root/drivers/mtd/nand/raw/lpc32xx_slc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. lpc32xx_ooblayout_ecc
  2. lpc32xx_ooblayout_free
  3. lpc32xx_nand_setup
  4. lpc32xx_nand_cmd_ctrl
  5. lpc32xx_nand_device_ready
  6. lpc32xx_wp_enable
  7. lpc32xx_wp_disable
  8. lpc32xx_nand_ecc_enable
  9. lpc32xx_nand_ecc_calculate
  10. lpc32xx_nand_read_byte
  11. lpc32xx_nand_read_buf
  12. lpc32xx_nand_write_buf
  13. lpc32xx_nand_read_oob_syndrome
  14. lpc32xx_nand_write_oob_syndrome
  15. lpc32xx_slc_ecc_copy
  16. lpc32xx_dma_complete_func
  17. lpc32xx_xmit_dma
  18. lpc32xx_xfer
  19. lpc32xx_nand_read_page_syndrome
  20. lpc32xx_nand_read_page_raw_syndrome
  21. lpc32xx_nand_write_page_syndrome
  22. lpc32xx_nand_write_page_raw_syndrome
  23. lpc32xx_nand_dma_setup
  24. lpc32xx_parse_dt
  25. lpc32xx_nand_attach_chip
  26. lpc32xx_nand_probe
  27. lpc32xx_nand_remove
  28. lpc32xx_nand_resume
  29. lpc32xx_nand_suspend

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * NXP LPC32XX NAND SLC driver
   4  *
   5  * Authors:
   6  *    Kevin Wells <kevin.wells@nxp.com>
   7  *    Roland Stigge <stigge@antcom.de>
   8  *
   9  * Copyright © 2011 NXP Semiconductors
  10  * Copyright © 2012 Roland Stigge
  11  */
  12 
  13 #include <linux/slab.h>
  14 #include <linux/module.h>
  15 #include <linux/platform_device.h>
  16 #include <linux/mtd/mtd.h>
  17 #include <linux/mtd/rawnand.h>
  18 #include <linux/mtd/partitions.h>
  19 #include <linux/clk.h>
  20 #include <linux/err.h>
  21 #include <linux/delay.h>
  22 #include <linux/io.h>
  23 #include <linux/mm.h>
  24 #include <linux/dma-mapping.h>
  25 #include <linux/dmaengine.h>
  26 #include <linux/mtd/nand_ecc.h>
  27 #include <linux/gpio.h>
  28 #include <linux/of.h>
  29 #include <linux/of_gpio.h>
  30 #include <linux/mtd/lpc32xx_slc.h>
  31 
  32 #define LPC32XX_MODNAME         "lpc32xx-nand"
  33 
  34 /**********************************************************************
  35 * SLC NAND controller register offsets
  36 **********************************************************************/
  37 
  38 #define SLC_DATA(x)             (x + 0x000)
  39 #define SLC_ADDR(x)             (x + 0x004)
  40 #define SLC_CMD(x)              (x + 0x008)
  41 #define SLC_STOP(x)             (x + 0x00C)
  42 #define SLC_CTRL(x)             (x + 0x010)
  43 #define SLC_CFG(x)              (x + 0x014)
  44 #define SLC_STAT(x)             (x + 0x018)
  45 #define SLC_INT_STAT(x)         (x + 0x01C)
  46 #define SLC_IEN(x)              (x + 0x020)
  47 #define SLC_ISR(x)              (x + 0x024)
  48 #define SLC_ICR(x)              (x + 0x028)
  49 #define SLC_TAC(x)              (x + 0x02C)
  50 #define SLC_TC(x)               (x + 0x030)
  51 #define SLC_ECC(x)              (x + 0x034)
  52 #define SLC_DMA_DATA(x)         (x + 0x038)
  53 
  54 /**********************************************************************
  55 * slc_ctrl register definitions
  56 **********************************************************************/
  57 #define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
  58 #define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
  59 #define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
  60 
  61 /**********************************************************************
  62 * slc_cfg register definitions
  63 **********************************************************************/
  64 #define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
  65 #define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
  66 #define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
  67 #define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
  68 #define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
  69 #define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
  70 
  71 /**********************************************************************
  72 * slc_stat register definitions
  73 **********************************************************************/
  74 #define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
  75 #define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
  76 #define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
  77 
  78 /**********************************************************************
  79 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
  80 **********************************************************************/
  81 #define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
  82 #define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
  83 
  84 /**********************************************************************
  85 * slc_tac register definitions
  86 **********************************************************************/
  87 /* Computation of clock cycles on basis of controller and device clock rates */
  88 #define SLCTAC_CLOCKS(c, n, s)  (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
  89 
  90 /* Clock setting for RDY write sample wait time in 2*n clocks */
  91 #define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
  92 /* Write pulse width in clock cycles, 1 to 16 clocks */
  93 #define SLCTAC_WWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 24))
  94 /* Write hold time of control and data signals, 1 to 16 clocks */
  95 #define SLCTAC_WHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 20))
  96 /* Write setup time of control and data signals, 1 to 16 clocks */
  97 #define SLCTAC_WSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 16))
  98 /* Clock setting for RDY read sample wait time in 2*n clocks */
  99 #define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
 100 /* Read pulse width in clock cycles, 1 to 16 clocks */
 101 #define SLCTAC_RWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 8))
 102 /* Read hold time of control and data signals, 1 to 16 clocks */
 103 #define SLCTAC_RHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 4))
 104 /* Read setup time of control and data signals, 1 to 16 clocks */
 105 #define SLCTAC_RSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 0))
 106 
 107 /**********************************************************************
 108 * slc_ecc register definitions
 109 **********************************************************************/
 110 /* ECC line party fetch macro */
 111 #define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
 112 #define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
 113 
 114 /*
 115  * DMA requires storage space for the DMA local buffer and the hardware ECC
 116  * storage area. The DMA local buffer is only used if DMA mapping fails
 117  * during runtime.
 118  */
 119 #define LPC32XX_DMA_DATA_SIZE           4096
 120 #define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
 121 
 122 /* Number of bytes used for ECC stored in NAND per 256 bytes */
 123 #define LPC32XX_SLC_DEV_ECC_BYTES       3
 124 
 125 /*
 126  * If the NAND base clock frequency can't be fetched, this frequency will be
 127  * used instead as the base. This rate is used to setup the timing registers
 128  * used for NAND accesses.
 129  */
 130 #define LPC32XX_DEF_BUS_RATE            133250000
 131 
 132 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
 133 #define LPC32XX_DMA_TIMEOUT             100
 134 
 135 /*
 136  * NAND ECC Layout for small page NAND devices
 137  * Note: For large and huge page devices, the default layouts are used
 138  */
 139 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
 140                                  struct mtd_oob_region *oobregion)
 141 {
 142         if (section)
 143                 return -ERANGE;
 144 
 145         oobregion->length = 6;
 146         oobregion->offset = 10;
 147 
 148         return 0;
 149 }
 150 
 151 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
 152                                   struct mtd_oob_region *oobregion)
 153 {
 154         if (section > 1)
 155                 return -ERANGE;
 156 
 157         if (!section) {
 158                 oobregion->offset = 0;
 159                 oobregion->length = 4;
 160         } else {
 161                 oobregion->offset = 6;
 162                 oobregion->length = 4;
 163         }
 164 
 165         return 0;
 166 }
 167 
 168 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
 169         .ecc = lpc32xx_ooblayout_ecc,
 170         .free = lpc32xx_ooblayout_free,
 171 };
 172 
 173 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 174 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 175 
 176 /*
 177  * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 178  * Note: Large page devices used the default layout
 179  */
 180 static struct nand_bbt_descr bbt_smallpage_main_descr = {
 181         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 182                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 183         .offs = 0,
 184         .len = 4,
 185         .veroffs = 6,
 186         .maxblocks = 4,
 187         .pattern = bbt_pattern
 188 };
 189 
 190 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
 191         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 192                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 193         .offs = 0,
 194         .len = 4,
 195         .veroffs = 6,
 196         .maxblocks = 4,
 197         .pattern = mirror_pattern
 198 };
 199 
 200 /*
 201  * NAND platform configuration structure
 202  */
 203 struct lpc32xx_nand_cfg_slc {
 204         uint32_t wdr_clks;
 205         uint32_t wwidth;
 206         uint32_t whold;
 207         uint32_t wsetup;
 208         uint32_t rdr_clks;
 209         uint32_t rwidth;
 210         uint32_t rhold;
 211         uint32_t rsetup;
 212         int wp_gpio;
 213         struct mtd_partition *parts;
 214         unsigned num_parts;
 215 };
 216 
 217 struct lpc32xx_nand_host {
 218         struct nand_chip        nand_chip;
 219         struct lpc32xx_slc_platform_data *pdata;
 220         struct clk              *clk;
 221         void __iomem            *io_base;
 222         struct lpc32xx_nand_cfg_slc *ncfg;
 223 
 224         struct completion       comp;
 225         struct dma_chan         *dma_chan;
 226         uint32_t                dma_buf_len;
 227         struct dma_slave_config dma_slave_config;
 228         struct scatterlist      sgl;
 229 
 230         /*
 231          * DMA and CPU addresses of ECC work area and data buffer
 232          */
 233         uint32_t                *ecc_buf;
 234         uint8_t                 *data_buf;
 235         dma_addr_t              io_base_dma;
 236 };
 237 
 238 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
 239 {
 240         uint32_t clkrate, tmp;
 241 
 242         /* Reset SLC controller */
 243         writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
 244         udelay(1000);
 245 
 246         /* Basic setup */
 247         writel(0, SLC_CFG(host->io_base));
 248         writel(0, SLC_IEN(host->io_base));
 249         writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
 250                 SLC_ICR(host->io_base));
 251 
 252         /* Get base clock for SLC block */
 253         clkrate = clk_get_rate(host->clk);
 254         if (clkrate == 0)
 255                 clkrate = LPC32XX_DEF_BUS_RATE;
 256 
 257         /* Compute clock setup values */
 258         tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
 259                 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
 260                 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
 261                 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
 262                 SLCTAC_RDR(host->ncfg->rdr_clks) |
 263                 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
 264                 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
 265                 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
 266         writel(tmp, SLC_TAC(host->io_base));
 267 }
 268 
 269 /*
 270  * Hardware specific access to control lines
 271  */
 272 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
 273                                   unsigned int ctrl)
 274 {
 275         uint32_t tmp;
 276         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 277 
 278         /* Does CE state need to be changed? */
 279         tmp = readl(SLC_CFG(host->io_base));
 280         if (ctrl & NAND_NCE)
 281                 tmp |= SLCCFG_CE_LOW;
 282         else
 283                 tmp &= ~SLCCFG_CE_LOW;
 284         writel(tmp, SLC_CFG(host->io_base));
 285 
 286         if (cmd != NAND_CMD_NONE) {
 287                 if (ctrl & NAND_CLE)
 288                         writel(cmd, SLC_CMD(host->io_base));
 289                 else
 290                         writel(cmd, SLC_ADDR(host->io_base));
 291         }
 292 }
 293 
 294 /*
 295  * Read the Device Ready pin
 296  */
 297 static int lpc32xx_nand_device_ready(struct nand_chip *chip)
 298 {
 299         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 300         int rdy = 0;
 301 
 302         if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
 303                 rdy = 1;
 304 
 305         return rdy;
 306 }
 307 
 308 /*
 309  * Enable NAND write protect
 310  */
 311 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
 312 {
 313         if (gpio_is_valid(host->ncfg->wp_gpio))
 314                 gpio_set_value(host->ncfg->wp_gpio, 0);
 315 }
 316 
 317 /*
 318  * Disable NAND write protect
 319  */
 320 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
 321 {
 322         if (gpio_is_valid(host->ncfg->wp_gpio))
 323                 gpio_set_value(host->ncfg->wp_gpio, 1);
 324 }
 325 
 326 /*
 327  * Prepares SLC for transfers with H/W ECC enabled
 328  */
 329 static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
 330 {
 331         /* Hardware ECC is enabled automatically in hardware as needed */
 332 }
 333 
 334 /*
 335  * Calculates the ECC for the data
 336  */
 337 static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
 338                                       const unsigned char *buf,
 339                                       unsigned char *code)
 340 {
 341         /*
 342          * ECC is calculated automatically in hardware during syndrome read
 343          * and write operations, so it doesn't need to be calculated here.
 344          */
 345         return 0;
 346 }
 347 
 348 /*
 349  * Read a single byte from NAND device
 350  */
 351 static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
 352 {
 353         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 354 
 355         return (uint8_t)readl(SLC_DATA(host->io_base));
 356 }
 357 
 358 /*
 359  * Simple device read without ECC
 360  */
 361 static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
 362 {
 363         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 364 
 365         /* Direct device read with no ECC */
 366         while (len-- > 0)
 367                 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
 368 }
 369 
 370 /*
 371  * Simple device write without ECC
 372  */
 373 static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
 374                                    int len)
 375 {
 376         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 377 
 378         /* Direct device write with no ECC */
 379         while (len-- > 0)
 380                 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
 381 }
 382 
 383 /*
 384  * Read the OOB data from the device without ECC using FIFO method
 385  */
 386 static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
 387 {
 388         struct mtd_info *mtd = nand_to_mtd(chip);
 389 
 390         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 391 }
 392 
 393 /*
 394  * Write the OOB data to the device without ECC using FIFO method
 395  */
 396 static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
 397 {
 398         struct mtd_info *mtd = nand_to_mtd(chip);
 399 
 400         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
 401                                  mtd->oobsize);
 402 }
 403 
 404 /*
 405  * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 406  */
 407 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
 408 {
 409         int i;
 410 
 411         for (i = 0; i < (count * 3); i += 3) {
 412                 uint32_t ce = ecc[i / 3];
 413                 ce = ~(ce << 2) & 0xFFFFFF;
 414                 spare[i + 2] = (uint8_t)(ce & 0xFF);
 415                 ce >>= 8;
 416                 spare[i + 1] = (uint8_t)(ce & 0xFF);
 417                 ce >>= 8;
 418                 spare[i] = (uint8_t)(ce & 0xFF);
 419         }
 420 }
 421 
 422 static void lpc32xx_dma_complete_func(void *completion)
 423 {
 424         complete(completion);
 425 }
 426 
 427 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
 428                             void *mem, int len, enum dma_transfer_direction dir)
 429 {
 430         struct nand_chip *chip = mtd_to_nand(mtd);
 431         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 432         struct dma_async_tx_descriptor *desc;
 433         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 434         int res;
 435 
 436         host->dma_slave_config.direction = dir;
 437         host->dma_slave_config.src_addr = dma;
 438         host->dma_slave_config.dst_addr = dma;
 439         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 440         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 441         host->dma_slave_config.src_maxburst = 4;
 442         host->dma_slave_config.dst_maxburst = 4;
 443         /* DMA controller does flow control: */
 444         host->dma_slave_config.device_fc = false;
 445         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
 446                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
 447                 return -ENXIO;
 448         }
 449 
 450         sg_init_one(&host->sgl, mem, len);
 451 
 452         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
 453                          DMA_BIDIRECTIONAL);
 454         if (res != 1) {
 455                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
 456                 return -ENXIO;
 457         }
 458         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
 459                                        flags);
 460         if (!desc) {
 461                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
 462                 goto out1;
 463         }
 464 
 465         init_completion(&host->comp);
 466         desc->callback = lpc32xx_dma_complete_func;
 467         desc->callback_param = &host->comp;
 468 
 469         dmaengine_submit(desc);
 470         dma_async_issue_pending(host->dma_chan);
 471 
 472         wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
 473 
 474         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 475                      DMA_BIDIRECTIONAL);
 476 
 477         return 0;
 478 out1:
 479         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 480                      DMA_BIDIRECTIONAL);
 481         return -ENXIO;
 482 }
 483 
 484 /*
 485  * DMA read/write transfers with ECC support
 486  */
 487 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
 488                         int read)
 489 {
 490         struct nand_chip *chip = mtd_to_nand(mtd);
 491         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 492         int i, status = 0;
 493         unsigned long timeout;
 494         int res;
 495         enum dma_transfer_direction dir =
 496                 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
 497         uint8_t *dma_buf;
 498         bool dma_mapped;
 499 
 500         if ((void *)buf <= high_memory) {
 501                 dma_buf = buf;
 502                 dma_mapped = true;
 503         } else {
 504                 dma_buf = host->data_buf;
 505                 dma_mapped = false;
 506                 if (!read)
 507                         memcpy(host->data_buf, buf, mtd->writesize);
 508         }
 509 
 510         if (read) {
 511                 writel(readl(SLC_CFG(host->io_base)) |
 512                        SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 513                        SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
 514         } else {
 515                 writel((readl(SLC_CFG(host->io_base)) |
 516                         SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
 517                        ~SLCCFG_DMA_DIR,
 518                         SLC_CFG(host->io_base));
 519         }
 520 
 521         /* Clear initial ECC */
 522         writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
 523 
 524         /* Transfer size is data area only */
 525         writel(mtd->writesize, SLC_TC(host->io_base));
 526 
 527         /* Start transfer in the NAND controller */
 528         writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
 529                SLC_CTRL(host->io_base));
 530 
 531         for (i = 0; i < chip->ecc.steps; i++) {
 532                 /* Data */
 533                 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
 534                                        dma_buf + i * chip->ecc.size,
 535                                        mtd->writesize / chip->ecc.steps, dir);
 536                 if (res)
 537                         return res;
 538 
 539                 /* Always _read_ ECC */
 540                 if (i == chip->ecc.steps - 1)
 541                         break;
 542                 if (!read) /* ECC availability delayed on write */
 543                         udelay(10);
 544                 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
 545                                        &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
 546                 if (res)
 547                         return res;
 548         }
 549 
 550         /*
 551          * According to NXP, the DMA can be finished here, but the NAND
 552          * controller may still have buffered data. After porting to using the
 553          * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
 554          * appears to be always true, according to tests. Keeping the check for
 555          * safety reasons for now.
 556          */
 557         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
 558                 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
 559                 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
 560                 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
 561                        time_before(jiffies, timeout))
 562                         cpu_relax();
 563                 if (!time_before(jiffies, timeout)) {
 564                         dev_err(mtd->dev.parent, "FIFO held data too long\n");
 565                         status = -EIO;
 566                 }
 567         }
 568 
 569         /* Read last calculated ECC value */
 570         if (!read)
 571                 udelay(10);
 572         host->ecc_buf[chip->ecc.steps - 1] =
 573                 readl(SLC_ECC(host->io_base));
 574 
 575         /* Flush DMA */
 576         dmaengine_terminate_all(host->dma_chan);
 577 
 578         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
 579             readl(SLC_TC(host->io_base))) {
 580                 /* Something is left in the FIFO, something is wrong */
 581                 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
 582                 status = -EIO;
 583         }
 584 
 585         /* Stop DMA & HW ECC */
 586         writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
 587                SLC_CTRL(host->io_base));
 588         writel(readl(SLC_CFG(host->io_base)) &
 589                ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 590                  SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
 591 
 592         if (!dma_mapped && read)
 593                 memcpy(buf, host->data_buf, mtd->writesize);
 594 
 595         return status;
 596 }
 597 
 598 /*
 599  * Read the data and OOB data from the device, use ECC correction with the
 600  * data, disable ECC for the OOB data
 601  */
 602 static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
 603                                            int oob_required, int page)
 604 {
 605         struct mtd_info *mtd = nand_to_mtd(chip);
 606         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 607         struct mtd_oob_region oobregion = { };
 608         int stat, i, status, error;
 609         uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
 610 
 611         /* Issue read command */
 612         nand_read_page_op(chip, page, 0, NULL, 0);
 613 
 614         /* Read data and oob, calculate ECC */
 615         status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
 616 
 617         /* Get OOB data */
 618         chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 619 
 620         /* Convert to stored ECC format */
 621         lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
 622 
 623         /* Pointer to ECC data retrieved from NAND spare area */
 624         error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 625         if (error)
 626                 return error;
 627 
 628         oobecc = chip->oob_poi + oobregion.offset;
 629 
 630         for (i = 0; i < chip->ecc.steps; i++) {
 631                 stat = chip->ecc.correct(chip, buf, oobecc,
 632                                          &tmpecc[i * chip->ecc.bytes]);
 633                 if (stat < 0)
 634                         mtd->ecc_stats.failed++;
 635                 else
 636                         mtd->ecc_stats.corrected += stat;
 637 
 638                 buf += chip->ecc.size;
 639                 oobecc += chip->ecc.bytes;
 640         }
 641 
 642         return status;
 643 }
 644 
 645 /*
 646  * Read the data and OOB data from the device, no ECC correction with the
 647  * data or OOB data
 648  */
 649 static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
 650                                                uint8_t *buf, int oob_required,
 651                                                int page)
 652 {
 653         struct mtd_info *mtd = nand_to_mtd(chip);
 654 
 655         /* Issue read command */
 656         nand_read_page_op(chip, page, 0, NULL, 0);
 657 
 658         /* Raw reads can just use the FIFO interface */
 659         chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
 660         chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 661 
 662         return 0;
 663 }
 664 
 665 /*
 666  * Write the data and OOB data to the device, use ECC with the data,
 667  * disable ECC for the OOB data
 668  */
 669 static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
 670                                             const uint8_t *buf,
 671                                             int oob_required, int page)
 672 {
 673         struct mtd_info *mtd = nand_to_mtd(chip);
 674         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 675         struct mtd_oob_region oobregion = { };
 676         uint8_t *pb;
 677         int error;
 678 
 679         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 680 
 681         /* Write data, calculate ECC on outbound data */
 682         error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
 683         if (error)
 684                 return error;
 685 
 686         /*
 687          * The calculated ECC needs some manual work done to it before
 688          * committing it to NAND. Process the calculated ECC and place
 689          * the resultant values directly into the OOB buffer. */
 690         error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 691         if (error)
 692                 return error;
 693 
 694         pb = chip->oob_poi + oobregion.offset;
 695         lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
 696 
 697         /* Write ECC data to device */
 698         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 699 
 700         return nand_prog_page_end_op(chip);
 701 }
 702 
 703 /*
 704  * Write the data and OOB data to the device, no ECC correction with the
 705  * data or OOB data
 706  */
 707 static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
 708                                                 const uint8_t *buf,
 709                                                 int oob_required, int page)
 710 {
 711         struct mtd_info *mtd = nand_to_mtd(chip);
 712 
 713         /* Raw writes can just use the FIFO interface */
 714         nand_prog_page_begin_op(chip, page, 0, buf,
 715                                 chip->ecc.size * chip->ecc.steps);
 716         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 717 
 718         return nand_prog_page_end_op(chip);
 719 }
 720 
 721 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
 722 {
 723         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 724         dma_cap_mask_t mask;
 725 
 726         if (!host->pdata || !host->pdata->dma_filter) {
 727                 dev_err(mtd->dev.parent, "no DMA platform data\n");
 728                 return -ENOENT;
 729         }
 730 
 731         dma_cap_zero(mask);
 732         dma_cap_set(DMA_SLAVE, mask);
 733         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
 734                                              "nand-slc");
 735         if (!host->dma_chan) {
 736                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
 737                 return -EBUSY;
 738         }
 739 
 740         return 0;
 741 }
 742 
 743 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
 744 {
 745         struct lpc32xx_nand_cfg_slc *ncfg;
 746         struct device_node *np = dev->of_node;
 747 
 748         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
 749         if (!ncfg)
 750                 return NULL;
 751 
 752         of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
 753         of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
 754         of_property_read_u32(np, "nxp,whold", &ncfg->whold);
 755         of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
 756         of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
 757         of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
 758         of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
 759         of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
 760 
 761         if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
 762             !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
 763             !ncfg->rhold || !ncfg->rsetup) {
 764                 dev_err(dev, "chip parameters not specified correctly\n");
 765                 return NULL;
 766         }
 767 
 768         ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
 769 
 770         return ncfg;
 771 }
 772 
 773 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
 774 {
 775         struct mtd_info *mtd = nand_to_mtd(chip);
 776         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 777 
 778         /* OOB and ECC CPU and DMA work areas */
 779         host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
 780 
 781         /*
 782          * Small page FLASH has a unique OOB layout, but large and huge
 783          * page FLASH use the standard layout. Small page FLASH uses a
 784          * custom BBT marker layout.
 785          */
 786         if (mtd->writesize <= 512)
 787                 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
 788 
 789         /* These sizes remain the same regardless of page size */
 790         chip->ecc.size = 256;
 791         chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
 792         chip->ecc.prepad = 0;
 793         chip->ecc.postpad = 0;
 794 
 795         /*
 796          * Use a custom BBT marker setup for small page FLASH that
 797          * won't interfere with the ECC layout. Large and huge page
 798          * FLASH use the standard layout.
 799          */
 800         if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
 801             mtd->writesize <= 512) {
 802                 chip->bbt_td = &bbt_smallpage_main_descr;
 803                 chip->bbt_md = &bbt_smallpage_mirror_descr;
 804         }
 805 
 806         return 0;
 807 }
 808 
 809 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
 810         .attach_chip = lpc32xx_nand_attach_chip,
 811 };
 812 
 813 /*
 814  * Probe for NAND controller
 815  */
 816 static int lpc32xx_nand_probe(struct platform_device *pdev)
 817 {
 818         struct lpc32xx_nand_host *host;
 819         struct mtd_info *mtd;
 820         struct nand_chip *chip;
 821         struct resource *rc;
 822         int res;
 823 
 824         /* Allocate memory for the device structure (and zero it) */
 825         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 826         if (!host)
 827                 return -ENOMEM;
 828 
 829         rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 830         host->io_base = devm_ioremap_resource(&pdev->dev, rc);
 831         if (IS_ERR(host->io_base))
 832                 return PTR_ERR(host->io_base);
 833 
 834         host->io_base_dma = rc->start;
 835         if (pdev->dev.of_node)
 836                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
 837         if (!host->ncfg) {
 838                 dev_err(&pdev->dev,
 839                         "Missing or bad NAND config from device tree\n");
 840                 return -ENOENT;
 841         }
 842         if (host->ncfg->wp_gpio == -EPROBE_DEFER)
 843                 return -EPROBE_DEFER;
 844         if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
 845                         host->ncfg->wp_gpio, "NAND WP")) {
 846                 dev_err(&pdev->dev, "GPIO not available\n");
 847                 return -EBUSY;
 848         }
 849         lpc32xx_wp_disable(host);
 850 
 851         host->pdata = dev_get_platdata(&pdev->dev);
 852 
 853         chip = &host->nand_chip;
 854         mtd = nand_to_mtd(chip);
 855         nand_set_controller_data(chip, host);
 856         nand_set_flash_node(chip, pdev->dev.of_node);
 857         mtd->owner = THIS_MODULE;
 858         mtd->dev.parent = &pdev->dev;
 859 
 860         /* Get NAND clock */
 861         host->clk = devm_clk_get(&pdev->dev, NULL);
 862         if (IS_ERR(host->clk)) {
 863                 dev_err(&pdev->dev, "Clock failure\n");
 864                 res = -ENOENT;
 865                 goto enable_wp;
 866         }
 867         res = clk_prepare_enable(host->clk);
 868         if (res)
 869                 goto enable_wp;
 870 
 871         /* Set NAND IO addresses and command/ready functions */
 872         chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
 873         chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
 874         chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
 875         chip->legacy.dev_ready = lpc32xx_nand_device_ready;
 876         chip->legacy.chip_delay = 20; /* 20us command delay time */
 877 
 878         /* Init NAND controller */
 879         lpc32xx_nand_setup(host);
 880 
 881         platform_set_drvdata(pdev, host);
 882 
 883         /* NAND callbacks for LPC32xx SLC hardware */
 884         chip->ecc.mode = NAND_ECC_HW_SYNDROME;
 885         chip->legacy.read_byte = lpc32xx_nand_read_byte;
 886         chip->legacy.read_buf = lpc32xx_nand_read_buf;
 887         chip->legacy.write_buf = lpc32xx_nand_write_buf;
 888         chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
 889         chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
 890         chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
 891         chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
 892         chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
 893         chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
 894         chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
 895         chip->ecc.correct = nand_correct_data;
 896         chip->ecc.strength = 1;
 897         chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
 898 
 899         /*
 900          * Allocate a large enough buffer for a single huge page plus
 901          * extra space for the spare area and ECC storage area
 902          */
 903         host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
 904         host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
 905                                       GFP_KERNEL);
 906         if (host->data_buf == NULL) {
 907                 res = -ENOMEM;
 908                 goto unprepare_clk;
 909         }
 910 
 911         res = lpc32xx_nand_dma_setup(host);
 912         if (res) {
 913                 res = -EIO;
 914                 goto unprepare_clk;
 915         }
 916 
 917         /* Find NAND device */
 918         chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
 919         res = nand_scan(chip, 1);
 920         if (res)
 921                 goto release_dma;
 922 
 923         mtd->name = "nxp_lpc3220_slc";
 924         res = mtd_device_register(mtd, host->ncfg->parts,
 925                                   host->ncfg->num_parts);
 926         if (res)
 927                 goto cleanup_nand;
 928 
 929         return 0;
 930 
 931 cleanup_nand:
 932         nand_cleanup(chip);
 933 release_dma:
 934         dma_release_channel(host->dma_chan);
 935 unprepare_clk:
 936         clk_disable_unprepare(host->clk);
 937 enable_wp:
 938         lpc32xx_wp_enable(host);
 939 
 940         return res;
 941 }
 942 
 943 /*
 944  * Remove NAND device.
 945  */
 946 static int lpc32xx_nand_remove(struct platform_device *pdev)
 947 {
 948         uint32_t tmp;
 949         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 950 
 951         nand_release(&host->nand_chip);
 952         dma_release_channel(host->dma_chan);
 953 
 954         /* Force CE high */
 955         tmp = readl(SLC_CTRL(host->io_base));
 956         tmp &= ~SLCCFG_CE_LOW;
 957         writel(tmp, SLC_CTRL(host->io_base));
 958 
 959         clk_disable_unprepare(host->clk);
 960         lpc32xx_wp_enable(host);
 961 
 962         return 0;
 963 }
 964 
 965 #ifdef CONFIG_PM
 966 static int lpc32xx_nand_resume(struct platform_device *pdev)
 967 {
 968         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 969         int ret;
 970 
 971         /* Re-enable NAND clock */
 972         ret = clk_prepare_enable(host->clk);
 973         if (ret)
 974                 return ret;
 975 
 976         /* Fresh init of NAND controller */
 977         lpc32xx_nand_setup(host);
 978 
 979         /* Disable write protect */
 980         lpc32xx_wp_disable(host);
 981 
 982         return 0;
 983 }
 984 
 985 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
 986 {
 987         uint32_t tmp;
 988         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 989 
 990         /* Force CE high */
 991         tmp = readl(SLC_CTRL(host->io_base));
 992         tmp &= ~SLCCFG_CE_LOW;
 993         writel(tmp, SLC_CTRL(host->io_base));
 994 
 995         /* Enable write protect for safety */
 996         lpc32xx_wp_enable(host);
 997 
 998         /* Disable clock */
 999         clk_disable_unprepare(host->clk);
1000 
1001         return 0;
1002 }
1003 
1004 #else
1005 #define lpc32xx_nand_resume NULL
1006 #define lpc32xx_nand_suspend NULL
1007 #endif
1008 
1009 static const struct of_device_id lpc32xx_nand_match[] = {
1010         { .compatible = "nxp,lpc3220-slc" },
1011         { /* sentinel */ },
1012 };
1013 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1014 
1015 static struct platform_driver lpc32xx_nand_driver = {
1016         .probe          = lpc32xx_nand_probe,
1017         .remove         = lpc32xx_nand_remove,
1018         .resume         = lpc32xx_nand_resume,
1019         .suspend        = lpc32xx_nand_suspend,
1020         .driver         = {
1021                 .name   = LPC32XX_MODNAME,
1022                 .of_match_table = lpc32xx_nand_match,
1023         },
1024 };
1025 
1026 module_platform_driver(lpc32xx_nand_driver);
1027 
1028 MODULE_LICENSE("GPL");
1029 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1030 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1031 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");

/* [<][>][^][v][top][bottom][index][help] */