root/drivers/mtd/ubi/attach.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. find_or_add_av
  2. ubi_find_or_add_av
  3. ubi_alloc_aeb
  4. ubi_free_aeb
  5. add_to_list
  6. add_corrupted
  7. add_fastmap
  8. validate_vid_hdr
  9. add_volume
  10. ubi_compare_lebs
  11. ubi_add_to_av
  12. ubi_add_av
  13. ubi_find_av
  14. ubi_remove_av
  15. early_erase_peb
  16. ubi_early_get_peb
  17. check_corruption
  18. vol_ignored
  19. scan_peb
  20. late_analysis
  21. destroy_av
  22. destroy_ai
  23. scan_all
  24. alloc_ai
  25. scan_fast
  26. ubi_attach
  27. self_check_ai

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright (c) International Business Machines Corp., 2006
   4  *
   5  * Author: Artem Bityutskiy (Битюцкий Артём)
   6  */
   7 
   8 /*
   9  * UBI attaching sub-system.
  10  *
  11  * This sub-system is responsible for attaching MTD devices and it also
  12  * implements flash media scanning.
  13  *
  14  * The attaching information is represented by a &struct ubi_attach_info'
  15  * object. Information about volumes is represented by &struct ubi_ainf_volume
  16  * objects which are kept in volume RB-tree with root at the @volumes field.
  17  * The RB-tree is indexed by the volume ID.
  18  *
  19  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  20  * objects are kept in per-volume RB-trees with the root at the corresponding
  21  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  22  * per-volume objects and each of these objects is the root of RB-tree of
  23  * per-LEB objects.
  24  *
  25  * Corrupted physical eraseblocks are put to the @corr list, free physical
  26  * eraseblocks are put to the @free list and the physical eraseblock to be
  27  * erased are put to the @erase list.
  28  *
  29  * About corruptions
  30  * ~~~~~~~~~~~~~~~~~
  31  *
  32  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  33  * whether the headers are corrupted or not. Sometimes UBI also protects the
  34  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  35  * when it moves the contents of a PEB for wear-leveling purposes.
  36  *
  37  * UBI tries to distinguish between 2 types of corruptions.
  38  *
  39  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  40  * tries to handle them gracefully, without printing too many warnings and
  41  * error messages. The idea is that we do not lose important data in these
  42  * cases - we may lose only the data which were being written to the media just
  43  * before the power cut happened, and the upper layers (e.g., UBIFS) are
  44  * supposed to handle such data losses (e.g., by using the FS journal).
  45  *
  46  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  47  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  48  * PEBs in the @erase list are scheduled for erasure later.
  49  *
  50  * 2. Unexpected corruptions which are not caused by power cuts. During
  51  * attaching, such PEBs are put to the @corr list and UBI preserves them.
  52  * Obviously, this lessens the amount of available PEBs, and if at some  point
  53  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  54  * about such PEBs every time the MTD device is attached.
  55  *
  56  * However, it is difficult to reliably distinguish between these types of
  57  * corruptions and UBI's strategy is as follows (in case of attaching by
  58  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  59  * the data area does not contain all 0xFFs, and there were no bit-flips or
  60  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  61  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  62  * are as follows.
  63  *   o If the data area contains only 0xFFs, there are no data, and it is safe
  64  *     to just erase this PEB - this is corruption type 1.
  65  *   o If the data area has bit-flips or data integrity errors (ECC errors on
  66  *     NAND), it is probably a PEB which was being erased when power cut
  67  *     happened, so this is corruption type 1. However, this is just a guess,
  68  *     which might be wrong.
  69  *   o Otherwise this is corruption type 2.
  70  */
  71 
  72 #include <linux/err.h>
  73 #include <linux/slab.h>
  74 #include <linux/crc32.h>
  75 #include <linux/math64.h>
  76 #include <linux/random.h>
  77 #include "ubi.h"
  78 
  79 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  80 
  81 #define AV_FIND         BIT(0)
  82 #define AV_ADD          BIT(1)
  83 #define AV_FIND_OR_ADD  (AV_FIND | AV_ADD)
  84 
  85 /**
  86  * find_or_add_av - internal function to find a volume, add a volume or do
  87  *                  both (find and add if missing).
  88  * @ai: attaching information
  89  * @vol_id: the requested volume ID
  90  * @flags: a combination of the %AV_FIND and %AV_ADD flags describing the
  91  *         expected operation. If only %AV_ADD is set, -EEXIST is returned
  92  *         if the volume already exists. If only %AV_FIND is set, NULL is
  93  *         returned if the volume does not exist. And if both flags are
  94  *         set, the helper first tries to find an existing volume, and if
  95  *         it does not exist it creates a new one.
  96  * @created: in value used to inform the caller whether it"s a newly created
  97  *           volume or not.
  98  *
  99  * This function returns a pointer to a volume description or an ERR_PTR if
 100  * the operation failed. It can also return NULL if only %AV_FIND is set and
 101  * the volume does not exist.
 102  */
 103 static struct ubi_ainf_volume *find_or_add_av(struct ubi_attach_info *ai,
 104                                               int vol_id, unsigned int flags,
 105                                               bool *created)
 106 {
 107         struct ubi_ainf_volume *av;
 108         struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 109 
 110         /* Walk the volume RB-tree to look if this volume is already present */
 111         while (*p) {
 112                 parent = *p;
 113                 av = rb_entry(parent, struct ubi_ainf_volume, rb);
 114 
 115                 if (vol_id == av->vol_id) {
 116                         *created = false;
 117 
 118                         if (!(flags & AV_FIND))
 119                                 return ERR_PTR(-EEXIST);
 120 
 121                         return av;
 122                 }
 123 
 124                 if (vol_id > av->vol_id)
 125                         p = &(*p)->rb_left;
 126                 else
 127                         p = &(*p)->rb_right;
 128         }
 129 
 130         if (!(flags & AV_ADD))
 131                 return NULL;
 132 
 133         /* The volume is absent - add it */
 134         av = kzalloc(sizeof(*av), GFP_KERNEL);
 135         if (!av)
 136                 return ERR_PTR(-ENOMEM);
 137 
 138         av->vol_id = vol_id;
 139 
 140         if (vol_id > ai->highest_vol_id)
 141                 ai->highest_vol_id = vol_id;
 142 
 143         rb_link_node(&av->rb, parent, p);
 144         rb_insert_color(&av->rb, &ai->volumes);
 145         ai->vols_found += 1;
 146         *created = true;
 147         dbg_bld("added volume %d", vol_id);
 148         return av;
 149 }
 150 
 151 /**
 152  * ubi_find_or_add_av - search for a volume in the attaching information and
 153  *                      add one if it does not exist.
 154  * @ai: attaching information
 155  * @vol_id: the requested volume ID
 156  * @created: whether the volume has been created or not
 157  *
 158  * This function returns a pointer to the new volume description or an
 159  * ERR_PTR if the operation failed.
 160  */
 161 static struct ubi_ainf_volume *ubi_find_or_add_av(struct ubi_attach_info *ai,
 162                                                   int vol_id, bool *created)
 163 {
 164         return find_or_add_av(ai, vol_id, AV_FIND_OR_ADD, created);
 165 }
 166 
 167 /**
 168  * ubi_alloc_aeb - allocate an aeb element
 169  * @ai: attaching information
 170  * @pnum: physical eraseblock number
 171  * @ec: erase counter of the physical eraseblock
 172  *
 173  * Allocate an aeb object and initialize the pnum and ec information.
 174  * vol_id and lnum are set to UBI_UNKNOWN, and the other fields are
 175  * initialized to zero.
 176  * Note that the element is not added in any list or RB tree.
 177  */
 178 struct ubi_ainf_peb *ubi_alloc_aeb(struct ubi_attach_info *ai, int pnum,
 179                                    int ec)
 180 {
 181         struct ubi_ainf_peb *aeb;
 182 
 183         aeb = kmem_cache_zalloc(ai->aeb_slab_cache, GFP_KERNEL);
 184         if (!aeb)
 185                 return NULL;
 186 
 187         aeb->pnum = pnum;
 188         aeb->ec = ec;
 189         aeb->vol_id = UBI_UNKNOWN;
 190         aeb->lnum = UBI_UNKNOWN;
 191 
 192         return aeb;
 193 }
 194 
 195 /**
 196  * ubi_free_aeb - free an aeb element
 197  * @ai: attaching information
 198  * @aeb: the element to free
 199  *
 200  * Free an aeb object. The caller must have removed the element from any list
 201  * or RB tree.
 202  */
 203 void ubi_free_aeb(struct ubi_attach_info *ai, struct ubi_ainf_peb *aeb)
 204 {
 205         kmem_cache_free(ai->aeb_slab_cache, aeb);
 206 }
 207 
 208 /**
 209  * add_to_list - add physical eraseblock to a list.
 210  * @ai: attaching information
 211  * @pnum: physical eraseblock number to add
 212  * @vol_id: the last used volume id for the PEB
 213  * @lnum: the last used LEB number for the PEB
 214  * @ec: erase counter of the physical eraseblock
 215  * @to_head: if not zero, add to the head of the list
 216  * @list: the list to add to
 217  *
 218  * This function allocates a 'struct ubi_ainf_peb' object for physical
 219  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 220  * It stores the @lnum and @vol_id alongside, which can both be
 221  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 222  * If @to_head is not zero, PEB will be added to the head of the list, which
 223  * basically means it will be processed first later. E.g., we add corrupted
 224  * PEBs (corrupted due to power cuts) to the head of the erase list to make
 225  * sure we erase them first and get rid of corruptions ASAP. This function
 226  * returns zero in case of success and a negative error code in case of
 227  * failure.
 228  */
 229 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 230                        int lnum, int ec, int to_head, struct list_head *list)
 231 {
 232         struct ubi_ainf_peb *aeb;
 233 
 234         if (list == &ai->free) {
 235                 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 236         } else if (list == &ai->erase) {
 237                 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 238         } else if (list == &ai->alien) {
 239                 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 240                 ai->alien_peb_count += 1;
 241         } else
 242                 BUG();
 243 
 244         aeb = ubi_alloc_aeb(ai, pnum, ec);
 245         if (!aeb)
 246                 return -ENOMEM;
 247 
 248         aeb->vol_id = vol_id;
 249         aeb->lnum = lnum;
 250         if (to_head)
 251                 list_add(&aeb->u.list, list);
 252         else
 253                 list_add_tail(&aeb->u.list, list);
 254         return 0;
 255 }
 256 
 257 /**
 258  * add_corrupted - add a corrupted physical eraseblock.
 259  * @ai: attaching information
 260  * @pnum: physical eraseblock number to add
 261  * @ec: erase counter of the physical eraseblock
 262  *
 263  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 264  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 265  * was presumably not caused by a power cut. Returns zero in case of success
 266  * and a negative error code in case of failure.
 267  */
 268 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 269 {
 270         struct ubi_ainf_peb *aeb;
 271 
 272         dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 273 
 274         aeb = ubi_alloc_aeb(ai, pnum, ec);
 275         if (!aeb)
 276                 return -ENOMEM;
 277 
 278         ai->corr_peb_count += 1;
 279         list_add(&aeb->u.list, &ai->corr);
 280         return 0;
 281 }
 282 
 283 /**
 284  * add_fastmap - add a Fastmap related physical eraseblock.
 285  * @ai: attaching information
 286  * @pnum: physical eraseblock number the VID header came from
 287  * @vid_hdr: the volume identifier header
 288  * @ec: erase counter of the physical eraseblock
 289  *
 290  * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp
 291  * physical eraseblock @pnum and adds it to the 'fastmap' list.
 292  * Such blocks can be Fastmap super and data blocks from both the most
 293  * recent Fastmap we're attaching from or from old Fastmaps which will
 294  * be erased.
 295  */
 296 static int add_fastmap(struct ubi_attach_info *ai, int pnum,
 297                        struct ubi_vid_hdr *vid_hdr, int ec)
 298 {
 299         struct ubi_ainf_peb *aeb;
 300 
 301         aeb = ubi_alloc_aeb(ai, pnum, ec);
 302         if (!aeb)
 303                 return -ENOMEM;
 304 
 305         aeb->vol_id = be32_to_cpu(vid_hdr->vol_id);
 306         aeb->sqnum = be64_to_cpu(vid_hdr->sqnum);
 307         list_add(&aeb->u.list, &ai->fastmap);
 308 
 309         dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum,
 310                 aeb->vol_id, aeb->sqnum);
 311 
 312         return 0;
 313 }
 314 
 315 /**
 316  * validate_vid_hdr - check volume identifier header.
 317  * @ubi: UBI device description object
 318  * @vid_hdr: the volume identifier header to check
 319  * @av: information about the volume this logical eraseblock belongs to
 320  * @pnum: physical eraseblock number the VID header came from
 321  *
 322  * This function checks that data stored in @vid_hdr is consistent. Returns
 323  * non-zero if an inconsistency was found and zero if not.
 324  *
 325  * Note, UBI does sanity check of everything it reads from the flash media.
 326  * Most of the checks are done in the I/O sub-system. Here we check that the
 327  * information in the VID header is consistent to the information in other VID
 328  * headers of the same volume.
 329  */
 330 static int validate_vid_hdr(const struct ubi_device *ubi,
 331                             const struct ubi_vid_hdr *vid_hdr,
 332                             const struct ubi_ainf_volume *av, int pnum)
 333 {
 334         int vol_type = vid_hdr->vol_type;
 335         int vol_id = be32_to_cpu(vid_hdr->vol_id);
 336         int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 337         int data_pad = be32_to_cpu(vid_hdr->data_pad);
 338 
 339         if (av->leb_count != 0) {
 340                 int av_vol_type;
 341 
 342                 /*
 343                  * This is not the first logical eraseblock belonging to this
 344                  * volume. Ensure that the data in its VID header is consistent
 345                  * to the data in previous logical eraseblock headers.
 346                  */
 347 
 348                 if (vol_id != av->vol_id) {
 349                         ubi_err(ubi, "inconsistent vol_id");
 350                         goto bad;
 351                 }
 352 
 353                 if (av->vol_type == UBI_STATIC_VOLUME)
 354                         av_vol_type = UBI_VID_STATIC;
 355                 else
 356                         av_vol_type = UBI_VID_DYNAMIC;
 357 
 358                 if (vol_type != av_vol_type) {
 359                         ubi_err(ubi, "inconsistent vol_type");
 360                         goto bad;
 361                 }
 362 
 363                 if (used_ebs != av->used_ebs) {
 364                         ubi_err(ubi, "inconsistent used_ebs");
 365                         goto bad;
 366                 }
 367 
 368                 if (data_pad != av->data_pad) {
 369                         ubi_err(ubi, "inconsistent data_pad");
 370                         goto bad;
 371                 }
 372         }
 373 
 374         return 0;
 375 
 376 bad:
 377         ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 378         ubi_dump_vid_hdr(vid_hdr);
 379         ubi_dump_av(av);
 380         return -EINVAL;
 381 }
 382 
 383 /**
 384  * add_volume - add volume to the attaching information.
 385  * @ai: attaching information
 386  * @vol_id: ID of the volume to add
 387  * @pnum: physical eraseblock number
 388  * @vid_hdr: volume identifier header
 389  *
 390  * If the volume corresponding to the @vid_hdr logical eraseblock is already
 391  * present in the attaching information, this function does nothing. Otherwise
 392  * it adds corresponding volume to the attaching information. Returns a pointer
 393  * to the allocated "av" object in case of success and a negative error code in
 394  * case of failure.
 395  */
 396 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 397                                           int vol_id, int pnum,
 398                                           const struct ubi_vid_hdr *vid_hdr)
 399 {
 400         struct ubi_ainf_volume *av;
 401         bool created;
 402 
 403         ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 404 
 405         av = ubi_find_or_add_av(ai, vol_id, &created);
 406         if (IS_ERR(av) || !created)
 407                 return av;
 408 
 409         av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 410         av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 411         av->compat = vid_hdr->compat;
 412         av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 413                                                             : UBI_STATIC_VOLUME;
 414 
 415         return av;
 416 }
 417 
 418 /**
 419  * ubi_compare_lebs - find out which logical eraseblock is newer.
 420  * @ubi: UBI device description object
 421  * @aeb: first logical eraseblock to compare
 422  * @pnum: physical eraseblock number of the second logical eraseblock to
 423  * compare
 424  * @vid_hdr: volume identifier header of the second logical eraseblock
 425  *
 426  * This function compares 2 copies of a LEB and informs which one is newer. In
 427  * case of success this function returns a positive value, in case of failure, a
 428  * negative error code is returned. The success return codes use the following
 429  * bits:
 430  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 431  *       second PEB (described by @pnum and @vid_hdr);
 432  *     o bit 0 is set: the second PEB is newer;
 433  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 434  *     o bit 1 is set: bit-flips were detected in the newer LEB;
 435  *     o bit 2 is cleared: the older LEB is not corrupted;
 436  *     o bit 2 is set: the older LEB is corrupted.
 437  */
 438 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 439                         int pnum, const struct ubi_vid_hdr *vid_hdr)
 440 {
 441         int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 442         uint32_t data_crc, crc;
 443         struct ubi_vid_io_buf *vidb = NULL;
 444         unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 445 
 446         if (sqnum2 == aeb->sqnum) {
 447                 /*
 448                  * This must be a really ancient UBI image which has been
 449                  * created before sequence numbers support has been added. At
 450                  * that times we used 32-bit LEB versions stored in logical
 451                  * eraseblocks. That was before UBI got into mainline. We do not
 452                  * support these images anymore. Well, those images still work,
 453                  * but only if no unclean reboots happened.
 454                  */
 455                 ubi_err(ubi, "unsupported on-flash UBI format");
 456                 return -EINVAL;
 457         }
 458 
 459         /* Obviously the LEB with lower sequence counter is older */
 460         second_is_newer = (sqnum2 > aeb->sqnum);
 461 
 462         /*
 463          * Now we know which copy is newer. If the copy flag of the PEB with
 464          * newer version is not set, then we just return, otherwise we have to
 465          * check data CRC. For the second PEB we already have the VID header,
 466          * for the first one - we'll need to re-read it from flash.
 467          *
 468          * Note: this may be optimized so that we wouldn't read twice.
 469          */
 470 
 471         if (second_is_newer) {
 472                 if (!vid_hdr->copy_flag) {
 473                         /* It is not a copy, so it is newer */
 474                         dbg_bld("second PEB %d is newer, copy_flag is unset",
 475                                 pnum);
 476                         return 1;
 477                 }
 478         } else {
 479                 if (!aeb->copy_flag) {
 480                         /* It is not a copy, so it is newer */
 481                         dbg_bld("first PEB %d is newer, copy_flag is unset",
 482                                 pnum);
 483                         return bitflips << 1;
 484                 }
 485 
 486                 vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
 487                 if (!vidb)
 488                         return -ENOMEM;
 489 
 490                 pnum = aeb->pnum;
 491                 err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
 492                 if (err) {
 493                         if (err == UBI_IO_BITFLIPS)
 494                                 bitflips = 1;
 495                         else {
 496                                 ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 497                                         pnum, err);
 498                                 if (err > 0)
 499                                         err = -EIO;
 500 
 501                                 goto out_free_vidh;
 502                         }
 503                 }
 504 
 505                 vid_hdr = ubi_get_vid_hdr(vidb);
 506         }
 507 
 508         /* Read the data of the copy and check the CRC */
 509 
 510         len = be32_to_cpu(vid_hdr->data_size);
 511 
 512         mutex_lock(&ubi->buf_mutex);
 513         err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 514         if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 515                 goto out_unlock;
 516 
 517         data_crc = be32_to_cpu(vid_hdr->data_crc);
 518         crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 519         if (crc != data_crc) {
 520                 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 521                         pnum, crc, data_crc);
 522                 corrupted = 1;
 523                 bitflips = 0;
 524                 second_is_newer = !second_is_newer;
 525         } else {
 526                 dbg_bld("PEB %d CRC is OK", pnum);
 527                 bitflips |= !!err;
 528         }
 529         mutex_unlock(&ubi->buf_mutex);
 530 
 531         ubi_free_vid_buf(vidb);
 532 
 533         if (second_is_newer)
 534                 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 535         else
 536                 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 537 
 538         return second_is_newer | (bitflips << 1) | (corrupted << 2);
 539 
 540 out_unlock:
 541         mutex_unlock(&ubi->buf_mutex);
 542 out_free_vidh:
 543         ubi_free_vid_buf(vidb);
 544         return err;
 545 }
 546 
 547 /**
 548  * ubi_add_to_av - add used physical eraseblock to the attaching information.
 549  * @ubi: UBI device description object
 550  * @ai: attaching information
 551  * @pnum: the physical eraseblock number
 552  * @ec: erase counter
 553  * @vid_hdr: the volume identifier header
 554  * @bitflips: if bit-flips were detected when this physical eraseblock was read
 555  *
 556  * This function adds information about a used physical eraseblock to the
 557  * 'used' tree of the corresponding volume. The function is rather complex
 558  * because it has to handle cases when this is not the first physical
 559  * eraseblock belonging to the same logical eraseblock, and the newer one has
 560  * to be picked, while the older one has to be dropped. This function returns
 561  * zero in case of success and a negative error code in case of failure.
 562  */
 563 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 564                   int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 565 {
 566         int err, vol_id, lnum;
 567         unsigned long long sqnum;
 568         struct ubi_ainf_volume *av;
 569         struct ubi_ainf_peb *aeb;
 570         struct rb_node **p, *parent = NULL;
 571 
 572         vol_id = be32_to_cpu(vid_hdr->vol_id);
 573         lnum = be32_to_cpu(vid_hdr->lnum);
 574         sqnum = be64_to_cpu(vid_hdr->sqnum);
 575 
 576         dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 577                 pnum, vol_id, lnum, ec, sqnum, bitflips);
 578 
 579         av = add_volume(ai, vol_id, pnum, vid_hdr);
 580         if (IS_ERR(av))
 581                 return PTR_ERR(av);
 582 
 583         if (ai->max_sqnum < sqnum)
 584                 ai->max_sqnum = sqnum;
 585 
 586         /*
 587          * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 588          * if this is the first instance of this logical eraseblock or not.
 589          */
 590         p = &av->root.rb_node;
 591         while (*p) {
 592                 int cmp_res;
 593 
 594                 parent = *p;
 595                 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 596                 if (lnum != aeb->lnum) {
 597                         if (lnum < aeb->lnum)
 598                                 p = &(*p)->rb_left;
 599                         else
 600                                 p = &(*p)->rb_right;
 601                         continue;
 602                 }
 603 
 604                 /*
 605                  * There is already a physical eraseblock describing the same
 606                  * logical eraseblock present.
 607                  */
 608 
 609                 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 610                         aeb->pnum, aeb->sqnum, aeb->ec);
 611 
 612                 /*
 613                  * Make sure that the logical eraseblocks have different
 614                  * sequence numbers. Otherwise the image is bad.
 615                  *
 616                  * However, if the sequence number is zero, we assume it must
 617                  * be an ancient UBI image from the era when UBI did not have
 618                  * sequence numbers. We still can attach these images, unless
 619                  * there is a need to distinguish between old and new
 620                  * eraseblocks, in which case we'll refuse the image in
 621                  * 'ubi_compare_lebs()'. In other words, we attach old clean
 622                  * images, but refuse attaching old images with duplicated
 623                  * logical eraseblocks because there was an unclean reboot.
 624                  */
 625                 if (aeb->sqnum == sqnum && sqnum != 0) {
 626                         ubi_err(ubi, "two LEBs with same sequence number %llu",
 627                                 sqnum);
 628                         ubi_dump_aeb(aeb, 0);
 629                         ubi_dump_vid_hdr(vid_hdr);
 630                         return -EINVAL;
 631                 }
 632 
 633                 /*
 634                  * Now we have to drop the older one and preserve the newer
 635                  * one.
 636                  */
 637                 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 638                 if (cmp_res < 0)
 639                         return cmp_res;
 640 
 641                 if (cmp_res & 1) {
 642                         /*
 643                          * This logical eraseblock is newer than the one
 644                          * found earlier.
 645                          */
 646                         err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 647                         if (err)
 648                                 return err;
 649 
 650                         err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 651                                           aeb->lnum, aeb->ec, cmp_res & 4,
 652                                           &ai->erase);
 653                         if (err)
 654                                 return err;
 655 
 656                         aeb->ec = ec;
 657                         aeb->pnum = pnum;
 658                         aeb->vol_id = vol_id;
 659                         aeb->lnum = lnum;
 660                         aeb->scrub = ((cmp_res & 2) || bitflips);
 661                         aeb->copy_flag = vid_hdr->copy_flag;
 662                         aeb->sqnum = sqnum;
 663 
 664                         if (av->highest_lnum == lnum)
 665                                 av->last_data_size =
 666                                         be32_to_cpu(vid_hdr->data_size);
 667 
 668                         return 0;
 669                 } else {
 670                         /*
 671                          * This logical eraseblock is older than the one found
 672                          * previously.
 673                          */
 674                         return add_to_list(ai, pnum, vol_id, lnum, ec,
 675                                            cmp_res & 4, &ai->erase);
 676                 }
 677         }
 678 
 679         /*
 680          * We've met this logical eraseblock for the first time, add it to the
 681          * attaching information.
 682          */
 683 
 684         err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 685         if (err)
 686                 return err;
 687 
 688         aeb = ubi_alloc_aeb(ai, pnum, ec);
 689         if (!aeb)
 690                 return -ENOMEM;
 691 
 692         aeb->vol_id = vol_id;
 693         aeb->lnum = lnum;
 694         aeb->scrub = bitflips;
 695         aeb->copy_flag = vid_hdr->copy_flag;
 696         aeb->sqnum = sqnum;
 697 
 698         if (av->highest_lnum <= lnum) {
 699                 av->highest_lnum = lnum;
 700                 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 701         }
 702 
 703         av->leb_count += 1;
 704         rb_link_node(&aeb->u.rb, parent, p);
 705         rb_insert_color(&aeb->u.rb, &av->root);
 706         return 0;
 707 }
 708 
 709 /**
 710  * ubi_add_av - add volume to the attaching information.
 711  * @ai: attaching information
 712  * @vol_id: the requested volume ID
 713  *
 714  * This function returns a pointer to the new volume description or an
 715  * ERR_PTR if the operation failed.
 716  */
 717 struct ubi_ainf_volume *ubi_add_av(struct ubi_attach_info *ai, int vol_id)
 718 {
 719         bool created;
 720 
 721         return find_or_add_av(ai, vol_id, AV_ADD, &created);
 722 }
 723 
 724 /**
 725  * ubi_find_av - find volume in the attaching information.
 726  * @ai: attaching information
 727  * @vol_id: the requested volume ID
 728  *
 729  * This function returns a pointer to the volume description or %NULL if there
 730  * are no data about this volume in the attaching information.
 731  */
 732 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 733                                     int vol_id)
 734 {
 735         bool created;
 736 
 737         return find_or_add_av((struct ubi_attach_info *)ai, vol_id, AV_FIND,
 738                               &created);
 739 }
 740 
 741 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
 742                        struct list_head *list);
 743 
 744 /**
 745  * ubi_remove_av - delete attaching information about a volume.
 746  * @ai: attaching information
 747  * @av: the volume attaching information to delete
 748  */
 749 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 750 {
 751         dbg_bld("remove attaching information about volume %d", av->vol_id);
 752 
 753         rb_erase(&av->rb, &ai->volumes);
 754         destroy_av(ai, av, &ai->erase);
 755         ai->vols_found -= 1;
 756 }
 757 
 758 /**
 759  * early_erase_peb - erase a physical eraseblock.
 760  * @ubi: UBI device description object
 761  * @ai: attaching information
 762  * @pnum: physical eraseblock number to erase;
 763  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 764  *
 765  * This function erases physical eraseblock 'pnum', and writes the erase
 766  * counter header to it. This function should only be used on UBI device
 767  * initialization stages, when the EBA sub-system had not been yet initialized.
 768  * This function returns zero in case of success and a negative error code in
 769  * case of failure.
 770  */
 771 static int early_erase_peb(struct ubi_device *ubi,
 772                            const struct ubi_attach_info *ai, int pnum, int ec)
 773 {
 774         int err;
 775         struct ubi_ec_hdr *ec_hdr;
 776 
 777         if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 778                 /*
 779                  * Erase counter overflow. Upgrade UBI and use 64-bit
 780                  * erase counters internally.
 781                  */
 782                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 783                         pnum, ec);
 784                 return -EINVAL;
 785         }
 786 
 787         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 788         if (!ec_hdr)
 789                 return -ENOMEM;
 790 
 791         ec_hdr->ec = cpu_to_be64(ec);
 792 
 793         err = ubi_io_sync_erase(ubi, pnum, 0);
 794         if (err < 0)
 795                 goto out_free;
 796 
 797         err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 798 
 799 out_free:
 800         kfree(ec_hdr);
 801         return err;
 802 }
 803 
 804 /**
 805  * ubi_early_get_peb - get a free physical eraseblock.
 806  * @ubi: UBI device description object
 807  * @ai: attaching information
 808  *
 809  * This function returns a free physical eraseblock. It is supposed to be
 810  * called on the UBI initialization stages when the wear-leveling sub-system is
 811  * not initialized yet. This function picks a physical eraseblocks from one of
 812  * the lists, writes the EC header if it is needed, and removes it from the
 813  * list.
 814  *
 815  * This function returns a pointer to the "aeb" of the found free PEB in case
 816  * of success and an error code in case of failure.
 817  */
 818 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 819                                        struct ubi_attach_info *ai)
 820 {
 821         int err = 0;
 822         struct ubi_ainf_peb *aeb, *tmp_aeb;
 823 
 824         if (!list_empty(&ai->free)) {
 825                 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 826                 list_del(&aeb->u.list);
 827                 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 828                 return aeb;
 829         }
 830 
 831         /*
 832          * We try to erase the first physical eraseblock from the erase list
 833          * and pick it if we succeed, or try to erase the next one if not. And
 834          * so forth. We don't want to take care about bad eraseblocks here -
 835          * they'll be handled later.
 836          */
 837         list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 838                 if (aeb->ec == UBI_UNKNOWN)
 839                         aeb->ec = ai->mean_ec;
 840 
 841                 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 842                 if (err)
 843                         continue;
 844 
 845                 aeb->ec += 1;
 846                 list_del(&aeb->u.list);
 847                 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 848                 return aeb;
 849         }
 850 
 851         ubi_err(ubi, "no free eraseblocks");
 852         return ERR_PTR(-ENOSPC);
 853 }
 854 
 855 /**
 856  * check_corruption - check the data area of PEB.
 857  * @ubi: UBI device description object
 858  * @vid_hdr: the (corrupted) VID header of this PEB
 859  * @pnum: the physical eraseblock number to check
 860  *
 861  * This is a helper function which is used to distinguish between VID header
 862  * corruptions caused by power cuts and other reasons. If the PEB contains only
 863  * 0xFF bytes in the data area, the VID header is most probably corrupted
 864  * because of a power cut (%0 is returned in this case). Otherwise, it was
 865  * probably corrupted for some other reasons (%1 is returned in this case). A
 866  * negative error code is returned if a read error occurred.
 867  *
 868  * If the corruption reason was a power cut, UBI can safely erase this PEB.
 869  * Otherwise, it should preserve it to avoid possibly destroying important
 870  * information.
 871  */
 872 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 873                             int pnum)
 874 {
 875         int err;
 876 
 877         mutex_lock(&ubi->buf_mutex);
 878         memset(ubi->peb_buf, 0x00, ubi->leb_size);
 879 
 880         err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 881                           ubi->leb_size);
 882         if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 883                 /*
 884                  * Bit-flips or integrity errors while reading the data area.
 885                  * It is difficult to say for sure what type of corruption is
 886                  * this, but presumably a power cut happened while this PEB was
 887                  * erased, so it became unstable and corrupted, and should be
 888                  * erased.
 889                  */
 890                 err = 0;
 891                 goto out_unlock;
 892         }
 893 
 894         if (err)
 895                 goto out_unlock;
 896 
 897         if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 898                 goto out_unlock;
 899 
 900         ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 901                 pnum);
 902         ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 903         ubi_dump_vid_hdr(vid_hdr);
 904         pr_err("hexdump of PEB %d offset %d, length %d",
 905                pnum, ubi->leb_start, ubi->leb_size);
 906         ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 907                                ubi->peb_buf, ubi->leb_size, 1);
 908         err = 1;
 909 
 910 out_unlock:
 911         mutex_unlock(&ubi->buf_mutex);
 912         return err;
 913 }
 914 
 915 static bool vol_ignored(int vol_id)
 916 {
 917         switch (vol_id) {
 918                 case UBI_LAYOUT_VOLUME_ID:
 919                 return true;
 920         }
 921 
 922 #ifdef CONFIG_MTD_UBI_FASTMAP
 923         return ubi_is_fm_vol(vol_id);
 924 #else
 925         return false;
 926 #endif
 927 }
 928 
 929 /**
 930  * scan_peb - scan and process UBI headers of a PEB.
 931  * @ubi: UBI device description object
 932  * @ai: attaching information
 933  * @pnum: the physical eraseblock number
 934  * @fast: true if we're scanning for a Fastmap
 935  *
 936  * This function reads UBI headers of PEB @pnum, checks them, and adds
 937  * information about this PEB to the corresponding list or RB-tree in the
 938  * "attaching info" structure. Returns zero if the physical eraseblock was
 939  * successfully handled and a negative error code in case of failure.
 940  */
 941 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 942                     int pnum, bool fast)
 943 {
 944         struct ubi_ec_hdr *ech = ai->ech;
 945         struct ubi_vid_io_buf *vidb = ai->vidb;
 946         struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
 947         long long ec;
 948         int err, bitflips = 0, vol_id = -1, ec_err = 0;
 949 
 950         dbg_bld("scan PEB %d", pnum);
 951 
 952         /* Skip bad physical eraseblocks */
 953         err = ubi_io_is_bad(ubi, pnum);
 954         if (err < 0)
 955                 return err;
 956         else if (err) {
 957                 ai->bad_peb_count += 1;
 958                 return 0;
 959         }
 960 
 961         err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 962         if (err < 0)
 963                 return err;
 964         switch (err) {
 965         case 0:
 966                 break;
 967         case UBI_IO_BITFLIPS:
 968                 bitflips = 1;
 969                 break;
 970         case UBI_IO_FF:
 971                 ai->empty_peb_count += 1;
 972                 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 973                                    UBI_UNKNOWN, 0, &ai->erase);
 974         case UBI_IO_FF_BITFLIPS:
 975                 ai->empty_peb_count += 1;
 976                 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 977                                    UBI_UNKNOWN, 1, &ai->erase);
 978         case UBI_IO_BAD_HDR_EBADMSG:
 979         case UBI_IO_BAD_HDR:
 980                 /*
 981                  * We have to also look at the VID header, possibly it is not
 982                  * corrupted. Set %bitflips flag in order to make this PEB be
 983                  * moved and EC be re-created.
 984                  */
 985                 ec_err = err;
 986                 ec = UBI_UNKNOWN;
 987                 bitflips = 1;
 988                 break;
 989         default:
 990                 ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
 991                         err);
 992                 return -EINVAL;
 993         }
 994 
 995         if (!ec_err) {
 996                 int image_seq;
 997 
 998                 /* Make sure UBI version is OK */
 999                 if (ech->version != UBI_VERSION) {
1000                         ubi_err(ubi, "this UBI version is %d, image version is %d",
1001                                 UBI_VERSION, (int)ech->version);
1002                         return -EINVAL;
1003                 }
1004 
1005                 ec = be64_to_cpu(ech->ec);
1006                 if (ec > UBI_MAX_ERASECOUNTER) {
1007                         /*
1008                          * Erase counter overflow. The EC headers have 64 bits
1009                          * reserved, but we anyway make use of only 31 bit
1010                          * values, as this seems to be enough for any existing
1011                          * flash. Upgrade UBI and use 64-bit erase counters
1012                          * internally.
1013                          */
1014                         ubi_err(ubi, "erase counter overflow, max is %d",
1015                                 UBI_MAX_ERASECOUNTER);
1016                         ubi_dump_ec_hdr(ech);
1017                         return -EINVAL;
1018                 }
1019 
1020                 /*
1021                  * Make sure that all PEBs have the same image sequence number.
1022                  * This allows us to detect situations when users flash UBI
1023                  * images incorrectly, so that the flash has the new UBI image
1024                  * and leftovers from the old one. This feature was added
1025                  * relatively recently, and the sequence number was always
1026                  * zero, because old UBI implementations always set it to zero.
1027                  * For this reasons, we do not panic if some PEBs have zero
1028                  * sequence number, while other PEBs have non-zero sequence
1029                  * number.
1030                  */
1031                 image_seq = be32_to_cpu(ech->image_seq);
1032                 if (!ubi->image_seq)
1033                         ubi->image_seq = image_seq;
1034                 if (image_seq && ubi->image_seq != image_seq) {
1035                         ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
1036                                 image_seq, pnum, ubi->image_seq);
1037                         ubi_dump_ec_hdr(ech);
1038                         return -EINVAL;
1039                 }
1040         }
1041 
1042         /* OK, we've done with the EC header, let's look at the VID header */
1043 
1044         err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
1045         if (err < 0)
1046                 return err;
1047         switch (err) {
1048         case 0:
1049                 break;
1050         case UBI_IO_BITFLIPS:
1051                 bitflips = 1;
1052                 break;
1053         case UBI_IO_BAD_HDR_EBADMSG:
1054                 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
1055                         /*
1056                          * Both EC and VID headers are corrupted and were read
1057                          * with data integrity error, probably this is a bad
1058                          * PEB, bit it is not marked as bad yet. This may also
1059                          * be a result of power cut during erasure.
1060                          */
1061                         ai->maybe_bad_peb_count += 1;
1062                 /* fall through */
1063         case UBI_IO_BAD_HDR:
1064                         /*
1065                          * If we're facing a bad VID header we have to drop *all*
1066                          * Fastmap data structures we find. The most recent Fastmap
1067                          * could be bad and therefore there is a chance that we attach
1068                          * from an old one. On a fine MTD stack a PEB must not render
1069                          * bad all of a sudden, but the reality is different.
1070                          * So, let's be paranoid and help finding the root cause by
1071                          * falling back to scanning mode instead of attaching with a
1072                          * bad EBA table and cause data corruption which is hard to
1073                          * analyze.
1074                          */
1075                         if (fast)
1076                                 ai->force_full_scan = 1;
1077 
1078                 if (ec_err)
1079                         /*
1080                          * Both headers are corrupted. There is a possibility
1081                          * that this a valid UBI PEB which has corresponding
1082                          * LEB, but the headers are corrupted. However, it is
1083                          * impossible to distinguish it from a PEB which just
1084                          * contains garbage because of a power cut during erase
1085                          * operation. So we just schedule this PEB for erasure.
1086                          *
1087                          * Besides, in case of NOR flash, we deliberately
1088                          * corrupt both headers because NOR flash erasure is
1089                          * slow and can start from the end.
1090                          */
1091                         err = 0;
1092                 else
1093                         /*
1094                          * The EC was OK, but the VID header is corrupted. We
1095                          * have to check what is in the data area.
1096                          */
1097                         err = check_corruption(ubi, vidh, pnum);
1098 
1099                 if (err < 0)
1100                         return err;
1101                 else if (!err)
1102                         /* This corruption is caused by a power cut */
1103                         err = add_to_list(ai, pnum, UBI_UNKNOWN,
1104                                           UBI_UNKNOWN, ec, 1, &ai->erase);
1105                 else
1106                         /* This is an unexpected corruption */
1107                         err = add_corrupted(ai, pnum, ec);
1108                 if (err)
1109                         return err;
1110                 goto adjust_mean_ec;
1111         case UBI_IO_FF_BITFLIPS:
1112                 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
1113                                   ec, 1, &ai->erase);
1114                 if (err)
1115                         return err;
1116                 goto adjust_mean_ec;
1117         case UBI_IO_FF:
1118                 if (ec_err || bitflips)
1119                         err = add_to_list(ai, pnum, UBI_UNKNOWN,
1120                                           UBI_UNKNOWN, ec, 1, &ai->erase);
1121                 else
1122                         err = add_to_list(ai, pnum, UBI_UNKNOWN,
1123                                           UBI_UNKNOWN, ec, 0, &ai->free);
1124                 if (err)
1125                         return err;
1126                 goto adjust_mean_ec;
1127         default:
1128                 ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
1129                         err);
1130                 return -EINVAL;
1131         }
1132 
1133         vol_id = be32_to_cpu(vidh->vol_id);
1134         if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) {
1135                 int lnum = be32_to_cpu(vidh->lnum);
1136 
1137                 /* Unsupported internal volume */
1138                 switch (vidh->compat) {
1139                 case UBI_COMPAT_DELETE:
1140                         ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1141                                 vol_id, lnum);
1142 
1143                         err = add_to_list(ai, pnum, vol_id, lnum,
1144                                           ec, 1, &ai->erase);
1145                         if (err)
1146                                 return err;
1147                         return 0;
1148 
1149                 case UBI_COMPAT_RO:
1150                         ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1151                                 vol_id, lnum);
1152                         ubi->ro_mode = 1;
1153                         break;
1154 
1155                 case UBI_COMPAT_PRESERVE:
1156                         ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1157                                 vol_id, lnum);
1158                         err = add_to_list(ai, pnum, vol_id, lnum,
1159                                           ec, 0, &ai->alien);
1160                         if (err)
1161                                 return err;
1162                         return 0;
1163 
1164                 case UBI_COMPAT_REJECT:
1165                         ubi_err(ubi, "incompatible internal volume %d:%d found",
1166                                 vol_id, lnum);
1167                         return -EINVAL;
1168                 }
1169         }
1170 
1171         if (ec_err)
1172                 ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1173                          pnum);
1174 
1175         if (ubi_is_fm_vol(vol_id))
1176                 err = add_fastmap(ai, pnum, vidh, ec);
1177         else
1178                 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1179 
1180         if (err)
1181                 return err;
1182 
1183 adjust_mean_ec:
1184         if (!ec_err) {
1185                 ai->ec_sum += ec;
1186                 ai->ec_count += 1;
1187                 if (ec > ai->max_ec)
1188                         ai->max_ec = ec;
1189                 if (ec < ai->min_ec)
1190                         ai->min_ec = ec;
1191         }
1192 
1193         return 0;
1194 }
1195 
1196 /**
1197  * late_analysis - analyze the overall situation with PEB.
1198  * @ubi: UBI device description object
1199  * @ai: attaching information
1200  *
1201  * This is a helper function which takes a look what PEBs we have after we
1202  * gather information about all of them ("ai" is compete). It decides whether
1203  * the flash is empty and should be formatted of whether there are too many
1204  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1205  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1206  */
1207 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1208 {
1209         struct ubi_ainf_peb *aeb;
1210         int max_corr, peb_count;
1211 
1212         peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1213         max_corr = peb_count / 20 ?: 8;
1214 
1215         /*
1216          * Few corrupted PEBs is not a problem and may be just a result of
1217          * unclean reboots. However, many of them may indicate some problems
1218          * with the flash HW or driver.
1219          */
1220         if (ai->corr_peb_count) {
1221                 ubi_err(ubi, "%d PEBs are corrupted and preserved",
1222                         ai->corr_peb_count);
1223                 pr_err("Corrupted PEBs are:");
1224                 list_for_each_entry(aeb, &ai->corr, u.list)
1225                         pr_cont(" %d", aeb->pnum);
1226                 pr_cont("\n");
1227 
1228                 /*
1229                  * If too many PEBs are corrupted, we refuse attaching,
1230                  * otherwise, only print a warning.
1231                  */
1232                 if (ai->corr_peb_count >= max_corr) {
1233                         ubi_err(ubi, "too many corrupted PEBs, refusing");
1234                         return -EINVAL;
1235                 }
1236         }
1237 
1238         if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1239                 /*
1240                  * All PEBs are empty, or almost all - a couple PEBs look like
1241                  * they may be bad PEBs which were not marked as bad yet.
1242                  *
1243                  * This piece of code basically tries to distinguish between
1244                  * the following situations:
1245                  *
1246                  * 1. Flash is empty, but there are few bad PEBs, which are not
1247                  *    marked as bad so far, and which were read with error. We
1248                  *    want to go ahead and format this flash. While formatting,
1249                  *    the faulty PEBs will probably be marked as bad.
1250                  *
1251                  * 2. Flash contains non-UBI data and we do not want to format
1252                  *    it and destroy possibly important information.
1253                  */
1254                 if (ai->maybe_bad_peb_count <= 2) {
1255                         ai->is_empty = 1;
1256                         ubi_msg(ubi, "empty MTD device detected");
1257                         get_random_bytes(&ubi->image_seq,
1258                                          sizeof(ubi->image_seq));
1259                 } else {
1260                         ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1261                         return -EINVAL;
1262                 }
1263 
1264         }
1265 
1266         return 0;
1267 }
1268 
1269 /**
1270  * destroy_av - free volume attaching information.
1271  * @av: volume attaching information
1272  * @ai: attaching information
1273  * @list: put the aeb elements in there if !NULL, otherwise free them
1274  *
1275  * This function destroys the volume attaching information.
1276  */
1277 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
1278                        struct list_head *list)
1279 {
1280         struct ubi_ainf_peb *aeb;
1281         struct rb_node *this = av->root.rb_node;
1282 
1283         while (this) {
1284                 if (this->rb_left)
1285                         this = this->rb_left;
1286                 else if (this->rb_right)
1287                         this = this->rb_right;
1288                 else {
1289                         aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1290                         this = rb_parent(this);
1291                         if (this) {
1292                                 if (this->rb_left == &aeb->u.rb)
1293                                         this->rb_left = NULL;
1294                                 else
1295                                         this->rb_right = NULL;
1296                         }
1297 
1298                         if (list)
1299                                 list_add_tail(&aeb->u.list, list);
1300                         else
1301                                 ubi_free_aeb(ai, aeb);
1302                 }
1303         }
1304         kfree(av);
1305 }
1306 
1307 /**
1308  * destroy_ai - destroy attaching information.
1309  * @ai: attaching information
1310  */
1311 static void destroy_ai(struct ubi_attach_info *ai)
1312 {
1313         struct ubi_ainf_peb *aeb, *aeb_tmp;
1314         struct ubi_ainf_volume *av;
1315         struct rb_node *rb;
1316 
1317         list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1318                 list_del(&aeb->u.list);
1319                 ubi_free_aeb(ai, aeb);
1320         }
1321         list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1322                 list_del(&aeb->u.list);
1323                 ubi_free_aeb(ai, aeb);
1324         }
1325         list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1326                 list_del(&aeb->u.list);
1327                 ubi_free_aeb(ai, aeb);
1328         }
1329         list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1330                 list_del(&aeb->u.list);
1331                 ubi_free_aeb(ai, aeb);
1332         }
1333         list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) {
1334                 list_del(&aeb->u.list);
1335                 ubi_free_aeb(ai, aeb);
1336         }
1337 
1338         /* Destroy the volume RB-tree */
1339         rb = ai->volumes.rb_node;
1340         while (rb) {
1341                 if (rb->rb_left)
1342                         rb = rb->rb_left;
1343                 else if (rb->rb_right)
1344                         rb = rb->rb_right;
1345                 else {
1346                         av = rb_entry(rb, struct ubi_ainf_volume, rb);
1347 
1348                         rb = rb_parent(rb);
1349                         if (rb) {
1350                                 if (rb->rb_left == &av->rb)
1351                                         rb->rb_left = NULL;
1352                                 else
1353                                         rb->rb_right = NULL;
1354                         }
1355 
1356                         destroy_av(ai, av, NULL);
1357                 }
1358         }
1359 
1360         kmem_cache_destroy(ai->aeb_slab_cache);
1361         kfree(ai);
1362 }
1363 
1364 /**
1365  * scan_all - scan entire MTD device.
1366  * @ubi: UBI device description object
1367  * @ai: attach info object
1368  * @start: start scanning at this PEB
1369  *
1370  * This function does full scanning of an MTD device and returns complete
1371  * information about it in form of a "struct ubi_attach_info" object. In case
1372  * of failure, an error code is returned.
1373  */
1374 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1375                     int start)
1376 {
1377         int err, pnum;
1378         struct rb_node *rb1, *rb2;
1379         struct ubi_ainf_volume *av;
1380         struct ubi_ainf_peb *aeb;
1381 
1382         err = -ENOMEM;
1383 
1384         ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1385         if (!ai->ech)
1386                 return err;
1387 
1388         ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1389         if (!ai->vidb)
1390                 goto out_ech;
1391 
1392         for (pnum = start; pnum < ubi->peb_count; pnum++) {
1393                 cond_resched();
1394 
1395                 dbg_gen("process PEB %d", pnum);
1396                 err = scan_peb(ubi, ai, pnum, false);
1397                 if (err < 0)
1398                         goto out_vidh;
1399         }
1400 
1401         ubi_msg(ubi, "scanning is finished");
1402 
1403         /* Calculate mean erase counter */
1404         if (ai->ec_count)
1405                 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1406 
1407         err = late_analysis(ubi, ai);
1408         if (err)
1409                 goto out_vidh;
1410 
1411         /*
1412          * In case of unknown erase counter we use the mean erase counter
1413          * value.
1414          */
1415         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1416                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1417                         if (aeb->ec == UBI_UNKNOWN)
1418                                 aeb->ec = ai->mean_ec;
1419         }
1420 
1421         list_for_each_entry(aeb, &ai->free, u.list) {
1422                 if (aeb->ec == UBI_UNKNOWN)
1423                         aeb->ec = ai->mean_ec;
1424         }
1425 
1426         list_for_each_entry(aeb, &ai->corr, u.list)
1427                 if (aeb->ec == UBI_UNKNOWN)
1428                         aeb->ec = ai->mean_ec;
1429 
1430         list_for_each_entry(aeb, &ai->erase, u.list)
1431                 if (aeb->ec == UBI_UNKNOWN)
1432                         aeb->ec = ai->mean_ec;
1433 
1434         err = self_check_ai(ubi, ai);
1435         if (err)
1436                 goto out_vidh;
1437 
1438         ubi_free_vid_buf(ai->vidb);
1439         kfree(ai->ech);
1440 
1441         return 0;
1442 
1443 out_vidh:
1444         ubi_free_vid_buf(ai->vidb);
1445 out_ech:
1446         kfree(ai->ech);
1447         return err;
1448 }
1449 
1450 static struct ubi_attach_info *alloc_ai(void)
1451 {
1452         struct ubi_attach_info *ai;
1453 
1454         ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1455         if (!ai)
1456                 return ai;
1457 
1458         INIT_LIST_HEAD(&ai->corr);
1459         INIT_LIST_HEAD(&ai->free);
1460         INIT_LIST_HEAD(&ai->erase);
1461         INIT_LIST_HEAD(&ai->alien);
1462         INIT_LIST_HEAD(&ai->fastmap);
1463         ai->volumes = RB_ROOT;
1464         ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1465                                                sizeof(struct ubi_ainf_peb),
1466                                                0, 0, NULL);
1467         if (!ai->aeb_slab_cache) {
1468                 kfree(ai);
1469                 ai = NULL;
1470         }
1471 
1472         return ai;
1473 }
1474 
1475 #ifdef CONFIG_MTD_UBI_FASTMAP
1476 
1477 /**
1478  * scan_fast - try to find a fastmap and attach from it.
1479  * @ubi: UBI device description object
1480  * @ai: attach info object
1481  *
1482  * Returns 0 on success, negative return values indicate an internal
1483  * error.
1484  * UBI_NO_FASTMAP denotes that no fastmap was found.
1485  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1486  */
1487 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1488 {
1489         int err, pnum;
1490         struct ubi_attach_info *scan_ai;
1491 
1492         err = -ENOMEM;
1493 
1494         scan_ai = alloc_ai();
1495         if (!scan_ai)
1496                 goto out;
1497 
1498         scan_ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1499         if (!scan_ai->ech)
1500                 goto out_ai;
1501 
1502         scan_ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1503         if (!scan_ai->vidb)
1504                 goto out_ech;
1505 
1506         for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1507                 cond_resched();
1508 
1509                 dbg_gen("process PEB %d", pnum);
1510                 err = scan_peb(ubi, scan_ai, pnum, true);
1511                 if (err < 0)
1512                         goto out_vidh;
1513         }
1514 
1515         ubi_free_vid_buf(scan_ai->vidb);
1516         kfree(scan_ai->ech);
1517 
1518         if (scan_ai->force_full_scan)
1519                 err = UBI_NO_FASTMAP;
1520         else
1521                 err = ubi_scan_fastmap(ubi, *ai, scan_ai);
1522 
1523         if (err) {
1524                 /*
1525                  * Didn't attach via fastmap, do a full scan but reuse what
1526                  * we've aready scanned.
1527                  */
1528                 destroy_ai(*ai);
1529                 *ai = scan_ai;
1530         } else
1531                 destroy_ai(scan_ai);
1532 
1533         return err;
1534 
1535 out_vidh:
1536         ubi_free_vid_buf(scan_ai->vidb);
1537 out_ech:
1538         kfree(scan_ai->ech);
1539 out_ai:
1540         destroy_ai(scan_ai);
1541 out:
1542         return err;
1543 }
1544 
1545 #endif
1546 
1547 /**
1548  * ubi_attach - attach an MTD device.
1549  * @ubi: UBI device descriptor
1550  * @force_scan: if set to non-zero attach by scanning
1551  *
1552  * This function returns zero in case of success and a negative error code in
1553  * case of failure.
1554  */
1555 int ubi_attach(struct ubi_device *ubi, int force_scan)
1556 {
1557         int err;
1558         struct ubi_attach_info *ai;
1559 
1560         ai = alloc_ai();
1561         if (!ai)
1562                 return -ENOMEM;
1563 
1564 #ifdef CONFIG_MTD_UBI_FASTMAP
1565         /* On small flash devices we disable fastmap in any case. */
1566         if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1567                 ubi->fm_disabled = 1;
1568                 force_scan = 1;
1569         }
1570 
1571         if (force_scan)
1572                 err = scan_all(ubi, ai, 0);
1573         else {
1574                 err = scan_fast(ubi, &ai);
1575                 if (err > 0 || mtd_is_eccerr(err)) {
1576                         if (err != UBI_NO_FASTMAP) {
1577                                 destroy_ai(ai);
1578                                 ai = alloc_ai();
1579                                 if (!ai)
1580                                         return -ENOMEM;
1581 
1582                                 err = scan_all(ubi, ai, 0);
1583                         } else {
1584                                 err = scan_all(ubi, ai, UBI_FM_MAX_START);
1585                         }
1586                 }
1587         }
1588 #else
1589         err = scan_all(ubi, ai, 0);
1590 #endif
1591         if (err)
1592                 goto out_ai;
1593 
1594         ubi->bad_peb_count = ai->bad_peb_count;
1595         ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1596         ubi->corr_peb_count = ai->corr_peb_count;
1597         ubi->max_ec = ai->max_ec;
1598         ubi->mean_ec = ai->mean_ec;
1599         dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1600 
1601         err = ubi_read_volume_table(ubi, ai);
1602         if (err)
1603                 goto out_ai;
1604 
1605         err = ubi_wl_init(ubi, ai);
1606         if (err)
1607                 goto out_vtbl;
1608 
1609         err = ubi_eba_init(ubi, ai);
1610         if (err)
1611                 goto out_wl;
1612 
1613 #ifdef CONFIG_MTD_UBI_FASTMAP
1614         if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1615                 struct ubi_attach_info *scan_ai;
1616 
1617                 scan_ai = alloc_ai();
1618                 if (!scan_ai) {
1619                         err = -ENOMEM;
1620                         goto out_wl;
1621                 }
1622 
1623                 err = scan_all(ubi, scan_ai, 0);
1624                 if (err) {
1625                         destroy_ai(scan_ai);
1626                         goto out_wl;
1627                 }
1628 
1629                 err = self_check_eba(ubi, ai, scan_ai);
1630                 destroy_ai(scan_ai);
1631 
1632                 if (err)
1633                         goto out_wl;
1634         }
1635 #endif
1636 
1637         destroy_ai(ai);
1638         return 0;
1639 
1640 out_wl:
1641         ubi_wl_close(ubi);
1642 out_vtbl:
1643         ubi_free_internal_volumes(ubi);
1644         vfree(ubi->vtbl);
1645 out_ai:
1646         destroy_ai(ai);
1647         return err;
1648 }
1649 
1650 /**
1651  * self_check_ai - check the attaching information.
1652  * @ubi: UBI device description object
1653  * @ai: attaching information
1654  *
1655  * This function returns zero if the attaching information is all right, and a
1656  * negative error code if not or if an error occurred.
1657  */
1658 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1659 {
1660         struct ubi_vid_io_buf *vidb = ai->vidb;
1661         struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
1662         int pnum, err, vols_found = 0;
1663         struct rb_node *rb1, *rb2;
1664         struct ubi_ainf_volume *av;
1665         struct ubi_ainf_peb *aeb, *last_aeb;
1666         uint8_t *buf;
1667 
1668         if (!ubi_dbg_chk_gen(ubi))
1669                 return 0;
1670 
1671         /*
1672          * At first, check that attaching information is OK.
1673          */
1674         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1675                 int leb_count = 0;
1676 
1677                 cond_resched();
1678 
1679                 vols_found += 1;
1680 
1681                 if (ai->is_empty) {
1682                         ubi_err(ubi, "bad is_empty flag");
1683                         goto bad_av;
1684                 }
1685 
1686                 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1687                     av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1688                     av->data_pad < 0 || av->last_data_size < 0) {
1689                         ubi_err(ubi, "negative values");
1690                         goto bad_av;
1691                 }
1692 
1693                 if (av->vol_id >= UBI_MAX_VOLUMES &&
1694                     av->vol_id < UBI_INTERNAL_VOL_START) {
1695                         ubi_err(ubi, "bad vol_id");
1696                         goto bad_av;
1697                 }
1698 
1699                 if (av->vol_id > ai->highest_vol_id) {
1700                         ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1701                                 ai->highest_vol_id, av->vol_id);
1702                         goto out;
1703                 }
1704 
1705                 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1706                     av->vol_type != UBI_STATIC_VOLUME) {
1707                         ubi_err(ubi, "bad vol_type");
1708                         goto bad_av;
1709                 }
1710 
1711                 if (av->data_pad > ubi->leb_size / 2) {
1712                         ubi_err(ubi, "bad data_pad");
1713                         goto bad_av;
1714                 }
1715 
1716                 last_aeb = NULL;
1717                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1718                         cond_resched();
1719 
1720                         last_aeb = aeb;
1721                         leb_count += 1;
1722 
1723                         if (aeb->pnum < 0 || aeb->ec < 0) {
1724                                 ubi_err(ubi, "negative values");
1725                                 goto bad_aeb;
1726                         }
1727 
1728                         if (aeb->ec < ai->min_ec) {
1729                                 ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1730                                         ai->min_ec, aeb->ec);
1731                                 goto bad_aeb;
1732                         }
1733 
1734                         if (aeb->ec > ai->max_ec) {
1735                                 ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1736                                         ai->max_ec, aeb->ec);
1737                                 goto bad_aeb;
1738                         }
1739 
1740                         if (aeb->pnum >= ubi->peb_count) {
1741                                 ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1742                                         aeb->pnum, ubi->peb_count);
1743                                 goto bad_aeb;
1744                         }
1745 
1746                         if (av->vol_type == UBI_STATIC_VOLUME) {
1747                                 if (aeb->lnum >= av->used_ebs) {
1748                                         ubi_err(ubi, "bad lnum or used_ebs");
1749                                         goto bad_aeb;
1750                                 }
1751                         } else {
1752                                 if (av->used_ebs != 0) {
1753                                         ubi_err(ubi, "non-zero used_ebs");
1754                                         goto bad_aeb;
1755                                 }
1756                         }
1757 
1758                         if (aeb->lnum > av->highest_lnum) {
1759                                 ubi_err(ubi, "incorrect highest_lnum or lnum");
1760                                 goto bad_aeb;
1761                         }
1762                 }
1763 
1764                 if (av->leb_count != leb_count) {
1765                         ubi_err(ubi, "bad leb_count, %d objects in the tree",
1766                                 leb_count);
1767                         goto bad_av;
1768                 }
1769 
1770                 if (!last_aeb)
1771                         continue;
1772 
1773                 aeb = last_aeb;
1774 
1775                 if (aeb->lnum != av->highest_lnum) {
1776                         ubi_err(ubi, "bad highest_lnum");
1777                         goto bad_aeb;
1778                 }
1779         }
1780 
1781         if (vols_found != ai->vols_found) {
1782                 ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1783                         ai->vols_found, vols_found);
1784                 goto out;
1785         }
1786 
1787         /* Check that attaching information is correct */
1788         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1789                 last_aeb = NULL;
1790                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1791                         int vol_type;
1792 
1793                         cond_resched();
1794 
1795                         last_aeb = aeb;
1796 
1797                         err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidb, 1);
1798                         if (err && err != UBI_IO_BITFLIPS) {
1799                                 ubi_err(ubi, "VID header is not OK (%d)",
1800                                         err);
1801                                 if (err > 0)
1802                                         err = -EIO;
1803                                 return err;
1804                         }
1805 
1806                         vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1807                                    UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1808                         if (av->vol_type != vol_type) {
1809                                 ubi_err(ubi, "bad vol_type");
1810                                 goto bad_vid_hdr;
1811                         }
1812 
1813                         if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1814                                 ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1815                                 goto bad_vid_hdr;
1816                         }
1817 
1818                         if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1819                                 ubi_err(ubi, "bad vol_id %d", av->vol_id);
1820                                 goto bad_vid_hdr;
1821                         }
1822 
1823                         if (av->compat != vidh->compat) {
1824                                 ubi_err(ubi, "bad compat %d", vidh->compat);
1825                                 goto bad_vid_hdr;
1826                         }
1827 
1828                         if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1829                                 ubi_err(ubi, "bad lnum %d", aeb->lnum);
1830                                 goto bad_vid_hdr;
1831                         }
1832 
1833                         if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1834                                 ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1835                                 goto bad_vid_hdr;
1836                         }
1837 
1838                         if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1839                                 ubi_err(ubi, "bad data_pad %d", av->data_pad);
1840                                 goto bad_vid_hdr;
1841                         }
1842                 }
1843 
1844                 if (!last_aeb)
1845                         continue;
1846 
1847                 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1848                         ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1849                         goto bad_vid_hdr;
1850                 }
1851 
1852                 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1853                         ubi_err(ubi, "bad last_data_size %d",
1854                                 av->last_data_size);
1855                         goto bad_vid_hdr;
1856                 }
1857         }
1858 
1859         /*
1860          * Make sure that all the physical eraseblocks are in one of the lists
1861          * or trees.
1862          */
1863         buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1864         if (!buf)
1865                 return -ENOMEM;
1866 
1867         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1868                 err = ubi_io_is_bad(ubi, pnum);
1869                 if (err < 0) {
1870                         kfree(buf);
1871                         return err;
1872                 } else if (err)
1873                         buf[pnum] = 1;
1874         }
1875 
1876         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1877                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1878                         buf[aeb->pnum] = 1;
1879 
1880         list_for_each_entry(aeb, &ai->free, u.list)
1881                 buf[aeb->pnum] = 1;
1882 
1883         list_for_each_entry(aeb, &ai->corr, u.list)
1884                 buf[aeb->pnum] = 1;
1885 
1886         list_for_each_entry(aeb, &ai->erase, u.list)
1887                 buf[aeb->pnum] = 1;
1888 
1889         list_for_each_entry(aeb, &ai->alien, u.list)
1890                 buf[aeb->pnum] = 1;
1891 
1892         err = 0;
1893         for (pnum = 0; pnum < ubi->peb_count; pnum++)
1894                 if (!buf[pnum]) {
1895                         ubi_err(ubi, "PEB %d is not referred", pnum);
1896                         err = 1;
1897                 }
1898 
1899         kfree(buf);
1900         if (err)
1901                 goto out;
1902         return 0;
1903 
1904 bad_aeb:
1905         ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1906         ubi_dump_aeb(aeb, 0);
1907         ubi_dump_av(av);
1908         goto out;
1909 
1910 bad_av:
1911         ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1912         ubi_dump_av(av);
1913         goto out;
1914 
1915 bad_vid_hdr:
1916         ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1917         ubi_dump_av(av);
1918         ubi_dump_vid_hdr(vidh);
1919 
1920 out:
1921         dump_stack();
1922         return -EINVAL;
1923 }

/* [<][>][^][v][top][bottom][index][help] */