This source file includes following definitions.
- mtd_to_omap
- omap_prefetch_enable
- omap_prefetch_reset
- omap_hwcontrol
- omap_read_buf8
- omap_write_buf8
- omap_read_buf16
- omap_write_buf16
- omap_read_buf_pref
- omap_write_buf_pref
- omap_nand_dma_callback
- omap_nand_dma_transfer
- omap_read_buf_dma_pref
- omap_write_buf_dma_pref
- omap_nand_irq
- omap_read_buf_irq_pref
- omap_write_buf_irq_pref
- gen_true_ecc
- omap_compare_ecc
- omap_correct_data
- omap_calculate_ecc
- omap_enable_hwecc
- omap_wait
- omap_dev_ready
- omap_enable_hwecc_bch
- _omap_calculate_ecc_bch
- omap_calculate_ecc_bch_sw
- omap_calculate_ecc_bch_multi
- erased_sector_bitflips
- omap_elm_correct_data
- omap_write_page_bch
- omap_write_subpage_bch
- omap_read_page_bch
- is_elm_present
- omap2_nand_ecc_check
- omap_get_dt_info
- omap_ooblayout_ecc
- omap_ooblayout_free
- omap_sw_ooblayout_ecc
- omap_sw_ooblayout_free
- omap_nand_attach_chip
- omap_nand_probe
- omap_nand_remove
   1 
   2 
   3 
   4 
   5 
   6 
   7 
   8 #include <linux/platform_device.h>
   9 #include <linux/dmaengine.h>
  10 #include <linux/dma-mapping.h>
  11 #include <linux/delay.h>
  12 #include <linux/gpio/consumer.h>
  13 #include <linux/module.h>
  14 #include <linux/interrupt.h>
  15 #include <linux/jiffies.h>
  16 #include <linux/sched.h>
  17 #include <linux/mtd/mtd.h>
  18 #include <linux/mtd/rawnand.h>
  19 #include <linux/mtd/partitions.h>
  20 #include <linux/omap-dma.h>
  21 #include <linux/io.h>
  22 #include <linux/slab.h>
  23 #include <linux/of.h>
  24 #include <linux/of_device.h>
  25 
  26 #include <linux/mtd/nand_bch.h>
  27 #include <linux/platform_data/elm.h>
  28 
  29 #include <linux/omap-gpmc.h>
  30 #include <linux/platform_data/mtd-nand-omap2.h>
  31 
  32 #define DRIVER_NAME     "omap2-nand"
  33 #define OMAP_NAND_TIMEOUT_MS    5000
  34 
  35 #define NAND_Ecc_P1e            (1 << 0)
  36 #define NAND_Ecc_P2e            (1 << 1)
  37 #define NAND_Ecc_P4e            (1 << 2)
  38 #define NAND_Ecc_P8e            (1 << 3)
  39 #define NAND_Ecc_P16e           (1 << 4)
  40 #define NAND_Ecc_P32e           (1 << 5)
  41 #define NAND_Ecc_P64e           (1 << 6)
  42 #define NAND_Ecc_P128e          (1 << 7)
  43 #define NAND_Ecc_P256e          (1 << 8)
  44 #define NAND_Ecc_P512e          (1 << 9)
  45 #define NAND_Ecc_P1024e         (1 << 10)
  46 #define NAND_Ecc_P2048e         (1 << 11)
  47 
  48 #define NAND_Ecc_P1o            (1 << 16)
  49 #define NAND_Ecc_P2o            (1 << 17)
  50 #define NAND_Ecc_P4o            (1 << 18)
  51 #define NAND_Ecc_P8o            (1 << 19)
  52 #define NAND_Ecc_P16o           (1 << 20)
  53 #define NAND_Ecc_P32o           (1 << 21)
  54 #define NAND_Ecc_P64o           (1 << 22)
  55 #define NAND_Ecc_P128o          (1 << 23)
  56 #define NAND_Ecc_P256o          (1 << 24)
  57 #define NAND_Ecc_P512o          (1 << 25)
  58 #define NAND_Ecc_P1024o         (1 << 26)
  59 #define NAND_Ecc_P2048o         (1 << 27)
  60 
  61 #define TF(value)       (value ? 1 : 0)
  62 
  63 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
  64 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
  65 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
  66 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
  67 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
  68 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
  69 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
  70 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
  71 
  72 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
  73 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
  74 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
  75 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
  76 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
  77 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
  78 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
  79 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
  80 
  81 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
  82 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
  83 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
  84 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
  85 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
  86 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
  87 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
  88 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
  89 
  90 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
  91 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
  92 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
  93 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
  94 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
  95 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
  96 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
  97 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
  98 
  99 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
 100 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
 101 
 102 #define PREFETCH_CONFIG1_CS_SHIFT       24
 103 #define ECC_CONFIG_CS_SHIFT             1
 104 #define CS_MASK                         0x7
 105 #define ENABLE_PREFETCH                 (0x1 << 7)
 106 #define DMA_MPU_MODE_SHIFT              2
 107 #define ECCSIZE0_SHIFT                  12
 108 #define ECCSIZE1_SHIFT                  22
 109 #define ECC1RESULTSIZE                  0x1
 110 #define ECCCLEAR                        0x100
 111 #define ECC1                            0x1
 112 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
 113 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
 114 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
 115 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
 116 #define STATUS_BUFF_EMPTY               0x00000001
 117 
 118 #define SECTOR_BYTES            512
 119 
 120 #define BCH4_BIT_PAD            4
 121 
 122 
 123 #define BCH_WRAPMODE_1          1       
 124 #define BCH8R_ECC_SIZE0         0x1a    
 125 #define BCH8R_ECC_SIZE1         0x2     
 126 #define BCH4R_ECC_SIZE0         0xd     
 127 #define BCH4R_ECC_SIZE1         0x3     
 128 
 129 
 130 #define BCH_WRAPMODE_6          6       
 131 #define BCH_ECC_SIZE0           0x0     
 132 #define BCH_ECC_SIZE1           0x20    
 133 
 134 #define BADBLOCK_MARKER_LENGTH          2
 135 
 136 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 137                                 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 138                                 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 139                                 0x07, 0x0e};
 140 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 141         0xac, 0x6b, 0xff, 0x99, 0x7b};
 142 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 143 
 144 struct omap_nand_info {
 145         struct nand_chip                nand;
 146         struct platform_device          *pdev;
 147 
 148         int                             gpmc_cs;
 149         bool                            dev_ready;
 150         enum nand_io                    xfer_type;
 151         int                             devsize;
 152         enum omap_ecc                   ecc_opt;
 153         struct device_node              *elm_of_node;
 154 
 155         unsigned long                   phys_base;
 156         struct completion               comp;
 157         struct dma_chan                 *dma;
 158         int                             gpmc_irq_fifo;
 159         int                             gpmc_irq_count;
 160         enum {
 161                 OMAP_NAND_IO_READ = 0,  
 162                 OMAP_NAND_IO_WRITE,     
 163         } iomode;
 164         u_char                          *buf;
 165         int                                     buf_len;
 166         
 167         struct gpmc_nand_regs           reg;
 168         struct gpmc_nand_ops            *ops;
 169         bool                            flash_bbt;
 170         
 171         struct device                   *elm_dev;
 172         
 173         struct gpio_desc                *ready_gpiod;
 174 };
 175 
 176 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
 177 {
 178         return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
 179 }
 180 
 181 
 182 
 183 
 184 
 185 
 186 
 187 
 188 
 189 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 190         unsigned int u32_count, int is_write, struct omap_nand_info *info)
 191 {
 192         u32 val;
 193 
 194         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 195                 return -1;
 196 
 197         if (readl(info->reg.gpmc_prefetch_control))
 198                 return -EBUSY;
 199 
 200         
 201         writel(u32_count, info->reg.gpmc_prefetch_config2);
 202 
 203         
 204 
 205 
 206         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 207                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 208                 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
 209         writel(val, info->reg.gpmc_prefetch_config1);
 210 
 211         
 212         writel(0x1, info->reg.gpmc_prefetch_control);
 213 
 214         return 0;
 215 }
 216 
 217 
 218 
 219 
 220 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 221 {
 222         u32 config1;
 223 
 224         
 225         config1 = readl(info->reg.gpmc_prefetch_config1);
 226         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 227                 return -EINVAL;
 228 
 229         
 230         writel(0x0, info->reg.gpmc_prefetch_control);
 231 
 232         
 233         writel(0x0, info->reg.gpmc_prefetch_config1);
 234 
 235         return 0;
 236 }
 237 
 238 
 239 
 240 
 241 
 242 
 243 
 244 
 245 
 246 
 247 
 248 
 249 static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
 250 {
 251         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 252 
 253         if (cmd != NAND_CMD_NONE) {
 254                 if (ctrl & NAND_CLE)
 255                         writeb(cmd, info->reg.gpmc_nand_command);
 256 
 257                 else if (ctrl & NAND_ALE)
 258                         writeb(cmd, info->reg.gpmc_nand_address);
 259 
 260                 else 
 261                         writeb(cmd, info->reg.gpmc_nand_data);
 262         }
 263 }
 264 
 265 
 266 
 267 
 268 
 269 
 270 
 271 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 272 {
 273         struct nand_chip *nand = mtd_to_nand(mtd);
 274 
 275         ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
 276 }
 277 
 278 
 279 
 280 
 281 
 282 
 283 
 284 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 285 {
 286         struct omap_nand_info *info = mtd_to_omap(mtd);
 287         u_char *p = (u_char *)buf;
 288         bool status;
 289 
 290         while (len--) {
 291                 iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
 292                 
 293                 do {
 294                         status = info->ops->nand_writebuffer_empty();
 295                 } while (!status);
 296         }
 297 }
 298 
 299 
 300 
 301 
 302 
 303 
 304 
 305 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 306 {
 307         struct nand_chip *nand = mtd_to_nand(mtd);
 308 
 309         ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
 310 }
 311 
 312 
 313 
 314 
 315 
 316 
 317 
 318 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 319 {
 320         struct omap_nand_info *info = mtd_to_omap(mtd);
 321         u16 *p = (u16 *) buf;
 322         bool status;
 323         
 324         len >>= 1;
 325 
 326         while (len--) {
 327                 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
 328                 
 329                 do {
 330                         status = info->ops->nand_writebuffer_empty();
 331                 } while (!status);
 332         }
 333 }
 334 
 335 
 336 
 337 
 338 
 339 
 340 
 341 static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
 342 {
 343         struct mtd_info *mtd = nand_to_mtd(chip);
 344         struct omap_nand_info *info = mtd_to_omap(mtd);
 345         uint32_t r_count = 0;
 346         int ret = 0;
 347         u32 *p = (u32 *)buf;
 348 
 349         
 350         if (len % 4) {
 351                 if (info->nand.options & NAND_BUSWIDTH_16)
 352                         omap_read_buf16(mtd, buf, len % 4);
 353                 else
 354                         omap_read_buf8(mtd, buf, len % 4);
 355                 p = (u32 *) (buf + len % 4);
 356                 len -= len % 4;
 357         }
 358 
 359         
 360         ret = omap_prefetch_enable(info->gpmc_cs,
 361                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
 362         if (ret) {
 363                 
 364                 if (info->nand.options & NAND_BUSWIDTH_16)
 365                         omap_read_buf16(mtd, (u_char *)p, len);
 366                 else
 367                         omap_read_buf8(mtd, (u_char *)p, len);
 368         } else {
 369                 do {
 370                         r_count = readl(info->reg.gpmc_prefetch_status);
 371                         r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 372                         r_count = r_count >> 2;
 373                         ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
 374                         p += r_count;
 375                         len -= r_count << 2;
 376                 } while (len);
 377                 
 378                 omap_prefetch_reset(info->gpmc_cs, info);
 379         }
 380 }
 381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
 389                                 int len)
 390 {
 391         struct mtd_info *mtd = nand_to_mtd(chip);
 392         struct omap_nand_info *info = mtd_to_omap(mtd);
 393         uint32_t w_count = 0;
 394         int i = 0, ret = 0;
 395         u16 *p = (u16 *)buf;
 396         unsigned long tim, limit;
 397         u32 val;
 398 
 399         
 400         if (len % 2 != 0) {
 401                 writeb(*buf, info->nand.legacy.IO_ADDR_W);
 402                 p = (u16 *)(buf + 1);
 403                 len--;
 404         }
 405 
 406         
 407         ret = omap_prefetch_enable(info->gpmc_cs,
 408                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 409         if (ret) {
 410                 
 411                 if (info->nand.options & NAND_BUSWIDTH_16)
 412                         omap_write_buf16(mtd, (u_char *)p, len);
 413                 else
 414                         omap_write_buf8(mtd, (u_char *)p, len);
 415         } else {
 416                 while (len) {
 417                         w_count = readl(info->reg.gpmc_prefetch_status);
 418                         w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 419                         w_count = w_count >> 1;
 420                         for (i = 0; (i < w_count) && len; i++, len -= 2)
 421                                 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
 422                 }
 423                 
 424                 tim = 0;
 425                 limit = (loops_per_jiffy *
 426                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 427                 do {
 428                         cpu_relax();
 429                         val = readl(info->reg.gpmc_prefetch_status);
 430                         val = PREFETCH_STATUS_COUNT(val);
 431                 } while (val && (tim++ < limit));
 432 
 433                 
 434                 omap_prefetch_reset(info->gpmc_cs, info);
 435         }
 436 }
 437 
 438 
 439 
 440 
 441 
 442 static void omap_nand_dma_callback(void *data)
 443 {
 444         complete((struct completion *) data);
 445 }
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 455                                         unsigned int len, int is_write)
 456 {
 457         struct omap_nand_info *info = mtd_to_omap(mtd);
 458         struct dma_async_tx_descriptor *tx;
 459         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 460                                                         DMA_FROM_DEVICE;
 461         struct scatterlist sg;
 462         unsigned long tim, limit;
 463         unsigned n;
 464         int ret;
 465         u32 val;
 466 
 467         if (!virt_addr_valid(addr))
 468                 goto out_copy;
 469 
 470         sg_init_one(&sg, addr, len);
 471         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 472         if (n == 0) {
 473                 dev_err(&info->pdev->dev,
 474                         "Couldn't DMA map a %d byte buffer\n", len);
 475                 goto out_copy;
 476         }
 477 
 478         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 479                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 480                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 481         if (!tx)
 482                 goto out_copy_unmap;
 483 
 484         tx->callback = omap_nand_dma_callback;
 485         tx->callback_param = &info->comp;
 486         dmaengine_submit(tx);
 487 
 488         init_completion(&info->comp);
 489 
 490         
 491         dma_async_issue_pending(info->dma);
 492 
 493         
 494         ret = omap_prefetch_enable(info->gpmc_cs,
 495                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 496         if (ret)
 497                 
 498                 goto out_copy_unmap;
 499 
 500         wait_for_completion(&info->comp);
 501         tim = 0;
 502         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 503 
 504         do {
 505                 cpu_relax();
 506                 val = readl(info->reg.gpmc_prefetch_status);
 507                 val = PREFETCH_STATUS_COUNT(val);
 508         } while (val && (tim++ < limit));
 509 
 510         
 511         omap_prefetch_reset(info->gpmc_cs, info);
 512 
 513         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 514         return 0;
 515 
 516 out_copy_unmap:
 517         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 518 out_copy:
 519         if (info->nand.options & NAND_BUSWIDTH_16)
 520                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 521                         : omap_write_buf16(mtd, (u_char *) addr, len);
 522         else
 523                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 524                         : omap_write_buf8(mtd, (u_char *) addr, len);
 525         return 0;
 526 }
 527 
 528 
 529 
 530 
 531 
 532 
 533 
 534 static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
 535                                    int len)
 536 {
 537         struct mtd_info *mtd = nand_to_mtd(chip);
 538 
 539         if (len <= mtd->oobsize)
 540                 omap_read_buf_pref(chip, buf, len);
 541         else
 542                 
 543                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
 544 }
 545 
 546 
 547 
 548 
 549 
 550 
 551 
 552 static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
 553                                     int len)
 554 {
 555         struct mtd_info *mtd = nand_to_mtd(chip);
 556 
 557         if (len <= mtd->oobsize)
 558                 omap_write_buf_pref(chip, buf, len);
 559         else
 560                 
 561                 omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
 562 }
 563 
 564 
 565 
 566 
 567 
 568 
 569 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 570 {
 571         struct omap_nand_info *info = (struct omap_nand_info *) dev;
 572         u32 bytes;
 573 
 574         bytes = readl(info->reg.gpmc_prefetch_status);
 575         bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 576         bytes = bytes  & 0xFFFC; 
 577         if (info->iomode == OMAP_NAND_IO_WRITE) { 
 578                 if (this_irq == info->gpmc_irq_count)
 579                         goto done;
 580 
 581                 if (info->buf_len && (info->buf_len < bytes))
 582                         bytes = info->buf_len;
 583                 else if (!info->buf_len)
 584                         bytes = 0;
 585                 iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
 586                               bytes >> 2);
 587                 info->buf = info->buf + bytes;
 588                 info->buf_len -= bytes;
 589 
 590         } else {
 591                 ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
 592                              bytes >> 2);
 593                 info->buf = info->buf + bytes;
 594 
 595                 if (this_irq == info->gpmc_irq_count)
 596                         goto done;
 597         }
 598 
 599         return IRQ_HANDLED;
 600 
 601 done:
 602         complete(&info->comp);
 603 
 604         disable_irq_nosync(info->gpmc_irq_fifo);
 605         disable_irq_nosync(info->gpmc_irq_count);
 606 
 607         return IRQ_HANDLED;
 608 }
 609 
 610 
 611 
 612 
 613 
 614 
 615 
 616 static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
 617                                    int len)
 618 {
 619         struct mtd_info *mtd = nand_to_mtd(chip);
 620         struct omap_nand_info *info = mtd_to_omap(mtd);
 621         int ret = 0;
 622 
 623         if (len <= mtd->oobsize) {
 624                 omap_read_buf_pref(chip, buf, len);
 625                 return;
 626         }
 627 
 628         info->iomode = OMAP_NAND_IO_READ;
 629         info->buf = buf;
 630         init_completion(&info->comp);
 631 
 632         
 633         ret = omap_prefetch_enable(info->gpmc_cs,
 634                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 635         if (ret)
 636                 
 637                 goto out_copy;
 638 
 639         info->buf_len = len;
 640 
 641         enable_irq(info->gpmc_irq_count);
 642         enable_irq(info->gpmc_irq_fifo);
 643 
 644         
 645         wait_for_completion(&info->comp);
 646 
 647         
 648         omap_prefetch_reset(info->gpmc_cs, info);
 649         return;
 650 
 651 out_copy:
 652         if (info->nand.options & NAND_BUSWIDTH_16)
 653                 omap_read_buf16(mtd, buf, len);
 654         else
 655                 omap_read_buf8(mtd, buf, len);
 656 }
 657 
 658 
 659 
 660 
 661 
 662 
 663 
 664 static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
 665                                     int len)
 666 {
 667         struct mtd_info *mtd = nand_to_mtd(chip);
 668         struct omap_nand_info *info = mtd_to_omap(mtd);
 669         int ret = 0;
 670         unsigned long tim, limit;
 671         u32 val;
 672 
 673         if (len <= mtd->oobsize) {
 674                 omap_write_buf_pref(chip, buf, len);
 675                 return;
 676         }
 677 
 678         info->iomode = OMAP_NAND_IO_WRITE;
 679         info->buf = (u_char *) buf;
 680         init_completion(&info->comp);
 681 
 682         
 683         ret = omap_prefetch_enable(info->gpmc_cs,
 684                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 685         if (ret)
 686                 
 687                 goto out_copy;
 688 
 689         info->buf_len = len;
 690 
 691         enable_irq(info->gpmc_irq_count);
 692         enable_irq(info->gpmc_irq_fifo);
 693 
 694         
 695         wait_for_completion(&info->comp);
 696 
 697         
 698         tim = 0;
 699         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 700         do {
 701                 val = readl(info->reg.gpmc_prefetch_status);
 702                 val = PREFETCH_STATUS_COUNT(val);
 703                 cpu_relax();
 704         } while (val && (tim++ < limit));
 705 
 706         
 707         omap_prefetch_reset(info->gpmc_cs, info);
 708         return;
 709 
 710 out_copy:
 711         if (info->nand.options & NAND_BUSWIDTH_16)
 712                 omap_write_buf16(mtd, buf, len);
 713         else
 714                 omap_write_buf8(mtd, buf, len);
 715 }
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 static void gen_true_ecc(u8 *ecc_buf)
 725 {
 726         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 727                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 728 
 729         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 730                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 731         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 732                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 733         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 734                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 735 }
 736 
 737 
 738 
 739 
 740 
 741 
 742 
 743 
 744 
 745 
 746 
 747 
 748 static int omap_compare_ecc(u8 *ecc_data1,      
 749                             u8 *ecc_data2,      
 750                             u8 *page_data)
 751 {
 752         uint    i;
 753         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 754         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
 755         u8      ecc_bit[24];
 756         u8      ecc_sum = 0;
 757         u8      find_bit = 0;
 758         uint    find_byte = 0;
 759         int     isEccFF;
 760 
 761         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 762 
 763         gen_true_ecc(ecc_data1);
 764         gen_true_ecc(ecc_data2);
 765 
 766         for (i = 0; i <= 2; i++) {
 767                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
 768                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
 769         }
 770 
 771         for (i = 0; i < 8; i++) {
 772                 tmp0_bit[i]     = *ecc_data1 % 2;
 773                 *ecc_data1      = *ecc_data1 / 2;
 774         }
 775 
 776         for (i = 0; i < 8; i++) {
 777                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
 778                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 779         }
 780 
 781         for (i = 0; i < 8; i++) {
 782                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
 783                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 784         }
 785 
 786         for (i = 0; i < 8; i++) {
 787                 comp0_bit[i]     = *ecc_data2 % 2;
 788                 *ecc_data2       = *ecc_data2 / 2;
 789         }
 790 
 791         for (i = 0; i < 8; i++) {
 792                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 793                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 794         }
 795 
 796         for (i = 0; i < 8; i++) {
 797                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 798                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 799         }
 800 
 801         for (i = 0; i < 6; i++)
 802                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 803 
 804         for (i = 0; i < 8; i++)
 805                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 806 
 807         for (i = 0; i < 8; i++)
 808                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 809 
 810         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 811         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 812 
 813         for (i = 0; i < 24; i++)
 814                 ecc_sum += ecc_bit[i];
 815 
 816         switch (ecc_sum) {
 817         case 0:
 818                 
 819 
 820 
 821                 return 0;
 822 
 823         case 1:
 824                 
 825                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
 826                 return -EBADMSG;
 827 
 828         case 11:
 829                 
 830                 pr_debug("ECC UNCORRECTED_ERROR B\n");
 831                 return -EBADMSG;
 832 
 833         case 12:
 834                 
 835                 find_byte = (ecc_bit[23] << 8) +
 836                             (ecc_bit[21] << 7) +
 837                             (ecc_bit[19] << 6) +
 838                             (ecc_bit[17] << 5) +
 839                             (ecc_bit[15] << 4) +
 840                             (ecc_bit[13] << 3) +
 841                             (ecc_bit[11] << 2) +
 842                             (ecc_bit[9]  << 1) +
 843                             ecc_bit[7];
 844 
 845                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 846 
 847                 pr_debug("Correcting single bit ECC error at offset: "
 848                                 "%d, bit: %d\n", find_byte, find_bit);
 849 
 850                 page_data[find_byte] ^= (1 << find_bit);
 851 
 852                 return 1;
 853         default:
 854                 if (isEccFF) {
 855                         if (ecc_data2[0] == 0 &&
 856                             ecc_data2[1] == 0 &&
 857                             ecc_data2[2] == 0)
 858                                 return 0;
 859                 }
 860                 pr_debug("UNCORRECTED_ERROR default\n");
 861                 return -EBADMSG;
 862         }
 863 }
 864 
 865 
 866 
 867 
 868 
 869 
 870 
 871 
 872 
 873 
 874 
 875 
 876 
 877 
 878 
 879 static int omap_correct_data(struct nand_chip *chip, u_char *dat,
 880                              u_char *read_ecc, u_char *calc_ecc)
 881 {
 882         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 883         int blockCnt = 0, i = 0, ret = 0;
 884         int stat = 0;
 885 
 886         
 887         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 888                         (info->nand.ecc.size  == 2048))
 889                 blockCnt = 4;
 890         else
 891                 blockCnt = 1;
 892 
 893         for (i = 0; i < blockCnt; i++) {
 894                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 895                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 896                         if (ret < 0)
 897                                 return ret;
 898                         
 899                         stat += ret;
 900                 }
 901                 read_ecc += 3;
 902                 calc_ecc += 3;
 903                 dat      += 512;
 904         }
 905         return stat;
 906 }
 907 
 908 
 909 
 910 
 911 
 912 
 913 
 914 
 915 
 916 
 917 
 918 
 919 
 920 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
 921                               u_char *ecc_code)
 922 {
 923         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 924         u32 val;
 925 
 926         val = readl(info->reg.gpmc_ecc_config);
 927         if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 928                 return -EINVAL;
 929 
 930         
 931         val = readl(info->reg.gpmc_ecc1_result);
 932         *ecc_code++ = val;          
 933         *ecc_code++ = val >> 16;    
 934         
 935         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 936 
 937         return 0;
 938 }
 939 
 940 
 941 
 942 
 943 
 944 
 945 static void omap_enable_hwecc(struct nand_chip *chip, int mode)
 946 {
 947         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 948         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 949         u32 val;
 950 
 951         
 952         val = ECCCLEAR | ECC1;
 953         writel(val, info->reg.gpmc_ecc_control);
 954 
 955         
 956         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 957                          ECC1RESULTSIZE);
 958         writel(val, info->reg.gpmc_ecc_size_config);
 959 
 960         switch (mode) {
 961         case NAND_ECC_READ:
 962         case NAND_ECC_WRITE:
 963                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 964                 break;
 965         case NAND_ECC_READSYN:
 966                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 967                 break;
 968         default:
 969                 dev_info(&info->pdev->dev,
 970                         "error: unrecognized Mode[%d]!\n", mode);
 971                 break;
 972         }
 973 
 974         
 975         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 976         writel(val, info->reg.gpmc_ecc_config);
 977 }
 978 
 979 
 980 
 981 
 982 
 983 
 984 
 985 
 986 
 987 
 988 
 989 
 990 static int omap_wait(struct nand_chip *this)
 991 {
 992         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
 993         unsigned long timeo = jiffies;
 994         int status;
 995 
 996         timeo += msecs_to_jiffies(400);
 997 
 998         writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
 999         while (time_before(jiffies, timeo)) {
1000                 status = readb(info->reg.gpmc_nand_data);
1001                 if (status & NAND_STATUS_READY)
1002                         break;
1003                 cond_resched();
1004         }
1005 
1006         status = readb(info->reg.gpmc_nand_data);
1007         return status;
1008 }
1009 
1010 
1011 
1012 
1013 
1014 
1015 
1016 static int omap_dev_ready(struct nand_chip *chip)
1017 {
1018         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1019 
1020         return gpiod_get_value(info->ready_gpiod);
1021 }
1022 
1023 
1024 
1025 
1026 
1027 
1028 
1029 
1030 
1031 
1032 
1033 
1034 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
1035                                                  int mode)
1036 {
1037         unsigned int bch_type;
1038         unsigned int dev_width, nsectors;
1039         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1040         enum omap_ecc ecc_opt = info->ecc_opt;
1041         u32 val, wr_mode;
1042         unsigned int ecc_size1, ecc_size0;
1043 
1044         
1045         switch (ecc_opt) {
1046         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1047                 bch_type = 0;
1048                 nsectors = 1;
1049                 wr_mode   = BCH_WRAPMODE_6;
1050                 ecc_size0 = BCH_ECC_SIZE0;
1051                 ecc_size1 = BCH_ECC_SIZE1;
1052                 break;
1053         case OMAP_ECC_BCH4_CODE_HW:
1054                 bch_type = 0;
1055                 nsectors = chip->ecc.steps;
1056                 if (mode == NAND_ECC_READ) {
1057                         wr_mode   = BCH_WRAPMODE_1;
1058                         ecc_size0 = BCH4R_ECC_SIZE0;
1059                         ecc_size1 = BCH4R_ECC_SIZE1;
1060                 } else {
1061                         wr_mode   = BCH_WRAPMODE_6;
1062                         ecc_size0 = BCH_ECC_SIZE0;
1063                         ecc_size1 = BCH_ECC_SIZE1;
1064                 }
1065                 break;
1066         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1067                 bch_type = 1;
1068                 nsectors = 1;
1069                 wr_mode   = BCH_WRAPMODE_6;
1070                 ecc_size0 = BCH_ECC_SIZE0;
1071                 ecc_size1 = BCH_ECC_SIZE1;
1072                 break;
1073         case OMAP_ECC_BCH8_CODE_HW:
1074                 bch_type = 1;
1075                 nsectors = chip->ecc.steps;
1076                 if (mode == NAND_ECC_READ) {
1077                         wr_mode   = BCH_WRAPMODE_1;
1078                         ecc_size0 = BCH8R_ECC_SIZE0;
1079                         ecc_size1 = BCH8R_ECC_SIZE1;
1080                 } else {
1081                         wr_mode   = BCH_WRAPMODE_6;
1082                         ecc_size0 = BCH_ECC_SIZE0;
1083                         ecc_size1 = BCH_ECC_SIZE1;
1084                 }
1085                 break;
1086         case OMAP_ECC_BCH16_CODE_HW:
1087                 bch_type = 0x2;
1088                 nsectors = chip->ecc.steps;
1089                 if (mode == NAND_ECC_READ) {
1090                         wr_mode   = 0x01;
1091                         ecc_size0 = 52; 
1092                         ecc_size1 = 0;  
1093                 } else {
1094                         wr_mode   = 0x01;
1095                         ecc_size0 = 0;  
1096                         ecc_size1 = 52; 
1097                 }
1098                 break;
1099         default:
1100                 return;
1101         }
1102 
1103         writel(ECC1, info->reg.gpmc_ecc_control);
1104 
1105         
1106         val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1107         writel(val, info->reg.gpmc_ecc_size_config);
1108 
1109         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1110 
1111         
1112         val = ((1                        << 16) | 
1113                (bch_type                 << 12) | 
1114                (wr_mode                  <<  8) | 
1115                (dev_width                <<  7) | 
1116                (((nsectors-1) & 0x7)     <<  4) | 
1117                (info->gpmc_cs            <<  1) | 
1118                (0x1));                            
1119 
1120         writel(val, info->reg.gpmc_ecc_config);
1121 
1122         
1123         writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1124 }
1125 
1126 static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1127 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1128                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
1129 
1130 
1131 
1132 
1133 
1134 
1135 
1136 
1137 
1138 
1139 
1140 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1141                                    const u_char *dat, u_char *ecc_calc, int i)
1142 {
1143         struct omap_nand_info *info = mtd_to_omap(mtd);
1144         int eccbytes    = info->nand.ecc.bytes;
1145         struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1146         u8 *ecc_code;
1147         unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1148         u32 val;
1149         int j;
1150 
1151         ecc_code = ecc_calc;
1152         switch (info->ecc_opt) {
1153         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1154         case OMAP_ECC_BCH8_CODE_HW:
1155                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1156                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1157                 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1158                 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1159                 *ecc_code++ = (bch_val4 & 0xFF);
1160                 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1161                 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1162                 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1163                 *ecc_code++ = (bch_val3 & 0xFF);
1164                 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1165                 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1166                 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1167                 *ecc_code++ = (bch_val2 & 0xFF);
1168                 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1169                 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1170                 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1171                 *ecc_code++ = (bch_val1 & 0xFF);
1172                 break;
1173         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1174         case OMAP_ECC_BCH4_CODE_HW:
1175                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1176                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1177                 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1178                 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1179                 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1180                         ((bch_val1 >> 28) & 0xF);
1181                 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1182                 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1183                 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1184                 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1185                 break;
1186         case OMAP_ECC_BCH16_CODE_HW:
1187                 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1188                 ecc_code[0]  = ((val >>  8) & 0xFF);
1189                 ecc_code[1]  = ((val >>  0) & 0xFF);
1190                 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1191                 ecc_code[2]  = ((val >> 24) & 0xFF);
1192                 ecc_code[3]  = ((val >> 16) & 0xFF);
1193                 ecc_code[4]  = ((val >>  8) & 0xFF);
1194                 ecc_code[5]  = ((val >>  0) & 0xFF);
1195                 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1196                 ecc_code[6]  = ((val >> 24) & 0xFF);
1197                 ecc_code[7]  = ((val >> 16) & 0xFF);
1198                 ecc_code[8]  = ((val >>  8) & 0xFF);
1199                 ecc_code[9]  = ((val >>  0) & 0xFF);
1200                 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1201                 ecc_code[10] = ((val >> 24) & 0xFF);
1202                 ecc_code[11] = ((val >> 16) & 0xFF);
1203                 ecc_code[12] = ((val >>  8) & 0xFF);
1204                 ecc_code[13] = ((val >>  0) & 0xFF);
1205                 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1206                 ecc_code[14] = ((val >> 24) & 0xFF);
1207                 ecc_code[15] = ((val >> 16) & 0xFF);
1208                 ecc_code[16] = ((val >>  8) & 0xFF);
1209                 ecc_code[17] = ((val >>  0) & 0xFF);
1210                 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1211                 ecc_code[18] = ((val >> 24) & 0xFF);
1212                 ecc_code[19] = ((val >> 16) & 0xFF);
1213                 ecc_code[20] = ((val >>  8) & 0xFF);
1214                 ecc_code[21] = ((val >>  0) & 0xFF);
1215                 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1216                 ecc_code[22] = ((val >> 24) & 0xFF);
1217                 ecc_code[23] = ((val >> 16) & 0xFF);
1218                 ecc_code[24] = ((val >>  8) & 0xFF);
1219                 ecc_code[25] = ((val >>  0) & 0xFF);
1220                 break;
1221         default:
1222                 return -EINVAL;
1223         }
1224 
1225         
1226         switch (info->ecc_opt) {
1227         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1228                 
1229 
1230 
1231                 for (j = 0; j < eccbytes; j++)
1232                         ecc_calc[j] ^= bch4_polynomial[j];
1233                 break;
1234         case OMAP_ECC_BCH4_CODE_HW:
1235                 
1236                 ecc_calc[eccbytes - 1] = 0x0;
1237                 break;
1238         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1239                 
1240 
1241 
1242                 for (j = 0; j < eccbytes; j++)
1243                         ecc_calc[j] ^= bch8_polynomial[j];
1244                 break;
1245         case OMAP_ECC_BCH8_CODE_HW:
1246                 
1247                 ecc_calc[eccbytes - 1] = 0x0;
1248                 break;
1249         case OMAP_ECC_BCH16_CODE_HW:
1250                 break;
1251         default:
1252                 return -EINVAL;
1253         }
1254 
1255         return 0;
1256 }
1257 
1258 
1259 
1260 
1261 
1262 
1263 
1264 
1265 
1266 
1267 
1268 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1269                                      const u_char *dat, u_char *ecc_calc)
1270 {
1271         return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1272 }
1273 
1274 
1275 
1276 
1277 
1278 
1279 
1280 
1281 
1282 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1283                                         const u_char *dat, u_char *ecc_calc)
1284 {
1285         struct omap_nand_info *info = mtd_to_omap(mtd);
1286         int eccbytes = info->nand.ecc.bytes;
1287         unsigned long nsectors;
1288         int i, ret;
1289 
1290         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1291         for (i = 0; i < nsectors; i++) {
1292                 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1293                 if (ret)
1294                         return ret;
1295 
1296                 ecc_calc += eccbytes;
1297         }
1298 
1299         return 0;
1300 }
1301 
1302 
1303 
1304 
1305 
1306 
1307 
1308 
1309 
1310 
1311 
1312 static int erased_sector_bitflips(u_char *data, u_char *oob,
1313                 struct omap_nand_info *info)
1314 {
1315         int flip_bits = 0, i;
1316 
1317         for (i = 0; i < info->nand.ecc.size; i++) {
1318                 flip_bits += hweight8(~data[i]);
1319                 if (flip_bits > info->nand.ecc.strength)
1320                         return 0;
1321         }
1322 
1323         for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1324                 flip_bits += hweight8(~oob[i]);
1325                 if (flip_bits > info->nand.ecc.strength)
1326                         return 0;
1327         }
1328 
1329         
1330 
1331 
1332 
1333         if (flip_bits) {
1334                 memset(data, 0xFF, info->nand.ecc.size);
1335                 memset(oob, 0xFF, info->nand.ecc.bytes);
1336         }
1337 
1338         return flip_bits;
1339 }
1340 
1341 
1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 
1350 
1351 
1352 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1353                                  u_char *read_ecc, u_char *calc_ecc)
1354 {
1355         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1356         struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1357         int eccsteps = info->nand.ecc.steps;
1358         int i , j, stat = 0;
1359         int eccflag, actual_eccbytes;
1360         struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1361         u_char *ecc_vec = calc_ecc;
1362         u_char *spare_ecc = read_ecc;
1363         u_char *erased_ecc_vec;
1364         u_char *buf;
1365         int bitflip_count;
1366         bool is_error_reported = false;
1367         u32 bit_pos, byte_pos, error_max, pos;
1368         int err;
1369 
1370         switch (info->ecc_opt) {
1371         case OMAP_ECC_BCH4_CODE_HW:
1372                 
1373                 actual_eccbytes = ecc->bytes - 1;
1374                 erased_ecc_vec = bch4_vector;
1375                 break;
1376         case OMAP_ECC_BCH8_CODE_HW:
1377                 
1378                 actual_eccbytes = ecc->bytes - 1;
1379                 erased_ecc_vec = bch8_vector;
1380                 break;
1381         case OMAP_ECC_BCH16_CODE_HW:
1382                 actual_eccbytes = ecc->bytes;
1383                 erased_ecc_vec = bch16_vector;
1384                 break;
1385         default:
1386                 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1387                 return -EINVAL;
1388         }
1389 
1390         
1391         memset(err_vec, 0, sizeof(err_vec));
1392 
1393         for (i = 0; i < eccsteps ; i++) {
1394                 eccflag = 0;    
1395 
1396                 
1397 
1398 
1399 
1400                 for (j = 0; j < actual_eccbytes; j++) {
1401                         if (calc_ecc[j] != 0) {
1402                                 eccflag = 1; 
1403                                 break;
1404                         }
1405                 }
1406 
1407                 if (eccflag == 1) {
1408                         if (memcmp(calc_ecc, erased_ecc_vec,
1409                                                 actual_eccbytes) == 0) {
1410                                 
1411 
1412 
1413 
1414                         } else {
1415                                 buf = &data[info->nand.ecc.size * i];
1416                                 
1417 
1418 
1419 
1420 
1421                                 bitflip_count = erased_sector_bitflips(
1422                                                 buf, read_ecc, info);
1423                                 if (bitflip_count) {
1424                                         
1425 
1426 
1427 
1428                                         stat += bitflip_count;
1429                                 } else {
1430                                         
1431 
1432 
1433 
1434 
1435 
1436                                         err_vec[i].error_reported = true;
1437                                         is_error_reported = true;
1438                                 }
1439                         }
1440                 }
1441 
1442                 
1443                 calc_ecc += ecc->bytes;
1444                 read_ecc += ecc->bytes;
1445         }
1446 
1447         
1448         if (!is_error_reported)
1449                 return stat;
1450 
1451         
1452         elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1453 
1454         err = 0;
1455         for (i = 0; i < eccsteps; i++) {
1456                 if (err_vec[i].error_uncorrectable) {
1457                         dev_err(&info->pdev->dev,
1458                                 "uncorrectable bit-flips found\n");
1459                         err = -EBADMSG;
1460                 } else if (err_vec[i].error_reported) {
1461                         for (j = 0; j < err_vec[i].error_count; j++) {
1462                                 switch (info->ecc_opt) {
1463                                 case OMAP_ECC_BCH4_CODE_HW:
1464                                         
1465                                         pos = err_vec[i].error_loc[j] +
1466                                                 BCH4_BIT_PAD;
1467                                         break;
1468                                 case OMAP_ECC_BCH8_CODE_HW:
1469                                 case OMAP_ECC_BCH16_CODE_HW:
1470                                         pos = err_vec[i].error_loc[j];
1471                                         break;
1472                                 default:
1473                                         return -EINVAL;
1474                                 }
1475                                 error_max = (ecc->size + actual_eccbytes) * 8;
1476                                 
1477                                 bit_pos = pos % 8;
1478 
1479                                 
1480                                 byte_pos = (error_max - pos - 1) / 8;
1481 
1482                                 if (pos < error_max) {
1483                                         if (byte_pos < 512) {
1484                                                 pr_debug("bitflip@dat[%d]=%x\n",
1485                                                      byte_pos, data[byte_pos]);
1486                                                 data[byte_pos] ^= 1 << bit_pos;
1487                                         } else {
1488                                                 pr_debug("bitflip@oob[%d]=%x\n",
1489                                                         (byte_pos - 512),
1490                                                      spare_ecc[byte_pos - 512]);
1491                                                 spare_ecc[byte_pos - 512] ^=
1492                                                         1 << bit_pos;
1493                                         }
1494                                 } else {
1495                                         dev_err(&info->pdev->dev,
1496                                                 "invalid bit-flip @ %d:%d\n",
1497                                                 byte_pos, bit_pos);
1498                                         err = -EBADMSG;
1499                                 }
1500                         }
1501                 }
1502 
1503                 
1504                 stat = max_t(unsigned int, stat, err_vec[i].error_count);
1505 
1506                 
1507                 data += ecc->size;
1508                 spare_ecc += ecc->bytes;
1509         }
1510 
1511         return (err) ? err : stat;
1512 }
1513 
1514 
1515 
1516 
1517 
1518 
1519 
1520 
1521 
1522 
1523 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1524                                int oob_required, int page)
1525 {
1526         struct mtd_info *mtd = nand_to_mtd(chip);
1527         int ret;
1528         uint8_t *ecc_calc = chip->ecc.calc_buf;
1529 
1530         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1531 
1532         
1533         chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1534 
1535         
1536         chip->legacy.write_buf(chip, buf, mtd->writesize);
1537 
1538         
1539         omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
1540 
1541         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1542                                          chip->ecc.total);
1543         if (ret)
1544                 return ret;
1545 
1546         
1547         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1548 
1549         return nand_prog_page_end_op(chip);
1550 }
1551 
1552 
1553 
1554 
1555 
1556 
1557 
1558 
1559 
1560 
1561 
1562 
1563 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1564                                   u32 data_len, const u8 *buf,
1565                                   int oob_required, int page)
1566 {
1567         struct mtd_info *mtd = nand_to_mtd(chip);
1568         u8 *ecc_calc = chip->ecc.calc_buf;
1569         int ecc_size      = chip->ecc.size;
1570         int ecc_bytes     = chip->ecc.bytes;
1571         int ecc_steps     = chip->ecc.steps;
1572         u32 start_step = offset / ecc_size;
1573         u32 end_step   = (offset + data_len - 1) / ecc_size;
1574         int step, ret = 0;
1575 
1576         
1577 
1578 
1579 
1580 
1581 
1582         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1583 
1584         
1585         chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1586 
1587         
1588         chip->legacy.write_buf(chip, buf, mtd->writesize);
1589 
1590         for (step = 0; step < ecc_steps; step++) {
1591                 
1592                 if (step < start_step || step > end_step)
1593                         memset(ecc_calc, 0xff, ecc_bytes);
1594                 else
1595                         ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
1596 
1597                 if (ret)
1598                         return ret;
1599 
1600                 buf += ecc_size;
1601                 ecc_calc += ecc_bytes;
1602         }
1603 
1604         
1605         
1606         ecc_calc = chip->ecc.calc_buf;
1607         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1608                                          chip->ecc.total);
1609         if (ret)
1610                 return ret;
1611 
1612         
1613         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1614 
1615         return nand_prog_page_end_op(chip);
1616 }
1617 
1618 
1619 
1620 
1621 
1622 
1623 
1624 
1625 
1626 
1627 
1628 
1629 
1630 
1631 
1632 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1633                               int oob_required, int page)
1634 {
1635         struct mtd_info *mtd = nand_to_mtd(chip);
1636         uint8_t *ecc_calc = chip->ecc.calc_buf;
1637         uint8_t *ecc_code = chip->ecc.code_buf;
1638         int stat, ret;
1639         unsigned int max_bitflips = 0;
1640 
1641         nand_read_page_op(chip, page, 0, NULL, 0);
1642 
1643         
1644         chip->ecc.hwctl(chip, NAND_ECC_READ);
1645 
1646         
1647         chip->legacy.read_buf(chip, buf, mtd->writesize);
1648 
1649         
1650         nand_change_read_column_op(chip,
1651                                    mtd->writesize + BADBLOCK_MARKER_LENGTH,
1652                                    chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1653                                    chip->ecc.total, false);
1654 
1655         
1656         omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
1657 
1658         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1659                                          chip->ecc.total);
1660         if (ret)
1661                 return ret;
1662 
1663         stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1664 
1665         if (stat < 0) {
1666                 mtd->ecc_stats.failed++;
1667         } else {
1668                 mtd->ecc_stats.corrected += stat;
1669                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1670         }
1671 
1672         return max_bitflips;
1673 }
1674 
1675 
1676 
1677 
1678 
1679 static bool is_elm_present(struct omap_nand_info *info,
1680                            struct device_node *elm_node)
1681 {
1682         struct platform_device *pdev;
1683 
1684         
1685         if (!elm_node) {
1686                 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1687                 return false;
1688         }
1689         pdev = of_find_device_by_node(elm_node);
1690         
1691         if (!pdev) {
1692                 dev_err(&info->pdev->dev, "ELM device not found\n");
1693                 return false;
1694         }
1695         
1696         info->elm_dev = &pdev->dev;
1697         return true;
1698 }
1699 
1700 static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1701 {
1702         bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1703 
1704         switch (info->ecc_opt) {
1705         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1706         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1707                 ecc_needs_omap_bch = false;
1708                 ecc_needs_bch = true;
1709                 ecc_needs_elm = false;
1710                 break;
1711         case OMAP_ECC_BCH4_CODE_HW:
1712         case OMAP_ECC_BCH8_CODE_HW:
1713         case OMAP_ECC_BCH16_CODE_HW:
1714                 ecc_needs_omap_bch = true;
1715                 ecc_needs_bch = false;
1716                 ecc_needs_elm = true;
1717                 break;
1718         default:
1719                 ecc_needs_omap_bch = false;
1720                 ecc_needs_bch = false;
1721                 ecc_needs_elm = false;
1722                 break;
1723         }
1724 
1725         if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1726                 dev_err(&info->pdev->dev,
1727                         "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1728                 return false;
1729         }
1730         if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1731                 dev_err(&info->pdev->dev,
1732                         "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1733                 return false;
1734         }
1735         if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1736                 dev_err(&info->pdev->dev, "ELM not available\n");
1737                 return false;
1738         }
1739 
1740         return true;
1741 }
1742 
1743 static const char * const nand_xfer_types[] = {
1744         [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1745         [NAND_OMAP_POLLED] = "polled",
1746         [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1747         [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1748 };
1749 
1750 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1751 {
1752         struct device_node *child = dev->of_node;
1753         int i;
1754         const char *s;
1755         u32 cs;
1756 
1757         if (of_property_read_u32(child, "reg", &cs) < 0) {
1758                 dev_err(dev, "reg not found in DT\n");
1759                 return -EINVAL;
1760         }
1761 
1762         info->gpmc_cs = cs;
1763 
1764         
1765         info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1766         if (!info->elm_of_node) {
1767                 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1768                 if (!info->elm_of_node)
1769                         dev_dbg(dev, "ti,elm-id not in DT\n");
1770         }
1771 
1772         
1773         if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1774                 dev_err(dev, "ti,nand-ecc-opt not found\n");
1775                 return -EINVAL;
1776         }
1777 
1778         if (!strcmp(s, "sw")) {
1779                 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1780         } else if (!strcmp(s, "ham1") ||
1781                    !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1782                 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1783         } else if (!strcmp(s, "bch4")) {
1784                 if (info->elm_of_node)
1785                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1786                 else
1787                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1788         } else if (!strcmp(s, "bch8")) {
1789                 if (info->elm_of_node)
1790                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1791                 else
1792                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1793         } else if (!strcmp(s, "bch16")) {
1794                 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1795         } else {
1796                 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1797                 return -EINVAL;
1798         }
1799 
1800         
1801         if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1802                 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1803                         if (!strcasecmp(s, nand_xfer_types[i])) {
1804                                 info->xfer_type = i;
1805                                 return 0;
1806                         }
1807                 }
1808 
1809                 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1810                 return -EINVAL;
1811         }
1812 
1813         return 0;
1814 }
1815 
1816 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1817                               struct mtd_oob_region *oobregion)
1818 {
1819         struct omap_nand_info *info = mtd_to_omap(mtd);
1820         struct nand_chip *chip = &info->nand;
1821         int off = BADBLOCK_MARKER_LENGTH;
1822 
1823         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1824             !(chip->options & NAND_BUSWIDTH_16))
1825                 off = 1;
1826 
1827         if (section)
1828                 return -ERANGE;
1829 
1830         oobregion->offset = off;
1831         oobregion->length = chip->ecc.total;
1832 
1833         return 0;
1834 }
1835 
1836 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1837                                struct mtd_oob_region *oobregion)
1838 {
1839         struct omap_nand_info *info = mtd_to_omap(mtd);
1840         struct nand_chip *chip = &info->nand;
1841         int off = BADBLOCK_MARKER_LENGTH;
1842 
1843         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1844             !(chip->options & NAND_BUSWIDTH_16))
1845                 off = 1;
1846 
1847         if (section)
1848                 return -ERANGE;
1849 
1850         off += chip->ecc.total;
1851         if (off >= mtd->oobsize)
1852                 return -ERANGE;
1853 
1854         oobregion->offset = off;
1855         oobregion->length = mtd->oobsize - off;
1856 
1857         return 0;
1858 }
1859 
1860 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1861         .ecc = omap_ooblayout_ecc,
1862         .free = omap_ooblayout_free,
1863 };
1864 
1865 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1866                                  struct mtd_oob_region *oobregion)
1867 {
1868         struct nand_chip *chip = mtd_to_nand(mtd);
1869         int off = BADBLOCK_MARKER_LENGTH;
1870 
1871         if (section >= chip->ecc.steps)
1872                 return -ERANGE;
1873 
1874         
1875 
1876 
1877 
1878         oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1879         oobregion->length = chip->ecc.bytes;
1880 
1881         return 0;
1882 }
1883 
1884 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1885                                   struct mtd_oob_region *oobregion)
1886 {
1887         struct nand_chip *chip = mtd_to_nand(mtd);
1888         int off = BADBLOCK_MARKER_LENGTH;
1889 
1890         if (section)
1891                 return -ERANGE;
1892 
1893         
1894 
1895 
1896 
1897         off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1898         if (off >= mtd->oobsize)
1899                 return -ERANGE;
1900 
1901         oobregion->offset = off;
1902         oobregion->length = mtd->oobsize - off;
1903 
1904         return 0;
1905 }
1906 
1907 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1908         .ecc = omap_sw_ooblayout_ecc,
1909         .free = omap_sw_ooblayout_free,
1910 };
1911 
1912 static int omap_nand_attach_chip(struct nand_chip *chip)
1913 {
1914         struct mtd_info *mtd = nand_to_mtd(chip);
1915         struct omap_nand_info *info = mtd_to_omap(mtd);
1916         struct device *dev = &info->pdev->dev;
1917         int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1918         int oobbytes_per_step;
1919         dma_cap_mask_t mask;
1920         int err;
1921 
1922         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1923                 chip->bbt_options |= NAND_BBT_NO_OOB;
1924         else
1925                 chip->options |= NAND_SKIP_BBTSCAN;
1926 
1927         
1928         switch (info->xfer_type) {
1929         case NAND_OMAP_PREFETCH_POLLED:
1930                 chip->legacy.read_buf = omap_read_buf_pref;
1931                 chip->legacy.write_buf = omap_write_buf_pref;
1932                 break;
1933 
1934         case NAND_OMAP_POLLED:
1935                 
1936                 break;
1937 
1938         case NAND_OMAP_PREFETCH_DMA:
1939                 dma_cap_zero(mask);
1940                 dma_cap_set(DMA_SLAVE, mask);
1941                 info->dma = dma_request_chan(dev->parent, "rxtx");
1942 
1943                 if (IS_ERR(info->dma)) {
1944                         dev_err(dev, "DMA engine request failed\n");
1945                         return PTR_ERR(info->dma);
1946                 } else {
1947                         struct dma_slave_config cfg;
1948 
1949                         memset(&cfg, 0, sizeof(cfg));
1950                         cfg.src_addr = info->phys_base;
1951                         cfg.dst_addr = info->phys_base;
1952                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1953                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1954                         cfg.src_maxburst = 16;
1955                         cfg.dst_maxburst = 16;
1956                         err = dmaengine_slave_config(info->dma, &cfg);
1957                         if (err) {
1958                                 dev_err(dev,
1959                                         "DMA engine slave config failed: %d\n",
1960                                         err);
1961                                 return err;
1962                         }
1963                         chip->legacy.read_buf = omap_read_buf_dma_pref;
1964                         chip->legacy.write_buf = omap_write_buf_dma_pref;
1965                 }
1966                 break;
1967 
1968         case NAND_OMAP_PREFETCH_IRQ:
1969                 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1970                 if (info->gpmc_irq_fifo <= 0) {
1971                         dev_err(dev, "Error getting fifo IRQ\n");
1972                         return -ENODEV;
1973                 }
1974                 err = devm_request_irq(dev, info->gpmc_irq_fifo,
1975                                        omap_nand_irq, IRQF_SHARED,
1976                                        "gpmc-nand-fifo", info);
1977                 if (err) {
1978                         dev_err(dev, "Requesting IRQ %d, error %d\n",
1979                                 info->gpmc_irq_fifo, err);
1980                         info->gpmc_irq_fifo = 0;
1981                         return err;
1982                 }
1983 
1984                 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1985                 if (info->gpmc_irq_count <= 0) {
1986                         dev_err(dev, "Error getting IRQ count\n");
1987                         return -ENODEV;
1988                 }
1989                 err = devm_request_irq(dev, info->gpmc_irq_count,
1990                                        omap_nand_irq, IRQF_SHARED,
1991                                        "gpmc-nand-count", info);
1992                 if (err) {
1993                         dev_err(dev, "Requesting IRQ %d, error %d\n",
1994                                 info->gpmc_irq_count, err);
1995                         info->gpmc_irq_count = 0;
1996                         return err;
1997                 }
1998 
1999                 chip->legacy.read_buf = omap_read_buf_irq_pref;
2000                 chip->legacy.write_buf = omap_write_buf_irq_pref;
2001 
2002                 break;
2003 
2004         default:
2005                 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
2006                 return -EINVAL;
2007         }
2008 
2009         if (!omap2_nand_ecc_check(info))
2010                 return -EINVAL;
2011 
2012         
2013 
2014 
2015 
2016         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2017                 chip->ecc.mode = NAND_ECC_SOFT;
2018                 chip->ecc.algo = NAND_ECC_HAMMING;
2019                 return 0;
2020         }
2021 
2022         
2023         switch (info->ecc_opt) {
2024         case OMAP_ECC_HAM1_CODE_HW:
2025                 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2026                 chip->ecc.mode          = NAND_ECC_HW;
2027                 chip->ecc.bytes         = 3;
2028                 chip->ecc.size          = 512;
2029                 chip->ecc.strength      = 1;
2030                 chip->ecc.calculate     = omap_calculate_ecc;
2031                 chip->ecc.hwctl         = omap_enable_hwecc;
2032                 chip->ecc.correct       = omap_correct_data;
2033                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2034                 oobbytes_per_step       = chip->ecc.bytes;
2035 
2036                 if (!(chip->options & NAND_BUSWIDTH_16))
2037                         min_oobbytes    = 1;
2038 
2039                 break;
2040 
2041         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2042                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2043                 chip->ecc.mode          = NAND_ECC_HW;
2044                 chip->ecc.size          = 512;
2045                 chip->ecc.bytes         = 7;
2046                 chip->ecc.strength      = 4;
2047                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2048                 chip->ecc.correct       = nand_bch_correct_data;
2049                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2050                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2051                 
2052                 oobbytes_per_step       = chip->ecc.bytes + 1;
2053                 
2054                 chip->ecc.priv          = nand_bch_init(mtd);
2055                 if (!chip->ecc.priv) {
2056                         dev_err(dev, "Unable to use BCH library\n");
2057                         return -EINVAL;
2058                 }
2059                 break;
2060 
2061         case OMAP_ECC_BCH4_CODE_HW:
2062                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2063                 chip->ecc.mode          = NAND_ECC_HW;
2064                 chip->ecc.size          = 512;
2065                 
2066                 chip->ecc.bytes         = 7 + 1;
2067                 chip->ecc.strength      = 4;
2068                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2069                 chip->ecc.correct       = omap_elm_correct_data;
2070                 chip->ecc.read_page     = omap_read_page_bch;
2071                 chip->ecc.write_page    = omap_write_page_bch;
2072                 chip->ecc.write_subpage = omap_write_subpage_bch;
2073                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2074                 oobbytes_per_step       = chip->ecc.bytes;
2075 
2076                 err = elm_config(info->elm_dev, BCH4_ECC,
2077                                  mtd->writesize / chip->ecc.size,
2078                                  chip->ecc.size, chip->ecc.bytes);
2079                 if (err < 0)
2080                         return err;
2081                 break;
2082 
2083         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2084                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2085                 chip->ecc.mode          = NAND_ECC_HW;
2086                 chip->ecc.size          = 512;
2087                 chip->ecc.bytes         = 13;
2088                 chip->ecc.strength      = 8;
2089                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2090                 chip->ecc.correct       = nand_bch_correct_data;
2091                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2092                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2093                 
2094                 oobbytes_per_step       = chip->ecc.bytes + 1;
2095                 
2096                 chip->ecc.priv          = nand_bch_init(mtd);
2097                 if (!chip->ecc.priv) {
2098                         dev_err(dev, "unable to use BCH library\n");
2099                         return -EINVAL;
2100                 }
2101                 break;
2102 
2103         case OMAP_ECC_BCH8_CODE_HW:
2104                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2105                 chip->ecc.mode          = NAND_ECC_HW;
2106                 chip->ecc.size          = 512;
2107                 
2108                 chip->ecc.bytes         = 13 + 1;
2109                 chip->ecc.strength      = 8;
2110                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2111                 chip->ecc.correct       = omap_elm_correct_data;
2112                 chip->ecc.read_page     = omap_read_page_bch;
2113                 chip->ecc.write_page    = omap_write_page_bch;
2114                 chip->ecc.write_subpage = omap_write_subpage_bch;
2115                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2116                 oobbytes_per_step       = chip->ecc.bytes;
2117 
2118                 err = elm_config(info->elm_dev, BCH8_ECC,
2119                                  mtd->writesize / chip->ecc.size,
2120                                  chip->ecc.size, chip->ecc.bytes);
2121                 if (err < 0)
2122                         return err;
2123 
2124                 break;
2125 
2126         case OMAP_ECC_BCH16_CODE_HW:
2127                 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2128                 chip->ecc.mode          = NAND_ECC_HW;
2129                 chip->ecc.size          = 512;
2130                 chip->ecc.bytes         = 26;
2131                 chip->ecc.strength      = 16;
2132                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2133                 chip->ecc.correct       = omap_elm_correct_data;
2134                 chip->ecc.read_page     = omap_read_page_bch;
2135                 chip->ecc.write_page    = omap_write_page_bch;
2136                 chip->ecc.write_subpage = omap_write_subpage_bch;
2137                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2138                 oobbytes_per_step       = chip->ecc.bytes;
2139 
2140                 err = elm_config(info->elm_dev, BCH16_ECC,
2141                                  mtd->writesize / chip->ecc.size,
2142                                  chip->ecc.size, chip->ecc.bytes);
2143                 if (err < 0)
2144                         return err;
2145 
2146                 break;
2147         default:
2148                 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2149                 return -EINVAL;
2150         }
2151 
2152         
2153         min_oobbytes += (oobbytes_per_step *
2154                          (mtd->writesize / chip->ecc.size));
2155         if (mtd->oobsize < min_oobbytes) {
2156                 dev_err(dev,
2157                         "Not enough OOB bytes: required = %d, available=%d\n",
2158                         min_oobbytes, mtd->oobsize);
2159                 return -EINVAL;
2160         }
2161 
2162         return 0;
2163 }
2164 
2165 static const struct nand_controller_ops omap_nand_controller_ops = {
2166         .attach_chip = omap_nand_attach_chip,
2167 };
2168 
2169 
2170 static struct nand_controller omap_gpmc_controller;
2171 static bool omap_gpmc_controller_initialized;
2172 
2173 static int omap_nand_probe(struct platform_device *pdev)
2174 {
2175         struct omap_nand_info           *info;
2176         struct mtd_info                 *mtd;
2177         struct nand_chip                *nand_chip;
2178         int                             err;
2179         struct resource                 *res;
2180         struct device                   *dev = &pdev->dev;
2181 
2182         info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2183                                 GFP_KERNEL);
2184         if (!info)
2185                 return -ENOMEM;
2186 
2187         info->pdev = pdev;
2188 
2189         err = omap_get_dt_info(dev, info);
2190         if (err)
2191                 return err;
2192 
2193         info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2194         if (!info->ops) {
2195                 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2196                 return -ENODEV;
2197         }
2198 
2199         nand_chip               = &info->nand;
2200         mtd                     = nand_to_mtd(nand_chip);
2201         mtd->dev.parent         = &pdev->dev;
2202         nand_chip->ecc.priv     = NULL;
2203         nand_set_flash_node(nand_chip, dev->of_node);
2204 
2205         if (!mtd->name) {
2206                 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2207                                            "omap2-nand.%d", info->gpmc_cs);
2208                 if (!mtd->name) {
2209                         dev_err(&pdev->dev, "Failed to set MTD name\n");
2210                         return -ENOMEM;
2211                 }
2212         }
2213 
2214         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2215         nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
2216         if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
2217                 return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
2218 
2219         info->phys_base = res->start;
2220 
2221         if (!omap_gpmc_controller_initialized) {
2222                 omap_gpmc_controller.ops = &omap_nand_controller_ops;
2223                 nand_controller_init(&omap_gpmc_controller);
2224                 omap_gpmc_controller_initialized = true;
2225         }
2226 
2227         nand_chip->controller = &omap_gpmc_controller;
2228 
2229         nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
2230         nand_chip->legacy.cmd_ctrl  = omap_hwcontrol;
2231 
2232         info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2233                                                     GPIOD_IN);
2234         if (IS_ERR(info->ready_gpiod)) {
2235                 dev_err(dev, "failed to get ready gpio\n");
2236                 return PTR_ERR(info->ready_gpiod);
2237         }
2238 
2239         
2240 
2241 
2242 
2243 
2244 
2245 
2246         if (info->ready_gpiod) {
2247                 nand_chip->legacy.dev_ready = omap_dev_ready;
2248                 nand_chip->legacy.chip_delay = 0;
2249         } else {
2250                 nand_chip->legacy.waitfunc = omap_wait;
2251                 nand_chip->legacy.chip_delay = 50;
2252         }
2253 
2254         if (info->flash_bbt)
2255                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2256 
2257         
2258         nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2259 
2260         err = nand_scan(nand_chip, 1);
2261         if (err)
2262                 goto return_error;
2263 
2264         err = mtd_device_register(mtd, NULL, 0);
2265         if (err)
2266                 goto cleanup_nand;
2267 
2268         platform_set_drvdata(pdev, mtd);
2269 
2270         return 0;
2271 
2272 cleanup_nand:
2273         nand_cleanup(nand_chip);
2274 
2275 return_error:
2276         if (!IS_ERR_OR_NULL(info->dma))
2277                 dma_release_channel(info->dma);
2278         if (nand_chip->ecc.priv) {
2279                 nand_bch_free(nand_chip->ecc.priv);
2280                 nand_chip->ecc.priv = NULL;
2281         }
2282         return err;
2283 }
2284 
2285 static int omap_nand_remove(struct platform_device *pdev)
2286 {
2287         struct mtd_info *mtd = platform_get_drvdata(pdev);
2288         struct nand_chip *nand_chip = mtd_to_nand(mtd);
2289         struct omap_nand_info *info = mtd_to_omap(mtd);
2290         if (nand_chip->ecc.priv) {
2291                 nand_bch_free(nand_chip->ecc.priv);
2292                 nand_chip->ecc.priv = NULL;
2293         }
2294         if (info->dma)
2295                 dma_release_channel(info->dma);
2296         nand_release(nand_chip);
2297         return 0;
2298 }
2299 
2300 static const struct of_device_id omap_nand_ids[] = {
2301         { .compatible = "ti,omap2-nand", },
2302         {},
2303 };
2304 MODULE_DEVICE_TABLE(of, omap_nand_ids);
2305 
2306 static struct platform_driver omap_nand_driver = {
2307         .probe          = omap_nand_probe,
2308         .remove         = omap_nand_remove,
2309         .driver         = {
2310                 .name   = DRIVER_NAME,
2311                 .of_match_table = of_match_ptr(omap_nand_ids),
2312         },
2313 };
2314 
2315 module_platform_driver(omap_nand_driver);
2316 
2317 MODULE_ALIAS("platform:" DRIVER_NAME);
2318 MODULE_LICENSE("GPL");
2319 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");