root/drivers/mtd/nand/raw/fsmc_nand.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fsmc_ecc1_ooblayout_ecc
  2. fsmc_ecc1_ooblayout_free
  3. fsmc_ecc4_ooblayout_ecc
  4. fsmc_ecc4_ooblayout_free
  5. nand_to_fsmc
  6. fsmc_nand_setup
  7. fsmc_calc_timings
  8. fsmc_setup_data_interface
  9. fsmc_enable_hwecc
  10. fsmc_read_hwecc_ecc4
  11. fsmc_read_hwecc_ecc1
  12. count_written_bits
  13. dma_complete
  14. dma_xfer
  15. fsmc_write_buf
  16. fsmc_read_buf
  17. fsmc_read_buf_dma
  18. fsmc_write_buf_dma
  19. fsmc_exec_op
  20. fsmc_read_page_hwecc
  21. fsmc_bch8_correct_data
  22. filter
  23. fsmc_nand_probe_config_dt
  24. fsmc_nand_attach_chip
  25. fsmc_nand_disable
  26. fsmc_nand_probe
  27. fsmc_nand_remove
  28. fsmc_nand_suspend
  29. fsmc_nand_resume

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * ST Microelectronics
   4  * Flexible Static Memory Controller (FSMC)
   5  * Driver for NAND portions
   6  *
   7  * Copyright © 2010 ST Microelectronics
   8  * Vipin Kumar <vipin.kumar@st.com>
   9  * Ashish Priyadarshi
  10  *
  11  * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
  12  *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
  13  *  Copyright © 2009 Alessandro Rubini
  14  */
  15 
  16 #include <linux/clk.h>
  17 #include <linux/completion.h>
  18 #include <linux/dmaengine.h>
  19 #include <linux/dma-direction.h>
  20 #include <linux/dma-mapping.h>
  21 #include <linux/err.h>
  22 #include <linux/init.h>
  23 #include <linux/module.h>
  24 #include <linux/resource.h>
  25 #include <linux/sched.h>
  26 #include <linux/types.h>
  27 #include <linux/mtd/mtd.h>
  28 #include <linux/mtd/rawnand.h>
  29 #include <linux/mtd/nand_ecc.h>
  30 #include <linux/platform_device.h>
  31 #include <linux/of.h>
  32 #include <linux/mtd/partitions.h>
  33 #include <linux/io.h>
  34 #include <linux/slab.h>
  35 #include <linux/amba/bus.h>
  36 #include <mtd/mtd-abi.h>
  37 
  38 /* fsmc controller registers for NOR flash */
  39 #define CTRL                    0x0
  40         /* ctrl register definitions */
  41         #define BANK_ENABLE             BIT(0)
  42         #define MUXED                   BIT(1)
  43         #define NOR_DEV                 (2 << 2)
  44         #define WIDTH_16                BIT(4)
  45         #define RSTPWRDWN               BIT(6)
  46         #define WPROT                   BIT(7)
  47         #define WRT_ENABLE              BIT(12)
  48         #define WAIT_ENB                BIT(13)
  49 
  50 #define CTRL_TIM                0x4
  51         /* ctrl_tim register definitions */
  52 
  53 #define FSMC_NOR_BANK_SZ        0x8
  54 #define FSMC_NOR_REG_SIZE       0x40
  55 
  56 #define FSMC_NOR_REG(base, bank, reg)   ((base) +                       \
  57                                          (FSMC_NOR_BANK_SZ * (bank)) +  \
  58                                          (reg))
  59 
  60 /* fsmc controller registers for NAND flash */
  61 #define FSMC_PC                 0x00
  62         /* pc register definitions */
  63         #define FSMC_RESET              BIT(0)
  64         #define FSMC_WAITON             BIT(1)
  65         #define FSMC_ENABLE             BIT(2)
  66         #define FSMC_DEVTYPE_NAND       BIT(3)
  67         #define FSMC_DEVWID_16          BIT(4)
  68         #define FSMC_ECCEN              BIT(6)
  69         #define FSMC_ECCPLEN_256        BIT(7)
  70         #define FSMC_TCLR_SHIFT         (9)
  71         #define FSMC_TCLR_MASK          (0xF)
  72         #define FSMC_TAR_SHIFT          (13)
  73         #define FSMC_TAR_MASK           (0xF)
  74 #define STS                     0x04
  75         /* sts register definitions */
  76         #define FSMC_CODE_RDY           BIT(15)
  77 #define COMM                    0x08
  78         /* comm register definitions */
  79         #define FSMC_TSET_SHIFT         0
  80         #define FSMC_TSET_MASK          0xFF
  81         #define FSMC_TWAIT_SHIFT        8
  82         #define FSMC_TWAIT_MASK         0xFF
  83         #define FSMC_THOLD_SHIFT        16
  84         #define FSMC_THOLD_MASK         0xFF
  85         #define FSMC_THIZ_SHIFT         24
  86         #define FSMC_THIZ_MASK          0xFF
  87 #define ATTRIB                  0x0C
  88 #define IOATA                   0x10
  89 #define ECC1                    0x14
  90 #define ECC2                    0x18
  91 #define ECC3                    0x1C
  92 #define FSMC_NAND_BANK_SZ       0x20
  93 
  94 #define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
  95 
  96 struct fsmc_nand_timings {
  97         u8 tclr;
  98         u8 tar;
  99         u8 thiz;
 100         u8 thold;
 101         u8 twait;
 102         u8 tset;
 103 };
 104 
 105 enum access_mode {
 106         USE_DMA_ACCESS = 1,
 107         USE_WORD_ACCESS,
 108 };
 109 
 110 /**
 111  * struct fsmc_nand_data - structure for FSMC NAND device state
 112  *
 113  * @base:               Inherit from the nand_controller struct
 114  * @pid:                Part ID on the AMBA PrimeCell format
 115  * @nand:               Chip related info for a NAND flash.
 116  *
 117  * @bank:               Bank number for probed device.
 118  * @dev:                Parent device
 119  * @mode:               Access mode
 120  * @clk:                Clock structure for FSMC.
 121  *
 122  * @read_dma_chan:      DMA channel for read access
 123  * @write_dma_chan:     DMA channel for write access to NAND
 124  * @dma_access_complete: Completion structure
 125  *
 126  * @dev_timings:        NAND timings
 127  *
 128  * @data_pa:            NAND Physical port for Data.
 129  * @data_va:            NAND port for Data.
 130  * @cmd_va:             NAND port for Command.
 131  * @addr_va:            NAND port for Address.
 132  * @regs_va:            Registers base address for a given bank.
 133  */
 134 struct fsmc_nand_data {
 135         struct nand_controller  base;
 136         u32                     pid;
 137         struct nand_chip        nand;
 138 
 139         unsigned int            bank;
 140         struct device           *dev;
 141         enum access_mode        mode;
 142         struct clk              *clk;
 143 
 144         /* DMA related objects */
 145         struct dma_chan         *read_dma_chan;
 146         struct dma_chan         *write_dma_chan;
 147         struct completion       dma_access_complete;
 148 
 149         struct fsmc_nand_timings *dev_timings;
 150 
 151         dma_addr_t              data_pa;
 152         void __iomem            *data_va;
 153         void __iomem            *cmd_va;
 154         void __iomem            *addr_va;
 155         void __iomem            *regs_va;
 156 };
 157 
 158 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
 159                                    struct mtd_oob_region *oobregion)
 160 {
 161         struct nand_chip *chip = mtd_to_nand(mtd);
 162 
 163         if (section >= chip->ecc.steps)
 164                 return -ERANGE;
 165 
 166         oobregion->offset = (section * 16) + 2;
 167         oobregion->length = 3;
 168 
 169         return 0;
 170 }
 171 
 172 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
 173                                     struct mtd_oob_region *oobregion)
 174 {
 175         struct nand_chip *chip = mtd_to_nand(mtd);
 176 
 177         if (section >= chip->ecc.steps)
 178                 return -ERANGE;
 179 
 180         oobregion->offset = (section * 16) + 8;
 181 
 182         if (section < chip->ecc.steps - 1)
 183                 oobregion->length = 8;
 184         else
 185                 oobregion->length = mtd->oobsize - oobregion->offset;
 186 
 187         return 0;
 188 }
 189 
 190 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
 191         .ecc = fsmc_ecc1_ooblayout_ecc,
 192         .free = fsmc_ecc1_ooblayout_free,
 193 };
 194 
 195 /*
 196  * ECC placement definitions in oobfree type format.
 197  * There are 13 bytes of ecc for every 512 byte block and it has to be read
 198  * consecutively and immediately after the 512 byte data block for hardware to
 199  * generate the error bit offsets in 512 byte data.
 200  */
 201 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
 202                                    struct mtd_oob_region *oobregion)
 203 {
 204         struct nand_chip *chip = mtd_to_nand(mtd);
 205 
 206         if (section >= chip->ecc.steps)
 207                 return -ERANGE;
 208 
 209         oobregion->length = chip->ecc.bytes;
 210 
 211         if (!section && mtd->writesize <= 512)
 212                 oobregion->offset = 0;
 213         else
 214                 oobregion->offset = (section * 16) + 2;
 215 
 216         return 0;
 217 }
 218 
 219 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
 220                                     struct mtd_oob_region *oobregion)
 221 {
 222         struct nand_chip *chip = mtd_to_nand(mtd);
 223 
 224         if (section >= chip->ecc.steps)
 225                 return -ERANGE;
 226 
 227         oobregion->offset = (section * 16) + 15;
 228 
 229         if (section < chip->ecc.steps - 1)
 230                 oobregion->length = 3;
 231         else
 232                 oobregion->length = mtd->oobsize - oobregion->offset;
 233 
 234         return 0;
 235 }
 236 
 237 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
 238         .ecc = fsmc_ecc4_ooblayout_ecc,
 239         .free = fsmc_ecc4_ooblayout_free,
 240 };
 241 
 242 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
 243 {
 244         return container_of(chip, struct fsmc_nand_data, nand);
 245 }
 246 
 247 /*
 248  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 249  *
 250  * This routine initializes timing parameters related to NAND memory access in
 251  * FSMC registers
 252  */
 253 static void fsmc_nand_setup(struct fsmc_nand_data *host,
 254                             struct fsmc_nand_timings *tims)
 255 {
 256         u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 257         u32 tclr, tar, thiz, thold, twait, tset;
 258 
 259         tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 260         tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
 261         thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
 262         thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
 263         twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
 264         tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 265 
 266         if (host->nand.options & NAND_BUSWIDTH_16)
 267                 value |= FSMC_DEVWID_16;
 268 
 269         writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
 270         writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
 271         writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
 272 }
 273 
 274 static int fsmc_calc_timings(struct fsmc_nand_data *host,
 275                              const struct nand_sdr_timings *sdrt,
 276                              struct fsmc_nand_timings *tims)
 277 {
 278         unsigned long hclk = clk_get_rate(host->clk);
 279         unsigned long hclkn = NSEC_PER_SEC / hclk;
 280         u32 thiz, thold, twait, tset;
 281 
 282         if (sdrt->tRC_min < 30000)
 283                 return -EOPNOTSUPP;
 284 
 285         tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
 286         if (tims->tar > FSMC_TAR_MASK)
 287                 tims->tar = FSMC_TAR_MASK;
 288         tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
 289         if (tims->tclr > FSMC_TCLR_MASK)
 290                 tims->tclr = FSMC_TCLR_MASK;
 291 
 292         thiz = sdrt->tCS_min - sdrt->tWP_min;
 293         tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
 294 
 295         thold = sdrt->tDH_min;
 296         if (thold < sdrt->tCH_min)
 297                 thold = sdrt->tCH_min;
 298         if (thold < sdrt->tCLH_min)
 299                 thold = sdrt->tCLH_min;
 300         if (thold < sdrt->tWH_min)
 301                 thold = sdrt->tWH_min;
 302         if (thold < sdrt->tALH_min)
 303                 thold = sdrt->tALH_min;
 304         if (thold < sdrt->tREH_min)
 305                 thold = sdrt->tREH_min;
 306         tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
 307         if (tims->thold == 0)
 308                 tims->thold = 1;
 309         else if (tims->thold > FSMC_THOLD_MASK)
 310                 tims->thold = FSMC_THOLD_MASK;
 311 
 312         twait = max(sdrt->tRP_min, sdrt->tWP_min);
 313         tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
 314         if (tims->twait == 0)
 315                 tims->twait = 1;
 316         else if (tims->twait > FSMC_TWAIT_MASK)
 317                 tims->twait = FSMC_TWAIT_MASK;
 318 
 319         tset = max(sdrt->tCS_min - sdrt->tWP_min,
 320                    sdrt->tCEA_max - sdrt->tREA_max);
 321         tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
 322         if (tims->tset == 0)
 323                 tims->tset = 1;
 324         else if (tims->tset > FSMC_TSET_MASK)
 325                 tims->tset = FSMC_TSET_MASK;
 326 
 327         return 0;
 328 }
 329 
 330 static int fsmc_setup_data_interface(struct nand_chip *nand, int csline,
 331                                      const struct nand_data_interface *conf)
 332 {
 333         struct fsmc_nand_data *host = nand_to_fsmc(nand);
 334         struct fsmc_nand_timings tims;
 335         const struct nand_sdr_timings *sdrt;
 336         int ret;
 337 
 338         sdrt = nand_get_sdr_timings(conf);
 339         if (IS_ERR(sdrt))
 340                 return PTR_ERR(sdrt);
 341 
 342         ret = fsmc_calc_timings(host, sdrt, &tims);
 343         if (ret)
 344                 return ret;
 345 
 346         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
 347                 return 0;
 348 
 349         fsmc_nand_setup(host, &tims);
 350 
 351         return 0;
 352 }
 353 
 354 /*
 355  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 356  */
 357 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
 358 {
 359         struct fsmc_nand_data *host = nand_to_fsmc(chip);
 360 
 361         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
 362                        host->regs_va + FSMC_PC);
 363         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
 364                        host->regs_va + FSMC_PC);
 365         writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
 366                        host->regs_va + FSMC_PC);
 367 }
 368 
 369 /*
 370  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 371  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 372  * max of 8-bits)
 373  */
 374 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
 375                                 u8 *ecc)
 376 {
 377         struct fsmc_nand_data *host = nand_to_fsmc(chip);
 378         u32 ecc_tmp;
 379         unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 380 
 381         do {
 382                 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
 383                         break;
 384 
 385                 cond_resched();
 386         } while (!time_after_eq(jiffies, deadline));
 387 
 388         if (time_after_eq(jiffies, deadline)) {
 389                 dev_err(host->dev, "calculate ecc timed out\n");
 390                 return -ETIMEDOUT;
 391         }
 392 
 393         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 394         ecc[0] = ecc_tmp;
 395         ecc[1] = ecc_tmp >> 8;
 396         ecc[2] = ecc_tmp >> 16;
 397         ecc[3] = ecc_tmp >> 24;
 398 
 399         ecc_tmp = readl_relaxed(host->regs_va + ECC2);
 400         ecc[4] = ecc_tmp;
 401         ecc[5] = ecc_tmp >> 8;
 402         ecc[6] = ecc_tmp >> 16;
 403         ecc[7] = ecc_tmp >> 24;
 404 
 405         ecc_tmp = readl_relaxed(host->regs_va + ECC3);
 406         ecc[8] = ecc_tmp;
 407         ecc[9] = ecc_tmp >> 8;
 408         ecc[10] = ecc_tmp >> 16;
 409         ecc[11] = ecc_tmp >> 24;
 410 
 411         ecc_tmp = readl_relaxed(host->regs_va + STS);
 412         ecc[12] = ecc_tmp >> 16;
 413 
 414         return 0;
 415 }
 416 
 417 /*
 418  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 419  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 420  * max of 1-bit)
 421  */
 422 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
 423                                 u8 *ecc)
 424 {
 425         struct fsmc_nand_data *host = nand_to_fsmc(chip);
 426         u32 ecc_tmp;
 427 
 428         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 429         ecc[0] = ecc_tmp;
 430         ecc[1] = ecc_tmp >> 8;
 431         ecc[2] = ecc_tmp >> 16;
 432 
 433         return 0;
 434 }
 435 
 436 /* Count the number of 0's in buff upto a max of max_bits */
 437 static int count_written_bits(u8 *buff, int size, int max_bits)
 438 {
 439         int k, written_bits = 0;
 440 
 441         for (k = 0; k < size; k++) {
 442                 written_bits += hweight8(~buff[k]);
 443                 if (written_bits > max_bits)
 444                         break;
 445         }
 446 
 447         return written_bits;
 448 }
 449 
 450 static void dma_complete(void *param)
 451 {
 452         struct fsmc_nand_data *host = param;
 453 
 454         complete(&host->dma_access_complete);
 455 }
 456 
 457 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
 458                     enum dma_data_direction direction)
 459 {
 460         struct dma_chan *chan;
 461         struct dma_device *dma_dev;
 462         struct dma_async_tx_descriptor *tx;
 463         dma_addr_t dma_dst, dma_src, dma_addr;
 464         dma_cookie_t cookie;
 465         unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 466         int ret;
 467         unsigned long time_left;
 468 
 469         if (direction == DMA_TO_DEVICE)
 470                 chan = host->write_dma_chan;
 471         else if (direction == DMA_FROM_DEVICE)
 472                 chan = host->read_dma_chan;
 473         else
 474                 return -EINVAL;
 475 
 476         dma_dev = chan->device;
 477         dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
 478 
 479         if (direction == DMA_TO_DEVICE) {
 480                 dma_src = dma_addr;
 481                 dma_dst = host->data_pa;
 482         } else {
 483                 dma_src = host->data_pa;
 484                 dma_dst = dma_addr;
 485         }
 486 
 487         tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
 488                         len, flags);
 489         if (!tx) {
 490                 dev_err(host->dev, "device_prep_dma_memcpy error\n");
 491                 ret = -EIO;
 492                 goto unmap_dma;
 493         }
 494 
 495         tx->callback = dma_complete;
 496         tx->callback_param = host;
 497         cookie = tx->tx_submit(tx);
 498 
 499         ret = dma_submit_error(cookie);
 500         if (ret) {
 501                 dev_err(host->dev, "dma_submit_error %d\n", cookie);
 502                 goto unmap_dma;
 503         }
 504 
 505         dma_async_issue_pending(chan);
 506 
 507         time_left =
 508         wait_for_completion_timeout(&host->dma_access_complete,
 509                                     msecs_to_jiffies(3000));
 510         if (time_left == 0) {
 511                 dmaengine_terminate_all(chan);
 512                 dev_err(host->dev, "wait_for_completion_timeout\n");
 513                 ret = -ETIMEDOUT;
 514                 goto unmap_dma;
 515         }
 516 
 517         ret = 0;
 518 
 519 unmap_dma:
 520         dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
 521 
 522         return ret;
 523 }
 524 
 525 /*
 526  * fsmc_write_buf - write buffer to chip
 527  * @host:       FSMC NAND controller
 528  * @buf:        data buffer
 529  * @len:        number of bytes to write
 530  */
 531 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
 532                            int len)
 533 {
 534         int i;
 535 
 536         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
 537             IS_ALIGNED(len, sizeof(u32))) {
 538                 u32 *p = (u32 *)buf;
 539 
 540                 len = len >> 2;
 541                 for (i = 0; i < len; i++)
 542                         writel_relaxed(p[i], host->data_va);
 543         } else {
 544                 for (i = 0; i < len; i++)
 545                         writeb_relaxed(buf[i], host->data_va);
 546         }
 547 }
 548 
 549 /*
 550  * fsmc_read_buf - read chip data into buffer
 551  * @host:       FSMC NAND controller
 552  * @buf:        buffer to store date
 553  * @len:        number of bytes to read
 554  */
 555 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
 556 {
 557         int i;
 558 
 559         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
 560             IS_ALIGNED(len, sizeof(u32))) {
 561                 u32 *p = (u32 *)buf;
 562 
 563                 len = len >> 2;
 564                 for (i = 0; i < len; i++)
 565                         p[i] = readl_relaxed(host->data_va);
 566         } else {
 567                 for (i = 0; i < len; i++)
 568                         buf[i] = readb_relaxed(host->data_va);
 569         }
 570 }
 571 
 572 /*
 573  * fsmc_read_buf_dma - read chip data into buffer
 574  * @host:       FSMC NAND controller
 575  * @buf:        buffer to store date
 576  * @len:        number of bytes to read
 577  */
 578 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
 579                               int len)
 580 {
 581         dma_xfer(host, buf, len, DMA_FROM_DEVICE);
 582 }
 583 
 584 /*
 585  * fsmc_write_buf_dma - write buffer to chip
 586  * @host:       FSMC NAND controller
 587  * @buf:        data buffer
 588  * @len:        number of bytes to write
 589  */
 590 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
 591                                int len)
 592 {
 593         dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 594 }
 595 
 596 /*
 597  * fsmc_exec_op - hook called by the core to execute NAND operations
 598  *
 599  * This controller is simple enough and thus does not need to use the parser
 600  * provided by the core, instead, handle every situation here.
 601  */
 602 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
 603                         bool check_only)
 604 {
 605         struct fsmc_nand_data *host = nand_to_fsmc(chip);
 606         const struct nand_op_instr *instr = NULL;
 607         int ret = 0;
 608         unsigned int op_id;
 609         int i;
 610 
 611         pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
 612 
 613         for (op_id = 0; op_id < op->ninstrs; op_id++) {
 614                 instr = &op->instrs[op_id];
 615 
 616                 nand_op_trace("  ", instr);
 617 
 618                 switch (instr->type) {
 619                 case NAND_OP_CMD_INSTR:
 620                         writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
 621                         break;
 622 
 623                 case NAND_OP_ADDR_INSTR:
 624                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
 625                                 writeb_relaxed(instr->ctx.addr.addrs[i],
 626                                                host->addr_va);
 627                         break;
 628 
 629                 case NAND_OP_DATA_IN_INSTR:
 630                         if (host->mode == USE_DMA_ACCESS)
 631                                 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
 632                                                   instr->ctx.data.len);
 633                         else
 634                                 fsmc_read_buf(host, instr->ctx.data.buf.in,
 635                                               instr->ctx.data.len);
 636                         break;
 637 
 638                 case NAND_OP_DATA_OUT_INSTR:
 639                         if (host->mode == USE_DMA_ACCESS)
 640                                 fsmc_write_buf_dma(host,
 641                                                    instr->ctx.data.buf.out,
 642                                                    instr->ctx.data.len);
 643                         else
 644                                 fsmc_write_buf(host, instr->ctx.data.buf.out,
 645                                                instr->ctx.data.len);
 646                         break;
 647 
 648                 case NAND_OP_WAITRDY_INSTR:
 649                         ret = nand_soft_waitrdy(chip,
 650                                                 instr->ctx.waitrdy.timeout_ms);
 651                         break;
 652                 }
 653         }
 654 
 655         return ret;
 656 }
 657 
 658 /*
 659  * fsmc_read_page_hwecc
 660  * @chip:       nand chip info structure
 661  * @buf:        buffer to store read data
 662  * @oob_required:       caller expects OOB data read to chip->oob_poi
 663  * @page:       page number to read
 664  *
 665  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 666  * performed in a strict sequence as follows:
 667  * data(512 byte) -> ecc(13 byte)
 668  * After this read, fsmc hardware generates and reports error data bits(up to a
 669  * max of 8 bits)
 670  */
 671 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
 672                                 int oob_required, int page)
 673 {
 674         struct mtd_info *mtd = nand_to_mtd(chip);
 675         int i, j, s, stat, eccsize = chip->ecc.size;
 676         int eccbytes = chip->ecc.bytes;
 677         int eccsteps = chip->ecc.steps;
 678         u8 *p = buf;
 679         u8 *ecc_calc = chip->ecc.calc_buf;
 680         u8 *ecc_code = chip->ecc.code_buf;
 681         int off, len, ret, group = 0;
 682         /*
 683          * ecc_oob is intentionally taken as u16. In 16bit devices, we
 684          * end up reading 14 bytes (7 words) from oob. The local array is
 685          * to maintain word alignment
 686          */
 687         u16 ecc_oob[7];
 688         u8 *oob = (u8 *)&ecc_oob[0];
 689         unsigned int max_bitflips = 0;
 690 
 691         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 692                 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
 693                 chip->ecc.hwctl(chip, NAND_ECC_READ);
 694                 ret = nand_read_data_op(chip, p, eccsize, false);
 695                 if (ret)
 696                         return ret;
 697 
 698                 for (j = 0; j < eccbytes;) {
 699                         struct mtd_oob_region oobregion;
 700 
 701                         ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
 702                         if (ret)
 703                                 return ret;
 704 
 705                         off = oobregion.offset;
 706                         len = oobregion.length;
 707 
 708                         /*
 709                          * length is intentionally kept a higher multiple of 2
 710                          * to read at least 13 bytes even in case of 16 bit NAND
 711                          * devices
 712                          */
 713                         if (chip->options & NAND_BUSWIDTH_16)
 714                                 len = roundup(len, 2);
 715 
 716                         nand_read_oob_op(chip, page, off, oob + j, len);
 717                         j += len;
 718                 }
 719 
 720                 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
 721                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
 722 
 723                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
 724                 if (stat < 0) {
 725                         mtd->ecc_stats.failed++;
 726                 } else {
 727                         mtd->ecc_stats.corrected += stat;
 728                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
 729                 }
 730         }
 731 
 732         return max_bitflips;
 733 }
 734 
 735 /*
 736  * fsmc_bch8_correct_data
 737  * @mtd:        mtd info structure
 738  * @dat:        buffer of read data
 739  * @read_ecc:   ecc read from device spare area
 740  * @calc_ecc:   ecc calculated from read data
 741  *
 742  * calc_ecc is a 104 bit information containing maximum of 8 error
 743  * offset information of 13 bits each in 512 bytes of read data.
 744  */
 745 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
 746                                   u8 *read_ecc, u8 *calc_ecc)
 747 {
 748         struct fsmc_nand_data *host = nand_to_fsmc(chip);
 749         u32 err_idx[8];
 750         u32 num_err, i;
 751         u32 ecc1, ecc2, ecc3, ecc4;
 752 
 753         num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
 754 
 755         /* no bit flipping */
 756         if (likely(num_err == 0))
 757                 return 0;
 758 
 759         /* too many errors */
 760         if (unlikely(num_err > 8)) {
 761                 /*
 762                  * This is a temporary erase check. A newly erased page read
 763                  * would result in an ecc error because the oob data is also
 764                  * erased to FF and the calculated ecc for an FF data is not
 765                  * FF..FF.
 766                  * This is a workaround to skip performing correction in case
 767                  * data is FF..FF
 768                  *
 769                  * Logic:
 770                  * For every page, each bit written as 0 is counted until these
 771                  * number of bits are greater than 8 (the maximum correction
 772                  * capability of FSMC for each 512 + 13 bytes)
 773                  */
 774 
 775                 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
 776                 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
 777 
 778                 if ((bits_ecc + bits_data) <= 8) {
 779                         if (bits_data)
 780                                 memset(dat, 0xff, chip->ecc.size);
 781                         return bits_data;
 782                 }
 783 
 784                 return -EBADMSG;
 785         }
 786 
 787         /*
 788          * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
 789          * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
 790          *
 791          * calc_ecc is a 104 bit information containing maximum of 8 error
 792          * offset information of 13 bits each. calc_ecc is copied into a
 793          * u64 array and error offset indexes are populated in err_idx
 794          * array
 795          */
 796         ecc1 = readl_relaxed(host->regs_va + ECC1);
 797         ecc2 = readl_relaxed(host->regs_va + ECC2);
 798         ecc3 = readl_relaxed(host->regs_va + ECC3);
 799         ecc4 = readl_relaxed(host->regs_va + STS);
 800 
 801         err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 802         err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 803         err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 804         err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 805         err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 806         err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 807         err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 808         err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 809 
 810         i = 0;
 811         while (num_err--) {
 812                 change_bit(0, (unsigned long *)&err_idx[i]);
 813                 change_bit(1, (unsigned long *)&err_idx[i]);
 814 
 815                 if (err_idx[i] < chip->ecc.size * 8) {
 816                         change_bit(err_idx[i], (unsigned long *)dat);
 817                         i++;
 818                 }
 819         }
 820         return i;
 821 }
 822 
 823 static bool filter(struct dma_chan *chan, void *slave)
 824 {
 825         chan->private = slave;
 826         return true;
 827 }
 828 
 829 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 830                                      struct fsmc_nand_data *host,
 831                                      struct nand_chip *nand)
 832 {
 833         struct device_node *np = pdev->dev.of_node;
 834         u32 val;
 835         int ret;
 836 
 837         nand->options = 0;
 838 
 839         if (!of_property_read_u32(np, "bank-width", &val)) {
 840                 if (val == 2) {
 841                         nand->options |= NAND_BUSWIDTH_16;
 842                 } else if (val != 1) {
 843                         dev_err(&pdev->dev, "invalid bank-width %u\n", val);
 844                         return -EINVAL;
 845                 }
 846         }
 847 
 848         if (of_get_property(np, "nand-skip-bbtscan", NULL))
 849                 nand->options |= NAND_SKIP_BBTSCAN;
 850 
 851         host->dev_timings = devm_kzalloc(&pdev->dev,
 852                                          sizeof(*host->dev_timings),
 853                                          GFP_KERNEL);
 854         if (!host->dev_timings)
 855                 return -ENOMEM;
 856 
 857         ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
 858                                         sizeof(*host->dev_timings));
 859         if (ret)
 860                 host->dev_timings = NULL;
 861 
 862         /* Set default NAND bank to 0 */
 863         host->bank = 0;
 864         if (!of_property_read_u32(np, "bank", &val)) {
 865                 if (val > 3) {
 866                         dev_err(&pdev->dev, "invalid bank %u\n", val);
 867                         return -EINVAL;
 868                 }
 869                 host->bank = val;
 870         }
 871         return 0;
 872 }
 873 
 874 static int fsmc_nand_attach_chip(struct nand_chip *nand)
 875 {
 876         struct mtd_info *mtd = nand_to_mtd(nand);
 877         struct fsmc_nand_data *host = nand_to_fsmc(nand);
 878 
 879         if (AMBA_REV_BITS(host->pid) >= 8) {
 880                 switch (mtd->oobsize) {
 881                 case 16:
 882                 case 64:
 883                 case 128:
 884                 case 224:
 885                 case 256:
 886                         break;
 887                 default:
 888                         dev_warn(host->dev,
 889                                  "No oob scheme defined for oobsize %d\n",
 890                                  mtd->oobsize);
 891                         return -EINVAL;
 892                 }
 893 
 894                 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
 895 
 896                 return 0;
 897         }
 898 
 899         switch (nand->ecc.mode) {
 900         case NAND_ECC_HW:
 901                 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
 902                 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
 903                 nand->ecc.correct = nand_correct_data;
 904                 nand->ecc.bytes = 3;
 905                 nand->ecc.strength = 1;
 906                 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
 907                 break;
 908 
 909         case NAND_ECC_SOFT:
 910                 if (nand->ecc.algo == NAND_ECC_BCH) {
 911                         dev_info(host->dev,
 912                                  "Using 4-bit SW BCH ECC scheme\n");
 913                         break;
 914                 }
 915 
 916         case NAND_ECC_ON_DIE:
 917                 break;
 918 
 919         default:
 920                 dev_err(host->dev, "Unsupported ECC mode!\n");
 921                 return -ENOTSUPP;
 922         }
 923 
 924         /*
 925          * Don't set layout for BCH4 SW ECC. This will be
 926          * generated later in nand_bch_init() later.
 927          */
 928         if (nand->ecc.mode == NAND_ECC_HW) {
 929                 switch (mtd->oobsize) {
 930                 case 16:
 931                 case 64:
 932                 case 128:
 933                         mtd_set_ooblayout(mtd,
 934                                           &fsmc_ecc1_ooblayout_ops);
 935                         break;
 936                 default:
 937                         dev_warn(host->dev,
 938                                  "No oob scheme defined for oobsize %d\n",
 939                                  mtd->oobsize);
 940                         return -EINVAL;
 941                 }
 942         }
 943 
 944         return 0;
 945 }
 946 
 947 static const struct nand_controller_ops fsmc_nand_controller_ops = {
 948         .attach_chip = fsmc_nand_attach_chip,
 949         .exec_op = fsmc_exec_op,
 950         .setup_data_interface = fsmc_setup_data_interface,
 951 };
 952 
 953 /**
 954  * fsmc_nand_disable() - Disables the NAND bank
 955  * @host: The instance to disable
 956  */
 957 static void fsmc_nand_disable(struct fsmc_nand_data *host)
 958 {
 959         u32 val;
 960 
 961         val = readl(host->regs_va + FSMC_PC);
 962         val &= ~FSMC_ENABLE;
 963         writel(val, host->regs_va + FSMC_PC);
 964 }
 965 
 966 /*
 967  * fsmc_nand_probe - Probe function
 968  * @pdev:       platform device structure
 969  */
 970 static int __init fsmc_nand_probe(struct platform_device *pdev)
 971 {
 972         struct fsmc_nand_data *host;
 973         struct mtd_info *mtd;
 974         struct nand_chip *nand;
 975         struct resource *res;
 976         void __iomem *base;
 977         dma_cap_mask_t mask;
 978         int ret = 0;
 979         u32 pid;
 980         int i;
 981 
 982         /* Allocate memory for the device structure (and zero it) */
 983         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 984         if (!host)
 985                 return -ENOMEM;
 986 
 987         nand = &host->nand;
 988 
 989         ret = fsmc_nand_probe_config_dt(pdev, host, nand);
 990         if (ret)
 991                 return ret;
 992 
 993         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
 994         host->data_va = devm_ioremap_resource(&pdev->dev, res);
 995         if (IS_ERR(host->data_va))
 996                 return PTR_ERR(host->data_va);
 997 
 998         host->data_pa = (dma_addr_t)res->start;
 999 
1000         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1001         host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1002         if (IS_ERR(host->addr_va))
1003                 return PTR_ERR(host->addr_va);
1004 
1005         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1006         host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1007         if (IS_ERR(host->cmd_va))
1008                 return PTR_ERR(host->cmd_va);
1009 
1010         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1011         base = devm_ioremap_resource(&pdev->dev, res);
1012         if (IS_ERR(base))
1013                 return PTR_ERR(base);
1014 
1015         host->regs_va = base + FSMC_NOR_REG_SIZE +
1016                 (host->bank * FSMC_NAND_BANK_SZ);
1017 
1018         host->clk = devm_clk_get(&pdev->dev, NULL);
1019         if (IS_ERR(host->clk)) {
1020                 dev_err(&pdev->dev, "failed to fetch block clock\n");
1021                 return PTR_ERR(host->clk);
1022         }
1023 
1024         ret = clk_prepare_enable(host->clk);
1025         if (ret)
1026                 return ret;
1027 
1028         /*
1029          * This device ID is actually a common AMBA ID as used on the
1030          * AMBA PrimeCell bus. However it is not a PrimeCell.
1031          */
1032         for (pid = 0, i = 0; i < 4; i++)
1033                 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1034                         255) << (i * 8);
1035 
1036         host->pid = pid;
1037 
1038         dev_info(&pdev->dev,
1039                  "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1040                  AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1041                  AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1042 
1043         host->dev = &pdev->dev;
1044 
1045         if (host->mode == USE_DMA_ACCESS)
1046                 init_completion(&host->dma_access_complete);
1047 
1048         /* Link all private pointers */
1049         mtd = nand_to_mtd(&host->nand);
1050         nand_set_flash_node(nand, pdev->dev.of_node);
1051 
1052         mtd->dev.parent = &pdev->dev;
1053 
1054         /*
1055          * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1056          * can overwrite this value if the DT provides a different value.
1057          */
1058         nand->ecc.mode = NAND_ECC_HW;
1059         nand->ecc.hwctl = fsmc_enable_hwecc;
1060         nand->ecc.size = 512;
1061         nand->badblockbits = 7;
1062 
1063         if (host->mode == USE_DMA_ACCESS) {
1064                 dma_cap_zero(mask);
1065                 dma_cap_set(DMA_MEMCPY, mask);
1066                 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1067                 if (!host->read_dma_chan) {
1068                         dev_err(&pdev->dev, "Unable to get read dma channel\n");
1069                         goto disable_clk;
1070                 }
1071                 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1072                 if (!host->write_dma_chan) {
1073                         dev_err(&pdev->dev, "Unable to get write dma channel\n");
1074                         goto release_dma_read_chan;
1075                 }
1076         }
1077 
1078         if (host->dev_timings) {
1079                 fsmc_nand_setup(host, host->dev_timings);
1080                 nand->options |= NAND_KEEP_TIMINGS;
1081         }
1082 
1083         if (AMBA_REV_BITS(host->pid) >= 8) {
1084                 nand->ecc.read_page = fsmc_read_page_hwecc;
1085                 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1086                 nand->ecc.correct = fsmc_bch8_correct_data;
1087                 nand->ecc.bytes = 13;
1088                 nand->ecc.strength = 8;
1089         }
1090 
1091         nand_controller_init(&host->base);
1092         host->base.ops = &fsmc_nand_controller_ops;
1093         nand->controller = &host->base;
1094 
1095         /*
1096          * Scan to find existence of the device
1097          */
1098         ret = nand_scan(nand, 1);
1099         if (ret)
1100                 goto release_dma_write_chan;
1101 
1102         mtd->name = "nand";
1103         ret = mtd_device_register(mtd, NULL, 0);
1104         if (ret)
1105                 goto cleanup_nand;
1106 
1107         platform_set_drvdata(pdev, host);
1108         dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1109 
1110         return 0;
1111 
1112 cleanup_nand:
1113         nand_cleanup(nand);
1114 release_dma_write_chan:
1115         if (host->mode == USE_DMA_ACCESS)
1116                 dma_release_channel(host->write_dma_chan);
1117 release_dma_read_chan:
1118         if (host->mode == USE_DMA_ACCESS)
1119                 dma_release_channel(host->read_dma_chan);
1120 disable_clk:
1121         fsmc_nand_disable(host);
1122         clk_disable_unprepare(host->clk);
1123 
1124         return ret;
1125 }
1126 
1127 /*
1128  * Clean up routine
1129  */
1130 static int fsmc_nand_remove(struct platform_device *pdev)
1131 {
1132         struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1133 
1134         if (host) {
1135                 nand_release(&host->nand);
1136                 fsmc_nand_disable(host);
1137 
1138                 if (host->mode == USE_DMA_ACCESS) {
1139                         dma_release_channel(host->write_dma_chan);
1140                         dma_release_channel(host->read_dma_chan);
1141                 }
1142                 clk_disable_unprepare(host->clk);
1143         }
1144 
1145         return 0;
1146 }
1147 
1148 #ifdef CONFIG_PM_SLEEP
1149 static int fsmc_nand_suspend(struct device *dev)
1150 {
1151         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1152 
1153         if (host)
1154                 clk_disable_unprepare(host->clk);
1155 
1156         return 0;
1157 }
1158 
1159 static int fsmc_nand_resume(struct device *dev)
1160 {
1161         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1162 
1163         if (host) {
1164                 clk_prepare_enable(host->clk);
1165                 if (host->dev_timings)
1166                         fsmc_nand_setup(host, host->dev_timings);
1167                 nand_reset(&host->nand, 0);
1168         }
1169 
1170         return 0;
1171 }
1172 #endif
1173 
1174 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1175 
1176 static const struct of_device_id fsmc_nand_id_table[] = {
1177         { .compatible = "st,spear600-fsmc-nand" },
1178         { .compatible = "stericsson,fsmc-nand" },
1179         {}
1180 };
1181 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1182 
1183 static struct platform_driver fsmc_nand_driver = {
1184         .remove = fsmc_nand_remove,
1185         .driver = {
1186                 .name = "fsmc-nand",
1187                 .of_match_table = fsmc_nand_id_table,
1188                 .pm = &fsmc_nand_pm_ops,
1189         },
1190 };
1191 
1192 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1193 
1194 MODULE_LICENSE("GPL v2");
1195 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1196 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");

/* [<][>][^][v][top][bottom][index][help] */