root/drivers/mtd/nand/raw/tmio_nand.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mtd_to_tmio
  2. tmio_nand_hwcontrol
  3. tmio_nand_dev_ready
  4. tmio_irq
  5. tmio_nand_wait
  6. tmio_nand_read_byte
  7. tmio_nand_write_buf
  8. tmio_nand_read_buf
  9. tmio_nand_enable_hwecc
  10. tmio_nand_calculate_ecc
  11. tmio_nand_correct_data
  12. tmio_hw_init
  13. tmio_hw_stop
  14. tmio_probe
  15. tmio_remove
  16. tmio_suspend
  17. tmio_resume

   1 /*
   2  * Toshiba TMIO NAND flash controller driver
   3  *
   4  * Slightly murky pre-git history of the driver:
   5  *
   6  * Copyright (c) Ian Molton 2004, 2005, 2008
   7  *    Original work, independent of sharps code. Included hardware ECC support.
   8  *    Hard ECC did not work for writes in the early revisions.
   9  * Copyright (c) Dirk Opfer 2005.
  10  *    Modifications developed from sharps code but
  11  *    NOT containing any, ported onto Ians base.
  12  * Copyright (c) Chris Humbert 2005
  13  * Copyright (c) Dmitry Baryshkov 2008
  14  *    Minor fixes
  15  *
  16  * Parts copyright Sebastian Carlier
  17  *
  18  * This file is licensed under
  19  * the terms of the GNU General Public License version 2. This program
  20  * is licensed "as is" without any warranty of any kind, whether express
  21  * or implied.
  22  *
  23  */
  24 
  25 
  26 #include <linux/kernel.h>
  27 #include <linux/module.h>
  28 #include <linux/platform_device.h>
  29 #include <linux/mfd/core.h>
  30 #include <linux/mfd/tmio.h>
  31 #include <linux/delay.h>
  32 #include <linux/io.h>
  33 #include <linux/irq.h>
  34 #include <linux/interrupt.h>
  35 #include <linux/ioport.h>
  36 #include <linux/mtd/mtd.h>
  37 #include <linux/mtd/rawnand.h>
  38 #include <linux/mtd/nand_ecc.h>
  39 #include <linux/mtd/partitions.h>
  40 #include <linux/slab.h>
  41 
  42 /*--------------------------------------------------------------------------*/
  43 
  44 /*
  45  * NAND Flash Host Controller Configuration Register
  46  */
  47 #define CCR_COMMAND     0x04    /* w Command                            */
  48 #define CCR_BASE        0x10    /* l NAND Flash Control Reg Base Addr   */
  49 #define CCR_INTP        0x3d    /* b Interrupt Pin                      */
  50 #define CCR_INTE        0x48    /* b Interrupt Enable                   */
  51 #define CCR_EC          0x4a    /* b Event Control                      */
  52 #define CCR_ICC         0x4c    /* b Internal Clock Control             */
  53 #define CCR_ECCC        0x5b    /* b ECC Control                        */
  54 #define CCR_NFTC        0x60    /* b NAND Flash Transaction Control     */
  55 #define CCR_NFM         0x61    /* b NAND Flash Monitor                 */
  56 #define CCR_NFPSC       0x62    /* b NAND Flash Power Supply Control    */
  57 #define CCR_NFDC        0x63    /* b NAND Flash Detect Control          */
  58 
  59 /*
  60  * NAND Flash Control Register
  61  */
  62 #define FCR_DATA        0x00    /* bwl Data Register                    */
  63 #define FCR_MODE        0x04    /* b Mode Register                      */
  64 #define FCR_STATUS      0x05    /* b Status Register                    */
  65 #define FCR_ISR         0x06    /* b Interrupt Status Register          */
  66 #define FCR_IMR         0x07    /* b Interrupt Mask Register            */
  67 
  68 /* FCR_MODE Register Command List */
  69 #define FCR_MODE_DATA   0x94    /* Data Data_Mode */
  70 #define FCR_MODE_COMMAND 0x95   /* Data Command_Mode */
  71 #define FCR_MODE_ADDRESS 0x96   /* Data Address_Mode */
  72 
  73 #define FCR_MODE_HWECC_CALC     0xB4    /* HW-ECC Data */
  74 #define FCR_MODE_HWECC_RESULT   0xD4    /* HW-ECC Calc result Read_Mode */
  75 #define FCR_MODE_HWECC_RESET    0xF4    /* HW-ECC Reset */
  76 
  77 #define FCR_MODE_POWER_ON       0x0C    /* Power Supply ON  to SSFDC card */
  78 #define FCR_MODE_POWER_OFF      0x08    /* Power Supply OFF to SSFDC card */
  79 
  80 #define FCR_MODE_LED_OFF        0x00    /* LED OFF */
  81 #define FCR_MODE_LED_ON         0x04    /* LED ON */
  82 
  83 #define FCR_MODE_EJECT_ON       0x68    /* Ejection events active  */
  84 #define FCR_MODE_EJECT_OFF      0x08    /* Ejection events ignored */
  85 
  86 #define FCR_MODE_LOCK           0x6C    /* Lock_Mode. Eject Switch Invalid */
  87 #define FCR_MODE_UNLOCK         0x0C    /* UnLock_Mode. Eject Switch is valid */
  88 
  89 #define FCR_MODE_CONTROLLER_ID  0x40    /* Controller ID Read */
  90 #define FCR_MODE_STANDBY        0x00    /* SSFDC card Changes Standby State */
  91 
  92 #define FCR_MODE_WE             0x80
  93 #define FCR_MODE_ECC1           0x40
  94 #define FCR_MODE_ECC0           0x20
  95 #define FCR_MODE_CE             0x10
  96 #define FCR_MODE_PCNT1          0x08
  97 #define FCR_MODE_PCNT0          0x04
  98 #define FCR_MODE_ALE            0x02
  99 #define FCR_MODE_CLE            0x01
 100 
 101 #define FCR_STATUS_BUSY         0x80
 102 
 103 /*--------------------------------------------------------------------------*/
 104 
 105 struct tmio_nand {
 106         struct nand_chip chip;
 107         struct completion comp;
 108 
 109         struct platform_device *dev;
 110 
 111         void __iomem *ccr;
 112         void __iomem *fcr;
 113         unsigned long fcr_base;
 114 
 115         unsigned int irq;
 116 
 117         /* for tmio_nand_read_byte */
 118         u8                      read;
 119         unsigned read_good:1;
 120 };
 121 
 122 static inline struct tmio_nand *mtd_to_tmio(struct mtd_info *mtd)
 123 {
 124         return container_of(mtd_to_nand(mtd), struct tmio_nand, chip);
 125 }
 126 
 127 
 128 /*--------------------------------------------------------------------------*/
 129 
 130 static void tmio_nand_hwcontrol(struct nand_chip *chip, int cmd,
 131                                 unsigned int ctrl)
 132 {
 133         struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 134 
 135         if (ctrl & NAND_CTRL_CHANGE) {
 136                 u8 mode;
 137 
 138                 if (ctrl & NAND_NCE) {
 139                         mode = FCR_MODE_DATA;
 140 
 141                         if (ctrl & NAND_CLE)
 142                                 mode |=  FCR_MODE_CLE;
 143                         else
 144                                 mode &= ~FCR_MODE_CLE;
 145 
 146                         if (ctrl & NAND_ALE)
 147                                 mode |=  FCR_MODE_ALE;
 148                         else
 149                                 mode &= ~FCR_MODE_ALE;
 150                 } else {
 151                         mode = FCR_MODE_STANDBY;
 152                 }
 153 
 154                 tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
 155                 tmio->read_good = 0;
 156         }
 157 
 158         if (cmd != NAND_CMD_NONE)
 159                 tmio_iowrite8(cmd, chip->legacy.IO_ADDR_W);
 160 }
 161 
 162 static int tmio_nand_dev_ready(struct nand_chip *chip)
 163 {
 164         struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 165 
 166         return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
 167 }
 168 
 169 static irqreturn_t tmio_irq(int irq, void *__tmio)
 170 {
 171         struct tmio_nand *tmio = __tmio;
 172 
 173         /* disable RDYREQ interrupt */
 174         tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
 175         complete(&tmio->comp);
 176 
 177         return IRQ_HANDLED;
 178 }
 179 
 180 /*
 181   *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
 182   *This interrupt is normally disabled, but for long operations like
 183   *erase and write, we enable it to wake us up.  The irq handler
 184   *disables the interrupt.
 185  */
 186 static int tmio_nand_wait(struct nand_chip *nand_chip)
 187 {
 188         struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(nand_chip));
 189         long timeout;
 190         u8 status;
 191 
 192         /* enable RDYREQ interrupt */
 193 
 194         tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
 195         reinit_completion(&tmio->comp);
 196         tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
 197 
 198         timeout = 400;
 199         timeout = wait_for_completion_timeout(&tmio->comp,
 200                                               msecs_to_jiffies(timeout));
 201 
 202         if (unlikely(!tmio_nand_dev_ready(nand_chip))) {
 203                 tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
 204                 dev_warn(&tmio->dev->dev, "still busy after 400 ms\n");
 205 
 206         } else if (unlikely(!timeout)) {
 207                 tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
 208                 dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
 209         }
 210 
 211         nand_status_op(nand_chip, &status);
 212         return status;
 213 }
 214 
 215 /*
 216   *The TMIO controller combines two 8-bit data bytes into one 16-bit
 217   *word. This function separates them so nand_base.c works as expected,
 218   *especially its NAND_CMD_READID routines.
 219  *
 220   *To prevent stale data from being read, tmio_nand_hwcontrol() clears
 221   *tmio->read_good.
 222  */
 223 static u_char tmio_nand_read_byte(struct nand_chip *chip)
 224 {
 225         struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 226         unsigned int data;
 227 
 228         if (tmio->read_good--)
 229                 return tmio->read;
 230 
 231         data = tmio_ioread16(tmio->fcr + FCR_DATA);
 232         tmio->read = data >> 8;
 233         return data;
 234 }
 235 
 236 /*
 237   *The TMIO controller converts an 8-bit NAND interface to a 16-bit
 238   *bus interface, so all data reads and writes must be 16-bit wide.
 239   *Thus, we implement 16-bit versions of the read, write, and verify
 240   *buffer functions.
 241  */
 242 static void
 243 tmio_nand_write_buf(struct nand_chip *chip, const u_char *buf, int len)
 244 {
 245         struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 246 
 247         tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
 248 }
 249 
 250 static void tmio_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
 251 {
 252         struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 253 
 254         tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
 255 }
 256 
 257 static void tmio_nand_enable_hwecc(struct nand_chip *chip, int mode)
 258 {
 259         struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 260 
 261         tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
 262         tmio_ioread8(tmio->fcr + FCR_DATA);     /* dummy read */
 263         tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
 264 }
 265 
 266 static int tmio_nand_calculate_ecc(struct nand_chip *chip, const u_char *dat,
 267                                    u_char *ecc_code)
 268 {
 269         struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 270         unsigned int ecc;
 271 
 272         tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
 273 
 274         ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
 275         ecc_code[1] = ecc;      /* 000-255 LP7-0 */
 276         ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */
 277         ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
 278         ecc_code[2] = ecc;      /* 000-255 CP5-0,11b */
 279         ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */
 280         ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
 281         ecc_code[3] = ecc;      /* 256-511 LP15-8 */
 282         ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */
 283 
 284         tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE);
 285         return 0;
 286 }
 287 
 288 static int tmio_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
 289                                   unsigned char *read_ecc,
 290                                   unsigned char *calc_ecc)
 291 {
 292         int r0, r1;
 293 
 294         /* assume ecc.size = 512 and ecc.bytes = 6 */
 295         r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256, false);
 296         if (r0 < 0)
 297                 return r0;
 298         r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256,
 299                                  false);
 300         if (r1 < 0)
 301                 return r1;
 302         return r0 + r1;
 303 }
 304 
 305 static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
 306 {
 307         const struct mfd_cell *cell = mfd_get_cell(dev);
 308         int ret;
 309 
 310         if (cell->enable) {
 311                 ret = cell->enable(dev);
 312                 if (ret)
 313                         return ret;
 314         }
 315 
 316         /* (4Ch) CLKRUN Enable    1st spcrunc */
 317         tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
 318 
 319         /* (10h)BaseAddress    0x1000 spba.spba2 */
 320         tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
 321         tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
 322 
 323         /* (04h)Command Register I/O spcmd */
 324         tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
 325 
 326         /* (62h) Power Supply Control ssmpwc */
 327         /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
 328         tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
 329 
 330         /* (63h) Detect Control ssmdtc */
 331         tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
 332 
 333         /* Interrupt status register clear sintst */
 334         tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
 335 
 336         /* After power supply, Media are reset smode */
 337         tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE);
 338         tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE);
 339         tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA);
 340 
 341         /* Standby Mode smode */
 342         tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE);
 343 
 344         mdelay(5);
 345 
 346         return 0;
 347 }
 348 
 349 static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
 350 {
 351         const struct mfd_cell *cell = mfd_get_cell(dev);
 352 
 353         tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE);
 354         if (cell->disable)
 355                 cell->disable(dev);
 356 }
 357 
 358 static int tmio_probe(struct platform_device *dev)
 359 {
 360         struct tmio_nand_data *data = dev_get_platdata(&dev->dev);
 361         struct resource *fcr = platform_get_resource(dev,
 362                         IORESOURCE_MEM, 0);
 363         struct resource *ccr = platform_get_resource(dev,
 364                         IORESOURCE_MEM, 1);
 365         int irq = platform_get_irq(dev, 0);
 366         struct tmio_nand *tmio;
 367         struct mtd_info *mtd;
 368         struct nand_chip *nand_chip;
 369         int retval;
 370 
 371         if (data == NULL)
 372                 dev_warn(&dev->dev, "NULL platform data!\n");
 373 
 374         tmio = devm_kzalloc(&dev->dev, sizeof(*tmio), GFP_KERNEL);
 375         if (!tmio)
 376                 return -ENOMEM;
 377 
 378         init_completion(&tmio->comp);
 379 
 380         tmio->dev = dev;
 381 
 382         platform_set_drvdata(dev, tmio);
 383         nand_chip = &tmio->chip;
 384         mtd = nand_to_mtd(nand_chip);
 385         mtd->name = "tmio-nand";
 386         mtd->dev.parent = &dev->dev;
 387 
 388         tmio->ccr = devm_ioremap(&dev->dev, ccr->start, resource_size(ccr));
 389         if (!tmio->ccr)
 390                 return -EIO;
 391 
 392         tmio->fcr_base = fcr->start & 0xfffff;
 393         tmio->fcr = devm_ioremap(&dev->dev, fcr->start, resource_size(fcr));
 394         if (!tmio->fcr)
 395                 return -EIO;
 396 
 397         retval = tmio_hw_init(dev, tmio);
 398         if (retval)
 399                 return retval;
 400 
 401         /* Set address of NAND IO lines */
 402         nand_chip->legacy.IO_ADDR_R = tmio->fcr;
 403         nand_chip->legacy.IO_ADDR_W = tmio->fcr;
 404 
 405         /* Set address of hardware control function */
 406         nand_chip->legacy.cmd_ctrl = tmio_nand_hwcontrol;
 407         nand_chip->legacy.dev_ready = tmio_nand_dev_ready;
 408         nand_chip->legacy.read_byte = tmio_nand_read_byte;
 409         nand_chip->legacy.write_buf = tmio_nand_write_buf;
 410         nand_chip->legacy.read_buf = tmio_nand_read_buf;
 411 
 412         /* set eccmode using hardware ECC */
 413         nand_chip->ecc.mode = NAND_ECC_HW;
 414         nand_chip->ecc.size = 512;
 415         nand_chip->ecc.bytes = 6;
 416         nand_chip->ecc.strength = 2;
 417         nand_chip->ecc.hwctl = tmio_nand_enable_hwecc;
 418         nand_chip->ecc.calculate = tmio_nand_calculate_ecc;
 419         nand_chip->ecc.correct = tmio_nand_correct_data;
 420 
 421         if (data)
 422                 nand_chip->badblock_pattern = data->badblock_pattern;
 423 
 424         /* 15 us command delay time */
 425         nand_chip->legacy.chip_delay = 15;
 426 
 427         retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0,
 428                                   dev_name(&dev->dev), tmio);
 429         if (retval) {
 430                 dev_err(&dev->dev, "request_irq error %d\n", retval);
 431                 goto err_irq;
 432         }
 433 
 434         tmio->irq = irq;
 435         nand_chip->legacy.waitfunc = tmio_nand_wait;
 436 
 437         /* Scan to find existence of the device */
 438         retval = nand_scan(nand_chip, 1);
 439         if (retval)
 440                 goto err_irq;
 441 
 442         /* Register the partitions */
 443         retval = mtd_device_parse_register(mtd,
 444                                            data ? data->part_parsers : NULL,
 445                                            NULL,
 446                                            data ? data->partition : NULL,
 447                                            data ? data->num_partitions : 0);
 448         if (!retval)
 449                 return retval;
 450 
 451         nand_release(nand_chip);
 452 
 453 err_irq:
 454         tmio_hw_stop(dev, tmio);
 455         return retval;
 456 }
 457 
 458 static int tmio_remove(struct platform_device *dev)
 459 {
 460         struct tmio_nand *tmio = platform_get_drvdata(dev);
 461 
 462         nand_release(&tmio->chip);
 463         tmio_hw_stop(dev, tmio);
 464         return 0;
 465 }
 466 
 467 #ifdef CONFIG_PM
 468 static int tmio_suspend(struct platform_device *dev, pm_message_t state)
 469 {
 470         const struct mfd_cell *cell = mfd_get_cell(dev);
 471 
 472         if (cell->suspend)
 473                 cell->suspend(dev);
 474 
 475         tmio_hw_stop(dev, platform_get_drvdata(dev));
 476         return 0;
 477 }
 478 
 479 static int tmio_resume(struct platform_device *dev)
 480 {
 481         const struct mfd_cell *cell = mfd_get_cell(dev);
 482 
 483         /* FIXME - is this required or merely another attack of the broken
 484          * SHARP platform? Looks suspicious.
 485          */
 486         tmio_hw_init(dev, platform_get_drvdata(dev));
 487 
 488         if (cell->resume)
 489                 cell->resume(dev);
 490 
 491         return 0;
 492 }
 493 #else
 494 #define tmio_suspend NULL
 495 #define tmio_resume NULL
 496 #endif
 497 
 498 static struct platform_driver tmio_driver = {
 499         .driver.name    = "tmio-nand",
 500         .driver.owner   = THIS_MODULE,
 501         .probe          = tmio_probe,
 502         .remove         = tmio_remove,
 503         .suspend        = tmio_suspend,
 504         .resume         = tmio_resume,
 505 };
 506 
 507 module_platform_driver(tmio_driver);
 508 
 509 MODULE_LICENSE("GPL v2");
 510 MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
 511 MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
 512 MODULE_ALIAS("platform:tmio-nand");

/* [<][>][^][v][top][bottom][index][help] */