root/drivers/spi/spi-rspi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. rspi_write8
  2. rspi_write16
  3. rspi_write32
  4. rspi_read8
  5. rspi_read16
  6. rspi_write_data
  7. rspi_read_data
  8. rspi_set_config_register
  9. rspi_rz_set_config_register
  10. qspi_set_config_register
  11. qspi_update
  12. qspi_set_send_trigger
  13. qspi_set_receive_trigger
  14. rspi_enable_irq
  15. rspi_disable_irq
  16. rspi_wait_for_interrupt
  17. rspi_wait_for_tx_empty
  18. rspi_wait_for_rx_full
  19. rspi_data_out
  20. rspi_data_in
  21. rspi_pio_transfer
  22. rspi_dma_complete
  23. rspi_dma_transfer
  24. rspi_receive_init
  25. rspi_rz_receive_init
  26. qspi_receive_init
  27. __rspi_can_dma
  28. rspi_can_dma
  29. rspi_dma_check_then_transfer
  30. rspi_common_transfer
  31. rspi_transfer_one
  32. rspi_rz_transfer_one
  33. qspi_trigger_transfer_out_in
  34. qspi_transfer_out_in
  35. qspi_transfer_out
  36. qspi_transfer_in
  37. qspi_transfer_one
  38. qspi_transfer_mode
  39. qspi_setup_sequencer
  40. rspi_prepare_message
  41. rspi_unprepare_message
  42. rspi_irq_mux
  43. rspi_irq_rx
  44. rspi_irq_tx
  45. rspi_request_dma_chan
  46. rspi_request_dma
  47. rspi_release_dma
  48. rspi_remove
  49. rspi_parse_dt
  50. rspi_parse_dt
  51. rspi_request_irq
  52. rspi_probe
  53. rspi_suspend
  54. rspi_resume

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * SH RSPI driver
   4  *
   5  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   6  * Copyright (C) 2014 Glider bvba
   7  *
   8  * Based on spi-sh.c:
   9  * Copyright (C) 2011 Renesas Solutions Corp.
  10  */
  11 
  12 #include <linux/module.h>
  13 #include <linux/kernel.h>
  14 #include <linux/sched.h>
  15 #include <linux/errno.h>
  16 #include <linux/interrupt.h>
  17 #include <linux/platform_device.h>
  18 #include <linux/io.h>
  19 #include <linux/clk.h>
  20 #include <linux/dmaengine.h>
  21 #include <linux/dma-mapping.h>
  22 #include <linux/of_device.h>
  23 #include <linux/pm_runtime.h>
  24 #include <linux/sh_dma.h>
  25 #include <linux/spi/spi.h>
  26 #include <linux/spi/rspi.h>
  27 
  28 #define RSPI_SPCR               0x00    /* Control Register */
  29 #define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
  30 #define RSPI_SPPCR              0x02    /* Pin Control Register */
  31 #define RSPI_SPSR               0x03    /* Status Register */
  32 #define RSPI_SPDR               0x04    /* Data Register */
  33 #define RSPI_SPSCR              0x08    /* Sequence Control Register */
  34 #define RSPI_SPSSR              0x09    /* Sequence Status Register */
  35 #define RSPI_SPBR               0x0a    /* Bit Rate Register */
  36 #define RSPI_SPDCR              0x0b    /* Data Control Register */
  37 #define RSPI_SPCKD              0x0c    /* Clock Delay Register */
  38 #define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
  39 #define RSPI_SPND               0x0e    /* Next-Access Delay Register */
  40 #define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
  41 #define RSPI_SPCMD0             0x10    /* Command Register 0 */
  42 #define RSPI_SPCMD1             0x12    /* Command Register 1 */
  43 #define RSPI_SPCMD2             0x14    /* Command Register 2 */
  44 #define RSPI_SPCMD3             0x16    /* Command Register 3 */
  45 #define RSPI_SPCMD4             0x18    /* Command Register 4 */
  46 #define RSPI_SPCMD5             0x1a    /* Command Register 5 */
  47 #define RSPI_SPCMD6             0x1c    /* Command Register 6 */
  48 #define RSPI_SPCMD7             0x1e    /* Command Register 7 */
  49 #define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
  50 #define RSPI_NUM_SPCMD          8
  51 #define RSPI_RZ_NUM_SPCMD       4
  52 #define QSPI_NUM_SPCMD          4
  53 
  54 /* RSPI on RZ only */
  55 #define RSPI_SPBFCR             0x20    /* Buffer Control Register */
  56 #define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
  57 
  58 /* QSPI only */
  59 #define QSPI_SPBFCR             0x18    /* Buffer Control Register */
  60 #define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
  61 #define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
  62 #define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
  63 #define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
  64 #define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
  65 #define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
  66 
  67 /* SPCR - Control Register */
  68 #define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
  69 #define SPCR_SPE                0x40    /* Function Enable */
  70 #define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
  71 #define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
  72 #define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
  73 #define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
  74 /* RSPI on SH only */
  75 #define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
  76 #define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
  77 /* QSPI on R-Car Gen2 only */
  78 #define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
  79 #define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
  80 
  81 /* SSLP - Slave Select Polarity Register */
  82 #define SSLP_SSL1P              0x02    /* SSL1 Signal Polarity Setting */
  83 #define SSLP_SSL0P              0x01    /* SSL0 Signal Polarity Setting */
  84 
  85 /* SPPCR - Pin Control Register */
  86 #define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
  87 #define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
  88 #define SPPCR_SPOM              0x04
  89 #define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
  90 #define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
  91 
  92 #define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  93 #define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  94 
  95 /* SPSR - Status Register */
  96 #define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
  97 #define SPSR_TEND               0x40    /* Transmit End */
  98 #define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
  99 #define SPSR_PERF               0x08    /* Parity Error Flag */
 100 #define SPSR_MODF               0x04    /* Mode Fault Error Flag */
 101 #define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
 102 #define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
 103 
 104 /* SPSCR - Sequence Control Register */
 105 #define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
 106 
 107 /* SPSSR - Sequence Status Register */
 108 #define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
 109 #define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
 110 
 111 /* SPDCR - Data Control Register */
 112 #define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
 113 #define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
 114 #define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
 115 #define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
 116 #define SPDCR_SPLWORD           SPDCR_SPLW1
 117 #define SPDCR_SPLBYTE           SPDCR_SPLW0
 118 #define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
 119 #define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
 120 #define SPDCR_SLSEL1            0x08
 121 #define SPDCR_SLSEL0            0x04
 122 #define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
 123 #define SPDCR_SPFC1             0x02
 124 #define SPDCR_SPFC0             0x01
 125 #define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
 126 
 127 /* SPCKD - Clock Delay Register */
 128 #define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
 129 
 130 /* SSLND - Slave Select Negation Delay Register */
 131 #define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
 132 
 133 /* SPND - Next-Access Delay Register */
 134 #define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
 135 
 136 /* SPCR2 - Control Register 2 */
 137 #define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
 138 #define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
 139 #define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
 140 #define SPCR2_SPPE              0x01    /* Parity Enable */
 141 
 142 /* SPCMDn - Command Registers */
 143 #define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
 144 #define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
 145 #define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
 146 #define SPCMD_LSBF              0x1000  /* LSB First */
 147 #define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
 148 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
 149 #define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
 150 #define SPCMD_SPB_16BIT         0x0100
 151 #define SPCMD_SPB_20BIT         0x0000
 152 #define SPCMD_SPB_24BIT         0x0100
 153 #define SPCMD_SPB_32BIT         0x0200
 154 #define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
 155 #define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
 156 #define SPCMD_SPIMOD1           0x0040
 157 #define SPCMD_SPIMOD0           0x0020
 158 #define SPCMD_SPIMOD_SINGLE     0
 159 #define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
 160 #define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
 161 #define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
 162 #define SPCMD_SSLA_MASK         0x0030  /* SSL Assert Signal Setting (RSPI) */
 163 #define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
 164 #define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
 165 #define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
 166 
 167 /* SPBFCR - Buffer Control Register */
 168 #define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
 169 #define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
 170 #define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
 171 #define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
 172 /* QSPI on R-Car Gen2 */
 173 #define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
 174 #define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
 175 #define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
 176 #define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
 177 
 178 #define QSPI_BUFFER_SIZE        32u
 179 
 180 struct rspi_data {
 181         void __iomem *addr;
 182         u32 max_speed_hz;
 183         struct spi_controller *ctlr;
 184         wait_queue_head_t wait;
 185         struct clk *clk;
 186         u16 spcmd;
 187         u8 spsr;
 188         u8 sppcr;
 189         int rx_irq, tx_irq;
 190         const struct spi_ops *ops;
 191 
 192         unsigned dma_callbacked:1;
 193         unsigned byte_access:1;
 194 };
 195 
 196 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 197 {
 198         iowrite8(data, rspi->addr + offset);
 199 }
 200 
 201 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 202 {
 203         iowrite16(data, rspi->addr + offset);
 204 }
 205 
 206 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 207 {
 208         iowrite32(data, rspi->addr + offset);
 209 }
 210 
 211 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 212 {
 213         return ioread8(rspi->addr + offset);
 214 }
 215 
 216 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 217 {
 218         return ioread16(rspi->addr + offset);
 219 }
 220 
 221 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 222 {
 223         if (rspi->byte_access)
 224                 rspi_write8(rspi, data, RSPI_SPDR);
 225         else /* 16 bit */
 226                 rspi_write16(rspi, data, RSPI_SPDR);
 227 }
 228 
 229 static u16 rspi_read_data(const struct rspi_data *rspi)
 230 {
 231         if (rspi->byte_access)
 232                 return rspi_read8(rspi, RSPI_SPDR);
 233         else /* 16 bit */
 234                 return rspi_read16(rspi, RSPI_SPDR);
 235 }
 236 
 237 /* optional functions */
 238 struct spi_ops {
 239         int (*set_config_register)(struct rspi_data *rspi, int access_size);
 240         int (*transfer_one)(struct spi_controller *ctlr,
 241                             struct spi_device *spi, struct spi_transfer *xfer);
 242         u16 mode_bits;
 243         u16 flags;
 244         u16 fifo_size;
 245 };
 246 
 247 /*
 248  * functions for RSPI on legacy SH
 249  */
 250 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 251 {
 252         int spbr;
 253 
 254         /* Sets output mode, MOSI signal, and (optionally) loopback */
 255         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 256 
 257         /* Sets transfer bit rate */
 258         spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
 259                             2 * rspi->max_speed_hz) - 1;
 260         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 261 
 262         /* Disable dummy transmission, set 16-bit word access, 1 frame */
 263         rspi_write8(rspi, 0, RSPI_SPDCR);
 264         rspi->byte_access = 0;
 265 
 266         /* Sets RSPCK, SSL, next-access delay value */
 267         rspi_write8(rspi, 0x00, RSPI_SPCKD);
 268         rspi_write8(rspi, 0x00, RSPI_SSLND);
 269         rspi_write8(rspi, 0x00, RSPI_SPND);
 270 
 271         /* Sets parity, interrupt mask */
 272         rspi_write8(rspi, 0x00, RSPI_SPCR2);
 273 
 274         /* Resets sequencer */
 275         rspi_write8(rspi, 0, RSPI_SPSCR);
 276         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 277         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 278 
 279         /* Sets RSPI mode */
 280         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 281 
 282         return 0;
 283 }
 284 
 285 /*
 286  * functions for RSPI on RZ
 287  */
 288 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 289 {
 290         int spbr;
 291         int div = 0;
 292         unsigned long clksrc;
 293 
 294         /* Sets output mode, MOSI signal, and (optionally) loopback */
 295         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 296 
 297         clksrc = clk_get_rate(rspi->clk);
 298         while (div < 3) {
 299                 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
 300                         break;
 301                 div++;
 302                 clksrc /= 2;
 303         }
 304 
 305         /* Sets transfer bit rate */
 306         spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
 307         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 308         rspi->spcmd |= div << 2;
 309 
 310         /* Disable dummy transmission, set byte access */
 311         rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 312         rspi->byte_access = 1;
 313 
 314         /* Sets RSPCK, SSL, next-access delay value */
 315         rspi_write8(rspi, 0x00, RSPI_SPCKD);
 316         rspi_write8(rspi, 0x00, RSPI_SSLND);
 317         rspi_write8(rspi, 0x00, RSPI_SPND);
 318 
 319         /* Resets sequencer */
 320         rspi_write8(rspi, 0, RSPI_SPSCR);
 321         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 322         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 323 
 324         /* Sets RSPI mode */
 325         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 326 
 327         return 0;
 328 }
 329 
 330 /*
 331  * functions for QSPI
 332  */
 333 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 334 {
 335         int spbr;
 336 
 337         /* Sets output mode, MOSI signal, and (optionally) loopback */
 338         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 339 
 340         /* Sets transfer bit rate */
 341         spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
 342         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 343 
 344         /* Disable dummy transmission, set byte access */
 345         rspi_write8(rspi, 0, RSPI_SPDCR);
 346         rspi->byte_access = 1;
 347 
 348         /* Sets RSPCK, SSL, next-access delay value */
 349         rspi_write8(rspi, 0x00, RSPI_SPCKD);
 350         rspi_write8(rspi, 0x00, RSPI_SSLND);
 351         rspi_write8(rspi, 0x00, RSPI_SPND);
 352 
 353         /* Data Length Setting */
 354         if (access_size == 8)
 355                 rspi->spcmd |= SPCMD_SPB_8BIT;
 356         else if (access_size == 16)
 357                 rspi->spcmd |= SPCMD_SPB_16BIT;
 358         else
 359                 rspi->spcmd |= SPCMD_SPB_32BIT;
 360 
 361         rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 362 
 363         /* Resets transfer data length */
 364         rspi_write32(rspi, 0, QSPI_SPBMUL0);
 365 
 366         /* Resets transmit and receive buffer */
 367         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 368         /* Sets buffer to allow normal operation */
 369         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 370 
 371         /* Resets sequencer */
 372         rspi_write8(rspi, 0, RSPI_SPSCR);
 373         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 374 
 375         /* Sets RSPI mode */
 376         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 377 
 378         return 0;
 379 }
 380 
 381 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
 382 {
 383         u8 data;
 384 
 385         data = rspi_read8(rspi, reg);
 386         data &= ~mask;
 387         data |= (val & mask);
 388         rspi_write8(rspi, data, reg);
 389 }
 390 
 391 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
 392                                           unsigned int len)
 393 {
 394         unsigned int n;
 395 
 396         n = min(len, QSPI_BUFFER_SIZE);
 397 
 398         if (len >= QSPI_BUFFER_SIZE) {
 399                 /* sets triggering number to 32 bytes */
 400                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
 401                              SPBFCR_TXTRG_32B, QSPI_SPBFCR);
 402         } else {
 403                 /* sets triggering number to 1 byte */
 404                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
 405                              SPBFCR_TXTRG_1B, QSPI_SPBFCR);
 406         }
 407 
 408         return n;
 409 }
 410 
 411 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
 412 {
 413         unsigned int n;
 414 
 415         n = min(len, QSPI_BUFFER_SIZE);
 416 
 417         if (len >= QSPI_BUFFER_SIZE) {
 418                 /* sets triggering number to 32 bytes */
 419                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
 420                              SPBFCR_RXTRG_32B, QSPI_SPBFCR);
 421         } else {
 422                 /* sets triggering number to 1 byte */
 423                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
 424                              SPBFCR_RXTRG_1B, QSPI_SPBFCR);
 425         }
 426         return n;
 427 }
 428 
 429 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
 430 
 431 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 432 {
 433         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 434 }
 435 
 436 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 437 {
 438         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 439 }
 440 
 441 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 442                                    u8 enable_bit)
 443 {
 444         int ret;
 445 
 446         rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 447         if (rspi->spsr & wait_mask)
 448                 return 0;
 449 
 450         rspi_enable_irq(rspi, enable_bit);
 451         ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 452         if (ret == 0 && !(rspi->spsr & wait_mask))
 453                 return -ETIMEDOUT;
 454 
 455         return 0;
 456 }
 457 
 458 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
 459 {
 460         return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 461 }
 462 
 463 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
 464 {
 465         return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
 466 }
 467 
 468 static int rspi_data_out(struct rspi_data *rspi, u8 data)
 469 {
 470         int error = rspi_wait_for_tx_empty(rspi);
 471         if (error < 0) {
 472                 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 473                 return error;
 474         }
 475         rspi_write_data(rspi, data);
 476         return 0;
 477 }
 478 
 479 static int rspi_data_in(struct rspi_data *rspi)
 480 {
 481         int error;
 482         u8 data;
 483 
 484         error = rspi_wait_for_rx_full(rspi);
 485         if (error < 0) {
 486                 dev_err(&rspi->ctlr->dev, "receive timeout\n");
 487                 return error;
 488         }
 489         data = rspi_read_data(rspi);
 490         return data;
 491 }
 492 
 493 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
 494                              unsigned int n)
 495 {
 496         while (n-- > 0) {
 497                 if (tx) {
 498                         int ret = rspi_data_out(rspi, *tx++);
 499                         if (ret < 0)
 500                                 return ret;
 501                 }
 502                 if (rx) {
 503                         int ret = rspi_data_in(rspi);
 504                         if (ret < 0)
 505                                 return ret;
 506                         *rx++ = ret;
 507                 }
 508         }
 509 
 510         return 0;
 511 }
 512 
 513 static void rspi_dma_complete(void *arg)
 514 {
 515         struct rspi_data *rspi = arg;
 516 
 517         rspi->dma_callbacked = 1;
 518         wake_up_interruptible(&rspi->wait);
 519 }
 520 
 521 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
 522                              struct sg_table *rx)
 523 {
 524         struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 525         u8 irq_mask = 0;
 526         unsigned int other_irq = 0;
 527         dma_cookie_t cookie;
 528         int ret;
 529 
 530         /* First prepare and submit the DMA request(s), as this may fail */
 531         if (rx) {
 532                 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
 533                                         rx->nents, DMA_DEV_TO_MEM,
 534                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 535                 if (!desc_rx) {
 536                         ret = -EAGAIN;
 537                         goto no_dma_rx;
 538                 }
 539 
 540                 desc_rx->callback = rspi_dma_complete;
 541                 desc_rx->callback_param = rspi;
 542                 cookie = dmaengine_submit(desc_rx);
 543                 if (dma_submit_error(cookie)) {
 544                         ret = cookie;
 545                         goto no_dma_rx;
 546                 }
 547 
 548                 irq_mask |= SPCR_SPRIE;
 549         }
 550 
 551         if (tx) {
 552                 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
 553                                         tx->nents, DMA_MEM_TO_DEV,
 554                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 555                 if (!desc_tx) {
 556                         ret = -EAGAIN;
 557                         goto no_dma_tx;
 558                 }
 559 
 560                 if (rx) {
 561                         /* No callback */
 562                         desc_tx->callback = NULL;
 563                 } else {
 564                         desc_tx->callback = rspi_dma_complete;
 565                         desc_tx->callback_param = rspi;
 566                 }
 567                 cookie = dmaengine_submit(desc_tx);
 568                 if (dma_submit_error(cookie)) {
 569                         ret = cookie;
 570                         goto no_dma_tx;
 571                 }
 572 
 573                 irq_mask |= SPCR_SPTIE;
 574         }
 575 
 576         /*
 577          * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
 578          * called. So, this driver disables the IRQ while DMA transfer.
 579          */
 580         if (tx)
 581                 disable_irq(other_irq = rspi->tx_irq);
 582         if (rx && rspi->rx_irq != other_irq)
 583                 disable_irq(rspi->rx_irq);
 584 
 585         rspi_enable_irq(rspi, irq_mask);
 586         rspi->dma_callbacked = 0;
 587 
 588         /* Now start DMA */
 589         if (rx)
 590                 dma_async_issue_pending(rspi->ctlr->dma_rx);
 591         if (tx)
 592                 dma_async_issue_pending(rspi->ctlr->dma_tx);
 593 
 594         ret = wait_event_interruptible_timeout(rspi->wait,
 595                                                rspi->dma_callbacked, HZ);
 596         if (ret > 0 && rspi->dma_callbacked) {
 597                 ret = 0;
 598         } else {
 599                 if (!ret) {
 600                         dev_err(&rspi->ctlr->dev, "DMA timeout\n");
 601                         ret = -ETIMEDOUT;
 602                 }
 603                 if (tx)
 604                         dmaengine_terminate_all(rspi->ctlr->dma_tx);
 605                 if (rx)
 606                         dmaengine_terminate_all(rspi->ctlr->dma_rx);
 607         }
 608 
 609         rspi_disable_irq(rspi, irq_mask);
 610 
 611         if (tx)
 612                 enable_irq(rspi->tx_irq);
 613         if (rx && rspi->rx_irq != other_irq)
 614                 enable_irq(rspi->rx_irq);
 615 
 616         return ret;
 617 
 618 no_dma_tx:
 619         if (rx)
 620                 dmaengine_terminate_all(rspi->ctlr->dma_rx);
 621 no_dma_rx:
 622         if (ret == -EAGAIN) {
 623                 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
 624                              dev_driver_string(&rspi->ctlr->dev),
 625                              dev_name(&rspi->ctlr->dev));
 626         }
 627         return ret;
 628 }
 629 
 630 static void rspi_receive_init(const struct rspi_data *rspi)
 631 {
 632         u8 spsr;
 633 
 634         spsr = rspi_read8(rspi, RSPI_SPSR);
 635         if (spsr & SPSR_SPRF)
 636                 rspi_read_data(rspi);   /* dummy read */
 637         if (spsr & SPSR_OVRF)
 638                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 639                             RSPI_SPSR);
 640 }
 641 
 642 static void rspi_rz_receive_init(const struct rspi_data *rspi)
 643 {
 644         rspi_receive_init(rspi);
 645         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 646         rspi_write8(rspi, 0, RSPI_SPBFCR);
 647 }
 648 
 649 static void qspi_receive_init(const struct rspi_data *rspi)
 650 {
 651         u8 spsr;
 652 
 653         spsr = rspi_read8(rspi, RSPI_SPSR);
 654         if (spsr & SPSR_SPRF)
 655                 rspi_read_data(rspi);   /* dummy read */
 656         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 657         rspi_write8(rspi, 0, QSPI_SPBFCR);
 658 }
 659 
 660 static bool __rspi_can_dma(const struct rspi_data *rspi,
 661                            const struct spi_transfer *xfer)
 662 {
 663         return xfer->len > rspi->ops->fifo_size;
 664 }
 665 
 666 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
 667                          struct spi_transfer *xfer)
 668 {
 669         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 670 
 671         return __rspi_can_dma(rspi, xfer);
 672 }
 673 
 674 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
 675                                          struct spi_transfer *xfer)
 676 {
 677         if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
 678                 return -EAGAIN;
 679 
 680         /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
 681         return rspi_dma_transfer(rspi, &xfer->tx_sg,
 682                                 xfer->rx_buf ? &xfer->rx_sg : NULL);
 683 }
 684 
 685 static int rspi_common_transfer(struct rspi_data *rspi,
 686                                 struct spi_transfer *xfer)
 687 {
 688         int ret;
 689 
 690         ret = rspi_dma_check_then_transfer(rspi, xfer);
 691         if (ret != -EAGAIN)
 692                 return ret;
 693 
 694         ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
 695         if (ret < 0)
 696                 return ret;
 697 
 698         /* Wait for the last transmission */
 699         rspi_wait_for_tx_empty(rspi);
 700 
 701         return 0;
 702 }
 703 
 704 static int rspi_transfer_one(struct spi_controller *ctlr,
 705                              struct spi_device *spi, struct spi_transfer *xfer)
 706 {
 707         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 708         u8 spcr;
 709 
 710         spcr = rspi_read8(rspi, RSPI_SPCR);
 711         if (xfer->rx_buf) {
 712                 rspi_receive_init(rspi);
 713                 spcr &= ~SPCR_TXMD;
 714         } else {
 715                 spcr |= SPCR_TXMD;
 716         }
 717         rspi_write8(rspi, spcr, RSPI_SPCR);
 718 
 719         return rspi_common_transfer(rspi, xfer);
 720 }
 721 
 722 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
 723                                 struct spi_device *spi,
 724                                 struct spi_transfer *xfer)
 725 {
 726         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 727 
 728         rspi_rz_receive_init(rspi);
 729 
 730         return rspi_common_transfer(rspi, xfer);
 731 }
 732 
 733 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
 734                                         u8 *rx, unsigned int len)
 735 {
 736         unsigned int i, n;
 737         int ret;
 738 
 739         while (len > 0) {
 740                 n = qspi_set_send_trigger(rspi, len);
 741                 qspi_set_receive_trigger(rspi, len);
 742                 ret = rspi_wait_for_tx_empty(rspi);
 743                 if (ret < 0) {
 744                         dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 745                         return ret;
 746                 }
 747                 for (i = 0; i < n; i++)
 748                         rspi_write_data(rspi, *tx++);
 749 
 750                 ret = rspi_wait_for_rx_full(rspi);
 751                 if (ret < 0) {
 752                         dev_err(&rspi->ctlr->dev, "receive timeout\n");
 753                         return ret;
 754                 }
 755                 for (i = 0; i < n; i++)
 756                         *rx++ = rspi_read_data(rspi);
 757 
 758                 len -= n;
 759         }
 760 
 761         return 0;
 762 }
 763 
 764 static int qspi_transfer_out_in(struct rspi_data *rspi,
 765                                 struct spi_transfer *xfer)
 766 {
 767         int ret;
 768 
 769         qspi_receive_init(rspi);
 770 
 771         ret = rspi_dma_check_then_transfer(rspi, xfer);
 772         if (ret != -EAGAIN)
 773                 return ret;
 774 
 775         return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
 776                                             xfer->rx_buf, xfer->len);
 777 }
 778 
 779 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 780 {
 781         const u8 *tx = xfer->tx_buf;
 782         unsigned int n = xfer->len;
 783         unsigned int i, len;
 784         int ret;
 785 
 786         if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 787                 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
 788                 if (ret != -EAGAIN)
 789                         return ret;
 790         }
 791 
 792         while (n > 0) {
 793                 len = qspi_set_send_trigger(rspi, n);
 794                 ret = rspi_wait_for_tx_empty(rspi);
 795                 if (ret < 0) {
 796                         dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 797                         return ret;
 798                 }
 799                 for (i = 0; i < len; i++)
 800                         rspi_write_data(rspi, *tx++);
 801 
 802                 n -= len;
 803         }
 804 
 805         /* Wait for the last transmission */
 806         rspi_wait_for_tx_empty(rspi);
 807 
 808         return 0;
 809 }
 810 
 811 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 812 {
 813         u8 *rx = xfer->rx_buf;
 814         unsigned int n = xfer->len;
 815         unsigned int i, len;
 816         int ret;
 817 
 818         if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 819                 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
 820                 if (ret != -EAGAIN)
 821                         return ret;
 822         }
 823 
 824         while (n > 0) {
 825                 len = qspi_set_receive_trigger(rspi, n);
 826                 ret = rspi_wait_for_rx_full(rspi);
 827                 if (ret < 0) {
 828                         dev_err(&rspi->ctlr->dev, "receive timeout\n");
 829                         return ret;
 830                 }
 831                 for (i = 0; i < len; i++)
 832                         *rx++ = rspi_read_data(rspi);
 833 
 834                 n -= len;
 835         }
 836 
 837         return 0;
 838 }
 839 
 840 static int qspi_transfer_one(struct spi_controller *ctlr,
 841                              struct spi_device *spi, struct spi_transfer *xfer)
 842 {
 843         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 844 
 845         if (spi->mode & SPI_LOOP) {
 846                 return qspi_transfer_out_in(rspi, xfer);
 847         } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
 848                 /* Quad or Dual SPI Write */
 849                 return qspi_transfer_out(rspi, xfer);
 850         } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
 851                 /* Quad or Dual SPI Read */
 852                 return qspi_transfer_in(rspi, xfer);
 853         } else {
 854                 /* Single SPI Transfer */
 855                 return qspi_transfer_out_in(rspi, xfer);
 856         }
 857 }
 858 
 859 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 860 {
 861         if (xfer->tx_buf)
 862                 switch (xfer->tx_nbits) {
 863                 case SPI_NBITS_QUAD:
 864                         return SPCMD_SPIMOD_QUAD;
 865                 case SPI_NBITS_DUAL:
 866                         return SPCMD_SPIMOD_DUAL;
 867                 default:
 868                         return 0;
 869                 }
 870         if (xfer->rx_buf)
 871                 switch (xfer->rx_nbits) {
 872                 case SPI_NBITS_QUAD:
 873                         return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 874                 case SPI_NBITS_DUAL:
 875                         return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 876                 default:
 877                         return 0;
 878                 }
 879 
 880         return 0;
 881 }
 882 
 883 static int qspi_setup_sequencer(struct rspi_data *rspi,
 884                                 const struct spi_message *msg)
 885 {
 886         const struct spi_transfer *xfer;
 887         unsigned int i = 0, len = 0;
 888         u16 current_mode = 0xffff, mode;
 889 
 890         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 891                 mode = qspi_transfer_mode(xfer);
 892                 if (mode == current_mode) {
 893                         len += xfer->len;
 894                         continue;
 895                 }
 896 
 897                 /* Transfer mode change */
 898                 if (i) {
 899                         /* Set transfer data length of previous transfer */
 900                         rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 901                 }
 902 
 903                 if (i >= QSPI_NUM_SPCMD) {
 904                         dev_err(&msg->spi->dev,
 905                                 "Too many different transfer modes");
 906                         return -EINVAL;
 907                 }
 908 
 909                 /* Program transfer mode for this transfer */
 910                 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 911                 current_mode = mode;
 912                 len = xfer->len;
 913                 i++;
 914         }
 915         if (i) {
 916                 /* Set final transfer data length and sequence length */
 917                 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 918                 rspi_write8(rspi, i - 1, RSPI_SPSCR);
 919         }
 920 
 921         return 0;
 922 }
 923 
 924 static int rspi_prepare_message(struct spi_controller *ctlr,
 925                                 struct spi_message *msg)
 926 {
 927         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 928         struct spi_device *spi = msg->spi;
 929         int ret;
 930 
 931         rspi->max_speed_hz = spi->max_speed_hz;
 932 
 933         rspi->spcmd = SPCMD_SSLKP;
 934         if (spi->mode & SPI_CPOL)
 935                 rspi->spcmd |= SPCMD_CPOL;
 936         if (spi->mode & SPI_CPHA)
 937                 rspi->spcmd |= SPCMD_CPHA;
 938 
 939         /* CMOS output mode and MOSI signal from previous transfer */
 940         rspi->sppcr = 0;
 941         if (spi->mode & SPI_LOOP)
 942                 rspi->sppcr |= SPPCR_SPLP;
 943 
 944         set_config_register(rspi, 8);
 945 
 946         if (msg->spi->mode &
 947             (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
 948                 /* Setup sequencer for messages with multiple transfer modes */
 949                 ret = qspi_setup_sequencer(rspi, msg);
 950                 if (ret < 0)
 951                         return ret;
 952         }
 953 
 954         /* Enable SPI function in master mode */
 955         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
 956         return 0;
 957 }
 958 
 959 static int rspi_unprepare_message(struct spi_controller *ctlr,
 960                                   struct spi_message *msg)
 961 {
 962         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 963 
 964         /* Disable SPI function */
 965         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
 966 
 967         /* Reset sequencer for Single SPI Transfers */
 968         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 969         rspi_write8(rspi, 0, RSPI_SPSCR);
 970         return 0;
 971 }
 972 
 973 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
 974 {
 975         struct rspi_data *rspi = _sr;
 976         u8 spsr;
 977         irqreturn_t ret = IRQ_NONE;
 978         u8 disable_irq = 0;
 979 
 980         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
 981         if (spsr & SPSR_SPRF)
 982                 disable_irq |= SPCR_SPRIE;
 983         if (spsr & SPSR_SPTEF)
 984                 disable_irq |= SPCR_SPTIE;
 985 
 986         if (disable_irq) {
 987                 ret = IRQ_HANDLED;
 988                 rspi_disable_irq(rspi, disable_irq);
 989                 wake_up(&rspi->wait);
 990         }
 991 
 992         return ret;
 993 }
 994 
 995 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
 996 {
 997         struct rspi_data *rspi = _sr;
 998         u8 spsr;
 999 
1000         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1001         if (spsr & SPSR_SPRF) {
1002                 rspi_disable_irq(rspi, SPCR_SPRIE);
1003                 wake_up(&rspi->wait);
1004                 return IRQ_HANDLED;
1005         }
1006 
1007         return 0;
1008 }
1009 
1010 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1011 {
1012         struct rspi_data *rspi = _sr;
1013         u8 spsr;
1014 
1015         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1016         if (spsr & SPSR_SPTEF) {
1017                 rspi_disable_irq(rspi, SPCR_SPTIE);
1018                 wake_up(&rspi->wait);
1019                 return IRQ_HANDLED;
1020         }
1021 
1022         return 0;
1023 }
1024 
1025 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1026                                               enum dma_transfer_direction dir,
1027                                               unsigned int id,
1028                                               dma_addr_t port_addr)
1029 {
1030         dma_cap_mask_t mask;
1031         struct dma_chan *chan;
1032         struct dma_slave_config cfg;
1033         int ret;
1034 
1035         dma_cap_zero(mask);
1036         dma_cap_set(DMA_SLAVE, mask);
1037 
1038         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1039                                 (void *)(unsigned long)id, dev,
1040                                 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1041         if (!chan) {
1042                 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1043                 return NULL;
1044         }
1045 
1046         memset(&cfg, 0, sizeof(cfg));
1047         cfg.direction = dir;
1048         if (dir == DMA_MEM_TO_DEV) {
1049                 cfg.dst_addr = port_addr;
1050                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1051         } else {
1052                 cfg.src_addr = port_addr;
1053                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1054         }
1055 
1056         ret = dmaengine_slave_config(chan, &cfg);
1057         if (ret) {
1058                 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1059                 dma_release_channel(chan);
1060                 return NULL;
1061         }
1062 
1063         return chan;
1064 }
1065 
1066 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1067                             const struct resource *res)
1068 {
1069         const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1070         unsigned int dma_tx_id, dma_rx_id;
1071 
1072         if (dev->of_node) {
1073                 /* In the OF case we will get the slave IDs from the DT */
1074                 dma_tx_id = 0;
1075                 dma_rx_id = 0;
1076         } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1077                 dma_tx_id = rspi_pd->dma_tx_id;
1078                 dma_rx_id = rspi_pd->dma_rx_id;
1079         } else {
1080                 /* The driver assumes no error. */
1081                 return 0;
1082         }
1083 
1084         ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1085                                              res->start + RSPI_SPDR);
1086         if (!ctlr->dma_tx)
1087                 return -ENODEV;
1088 
1089         ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1090                                              res->start + RSPI_SPDR);
1091         if (!ctlr->dma_rx) {
1092                 dma_release_channel(ctlr->dma_tx);
1093                 ctlr->dma_tx = NULL;
1094                 return -ENODEV;
1095         }
1096 
1097         ctlr->can_dma = rspi_can_dma;
1098         dev_info(dev, "DMA available");
1099         return 0;
1100 }
1101 
1102 static void rspi_release_dma(struct spi_controller *ctlr)
1103 {
1104         if (ctlr->dma_tx)
1105                 dma_release_channel(ctlr->dma_tx);
1106         if (ctlr->dma_rx)
1107                 dma_release_channel(ctlr->dma_rx);
1108 }
1109 
1110 static int rspi_remove(struct platform_device *pdev)
1111 {
1112         struct rspi_data *rspi = platform_get_drvdata(pdev);
1113 
1114         rspi_release_dma(rspi->ctlr);
1115         pm_runtime_disable(&pdev->dev);
1116 
1117         return 0;
1118 }
1119 
1120 static const struct spi_ops rspi_ops = {
1121         .set_config_register =  rspi_set_config_register,
1122         .transfer_one =         rspi_transfer_one,
1123         .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP,
1124         .flags =                SPI_CONTROLLER_MUST_TX,
1125         .fifo_size =            8,
1126 };
1127 
1128 static const struct spi_ops rspi_rz_ops = {
1129         .set_config_register =  rspi_rz_set_config_register,
1130         .transfer_one =         rspi_rz_transfer_one,
1131         .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP,
1132         .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1133         .fifo_size =            8,      /* 8 for TX, 32 for RX */
1134 };
1135 
1136 static const struct spi_ops qspi_ops = {
1137         .set_config_register =  qspi_set_config_register,
1138         .transfer_one =         qspi_transfer_one,
1139         .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP |
1140                                 SPI_TX_DUAL | SPI_TX_QUAD |
1141                                 SPI_RX_DUAL | SPI_RX_QUAD,
1142         .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1143         .fifo_size =            32,
1144 };
1145 
1146 #ifdef CONFIG_OF
1147 static const struct of_device_id rspi_of_match[] = {
1148         /* RSPI on legacy SH */
1149         { .compatible = "renesas,rspi", .data = &rspi_ops },
1150         /* RSPI on RZ/A1H */
1151         { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1152         /* QSPI on R-Car Gen2 */
1153         { .compatible = "renesas,qspi", .data = &qspi_ops },
1154         { /* sentinel */ }
1155 };
1156 
1157 MODULE_DEVICE_TABLE(of, rspi_of_match);
1158 
1159 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1160 {
1161         u32 num_cs;
1162         int error;
1163 
1164         /* Parse DT properties */
1165         error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1166         if (error) {
1167                 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1168                 return error;
1169         }
1170 
1171         ctlr->num_chipselect = num_cs;
1172         return 0;
1173 }
1174 #else
1175 #define rspi_of_match   NULL
1176 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1177 {
1178         return -EINVAL;
1179 }
1180 #endif /* CONFIG_OF */
1181 
1182 static int rspi_request_irq(struct device *dev, unsigned int irq,
1183                             irq_handler_t handler, const char *suffix,
1184                             void *dev_id)
1185 {
1186         const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1187                                           dev_name(dev), suffix);
1188         if (!name)
1189                 return -ENOMEM;
1190 
1191         return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1192 }
1193 
1194 static int rspi_probe(struct platform_device *pdev)
1195 {
1196         struct resource *res;
1197         struct spi_controller *ctlr;
1198         struct rspi_data *rspi;
1199         int ret;
1200         const struct rspi_plat_data *rspi_pd;
1201         const struct spi_ops *ops;
1202 
1203         ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1204         if (ctlr == NULL)
1205                 return -ENOMEM;
1206 
1207         ops = of_device_get_match_data(&pdev->dev);
1208         if (ops) {
1209                 ret = rspi_parse_dt(&pdev->dev, ctlr);
1210                 if (ret)
1211                         goto error1;
1212         } else {
1213                 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1214                 rspi_pd = dev_get_platdata(&pdev->dev);
1215                 if (rspi_pd && rspi_pd->num_chipselect)
1216                         ctlr->num_chipselect = rspi_pd->num_chipselect;
1217                 else
1218                         ctlr->num_chipselect = 2; /* default */
1219         }
1220 
1221         /* ops parameter check */
1222         if (!ops->set_config_register) {
1223                 dev_err(&pdev->dev, "there is no set_config_register\n");
1224                 ret = -ENODEV;
1225                 goto error1;
1226         }
1227 
1228         rspi = spi_controller_get_devdata(ctlr);
1229         platform_set_drvdata(pdev, rspi);
1230         rspi->ops = ops;
1231         rspi->ctlr = ctlr;
1232 
1233         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1234         rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1235         if (IS_ERR(rspi->addr)) {
1236                 ret = PTR_ERR(rspi->addr);
1237                 goto error1;
1238         }
1239 
1240         rspi->clk = devm_clk_get(&pdev->dev, NULL);
1241         if (IS_ERR(rspi->clk)) {
1242                 dev_err(&pdev->dev, "cannot get clock\n");
1243                 ret = PTR_ERR(rspi->clk);
1244                 goto error1;
1245         }
1246 
1247         pm_runtime_enable(&pdev->dev);
1248 
1249         init_waitqueue_head(&rspi->wait);
1250 
1251         ctlr->bus_num = pdev->id;
1252         ctlr->auto_runtime_pm = true;
1253         ctlr->transfer_one = ops->transfer_one;
1254         ctlr->prepare_message = rspi_prepare_message;
1255         ctlr->unprepare_message = rspi_unprepare_message;
1256         ctlr->mode_bits = ops->mode_bits;
1257         ctlr->flags = ops->flags;
1258         ctlr->dev.of_node = pdev->dev.of_node;
1259 
1260         ret = platform_get_irq_byname_optional(pdev, "rx");
1261         if (ret < 0) {
1262                 ret = platform_get_irq_byname_optional(pdev, "mux");
1263                 if (ret < 0)
1264                         ret = platform_get_irq(pdev, 0);
1265                 if (ret >= 0)
1266                         rspi->rx_irq = rspi->tx_irq = ret;
1267         } else {
1268                 rspi->rx_irq = ret;
1269                 ret = platform_get_irq_byname(pdev, "tx");
1270                 if (ret >= 0)
1271                         rspi->tx_irq = ret;
1272         }
1273 
1274         if (rspi->rx_irq == rspi->tx_irq) {
1275                 /* Single multiplexed interrupt */
1276                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1277                                        "mux", rspi);
1278         } else {
1279                 /* Multi-interrupt mode, only SPRI and SPTI are used */
1280                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1281                                        "rx", rspi);
1282                 if (!ret)
1283                         ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1284                                                rspi_irq_tx, "tx", rspi);
1285         }
1286         if (ret < 0) {
1287                 dev_err(&pdev->dev, "request_irq error\n");
1288                 goto error2;
1289         }
1290 
1291         ret = rspi_request_dma(&pdev->dev, ctlr, res);
1292         if (ret < 0)
1293                 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1294 
1295         ret = devm_spi_register_controller(&pdev->dev, ctlr);
1296         if (ret < 0) {
1297                 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1298                 goto error3;
1299         }
1300 
1301         dev_info(&pdev->dev, "probed\n");
1302 
1303         return 0;
1304 
1305 error3:
1306         rspi_release_dma(ctlr);
1307 error2:
1308         pm_runtime_disable(&pdev->dev);
1309 error1:
1310         spi_controller_put(ctlr);
1311 
1312         return ret;
1313 }
1314 
1315 static const struct platform_device_id spi_driver_ids[] = {
1316         { "rspi",       (kernel_ulong_t)&rspi_ops },
1317         { "rspi-rz",    (kernel_ulong_t)&rspi_rz_ops },
1318         { "qspi",       (kernel_ulong_t)&qspi_ops },
1319         {},
1320 };
1321 
1322 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1323 
1324 #ifdef CONFIG_PM_SLEEP
1325 static int rspi_suspend(struct device *dev)
1326 {
1327         struct rspi_data *rspi = dev_get_drvdata(dev);
1328 
1329         return spi_controller_suspend(rspi->ctlr);
1330 }
1331 
1332 static int rspi_resume(struct device *dev)
1333 {
1334         struct rspi_data *rspi = dev_get_drvdata(dev);
1335 
1336         return spi_controller_resume(rspi->ctlr);
1337 }
1338 
1339 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1340 #define DEV_PM_OPS      &rspi_pm_ops
1341 #else
1342 #define DEV_PM_OPS      NULL
1343 #endif /* CONFIG_PM_SLEEP */
1344 
1345 static struct platform_driver rspi_driver = {
1346         .probe =        rspi_probe,
1347         .remove =       rspi_remove,
1348         .id_table =     spi_driver_ids,
1349         .driver         = {
1350                 .name = "renesas_spi",
1351                 .pm = DEV_PM_OPS,
1352                 .of_match_table = of_match_ptr(rspi_of_match),
1353         },
1354 };
1355 module_platform_driver(rspi_driver);
1356 
1357 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1358 MODULE_LICENSE("GPL v2");
1359 MODULE_AUTHOR("Yoshihiro Shimoda");
1360 MODULE_ALIAS("platform:rspi");

/* [<][>][^][v][top][bottom][index][help] */