 403          * Move the physical eraseblock to the protection queue where it will
 404          * be protected from being moved for some time.
 405          */
 406         rb_erase(&e->u.rb, &ubi->free);
 407         ubi->free_count--;
 408         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 409 
 410         return e;
 411 }
 412 
 413 /**
 414  * prot_queue_del - remove a physical eraseblock from the protection queue.
 415  * @ubi: UBI device description object
 416  * @pnum: the physical eraseblock to remove
 417  *
 418  * This function deletes PEB @pnum from the protection queue and returns zero
 419  * in case of success and %-ENODEV if the PEB was not found.
 420  */
 421 static int prot_queue_del(struct ubi_device *ubi, int pnum)
 422 {
 423         struct ubi_wl_entry *e;
 424 
 425         e = ubi->lookuptbl[pnum];
 426         if (!e)
 427                 return -ENODEV;
 428 
 429         if (self_check_in_pq(ubi, e))
 430                 return -ENODEV;
 431 
 432         list_del(&e->u.list);
 433         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 434         return 0;
 435 }
 436 
 437 /**
 438  * sync_erase - synchronously erase a physical eraseblock.
 439  * @ubi: UBI device description object
 440  * @e: the the physical eraseblock to erase
 441  * @torture: if the physical eraseblock has to be tortured
 442  *
 443  * This function returns zero in case of success and a negative error code in
 444  * case of failure.
 445  */
 446 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 447                       int torture)
 448 {
 449         int err;
 450         struct ubi_ec_hdr *ec_hdr;
 451         unsigned long long ec = e->ec;
 452 
 453         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 454 
 455         err = self_check_ec(ubi, e->pnum, e->ec);
 456         if (err)
 457                 return -EINVAL;
 458 
 459         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 460         if (!ec_hdr)
 461                 return -ENOMEM;
 462 
 463         err = ubi_io_sync_erase(ubi, e->pnum, torture);
 464         if (err < 0)
 465                 goto out_free;
 466 
 467         ec += err;
 468         if (ec > UBI_MAX_ERASECOUNTER) {
 469                 /*
 470                  * Erase counter overflow. Upgrade UBI and use 64-bit
 471                  * erase counters internally.
 472                  */
 473                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
 474                         e->pnum, ec);
 475                 err = -EINVAL;
 476                 goto out_free;
 477         }
 478 
 479         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 480 
 481         ec_hdr->ec = cpu_to_be64(ec);
 482 
 483         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 484         if (err)
 485                 goto out_free;
 486 
 487         e->ec = ec;
 488         spin_lock(&ubi->wl_lock);
 489         if (e->ec > ubi->max_ec)
 490                 ubi->max_ec = e->ec;
 491         spin_unlock(&ubi->wl_lock);
 492 
 493 out_free:
 494         kfree(ec_hdr);
 495         return err;
 496 }
 497 
 498 /**
 499  * serve_prot_queue - check if it is time to stop protecting PEBs.
 500  * @ubi: UBI device description object
 501  *
 502  * This function is called after each erase operation and removes PEBs from the
 503  * tail of the protection queue. These PEBs have been protected for long enough
 504  * and should be moved to the used tree.
 505  */
 506 static void serve_prot_queue(struct ubi_device *ubi)
 507 {
 508         struct ubi_wl_entry *e, *tmp;
 509         int count;
 510 
 511         /*
 512          * There may be several protected physical eraseblock to remove,
 513          * process them all.
 514          */
 515 repeat:
 516         count = 0;
 517         spin_lock(&ubi->wl_lock);
 518         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 519                 dbg_wl("PEB %d EC %d protection over, move to used tree",
 520                         e->pnum, e->ec);
 521 
 522                 list_del(&e->u.list);
 523                 wl_tree_add(e, &ubi->used);
 524                 if (count++ > 32) {
 525                         /*
 526                          * Let's be nice and avoid holding the spinlock for
 527                          * too long.
 528                          */
 529                         spin_unlock(&ubi->wl_lock);
 530                         cond_resched();
 531                         goto repeat;
 532                 }
 533         }
 534 
 535         ubi->pq_head += 1;
 536         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 537                 ubi->pq_head = 0;
 538         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 539         spin_unlock(&ubi->wl_lock);
 540 }
 541 
 542 /**
 543  * __schedule_ubi_work - schedule a work.
 544  * @ubi: UBI device description object
 545  * @wrk: the work to schedule
 546  *
 547  * This function adds a work defined by @wrk to the tail of the pending works
 548  * list. Can only be used if ubi->work_sem is already held in read mode!
 549  */
 550 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 551 {
 552         spin_lock(&ubi->wl_lock);
 553         list_add_tail(&wrk->list, &ubi->works);
 554         ubi_assert(ubi->works_count >= 0);
 555         ubi->works_count += 1;
 556         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 557                 wake_up_process(ubi->bgt_thread);
 558         spin_unlock(&ubi->wl_lock);
 559 }
 560 
 561 /**
 562  * schedule_ubi_work - schedule a work.
 563  * @ubi: UBI device description object
 564  * @wrk: the work to schedule
 565  *
 566  * This function adds a work defined by @wrk to the tail of the pending works
 567  * list.
 568  */
 569 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 570 {
 571         down_read(&ubi->work_sem);
 572         __schedule_ubi_work(ubi, wrk);
 573         up_read(&ubi->work_sem);
 574 }
 575 
 576 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 577                         int shutdown);
 578 
 579 /**
 580  * schedule_erase - schedule an erase work.
 581  * @ubi: UBI device description object
 582  * @e: the WL entry of the physical eraseblock to erase
 583  * @vol_id: the volume ID that last used this PEB
 584  * @lnum: the last used logical eraseblock number for the PEB
 585  * @torture: if the physical eraseblock has to be tortured
 586  *
 587  * This function returns zero in case of success and a %-ENOMEM in case of
 588  * failure.
 589  */
 590 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 591                           int vol_id, int lnum, int torture, bool nested)
 592 {
 593         struct ubi_work *wl_wrk;
 594 
 595         ubi_assert(e);
 596 
 597         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 598                e->pnum, e->ec, torture);
 599 
 600         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 601         if (!wl_wrk)
 602                 return -ENOMEM;
 603 
 604         wl_wrk->func = &erase_worker;
 605         wl_wrk->e = e;
 606         wl_wrk->vol_id = vol_id;
 607         wl_wrk->lnum = lnum;
 608         wl_wrk->torture = torture;
 609 
 610         if (nested)
 611                 __schedule_ubi_work(ubi, wl_wrk);
 612         else
 613                 schedule_ubi_work(ubi, wl_wrk);
 614         return 0;
 615 }
 616 
 617 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
 618 /**
 619  * do_sync_erase - run the erase worker synchronously.
 620  * @ubi: UBI device description object
 621  * @e: the WL entry of the physical eraseblock to erase
 622  * @vol_id: the volume ID that last used this PEB
 623  * @lnum: the last used logical eraseblock number for the PEB
 624  * @torture: if the physical eraseblock has to be tortured
 625  *
 626  */
 627 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 628                          int vol_id, int lnum, int torture)
 629 {
 630         struct ubi_work wl_wrk;
 631 
 632         dbg_wl("sync erase of PEB %i", e->pnum);
 633 
 634         wl_wrk.e = e;
 635         wl_wrk.vol_id = vol_id;
 636         wl_wrk.lnum = lnum;
 637         wl_wrk.torture = torture;
 638 
 639         return __erase_worker(ubi, &wl_wrk);
 640 }
 641 
 642 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
 643 /**
 644  * wear_leveling_worker - wear-leveling worker function.
 645  * @ubi: UBI device description object
 646  * @wrk: the work object
 647  * @shutdown: non-zero if the worker has to free memory and exit
 648  * because the WL-subsystem is shutting down
 649  *
 650  * This function copies a more worn out physical eraseblock to a less worn out
 651  * one. Returns zero in case of success and a negative error code in case of
 652  * failure.
 653  */
 654 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 655                                 int shutdown)
 656 {
 657         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 658         int erase = 0, keep = 0, vol_id = -1, lnum = -1;
 659 #ifdef CONFIG_MTD_UBI_FASTMAP
 660         int anchor = wrk->anchor;
 661 #endif
 662         struct ubi_wl_entry *e1, *e2;
 663         struct ubi_vid_io_buf *vidb;
 664         struct ubi_vid_hdr *vid_hdr;
 665         int dst_leb_clean = 0;
 666 
 667         kfree(wrk);
 668         if (shutdown)
 669                 return 0;
 670 
 671         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 672         if (!vidb)
 673                 return -ENOMEM;
 674 
 675         vid_hdr = ubi_get_vid_hdr(vidb);
 676 
 677         down_read(&ubi->fm_eba_sem);
 678         mutex_lock(&ubi->move_mutex);
 679         spin_lock(&ubi->wl_lock);
 680         ubi_assert(!ubi->move_from && !ubi->move_to);
 681         ubi_assert(!ubi->move_to_put);
 682 
 683         if (!ubi->free.rb_node ||
 684             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 685                 /*
 686                  * No free physical eraseblocks? Well, they must be waiting in
 687                  * the queue to be erased. Cancel movement - it will be
 688                  * triggered again when a free physical eraseblock appears.
 689                  *
 690                  * No used physical eraseblocks? They must be temporarily
 691                  * protected from being moved. They will be moved to the
 692                  * @ubi->used tree later and the wear-leveling will be
 693                  * triggered again.
 694                  */
 695                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
 696                        !ubi->free.rb_node, !ubi->used.rb_node);
 697                 goto out_cancel;
 698         }
 699 
 700 #ifdef CONFIG_MTD_UBI_FASTMAP
 701         /* Check whether we need to produce an anchor PEB */
 702         if (!anchor)
 703                 anchor = !anchor_pebs_available(&ubi->free);
 704 
 705         if (anchor) {
 706                 e1 = find_anchor_wl_entry(&ubi->used);
 707                 if (!e1)
 708                         goto out_cancel;
 709                 e2 = get_peb_for_wl(ubi);
 710                 if (!e2)
 711                         goto out_cancel;
 712 
 713                 /*
 714                  * Anchor move within the anchor area is useless.
 715                  */
 716                 if (e2->pnum < UBI_FM_MAX_START)
 717                         goto out_cancel;
 718 
 719                 self_check_in_wl_tree(ubi, e1, &ubi->used);
 720                 rb_erase(&e1->u.rb, &ubi->used);
 721                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
 722         } else if (!ubi->scrub.rb_node) {
 723 #else
 724         if (!ubi->scrub.rb_node) {
 725 #endif
 726                 /*
 727                  * Now pick the least worn-out used physical eraseblock and a
 728                  * highly worn-out free physical eraseblock. If the erase
 729                  * counters differ much enough, start wear-leveling.
 730                  */
 731                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 732                 e2 = get_peb_for_wl(ubi);
 733                 if (!e2)
 734                         goto out_cancel;
 735 
 736                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 737                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
 738                                e1->ec, e2->ec);
 739 
 740                         /* Give the unused PEB back */
 741                         wl_tree_add(e2, &ubi->free);
 742                         ubi->free_count++;
 743                         goto out_cancel;
 744                 }
 745                 self_check_in_wl_tree(ubi, e1, &ubi->used);
 746                 rb_erase(&e1->u.rb, &ubi->used);
 747                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 748                        e1->pnum, e1->ec, e2->pnum, e2->ec);
 749         } else {
 750                 /* Perform scrubbing */
 751                 scrubbing = 1;
 752                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 753                 e2 = get_peb_for_wl(ubi);
 754                 if (!e2)
 755                         goto out_cancel;
 756 
 757                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
 758                 rb_erase(&e1->u.rb, &ubi->scrub);
 759                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 760         }
 761 
 762         ubi->move_from = e1;
 763         ubi->move_to = e2;
 764         spin_unlock(&ubi->wl_lock);
 765 
 766         /*
 767          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 768          * We so far do not know which logical eraseblock our physical
 769          * eraseblock (@e1) belongs to. We have to read the volume identifier
 770          * header first.
 771          *
 772          * Note, we are protected from this PEB being unmapped and erased. The
 773          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 774          * which is being moved was unmapped.
 775          */
 776 
 777         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
 778         if (err && err != UBI_IO_BITFLIPS) {
 779                 dst_leb_clean = 1;
 780                 if (err == UBI_IO_FF) {
 781                         /*
 782                          * We are trying to move PEB without a VID header. UBI
 783                          * always write VID headers shortly after the PEB was
 784                          * given, so we have a situation when it has not yet
 785                          * had a chance to write it, because it was preempted.
 786                          * So add this PEB to the protection queue so far,
 787                          * because presumably more data will be written there
 788                          * (including the missing VID header), and then we'll
 789                          * move it.
 790                          */
 791                         dbg_wl("PEB %d has no VID header", e1->pnum);
 792                         protect = 1;
 793                         goto out_not_moved;
 794                 } else if (err == UBI_IO_FF_BITFLIPS) {
 795                         /*
 796                          * The same situation as %UBI_IO_FF, but bit-flips were
 797                          * detected. It is better to schedule this PEB for
 798                          * scrubbing.
 799                          */
 800                         dbg_wl("PEB %d has no VID header but has bit-flips",
 801                                e1->pnum);
 802                         scrubbing = 1;
 803                         goto out_not_moved;
 804                 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
 805                         /*
 806                          * While a full scan would detect interrupted erasures
 807                          * at attach time we can face them here when attached from
 808                          * Fastmap.
 809                          */
 810                         dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
 811                                e1->pnum);
 812                         erase = 1;
 813                         goto out_not_moved;
 814                 }
 815 
 816                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
 817                         err, e1->pnum);
 818                 goto out_error;
 819         }
 820 
 821         vol_id = be32_to_cpu(vid_hdr->vol_id);
 822         lnum = be32_to_cpu(vid_hdr->lnum);
 823 
 824         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
 825         if (err) {
 826                 if (err == MOVE_CANCEL_RACE) {
 827                         /*
 828                          * The LEB has not been moved because the volume is
 829                          * being deleted or the PEB has been put meanwhile. We
 830                          * should prevent this PEB from being selected for
 831                          * wear-leveling movement again, so put it to the
 832                          * protection queue.
 833                          */
 834                         protect = 1;
 835                         dst_leb_clean = 1;
 836                         goto out_not_moved;
 837                 }
 838                 if (err == MOVE_RETRY) {
 839                         scrubbing = 1;
 840                         dst_leb_clean = 1;
 841                         goto out_not_moved;
 842                 }
 843                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 844                     err == MOVE_TARGET_RD_ERR) {
 845                         /*
 846                          * Target PEB had bit-flips or write error - torture it.
 847                          */
 848                         torture = 1;
 849                         keep = 1;
 850                         goto out_not_moved;
 851                 }
 852 
 853                 if (err == MOVE_SOURCE_RD_ERR) {
 854                         /*
 855                          * An error happened while reading the source PEB. Do
 856                          * not switch to R/O mode in this case, and give the
 857                          * upper layers a possibility to recover from this,
 858                          * e.g. by unmapping corresponding LEB. Instead, just
 859                          * put this PEB to the @ubi->erroneous list to prevent
 860                          * UBI from trying to move it over and over again.
 861                          */
 862                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 863                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
 864                                         ubi->erroneous_peb_count);
 865                                 goto out_error;
 866                         }
 867                         dst_leb_clean = 1;
 868                         erroneous = 1;
 869                         goto out_not_moved;
 870                 }
 871 
 872                 if (err < 0)
 873                         goto out_error;
 874 
 875                 ubi_assert(0);
 876         }
 877 
 878         /* The PEB has been successfully moved */
 879         if (scrubbing)
 880                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 881                         e1->pnum, vol_id, lnum, e2->pnum);
 882         ubi_free_vid_buf(vidb);
 883 
 884         spin_lock(&ubi->wl_lock);
 885         if (!ubi->move_to_put) {
 886                 wl_tree_add(e2, &ubi->used);
 887                 e2 = NULL;
 888         }
 889         ubi->move_from = ubi->move_to = NULL;
 890         ubi->move_to_put = ubi->wl_scheduled = 0;
 891         spin_unlock(&ubi->wl_lock);
 892 
 893         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
 894         if (err) {
 895                 if (e2)
 896                         wl_entry_destroy(ubi, e2);
 897                 goto out_ro;
 898         }
 899 
 900         if (e2) {
 901                 /*
 902                  * Well, the target PEB was put meanwhile, schedule it for
 903                  * erasure.
 904                  */
 905                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 906                        e2->pnum, vol_id, lnum);
 907                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
 908                 if (err)
 909                         goto out_ro;
 910         }
 911 
 912         dbg_wl("done");
 913         mutex_unlock(&ubi->move_mutex);
 914         up_read(&ubi->fm_eba_sem);
 915         return 0;
 916 
 917         /*
 918          * For some reasons the LEB was not moved, might be an error, might be
 919          * something else. @e1 was not changed, so return it back. @e2 might
 920          * have been changed, schedule it for erasure.
 921          */
 922 out_not_moved:
 923         if (vol_id != -1)
 924                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 925                        e1->pnum, vol_id, lnum, e2->pnum, err);
 926         else
 927                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 928                        e1->pnum, e2->pnum, err);
 929         spin_lock(&ubi->wl_lock);
 930         if (protect)
 931                 prot_queue_add(ubi, e1);
 932         else if (erroneous) {
 933                 wl_tree_add(e1, &ubi->erroneous);
 934                 ubi->erroneous_peb_count += 1;
 935         } else if (scrubbing)
 936                 wl_tree_add(e1, &ubi->scrub);
 937         else if (keep)
 938                 wl_tree_add(e1, &ubi->used);
 939         if (dst_leb_clean) {
 940                 wl_tree_add(e2, &ubi->free);
 941                 ubi->free_count++;
 942         }
 943 
 944         ubi_assert(!ubi->move_to_put);
 945         ubi->move_from = ubi->move_to = NULL;
 946         ubi->wl_scheduled = 0;
 947         spin_unlock(&ubi->wl_lock);
 948 
 949         ubi_free_vid_buf(vidb);
 950         if (dst_leb_clean) {
 951                 ensure_wear_leveling(ubi, 1);
 952         } else {
 953                 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
 954                 if (err)
 955                         goto out_ro;
 956         }
 957 
 958         if (erase) {
 959                 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
 960                 if (err)
 961                         goto out_ro;
 962         }
 963 
 964         mutex_unlock(&ubi->move_mutex);
 965         up_read(&ubi->fm_eba_sem);
 966         return 0;
 967 
 968 out_error:
 969         if (vol_id != -1)
 970                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
 971                         err, e1->pnum, e2->pnum);
 972         else
 973                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 974                         err, e1->pnum, vol_id, lnum, e2->pnum);
 975         spin_lock(&ubi->wl_lock);
 976         ubi->move_from = ubi->move_to = NULL;
 977         ubi->move_to_put = ubi->wl_scheduled = 0;
 978         spin_unlock(&ubi->wl_lock);
 979 
 980         ubi_free_vid_buf(vidb);
 981         wl_entry_destroy(ubi, e1);
 982         wl_entry_destroy(ubi, e2);
 983 
 984 out_ro:
 985         ubi_ro_mode(ubi);
 986         mutex_unlock(&ubi->move_mutex);
 987         up_read(&ubi->fm_eba_sem);
 988         ubi_assert(err != 0);
 989         return err < 0 ? err : -EIO;
 990 
 991 out_cancel:
 992         ubi->wl_scheduled = 0;
 993         spin_unlock(&ubi->wl_lock);
 994         mutex_unlock(&ubi->move_mutex);
 995         up_read(&ubi->fm_eba_sem);
 996         ubi_free_vid_buf(vidb);
 997         return 0;
 998 }
 999 
1000 /**
1001  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1002  * @ubi: UBI device description object
1003  * @nested: set to non-zero if this function is called from UBI worker
1004  *
1005  * This function checks if it is time to start wear-leveling and schedules it
1006  * if yes. This function returns zero in case of success and a negative error
1007  * code in case of failure.
1008  */
1009 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1010 {
1011         int err = 0;
1012         struct ubi_wl_entry *e1;
1013         struct ubi_wl_entry *e2;
1014         struct ubi_work *wrk;
1015 
1016         spin_lock(&ubi->wl_lock);
1017         if (ubi->wl_scheduled)
1018                 /* Wear-leveling is already in the work queue */
1019                 goto out_unlock;
1020 
1021         /*
1022          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1023          * the WL worker has to be scheduled anyway.
1024          */
1025         if (!ubi->scrub.rb_node) {
1026                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1027                         /* No physical eraseblocks - no deal */
1028                         goto out_unlock;
1029 
1030                 /*
1031                  * We schedule wear-leveling only if the difference between the
1032                  * lowest erase counter of used physical eraseblocks and a high
1033                  * erase counter of free physical eraseblocks is greater than
1034                  * %UBI_WL_THRESHOLD.
1035                  */
1036                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1037                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1038 
1039                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1040                         goto out_unlock;
1041                 dbg_wl("schedule wear-leveling");
1042         } else
1043                 dbg_wl("schedule scrubbing");
1044 
1045         ubi->wl_scheduled = 1;
1046         spin_unlock(&ubi->wl_lock);
1047 
1048         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1049         if (!wrk) {
1050                 err = -ENOMEM;
1051                 goto out_cancel;
1052         }
1053 
1054         wrk->anchor = 0;
1055         wrk->func = &wear_leveling_worker;
1056         if (nested)
1057                 __schedule_ubi_work(ubi, wrk);
1058         else
1059                 schedule_ubi_work(ubi, wrk);
1060         return err;
1061 
1062 out_cancel:
1063         spin_lock(&ubi->wl_lock);
1064         ubi->wl_scheduled = 0;
1065 out_unlock:
1066         spin_unlock(&ubi->wl_lock);
1067         return err;
1068 }
1069 
1070 /**
1071  * __erase_worker - physical eraseblock erase worker function.
1072  * @ubi: UBI device description object
1073  * @wl_wrk: the work object
1074  * @shutdown: non-zero if the worker has to free memory and exit
1075  * because the WL sub-system is shutting down
1076  *
1077  * This function erases a physical eraseblock and perform torture testing if
1078  * needed. It also takes care about marking the physical eraseblock bad if
1079  * needed. Returns zero in case of success and a negative error code in case of
1080  * failure.
1081  */
1082 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1083 {
1084         struct ubi_wl_entry *e = wl_wrk->e;
1085         int pnum = e->pnum;
1086         int vol_id = wl_wrk->vol_id;
1087         int lnum = wl_wrk->lnum;
1088         int err, available_consumed = 0;
1089 
1090         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1091                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1092 
1093         err = sync_erase(ubi, e, wl_wrk->torture);
1094         if (!err) {
1095                 spin_lock(&ubi->wl_lock);
1096                 wl_tree_add(e, &ubi->free);
1097                 ubi->free_count++;
1098                 spin_unlock(&ubi->wl_lock);
1099 
1100                 /*
1101                  * One more erase operation has happened, take care about
1102                  * protected physical eraseblocks.
1103                  */
1104                 serve_prot_queue(ubi);
1105 
1106                 /* And take care about wear-leveling */
1107                 err = ensure_wear_leveling(ubi, 1);
1108                 return err;
1109         }
1110 
1111         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1112 
1113         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1114             err == -EBUSY) {
1115                 int err1;
1116 
1117                 /* Re-schedule the LEB for erasure */
1118                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1119                 if (err1) {
1120                         wl_entry_destroy(ubi, e);
1121                         err = err1;
1122                         goto out_ro;
1123                 }
1124                 return err;
1125         }
1126 
1127         wl_entry_destroy(ubi, e);
1128         if (err != -EIO)
1129                 /*
1130                  * If this is not %-EIO, we have no idea what to do. Scheduling
1131                  * this physical eraseblock for erasure again would cause
1132                  * errors again and again. Well, lets switch to R/O mode.
1133                  */
1134                 goto out_ro;
1135 
1136         /* It is %-EIO, the PEB went bad */
1137 
1138         if (!ubi->bad_allowed) {
1139                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1140                 goto out_ro;
1141         }
1142 
1143         spin_lock(&ubi->volumes_lock);
1144         if (ubi->beb_rsvd_pebs == 0) {
1145                 if (ubi->avail_pebs == 0) {
1146                         spin_unlock(&ubi->volumes_lock);
1147                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1148                         goto out_ro;
1149                 }
1150                 ubi->avail_pebs -= 1;
1151                 available_consumed = 1;
1152         }
1153         spin_unlock(&ubi->volumes_lock);
1154 
1155         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1156         err = ubi_io_mark_bad(ubi, pnum);
1157         if (err)
1158                 goto out_ro;
1159 
1160         spin_lock(&ubi->volumes_lock);
1161         if (ubi->beb_rsvd_pebs > 0) {
1162                 if (available_consumed) {
1163                         /*
1164                          * The amount of reserved PEBs increased since we last
1165                          * checked.
1166                          */
1167                         ubi->avail_pebs += 1;
1168                         available_consumed = 0;
1169                 }
1170                 ubi->beb_rsvd_pebs -= 1;
1171         }
1172         ubi->bad_peb_count += 1;
1173         ubi->good_peb_count -= 1;
1174         ubi_calculate_reserved(ubi);
1175         if (available_consumed)
1176                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1177         else if (ubi->beb_rsvd_pebs)
1178                 ubi_msg(ubi, "%d PEBs left in the reserve",
1179                         ubi->beb_rsvd_pebs);
1180         else
1181                 ubi_warn(ubi, "last PEB from the reserve was used");
1182         spin_unlock(&ubi->volumes_lock);
1183 
1184         return err;
1185 
1186 out_ro:
1187         if (available_consumed) {
1188                 spin_lock(&ubi->volumes_lock);
1189                 ubi->avail_pebs += 1;
1190                 spin_unlock(&ubi->volumes_lock);
1191         }
1192         ubi_ro_mode(ubi);
1193         return err;
1194 }
1195 
1196 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1197                           int shutdown)
1198 {
1199         int ret;
1200 
1201         if (shutdown) {
1202                 struct ubi_wl_entry *e = wl_wrk->e;
1203 
1204                 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1205                 kfree(wl_wrk);
1206                 wl_entry_destroy(ubi, e);
1207                 return 0;
1208         }
1209 
1210         ret = __erase_worker(ubi, wl_wrk);
1211         kfree(wl_wrk);
1212         return ret;
1213 }
1214 
1215 /**
1216  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1217  * @ubi: UBI device description object
1218  * @vol_id: the volume ID that last used this PEB
1219  * @lnum: the last used logical eraseblock number for the PEB
1220  * @pnum: physical eraseblock to return
1221  * @torture: if this physical eraseblock has to be tortured
1222  *
1223  * This function is called to return physical eraseblock @pnum to the pool of
1224  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1225  * occurred to this @pnum and it has to be tested. This function returns zero
1226  * in case of success, and a negative error code in case of failure.
1227  */
1228 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1229                    int pnum, int torture)
1230 {
1231         int err;
1232         struct ubi_wl_entry *e;
1233 
1234         dbg_wl("PEB %d", pnum);
1235         ubi_assert(pnum >= 0);
1236         ubi_assert(pnum < ubi->peb_count);
1237 
1238         down_read(&ubi->fm_protect);
1239 
1240 retry:
1241         spin_lock(&ubi->wl_lock);
1242         e = ubi->lookuptbl[pnum];
1243         if (e == ubi->move_from) {
1244                 /*
1245                  * User is putting the physical eraseblock which was selected to
1246                  * be moved. It will be scheduled for erasure in the
1247                  * wear-leveling worker.
1248                  */
1249                 dbg_wl("PEB %d is being moved, wait", pnum);
1250                 spin_unlock(&ubi->wl_lock);
1251 
1252                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1253                 mutex_lock(&ubi->move_mutex);
1254                 mutex_unlock(&ubi->move_mutex);
1255                 goto retry;
1256         } else if (e == ubi->move_to) {
1257                 /*
1258                  * User is putting the physical eraseblock which was selected
1259                  * as the target the data is moved to. It may happen if the EBA
1260                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1261                  * but the WL sub-system has not put the PEB to the "used" tree
1262                  * yet, but it is about to do this. So we just set a flag which
1263                  * will tell the WL worker that the PEB is not needed anymore
1264                  * and should be scheduled for erasure.
1265                  */
1266                 dbg_wl("PEB %d is the target of data moving", pnum);
1267                 ubi_assert(!ubi->move_to_put);
1268                 ubi->move_to_put = 1;
1269                 spin_unlock(&ubi->wl_lock);
1270                 up_read(&ubi->fm_protect);
1271                 return 0;
1272         } else {
1273                 if (in_wl_tree(e, &ubi->used)) {
1274                         self_check_in_wl_tree(ubi, e, &ubi->used);
1275                         rb_erase(&e->u.rb, &ubi->used);
1276                 } else if (in_wl_tree(e, &ubi->scrub)) {
1277                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1278                         rb_erase(&e->u.rb, &ubi->scrub);
1279                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1280                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1281                         rb_erase(&e->u.rb, &ubi->erroneous);
1282                         ubi->erroneous_peb_count -= 1;
1283                         ubi_assert(ubi->erroneous_peb_count >= 0);
1284                         /* Erroneous PEBs should be tortured */
1285                         torture = 1;
1286                 } else {
1287                         err = prot_queue_del(ubi, e->pnum);
1288                         if (err) {
1289                                 ubi_err(ubi, "PEB %d not found", pnum);
1290                                 ubi_ro_mode(ubi);
1291                                 spin_unlock(&ubi->wl_lock);
1292                                 up_read(&ubi->fm_protect);
1293                                 return err;
1294                         }
1295                 }
1296         }
1297         spin_unlock(&ubi->wl_lock);
1298 
1299         err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1300         if (err) {
1301                 spin_lock(&ubi->wl_lock);
1302                 wl_tree_add(e, &ubi->used);
1303                 spin_unlock(&ubi->wl_lock);
1304         }
1305 
1306         up_read(&ubi->fm_protect);
1307         return err;
1308 }
1309 
1310 /**
1311  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1312  * @ubi: UBI device description object
1313  * @pnum: the physical eraseblock to schedule
1314  *
1315  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1316  * needs scrubbing. This function schedules a physical eraseblock for
1317  * scrubbing which is done in background. This function returns zero in case of
1318  * success and a negative error code in case of failure.
1319  */
1320 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1321 {
1322         struct ubi_wl_entry *e;
1323 
1324         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1325 
1326 retry:
1327         spin_lock(&ubi->wl_lock);
1328         e = ubi->lookuptbl[pnum];
1329         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1330                                    in_wl_tree(e, &ubi->erroneous)) {
1331                 spin_unlock(&ubi->wl_lock);
1332                 return 0;
1333         }
1334 
1335         if (e == ubi->move_to) {
1336                 /*
1337                  * This physical eraseblock was used to move data to. The data
1338                  * was moved but the PEB was not yet inserted to the proper
1339                  * tree. We should just wait a little and let the WL worker
1340                  * proceed.
1341                  */
1342                 spin_unlock(&ubi->wl_lock);
1343                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1344                 yield();
1345                 goto retry;
1346         }
1347 
1348         if (in_wl_tree(e, &ubi->used)) {
1349                 self_check_in_wl_tree(ubi, e, &ubi->used);
1350                 rb_erase(&e->u.rb, &ubi->used);
1351         } else {
1352                 int err;
1353 
1354                 err = prot_queue_del(ubi, e->pnum);
1355                 if (err) {
1356                         ubi_err(ubi, "PEB %d not found", pnum);
1357                         ubi_ro_mode(ubi);
1358                         spin_unlock(&ubi->wl_lock);
1359                         return err;
1360                 }
1361         }
1362 
1363         wl_tree_add(e, &ubi->scrub);
1364         spin_unlock(&ubi->wl_lock);
1365 
1366         /*
1367          * Technically scrubbing is the same as wear-leveling, so it is done
1368          * by the WL worker.
1369          */
1370         return ensure_wear_leveling(ubi, 0);
1371 }
1372 
1373 /**
1374  * ubi_wl_flush - flush all pending works.
1375  * @ubi: UBI device description object
1376  * @vol_id: the volume id to flush for
1377  * @lnum: the logical eraseblock number to flush for
1378  *
1379  * This function executes all pending works for a particular volume id /
1380  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1381  * acts as a wildcard for all of the corresponding volume numbers or logical
1382  * eraseblock numbers. It returns zero in case of success and a negative error
1383  * code in case of failure.
1384  */
1385 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1386 {
1387         int err = 0;
1388         int found = 1;
1389 
1390         /*
1391          * Erase while the pending works queue is not empty, but not more than
1392          * the number of currently pending works.
1393          */
1394         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1395                vol_id, lnum, ubi->works_count);
1396 
1397         while (found) {
1398                 struct ubi_work *wrk, *tmp;
1399                 found = 0;
1400 
1401                 down_read(&ubi->work_sem);
1402                 spin_lock(&ubi->wl_lock);
1403                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1404                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1405                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1406                                 list_del(&wrk->list);
1407                                 ubi->works_count -= 1;
1408                                 ubi_assert(ubi->works_count >= 0);
1409                                 spin_unlock(&ubi->wl_lock);
1410 
1411                                 err = wrk->func(ubi, wrk, 0);
1412                                 if (err) {
1413                                         up_read(&ubi->work_sem);
1414                                         return err;
1415                                 }
1416 
1417                                 spin_lock(&ubi->wl_lock);
1418                                 found = 1;
1419                                 break;
1420                         }
1421                 }
1422                 spin_unlock(&ubi->wl_lock);
1423                 up_read(&ubi->work_sem);
1424         }
1425 
1426         /*
1427          * Make sure all the works which have been done in parallel are
1428          * finished.
1429          */
1430         down_write(&ubi->work_sem);
1431         up_write(&ubi->work_sem);
1432 
1433         return err;
1434 }
1435 
1436 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1437 {
1438         if (in_wl_tree(e, &ubi->scrub))
1439                 return false;
1440         else if (in_wl_tree(e, &ubi->erroneous))
1441                 return false;
1442         else if (ubi->move_from == e)
1443                 return false;
1444         else if (ubi->move_to == e)
1445                 return false;
1446 
1447         return true;
1448 }
1449 
1450 /**
1451  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1452  * @ubi: UBI device description object
1453  * @pnum: the physical eraseblock to schedule
1454  * @force: dont't read the block, assume bitflips happened and take action.
1455  *
1456  * This function reads the given eraseblock and checks if bitflips occured.
1457  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1458  * If scrubbing is forced with @force, the eraseblock is not read,
1459  * but scheduled for scrubbing right away.
1460  *
1461  * Returns:
1462  * %EINVAL, PEB is out of range
1463  * %ENOENT, PEB is no longer used by UBI
1464  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1465  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1466  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1467  * %0, no bit flips detected
1468  */
1469 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1470 {
1471         int err = 0;
1472         struct ubi_wl_entry *e;
1473 
1474         if (pnum < 0 || pnum >= ubi->peb_count) {
1475                 err = -EINVAL;
1476                 goto out;
1477         }
1478 
1479         /*
1480          * Pause all parallel work, otherwise it can happen that the
1481          * erase worker frees a wl entry under us.
1482          */
1483         down_write(&ubi->work_sem);
1484 
1485         /*
1486          * Make sure that the wl entry does not change state while
1487          * inspecting it.
1488          */
1489         spin_lock(&ubi->wl_lock);
1490         e = ubi->lookuptbl[pnum];
1491         if (!e) {
1492                 spin_unlock(&ubi->wl_lock);
1493                 err = -ENOENT;
1494                 goto out_resume;
1495         }
1496 
1497         /*
1498          * Does it make sense to check this PEB?
1499          */
1500         if (!scrub_possible(ubi, e)) {
1501                 spin_unlock(&ubi->wl_lock);
1502                 err = -EBUSY;
1503                 goto out_resume;
1504         }
1505         spin_unlock(&ubi->wl_lock);
1506 
1507         if (!force) {
1508                 mutex_lock(&ubi->buf_mutex);
1509                 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1510                 mutex_unlock(&ubi->buf_mutex);
1511         }
1512 
1513         if (force || err == UBI_IO_BITFLIPS) {
1514                 /*
1515                  * Okay, bit flip happened, let's figure out what we can do.
1516                  */
1517                 spin_lock(&ubi->wl_lock);
1518 
1519                 /*
1520                  * Recheck. We released wl_lock, UBI might have killed the
1521                  * wl entry under us.
1522                  */
1523                 e = ubi->lookuptbl[pnum];
1524                 if (!e) {
1525                         spin_unlock(&ubi->wl_lock);
1526                         err = -ENOENT;
1527                         goto out_resume;
1528                 }
1529 
1530                 /*
1531                  * Need to re-check state
1532                  */
1533                 if (!scrub_possible(ubi, e)) {
1534                         spin_unlock(&ubi->wl_lock);
1535                         err = -EBUSY;
1536                         goto out_resume;
1537                 }
1538 
1539                 if (in_pq(ubi, e)) {
1540                         prot_queue_del(ubi, e->pnum);
1541                         wl_tree_add(e, &ubi->scrub);
1542                         spin_unlock(&ubi->wl_lock);
1543 
1544                         err = ensure_wear_leveling(ubi, 1);
1545                 } else if (in_wl_tree(e, &ubi->used)) {
1546                         rb_erase(&e->u.rb, &ubi->used);
1547                         wl_tree_add(e, &ubi->scrub);
1548                         spin_unlock(&ubi->wl_lock);
1549 
1550                         err = ensure_wear_leveling(ubi, 1);
1551                 } else if (in_wl_tree(e, &ubi->free)) {
1552                         rb_erase(&e->u.rb, &ubi->free);
1553                         ubi->free_count--;
1554                         spin_unlock(&ubi->wl_lock);
1555 
1556                         /*
1557                          * This PEB is empty we can schedule it for
1558                          * erasure right away. No wear leveling needed.
1559                          */
1560                         err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1561                                              force ? 0 : 1, true);
1562                 } else {
1563                         spin_unlock(&ubi->wl_lock);
1564                         err = -EAGAIN;
1565                 }
1566 
1567                 if (!err && !force)
1568                         err = -EUCLEAN;
1569         } else {
1570                 err = 0;
1571         }
1572 
1573 out_resume:
1574         up_write(&ubi->work_sem);
1575 out:
1576 
1577         return err;
1578 }
1579 
1580 /**
1581  * tree_destroy - destroy an RB-tree.
1582  * @ubi: UBI device description object
1583  * @root: the root of the tree to destroy
1584  */
1585 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1586 {
1587         struct rb_node *rb;
1588         struct ubi_wl_entry *e;
1589 
1590         rb = root->rb_node;
1591         while (rb) {
1592                 if (rb->rb_left)
1593                         rb = rb->rb_left;
1594                 else if (rb->rb_right)
1595                         rb = rb->rb_right;
1596                 else {
1597                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1598 
1599                         rb = rb_parent(rb);
1600                         if (rb) {
1601                                 if (rb->rb_left == &e->u.rb)
1602                                         rb->rb_left = NULL;
1603                                 else
1604                                         rb->rb_right = NULL;
1605                         }
1606 
1607                         wl_entry_destroy(ubi, e);
1608                 }
1609         }
1610 }
1611 
1612 /**
1613  * ubi_thread - UBI background thread.
1614  * @u: the UBI device description object pointer
1615  */
1616 int ubi_thread(void *u)
1617 {
1618         int failures = 0;
1619         struct ubi_device *ubi = u;
1620 
1621         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1622                 ubi->bgt_name, task_pid_nr(current));
1623 
1624         set_freezable();
1625         for (;;) {
1626                 int err;
1627 
1628                 if (kthread_should_stop())
1629                         break;
1630 
1631                 if (try_to_freeze())
1632                         continue;
1633 
1634                 spin_lock(&ubi->wl_lock);
1635                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1636                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1637                         set_current_state(TASK_INTERRUPTIBLE);
1638                         spin_unlock(&ubi->wl_lock);
1639                         schedule();
1640                         continue;
1641                 }
1642                 spin_unlock(&ubi->wl_lock);
1643 
1644                 err = do_work(ubi);
1645                 if (err) {
1646                         ubi_err(ubi, "%s: work failed with error code %d",
1647                                 ubi->bgt_name, err);
1648                         if (failures++ > WL_MAX_FAILURES) {
1649                                 /*
1650                                  * Too many failures, disable the thread and
1651                                  * switch to read-only mode.
1652                                  */
1653                                 ubi_msg(ubi, "%s: %d consecutive failures",
1654                                         ubi->bgt_name, WL_MAX_FAILURES);
1655                                 ubi_ro_mode(ubi);
1656                                 ubi->thread_enabled = 0;
1657                                 continue;
1658                         }
1659                 } else
1660                         failures = 0;
1661 
1662                 cond_resched();
1663         }
1664 
1665         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1666         ubi->thread_enabled = 0;
1667         return 0;
1668 }
1669 
1670 /**
1671  * shutdown_work - shutdown all pending works.
1672  * @ubi: UBI device description object
1673  */
1674 static void shutdown_work(struct ubi_device *ubi)
1675 {
1676         while (!list_empty(&ubi->works)) {
1677                 struct ubi_work *wrk;
1678 
1679                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1680                 list_del(&wrk->list);
1681                 wrk->func(ubi, wrk, 1);
1682                 ubi->works_count -= 1;
1683                 ubi_assert(ubi->works_count >= 0);
1684         }
1685 }
1686 
1687 /**
1688  * erase_aeb - erase a PEB given in UBI attach info PEB
1689  * @ubi: UBI device description object
1690  * @aeb: UBI attach info PEB
1691  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1692  */
1693 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1694 {
1695         struct ubi_wl_entry *e;
1696         int err;
1697 
1698         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1699         if (!e)
1700                 return -ENOMEM;
1701 
1702         e->pnum = aeb->pnum;
1703         e->ec = aeb->ec;
1704         ubi->lookuptbl[e->pnum] = e;
1705 
1706         if (sync) {
1707                 err = sync_erase(ubi, e, false);
1708                 if (err)
1709                         goto out_free;
1710 
1711                 wl_tree_add(e, &ubi->free);
1712                 ubi->free_count++;
1713         } else {
1714                 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1715                 if (err)
1716                         goto out_free;
1717         }
1718 
1719         return 0;
1720 
1721 out_free:
1722         wl_entry_destroy(ubi, e);
1723 
1724         return err;
1725 }
1726 
1727 /**
1728  * ubi_wl_init - initialize the WL sub-system using attaching information.
1729  * @ubi: UBI device description object
1730  * @ai: attaching information
1731  *
1732  * This function returns zero in case of success, and a negative error code in
1733  * case of failure.
1734  */
1735 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1736 {
1737         int err, i, reserved_pebs, found_pebs = 0;
1738         struct rb_node *rb1, *rb2;
1739         struct ubi_ainf_volume *av;
1740         struct ubi_ainf_peb *aeb, *tmp;
1741         struct ubi_wl_entry *e;
1742 
1743         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1744         spin_lock_init(&ubi->wl_lock);
1745         mutex_init(&ubi->move_mutex);
1746         init_rwsem(&ubi->work_sem);
1747         ubi->max_ec = ai->max_ec;
1748         INIT_LIST_HEAD(&ubi->works);
1749 
1750         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1751 
1752         err = -ENOMEM;
1753         ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1754         if (!ubi->lookuptbl)
1755                 return err;
1756 
1757         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1758                 INIT_LIST_HEAD(&ubi->pq[i]);
1759         ubi->pq_head = 0;
1760 
1761         ubi->free_count = 0;
1762         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1763                 cond_resched();
1764 
1765                 err = erase_aeb(ubi, aeb, false);
1766                 if (err)
1767                         goto out_free;
1768 
1769                 found_pebs++;
1770         }
1771 
1772         list_for_each_entry(aeb, &ai->free, u.list) {
1773                 cond_resched();
1774 
1775                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1776                 if (!e) {
1777                         err = -ENOMEM;
1778                         goto out_free;
1779                 }
1780 
1781                 e->pnum = aeb->pnum;
1782                 e->ec = aeb->ec;
1783                 ubi_assert(e->ec >= 0);
1784 
1785                 wl_tree_add(e, &ubi->free);
1786                 ubi->free_count++;
1787 
1788                 ubi->lookuptbl[e->pnum] = e;
1789 
1790                 found_pebs++;
1791         }
1792 
1793         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1794                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1795                         cond_resched();
1796 
1797                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1798                         if (!e) {
1799                                 err = -ENOMEM;
1800                                 goto out_free;
1801                         }
1802 
1803                         e->pnum = aeb->pnum;
1804                         e->ec = aeb->ec;
1805                         ubi->lookuptbl[e->pnum] = e;
1806 
1807                         if (!aeb->scrub) {
1808                                 dbg_wl("add PEB %d EC %d to the used tree",
1809                                        e->pnum, e->ec);
1810                                 wl_tree_add(e, &ubi->used);
1811                         } else {
1812                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1813                                        e->pnum, e->ec);
1814                                 wl_tree_add(e, &ubi->scrub);
1815                         }
1816 
1817                         found_pebs++;
1818                 }
1819         }
1820 
1821         list_for_each_entry(aeb, &ai->fastmap, u.list) {
1822                 cond_resched();
1823 
1824                 e = ubi_find_fm_block(ubi, aeb->pnum);
1825 
1826                 if (e) {
1827                         ubi_assert(!ubi->lookuptbl[e->pnum]);
1828                         ubi->lookuptbl[e->pnum] = e;
1829                 } else {
1830                         bool sync = false;
1831 
1832                         /*
1833                          * Usually old Fastmap PEBs are scheduled for erasure
1834                          * and we don't have to care about them but if we face
1835                          * an power cut before scheduling them we need to
1836                          * take care of them here.
1837                          */
1838                         if (ubi->lookuptbl[aeb->pnum])
1839                                 continue;
1840 
1841                         /*
1842                          * The fastmap update code might not find a free PEB for
1843                          * writing the fastmap anchor to and then reuses the
1844                          * current fastmap anchor PEB. When this PEB gets erased
1845                          * and a power cut happens before it is written again we
1846                          * must make sure that the fastmap attach code doesn't
1847                          * find any outdated fastmap anchors, hence we erase the
1848                          * outdated fastmap anchor PEBs synchronously here.
1849                          */
1850                         if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1851                                 sync = true;
1852 
1853                         err = erase_aeb(ubi, aeb, sync);
1854                         if (err)
1855                                 goto out_free;
1856                 }
1857 
1858                 found_pebs++;
1859         }
1860 
1861         dbg_wl("found %i PEBs", found_pebs);
1862 
1863         ubi_assert(ubi->good_peb_count == found_pebs);
1864 
1865         reserved_pebs = WL_RESERVED_PEBS;
1866         ubi_fastmap_init(ubi, &reserved_pebs);
1867 
1868         if (ubi->avail_pebs < reserved_pebs) {
1869                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1870                         ubi->avail_pebs, reserved_pebs);
1871                 if (ubi->corr_peb_count)
1872                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1873                                 ubi->corr_peb_count);
1874                 err = -ENOSPC;
1875                 goto out_free;
1876         }
1877         ubi->avail_pebs -= reserved_pebs;
1878         ubi->rsvd_pebs += reserved_pebs;
1879 
1880         /* Schedule wear-leveling if needed */
1881         err = ensure_wear_leveling(ubi, 0);
1882         if (err)
1883                 goto out_free;
1884 
1885         return 0;
1886 
1887 out_free:
1888         shutdown_work(ubi);
1889         tree_destroy(ubi, &ubi->used);
1890         tree_destroy(ubi, &ubi->free);
1891         tree_destroy(ubi, &ubi->scrub);
1892         kfree(ubi->lookuptbl);
1893         return err;
1894 }
1895 
1896 /**
1897  * protection_queue_destroy - destroy the protection queue.
1898  * @ubi: UBI device description object
1899  */
1900 static void protection_queue_destroy(struct ubi_device *ubi)
1901 {
1902         int i;
1903         struct ubi_wl_entry *e, *tmp;
1904 
1905         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1906                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1907                         list_del(&e->u.list);
1908                         wl_entry_destroy(ubi, e);
1909                 }
1910         }
1911 }
1912 
1913 /**
1914  * ubi_wl_close - close the wear-leveling sub-system.
1915  * @ubi: UBI device description object
1916  */
1917 void ubi_wl_close(struct ubi_device *ubi)
1918 {
1919         dbg_wl("close the WL sub-system");
1920         ubi_fastmap_close(ubi);
1921         shutdown_work(ubi);
1922         protection_queue_destroy(ubi);
1923         tree_destroy(ubi, &ubi->used);
1924         tree_destroy(ubi, &ubi->erroneous);
1925         tree_destroy(ubi, &ubi->free);
1926         tree_destroy(ubi, &ubi->scrub);
1927         kfree(ubi->lookuptbl);
1928 }
1929 
1930 /**
1931  * self_check_ec - make sure that the erase counter of a PEB is correct.
1932  * @ubi: UBI device description object
1933  * @pnum: the physical eraseblock number to check
1934  * @ec: the erase counter to check
1935  *
1936  * This function returns zero if the erase counter of physical eraseblock @pnum
1937  * is equivalent to @ec, and a negative error code if not or if an error
1938  * occurred.
1939  */
1940 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1941 {
1942         int err;
1943         long long read_ec;
1944         struct ubi_ec_hdr *ec_hdr;
1945 
1946         if (!ubi_dbg_chk_gen(ubi))
1947                 return 0;
1948 
1949         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1950         if (!ec_hdr)
1951                 return -ENOMEM;
1952 
1953         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1954         if (err && err != UBI_IO_BITFLIPS) {
1955                 /* The header does not have to exist */
1956                 err = 0;
1957                 goto out_free;
1958         }
1959 
1960         read_ec = be64_to_cpu(ec_hdr->ec);
1961         if (ec != read_ec && read_ec - ec > 1) {
1962                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1963                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1964                 dump_stack();
1965                 err = 1;
1966         } else
1967                 err = 0;
1968 
1969 out_free:
1970         kfree(ec_hdr);
1971         return err;
1972 }
1973 
1974 /**
1975  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1976  * @ubi: UBI device description object
1977  * @e: the wear-leveling entry to check
1978  * @root: the root of the tree
1979  *
1980  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1981  * is not.
1982  */
1983 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1984                                  struct ubi_wl_entry *e, struct rb_root *root)
1985 {
1986         if (!ubi_dbg_chk_gen(ubi))
1987                 return 0;
1988 
1989         if (in_wl_tree(e, root))
1990                 return 0;
1991 
1992         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1993                 e->pnum, e->ec, root);
1994         dump_stack();
1995         return -EINVAL;
1996 }
1997 
1998 /**
1999  * self_check_in_pq - check if wear-leveling entry is in the protection
2000  *                        queue.
2001  * @ubi: UBI device description object
2002  * @e: the wear-leveling entry to check
2003  *
2004  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2005  */
2006 static int self_check_in_pq(const struct ubi_device *ubi,
2007                             struct ubi_wl_entry *e)
2008 {
2009         if (!ubi_dbg_chk_gen(ubi))
2010                 return 0;
2011 
2012         if (in_pq(ubi, e))
2013                 return 0;
2014 
2015         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2016                 e->pnum, e->ec);
2017         dump_stack();
2018         return -EINVAL;
2019 }
2020 #ifndef CONFIG_MTD_UBI_FASTMAP
2021 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2022 {
2023         struct ubi_wl_entry *e;
2024 
2025         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2026         self_check_in_wl_tree(ubi, e, &ubi->free);
2027         ubi->free_count--;
2028         ubi_assert(ubi->free_count >= 0);
2029         rb_erase(&e->u.rb, &ubi->free);
2030 
2031         return e;
2032 }
2033 
2034 /**
2035  * produce_free_peb - produce a free physical eraseblock.
2036  * @ubi: UBI device description object
2037  *
2038  * This function tries to make a free PEB by means of synchronous execution of
2039  * pending works. This may be needed if, for example the background thread is
2040  * disabled. Returns zero in case of success and a negative error code in case
2041  * of failure.
2042  */
2043 static int produce_free_peb(struct ubi_device *ubi)
2044 {
2045         int err;
2046 
2047         while (!ubi->free.rb_node && ubi->works_count) {
2048                 spin_unlock(&ubi->wl_lock);
2049 
2050                 dbg_wl("do one work synchronously");
2051                 err = do_work(ubi);
2052 
2053                 spin_lock(&ubi->wl_lock);
2054                 if (err)
2055                         return err;
2056         }
2057 
2058         return 0;
2059 }
2060 
2061 /**
2062  * ubi_wl_get_peb - get a physical eraseblock.
2063  * @ubi: UBI device description object
2064  *
2065  * This function returns a physical eraseblock in case of success and a
2066  * negative error code in case of failure.
2067  * Returns with ubi->fm_eba_sem held in read mode!
2068  */
2069 int ubi_wl_get_peb(struct ubi_device *ubi)
2070 {
2071         int err;
2072         struct ubi_wl_entry *e;
2073 
2074 retry:
2075         down_read(&ubi->fm_eba_sem);
2076         spin_lock(&ubi->wl_lock);
2077         if (!ubi->free.rb_node) {
2078                 if (ubi->works_count == 0) {
2079                         ubi_err(ubi, "no free eraseblocks");
2080                         ubi_assert(list_empty(&ubi->works));
2081                         spin_unlock(&ubi->wl_lock);
2082                         return -ENOSPC;
2083                 }
2084 
2085                 err = produce_free_peb(ubi);
2086                 if (err < 0) {
2087                         spin_unlock(&ubi->wl_lock);
2088                         return err;
2089                 }
2090                 spin_unlock(&ubi->wl_lock);
2091                 up_read(&ubi->fm_eba_sem);
2092                 goto retry;
2093 
2094         }
2095         e = wl_get_wle(ubi);
2096         prot_queue_add(ubi, e);
2097         spin_unlock(&ubi->wl_lock);
2098 
2099         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2100                                     ubi->peb_size - ubi->vid_hdr_aloffset);
2101         if (err) {
2102                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2103                 return err;
2104         }
2105 
2106         return e->pnum;
2107 }
2108 #else
2109 #include "fastmap-wl.c"
2110 #endif

/* [<][>][^][v][top][bottom][index][help] */