root/drivers/spi/spi-nxp-fspi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fspi_writel
  2. fspi_readl
  3. nxp_fspi_irq_handler
  4. nxp_fspi_check_buswidth
  5. nxp_fspi_supports_op
  6. fspi_readl_poll_tout
  7. nxp_fspi_invalid
  8. nxp_fspi_prepare_lut
  9. nxp_fspi_clk_prep_enable
  10. nxp_fspi_clk_disable_unprep
  11. nxp_fspi_select_mem
  12. nxp_fspi_read_ahb
  13. nxp_fspi_fill_txfifo
  14. nxp_fspi_read_rxfifo
  15. nxp_fspi_do_op
  16. nxp_fspi_exec_op
  17. nxp_fspi_adjust_op_size
  18. nxp_fspi_default_setup
  19. nxp_fspi_get_name
  20. nxp_fspi_probe
  21. nxp_fspi_remove
  22. nxp_fspi_suspend
  23. nxp_fspi_resume

   1 // SPDX-License-Identifier: GPL-2.0+
   2 
   3 /*
   4  * NXP FlexSPI(FSPI) controller driver.
   5  *
   6  * Copyright 2019 NXP.
   7  *
   8  * FlexSPI is a flexsible SPI host controller which supports two SPI
   9  * channels and up to 4 external devices. Each channel supports
  10  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  11  * data lines).
  12  *
  13  * FlexSPI controller is driven by the LUT(Look-up Table) registers
  14  * LUT registers are a look-up-table for sequences of instructions.
  15  * A valid sequence consists of four LUT registers.
  16  * Maximum 32 LUT sequences can be programmed simultaneously.
  17  *
  18  * LUTs are being created at run-time based on the commands passed
  19  * from the spi-mem framework, thus using single LUT index.
  20  *
  21  * Software triggered Flash read/write access by IP Bus.
  22  *
  23  * Memory mapped read access by AHB Bus.
  24  *
  25  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  26  *
  27  * Author:
  28  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  29  *     Boris Brezillon <bbrezillon@kernel.org>
  30  *     Frieder Schrempf <frieder.schrempf@kontron.de>
  31  */
  32 
  33 #include <linux/bitops.h>
  34 #include <linux/clk.h>
  35 #include <linux/completion.h>
  36 #include <linux/delay.h>
  37 #include <linux/err.h>
  38 #include <linux/errno.h>
  39 #include <linux/interrupt.h>
  40 #include <linux/io.h>
  41 #include <linux/iopoll.h>
  42 #include <linux/jiffies.h>
  43 #include <linux/kernel.h>
  44 #include <linux/module.h>
  45 #include <linux/mutex.h>
  46 #include <linux/of.h>
  47 #include <linux/of_device.h>
  48 #include <linux/platform_device.h>
  49 #include <linux/pm_qos.h>
  50 #include <linux/sizes.h>
  51 
  52 #include <linux/spi/spi.h>
  53 #include <linux/spi/spi-mem.h>
  54 
  55 /*
  56  * The driver only uses one single LUT entry, that is updated on
  57  * each call of exec_op(). Index 0 is preset at boot with a basic
  58  * read operation, so let's use the last entry (31).
  59  */
  60 #define SEQID_LUT                       31
  61 
  62 /* Registers used by the driver */
  63 #define FSPI_MCR0                       0x00
  64 #define FSPI_MCR0_AHB_TIMEOUT(x)        ((x) << 24)
  65 #define FSPI_MCR0_IP_TIMEOUT(x)         ((x) << 16)
  66 #define FSPI_MCR0_LEARN_EN              BIT(15)
  67 #define FSPI_MCR0_SCRFRUN_EN            BIT(14)
  68 #define FSPI_MCR0_OCTCOMB_EN            BIT(13)
  69 #define FSPI_MCR0_DOZE_EN               BIT(12)
  70 #define FSPI_MCR0_HSEN                  BIT(11)
  71 #define FSPI_MCR0_SERCLKDIV             BIT(8)
  72 #define FSPI_MCR0_ATDF_EN               BIT(7)
  73 #define FSPI_MCR0_ARDF_EN               BIT(6)
  74 #define FSPI_MCR0_RXCLKSRC(x)           ((x) << 4)
  75 #define FSPI_MCR0_END_CFG(x)            ((x) << 2)
  76 #define FSPI_MCR0_MDIS                  BIT(1)
  77 #define FSPI_MCR0_SWRST                 BIT(0)
  78 
  79 #define FSPI_MCR1                       0x04
  80 #define FSPI_MCR1_SEQ_TIMEOUT(x)        ((x) << 16)
  81 #define FSPI_MCR1_AHB_TIMEOUT(x)        (x)
  82 
  83 #define FSPI_MCR2                       0x08
  84 #define FSPI_MCR2_IDLE_WAIT(x)          ((x) << 24)
  85 #define FSPI_MCR2_SAMEDEVICEEN          BIT(15)
  86 #define FSPI_MCR2_CLRLRPHS              BIT(14)
  87 #define FSPI_MCR2_ABRDATSZ              BIT(8)
  88 #define FSPI_MCR2_ABRLEARN              BIT(7)
  89 #define FSPI_MCR2_ABR_READ              BIT(6)
  90 #define FSPI_MCR2_ABRWRITE              BIT(5)
  91 #define FSPI_MCR2_ABRDUMMY              BIT(4)
  92 #define FSPI_MCR2_ABR_MODE              BIT(3)
  93 #define FSPI_MCR2_ABRCADDR              BIT(2)
  94 #define FSPI_MCR2_ABRRADDR              BIT(1)
  95 #define FSPI_MCR2_ABR_CMD               BIT(0)
  96 
  97 #define FSPI_AHBCR                      0x0c
  98 #define FSPI_AHBCR_RDADDROPT            BIT(6)
  99 #define FSPI_AHBCR_PREF_EN              BIT(5)
 100 #define FSPI_AHBCR_BUFF_EN              BIT(4)
 101 #define FSPI_AHBCR_CACH_EN              BIT(3)
 102 #define FSPI_AHBCR_CLRTXBUF             BIT(2)
 103 #define FSPI_AHBCR_CLRRXBUF             BIT(1)
 104 #define FSPI_AHBCR_PAR_EN               BIT(0)
 105 
 106 #define FSPI_INTEN                      0x10
 107 #define FSPI_INTEN_SCLKSBWR             BIT(9)
 108 #define FSPI_INTEN_SCLKSBRD             BIT(8)
 109 #define FSPI_INTEN_DATALRNFL            BIT(7)
 110 #define FSPI_INTEN_IPTXWE               BIT(6)
 111 #define FSPI_INTEN_IPRXWA               BIT(5)
 112 #define FSPI_INTEN_AHBCMDERR            BIT(4)
 113 #define FSPI_INTEN_IPCMDERR             BIT(3)
 114 #define FSPI_INTEN_AHBCMDGE             BIT(2)
 115 #define FSPI_INTEN_IPCMDGE              BIT(1)
 116 #define FSPI_INTEN_IPCMDDONE            BIT(0)
 117 
 118 #define FSPI_INTR                       0x14
 119 #define FSPI_INTR_SCLKSBWR              BIT(9)
 120 #define FSPI_INTR_SCLKSBRD              BIT(8)
 121 #define FSPI_INTR_DATALRNFL             BIT(7)
 122 #define FSPI_INTR_IPTXWE                BIT(6)
 123 #define FSPI_INTR_IPRXWA                BIT(5)
 124 #define FSPI_INTR_AHBCMDERR             BIT(4)
 125 #define FSPI_INTR_IPCMDERR              BIT(3)
 126 #define FSPI_INTR_AHBCMDGE              BIT(2)
 127 #define FSPI_INTR_IPCMDGE               BIT(1)
 128 #define FSPI_INTR_IPCMDDONE             BIT(0)
 129 
 130 #define FSPI_LUTKEY                     0x18
 131 #define FSPI_LUTKEY_VALUE               0x5AF05AF0
 132 
 133 #define FSPI_LCKCR                      0x1C
 134 
 135 #define FSPI_LCKER_LOCK                 0x1
 136 #define FSPI_LCKER_UNLOCK               0x2
 137 
 138 #define FSPI_BUFXCR_INVALID_MSTRID      0xE
 139 #define FSPI_AHBRX_BUF0CR0              0x20
 140 #define FSPI_AHBRX_BUF1CR0              0x24
 141 #define FSPI_AHBRX_BUF2CR0              0x28
 142 #define FSPI_AHBRX_BUF3CR0              0x2C
 143 #define FSPI_AHBRX_BUF4CR0              0x30
 144 #define FSPI_AHBRX_BUF5CR0              0x34
 145 #define FSPI_AHBRX_BUF6CR0              0x38
 146 #define FSPI_AHBRX_BUF7CR0              0x3C
 147 #define FSPI_AHBRXBUF0CR7_PREF          BIT(31)
 148 
 149 #define FSPI_AHBRX_BUF0CR1              0x40
 150 #define FSPI_AHBRX_BUF1CR1              0x44
 151 #define FSPI_AHBRX_BUF2CR1              0x48
 152 #define FSPI_AHBRX_BUF3CR1              0x4C
 153 #define FSPI_AHBRX_BUF4CR1              0x50
 154 #define FSPI_AHBRX_BUF5CR1              0x54
 155 #define FSPI_AHBRX_BUF6CR1              0x58
 156 #define FSPI_AHBRX_BUF7CR1              0x5C
 157 
 158 #define FSPI_FLSHA1CR0                  0x60
 159 #define FSPI_FLSHA2CR0                  0x64
 160 #define FSPI_FLSHB1CR0                  0x68
 161 #define FSPI_FLSHB2CR0                  0x6C
 162 #define FSPI_FLSHXCR0_SZ_KB             10
 163 #define FSPI_FLSHXCR0_SZ(x)             ((x) >> FSPI_FLSHXCR0_SZ_KB)
 164 
 165 #define FSPI_FLSHA1CR1                  0x70
 166 #define FSPI_FLSHA2CR1                  0x74
 167 #define FSPI_FLSHB1CR1                  0x78
 168 #define FSPI_FLSHB2CR1                  0x7C
 169 #define FSPI_FLSHXCR1_CSINTR(x)         ((x) << 16)
 170 #define FSPI_FLSHXCR1_CAS(x)            ((x) << 11)
 171 #define FSPI_FLSHXCR1_WA                BIT(10)
 172 #define FSPI_FLSHXCR1_TCSH(x)           ((x) << 5)
 173 #define FSPI_FLSHXCR1_TCSS(x)           (x)
 174 
 175 #define FSPI_FLSHA1CR2                  0x80
 176 #define FSPI_FLSHA2CR2                  0x84
 177 #define FSPI_FLSHB1CR2                  0x88
 178 #define FSPI_FLSHB2CR2                  0x8C
 179 #define FSPI_FLSHXCR2_CLRINSP           BIT(24)
 180 #define FSPI_FLSHXCR2_AWRWAIT           BIT(16)
 181 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT     13
 182 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT     8
 183 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT     5
 184 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT     0
 185 
 186 #define FSPI_IPCR0                      0xA0
 187 
 188 #define FSPI_IPCR1                      0xA4
 189 #define FSPI_IPCR1_IPAREN               BIT(31)
 190 #define FSPI_IPCR1_SEQNUM_SHIFT         24
 191 #define FSPI_IPCR1_SEQID_SHIFT          16
 192 #define FSPI_IPCR1_IDATSZ(x)            (x)
 193 
 194 #define FSPI_IPCMD                      0xB0
 195 #define FSPI_IPCMD_TRG                  BIT(0)
 196 
 197 #define FSPI_DLPR                       0xB4
 198 
 199 #define FSPI_IPRXFCR                    0xB8
 200 #define FSPI_IPRXFCR_CLR                BIT(0)
 201 #define FSPI_IPRXFCR_DMA_EN             BIT(1)
 202 #define FSPI_IPRXFCR_WMRK(x)            ((x) << 2)
 203 
 204 #define FSPI_IPTXFCR                    0xBC
 205 #define FSPI_IPTXFCR_CLR                BIT(0)
 206 #define FSPI_IPTXFCR_DMA_EN             BIT(1)
 207 #define FSPI_IPTXFCR_WMRK(x)            ((x) << 2)
 208 
 209 #define FSPI_DLLACR                     0xC0
 210 #define FSPI_DLLACR_OVRDEN              BIT(8)
 211 
 212 #define FSPI_DLLBCR                     0xC4
 213 #define FSPI_DLLBCR_OVRDEN              BIT(8)
 214 
 215 #define FSPI_STS0                       0xE0
 216 #define FSPI_STS0_DLPHB(x)              ((x) << 8)
 217 #define FSPI_STS0_DLPHA(x)              ((x) << 4)
 218 #define FSPI_STS0_CMD_SRC(x)            ((x) << 2)
 219 #define FSPI_STS0_ARB_IDLE              BIT(1)
 220 #define FSPI_STS0_SEQ_IDLE              BIT(0)
 221 
 222 #define FSPI_STS1                       0xE4
 223 #define FSPI_STS1_IP_ERRCD(x)           ((x) << 24)
 224 #define FSPI_STS1_IP_ERRID(x)           ((x) << 16)
 225 #define FSPI_STS1_AHB_ERRCD(x)          ((x) << 8)
 226 #define FSPI_STS1_AHB_ERRID(x)          (x)
 227 
 228 #define FSPI_AHBSPNST                   0xEC
 229 #define FSPI_AHBSPNST_DATLFT(x)         ((x) << 16)
 230 #define FSPI_AHBSPNST_BUFID(x)          ((x) << 1)
 231 #define FSPI_AHBSPNST_ACTIVE            BIT(0)
 232 
 233 #define FSPI_IPRXFSTS                   0xF0
 234 #define FSPI_IPRXFSTS_RDCNTR(x)         ((x) << 16)
 235 #define FSPI_IPRXFSTS_FILL(x)           (x)
 236 
 237 #define FSPI_IPTXFSTS                   0xF4
 238 #define FSPI_IPTXFSTS_WRCNTR(x)         ((x) << 16)
 239 #define FSPI_IPTXFSTS_FILL(x)           (x)
 240 
 241 #define FSPI_RFDR                       0x100
 242 #define FSPI_TFDR                       0x180
 243 
 244 #define FSPI_LUT_BASE                   0x200
 245 #define FSPI_LUT_OFFSET                 (SEQID_LUT * 4 * 4)
 246 #define FSPI_LUT_REG(idx) \
 247         (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
 248 
 249 /* register map end */
 250 
 251 /* Instruction set for the LUT register. */
 252 #define LUT_STOP                        0x00
 253 #define LUT_CMD                         0x01
 254 #define LUT_ADDR                        0x02
 255 #define LUT_CADDR_SDR                   0x03
 256 #define LUT_MODE                        0x04
 257 #define LUT_MODE2                       0x05
 258 #define LUT_MODE4                       0x06
 259 #define LUT_MODE8                       0x07
 260 #define LUT_NXP_WRITE                   0x08
 261 #define LUT_NXP_READ                    0x09
 262 #define LUT_LEARN_SDR                   0x0A
 263 #define LUT_DATSZ_SDR                   0x0B
 264 #define LUT_DUMMY                       0x0C
 265 #define LUT_DUMMY_RWDS_SDR              0x0D
 266 #define LUT_JMP_ON_CS                   0x1F
 267 #define LUT_CMD_DDR                     0x21
 268 #define LUT_ADDR_DDR                    0x22
 269 #define LUT_CADDR_DDR                   0x23
 270 #define LUT_MODE_DDR                    0x24
 271 #define LUT_MODE2_DDR                   0x25
 272 #define LUT_MODE4_DDR                   0x26
 273 #define LUT_MODE8_DDR                   0x27
 274 #define LUT_WRITE_DDR                   0x28
 275 #define LUT_READ_DDR                    0x29
 276 #define LUT_LEARN_DDR                   0x2A
 277 #define LUT_DATSZ_DDR                   0x2B
 278 #define LUT_DUMMY_DDR                   0x2C
 279 #define LUT_DUMMY_RWDS_DDR              0x2D
 280 
 281 /*
 282  * Calculate number of required PAD bits for LUT register.
 283  *
 284  * The pad stands for the number of IO lines [0:7].
 285  * For example, the octal read needs eight IO lines,
 286  * so you should use LUT_PAD(8). This macro
 287  * returns 3 i.e. use eight (2^3) IP lines for read.
 288  */
 289 #define LUT_PAD(x) (fls(x) - 1)
 290 
 291 /*
 292  * Macro for constructing the LUT entries with the following
 293  * register layout:
 294  *
 295  *  ---------------------------------------------------
 296  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 297  *  ---------------------------------------------------
 298  */
 299 #define PAD_SHIFT               8
 300 #define INSTR_SHIFT             10
 301 #define OPRND_SHIFT             16
 302 
 303 /* Macros for constructing the LUT register. */
 304 #define LUT_DEF(idx, ins, pad, opr)                       \
 305         ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 306         (opr)) << (((idx) % 2) * OPRND_SHIFT))
 307 
 308 #define POLL_TOUT               5000
 309 #define NXP_FSPI_MAX_CHIPSELECT         4
 310 
 311 struct nxp_fspi_devtype_data {
 312         unsigned int rxfifo;
 313         unsigned int txfifo;
 314         unsigned int ahb_buf_size;
 315         unsigned int quirks;
 316         bool little_endian;
 317 };
 318 
 319 static const struct nxp_fspi_devtype_data lx2160a_data = {
 320         .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 321         .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 322         .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 323         .quirks = 0,
 324         .little_endian = true,  /* little-endian    */
 325 };
 326 
 327 struct nxp_fspi {
 328         void __iomem *iobase;
 329         void __iomem *ahb_addr;
 330         u32 memmap_phy;
 331         u32 memmap_phy_size;
 332         struct clk *clk, *clk_en;
 333         struct device *dev;
 334         struct completion c;
 335         const struct nxp_fspi_devtype_data *devtype_data;
 336         struct mutex lock;
 337         struct pm_qos_request pm_qos_req;
 338         int selected;
 339 };
 340 
 341 /*
 342  * R/W functions for big- or little-endian registers:
 343  * The FSPI controller's endianness is independent of
 344  * the CPU core's endianness. So far, although the CPU
 345  * core is little-endian the FSPI controller can use
 346  * big-endian or little-endian.
 347  */
 348 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 349 {
 350         if (f->devtype_data->little_endian)
 351                 iowrite32(val, addr);
 352         else
 353                 iowrite32be(val, addr);
 354 }
 355 
 356 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 357 {
 358         if (f->devtype_data->little_endian)
 359                 return ioread32(addr);
 360         else
 361                 return ioread32be(addr);
 362 }
 363 
 364 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 365 {
 366         struct nxp_fspi *f = dev_id;
 367         u32 reg;
 368 
 369         /* clear interrupt */
 370         reg = fspi_readl(f, f->iobase + FSPI_INTR);
 371         fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 372 
 373         if (reg & FSPI_INTR_IPCMDDONE)
 374                 complete(&f->c);
 375 
 376         return IRQ_HANDLED;
 377 }
 378 
 379 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 380 {
 381         switch (width) {
 382         case 1:
 383         case 2:
 384         case 4:
 385         case 8:
 386                 return 0;
 387         }
 388 
 389         return -ENOTSUPP;
 390 }
 391 
 392 static bool nxp_fspi_supports_op(struct spi_mem *mem,
 393                                  const struct spi_mem_op *op)
 394 {
 395         struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 396         int ret;
 397 
 398         ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 399 
 400         if (op->addr.nbytes)
 401                 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 402 
 403         if (op->dummy.nbytes)
 404                 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 405 
 406         if (op->data.nbytes)
 407                 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 408 
 409         if (ret)
 410                 return false;
 411 
 412         /*
 413          * The number of address bytes should be equal to or less than 4 bytes.
 414          */
 415         if (op->addr.nbytes > 4)
 416                 return false;
 417 
 418         /*
 419          * If requested address value is greater than controller assigned
 420          * memory mapped space, return error as it didn't fit in the range
 421          * of assigned address space.
 422          */
 423         if (op->addr.val >= f->memmap_phy_size)
 424                 return false;
 425 
 426         /* Max 64 dummy clock cycles supported */
 427         if (op->dummy.buswidth &&
 428             (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 429                 return false;
 430 
 431         /* Max data length, check controller limits and alignment */
 432         if (op->data.dir == SPI_MEM_DATA_IN &&
 433             (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 434              (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 435               !IS_ALIGNED(op->data.nbytes, 8))))
 436                 return false;
 437 
 438         if (op->data.dir == SPI_MEM_DATA_OUT &&
 439             op->data.nbytes > f->devtype_data->txfifo)
 440                 return false;
 441 
 442         return spi_mem_default_supports_op(mem, op);
 443 }
 444 
 445 /* Instead of busy looping invoke readl_poll_timeout functionality. */
 446 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 447                                 u32 mask, u32 delay_us,
 448                                 u32 timeout_us, bool c)
 449 {
 450         u32 reg;
 451 
 452         if (!f->devtype_data->little_endian)
 453                 mask = (u32)cpu_to_be32(mask);
 454 
 455         if (c)
 456                 return readl_poll_timeout(base, reg, (reg & mask),
 457                                           delay_us, timeout_us);
 458         else
 459                 return readl_poll_timeout(base, reg, !(reg & mask),
 460                                           delay_us, timeout_us);
 461 }
 462 
 463 /*
 464  * If the slave device content being changed by Write/Erase, need to
 465  * invalidate the AHB buffer. This can be achieved by doing the reset
 466  * of controller after setting MCR0[SWRESET] bit.
 467  */
 468 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 469 {
 470         u32 reg;
 471         int ret;
 472 
 473         reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 474         fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 475 
 476         /* w1c register, wait unit clear */
 477         ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 478                                    FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 479         WARN_ON(ret);
 480 }
 481 
 482 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 483                                  const struct spi_mem_op *op)
 484 {
 485         void __iomem *base = f->iobase;
 486         u32 lutval[4] = {};
 487         int lutidx = 1, i;
 488 
 489         /* cmd */
 490         lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 491                              op->cmd.opcode);
 492 
 493         /* addr bytes */
 494         if (op->addr.nbytes) {
 495                 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 496                                               LUT_PAD(op->addr.buswidth),
 497                                               op->addr.nbytes * 8);
 498                 lutidx++;
 499         }
 500 
 501         /* dummy bytes, if needed */
 502         if (op->dummy.nbytes) {
 503                 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 504                 /*
 505                  * Due to FlexSPI controller limitation number of PAD for dummy
 506                  * buswidth needs to be programmed as equal to data buswidth.
 507                  */
 508                                               LUT_PAD(op->data.buswidth),
 509                                               op->dummy.nbytes * 8 /
 510                                               op->dummy.buswidth);
 511                 lutidx++;
 512         }
 513 
 514         /* read/write data bytes */
 515         if (op->data.nbytes) {
 516                 lutval[lutidx / 2] |= LUT_DEF(lutidx,
 517                                               op->data.dir == SPI_MEM_DATA_IN ?
 518                                               LUT_NXP_READ : LUT_NXP_WRITE,
 519                                               LUT_PAD(op->data.buswidth),
 520                                               0);
 521                 lutidx++;
 522         }
 523 
 524         /* stop condition. */
 525         lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 526 
 527         /* unlock LUT */
 528         fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 529         fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 530 
 531         /* fill LUT */
 532         for (i = 0; i < ARRAY_SIZE(lutval); i++)
 533                 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
 534 
 535         dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
 536                 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
 537 
 538         /* lock LUT */
 539         fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 540         fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 541 }
 542 
 543 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 544 {
 545         int ret;
 546 
 547         ret = clk_prepare_enable(f->clk_en);
 548         if (ret)
 549                 return ret;
 550 
 551         ret = clk_prepare_enable(f->clk);
 552         if (ret) {
 553                 clk_disable_unprepare(f->clk_en);
 554                 return ret;
 555         }
 556 
 557         return 0;
 558 }
 559 
 560 static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 561 {
 562         clk_disable_unprepare(f->clk);
 563         clk_disable_unprepare(f->clk_en);
 564 }
 565 
 566 /*
 567  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 568  * register and start base address of the slave device.
 569  *
 570  *                                                          (Higher address)
 571  *                              --------    <-- FLSHB2CR0
 572  *                              |  B2  |
 573  *                              |      |
 574  *      B2 start address -->    --------    <-- FLSHB1CR0
 575  *                              |  B1  |
 576  *                              |      |
 577  *      B1 start address -->    --------    <-- FLSHA2CR0
 578  *                              |  A2  |
 579  *                              |      |
 580  *      A2 start address -->    --------    <-- FLSHA1CR0
 581  *                              |  A1  |
 582  *                              |      |
 583  *      A1 start address -->    --------                    (Lower address)
 584  *
 585  *
 586  * Start base address defines the starting address range for given CS and
 587  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
 588  *
 589  * But, different targets are having different combinations of number of CS,
 590  * some targets only have single CS or two CS covering controller's full
 591  * memory mapped space area.
 592  * Thus, implementation is being done as independent of the size and number
 593  * of the connected slave device.
 594  * Assign controller memory mapped space size as the size to the connected
 595  * slave device.
 596  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 597  * chip-select Flash configuration register.
 598  *
 599  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 600  * memory mapped size of the controller.
 601  * Value for rest of the CS FLSHxxCR0 register would be zero.
 602  *
 603  */
 604 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
 605 {
 606         unsigned long rate = spi->max_speed_hz;
 607         int ret;
 608         uint64_t size_kb;
 609 
 610         /*
 611          * Return, if previously selected slave device is same as current
 612          * requested slave device.
 613          */
 614         if (f->selected == spi->chip_select)
 615                 return;
 616 
 617         /* Reset FLSHxxCR0 registers */
 618         fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 619         fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 620         fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 621         fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 622 
 623         /* Assign controller memory mapped space as size, KBytes, of flash. */
 624         size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 625 
 626         fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 627                     4 * spi->chip_select);
 628 
 629         dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
 630 
 631         nxp_fspi_clk_disable_unprep(f);
 632 
 633         ret = clk_set_rate(f->clk, rate);
 634         if (ret)
 635                 return;
 636 
 637         ret = nxp_fspi_clk_prep_enable(f);
 638         if (ret)
 639                 return;
 640 
 641         f->selected = spi->chip_select;
 642 }
 643 
 644 static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 645 {
 646         u32 len = op->data.nbytes;
 647 
 648         /* Read out the data directly from the AHB buffer. */
 649         memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
 650 }
 651 
 652 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 653                                  const struct spi_mem_op *op)
 654 {
 655         void __iomem *base = f->iobase;
 656         int i, ret;
 657         u8 *buf = (u8 *) op->data.buf.out;
 658 
 659         /* clear the TX FIFO. */
 660         fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 661 
 662         /*
 663          * Default value of water mark level is 8 bytes, hence in single
 664          * write request controller can write max 8 bytes of data.
 665          */
 666 
 667         for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 668                 /* Wait for TXFIFO empty */
 669                 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 670                                            FSPI_INTR_IPTXWE, 0,
 671                                            POLL_TOUT, true);
 672                 WARN_ON(ret);
 673 
 674                 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 675                 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 676                 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 677         }
 678 
 679         if (i < op->data.nbytes) {
 680                 u32 data = 0;
 681                 int j;
 682                 /* Wait for TXFIFO empty */
 683                 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 684                                            FSPI_INTR_IPTXWE, 0,
 685                                            POLL_TOUT, true);
 686                 WARN_ON(ret);
 687 
 688                 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
 689                         memcpy(&data, buf + i + j, 4);
 690                         fspi_writel(f, data, base + FSPI_TFDR + j);
 691                 }
 692                 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 693         }
 694 }
 695 
 696 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 697                           const struct spi_mem_op *op)
 698 {
 699         void __iomem *base = f->iobase;
 700         int i, ret;
 701         int len = op->data.nbytes;
 702         u8 *buf = (u8 *) op->data.buf.in;
 703 
 704         /*
 705          * Default value of water mark level is 8 bytes, hence in single
 706          * read request controller can read max 8 bytes of data.
 707          */
 708         for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 709                 /* Wait for RXFIFO available */
 710                 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 711                                            FSPI_INTR_IPRXWA, 0,
 712                                            POLL_TOUT, true);
 713                 WARN_ON(ret);
 714 
 715                 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 716                 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 717                 /* move the FIFO pointer */
 718                 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 719         }
 720 
 721         if (i < len) {
 722                 u32 tmp;
 723                 int size, j;
 724 
 725                 buf = op->data.buf.in + i;
 726                 /* Wait for RXFIFO available */
 727                 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 728                                            FSPI_INTR_IPRXWA, 0,
 729                                            POLL_TOUT, true);
 730                 WARN_ON(ret);
 731 
 732                 len = op->data.nbytes - i;
 733                 for (j = 0; j < op->data.nbytes - i; j += 4) {
 734                         tmp = fspi_readl(f, base + FSPI_RFDR + j);
 735                         size = min(len, 4);
 736                         memcpy(buf + j, &tmp, size);
 737                         len -= size;
 738                 }
 739         }
 740 
 741         /* invalid the RXFIFO */
 742         fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 743         /* move the FIFO pointer */
 744         fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 745 }
 746 
 747 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 748 {
 749         void __iomem *base = f->iobase;
 750         int seqnum = 0;
 751         int err = 0;
 752         u32 reg;
 753 
 754         reg = fspi_readl(f, base + FSPI_IPRXFCR);
 755         /* invalid RXFIFO first */
 756         reg &= ~FSPI_IPRXFCR_DMA_EN;
 757         reg = reg | FSPI_IPRXFCR_CLR;
 758         fspi_writel(f, reg, base + FSPI_IPRXFCR);
 759 
 760         init_completion(&f->c);
 761 
 762         fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 763         /*
 764          * Always start the sequence at the same index since we update
 765          * the LUT at each exec_op() call. And also specify the DATA
 766          * length, since it's has not been specified in the LUT.
 767          */
 768         fspi_writel(f, op->data.nbytes |
 769                  (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
 770                  (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 771                  base + FSPI_IPCR1);
 772 
 773         /* Trigger the LUT now. */
 774         fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 775 
 776         /* Wait for the interrupt. */
 777         if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 778                 err = -ETIMEDOUT;
 779 
 780         /* Invoke IP data read, if request is of data read. */
 781         if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 782                 nxp_fspi_read_rxfifo(f, op);
 783 
 784         return err;
 785 }
 786 
 787 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 788 {
 789         struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 790         int err = 0;
 791 
 792         mutex_lock(&f->lock);
 793 
 794         /* Wait for controller being ready. */
 795         err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 796                                    FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 797         WARN_ON(err);
 798 
 799         nxp_fspi_select_mem(f, mem->spi);
 800 
 801         nxp_fspi_prepare_lut(f, op);
 802         /*
 803          * If we have large chunks of data, we read them through the AHB bus
 804          * by accessing the mapped memory. In all other cases we use
 805          * IP commands to access the flash.
 806          */
 807         if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 808             op->data.dir == SPI_MEM_DATA_IN) {
 809                 nxp_fspi_read_ahb(f, op);
 810         } else {
 811                 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 812                         nxp_fspi_fill_txfifo(f, op);
 813 
 814                 err = nxp_fspi_do_op(f, op);
 815         }
 816 
 817         /* Invalidate the data in the AHB buffer. */
 818         nxp_fspi_invalid(f);
 819 
 820         mutex_unlock(&f->lock);
 821 
 822         return err;
 823 }
 824 
 825 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 826 {
 827         struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 828 
 829         if (op->data.dir == SPI_MEM_DATA_OUT) {
 830                 if (op->data.nbytes > f->devtype_data->txfifo)
 831                         op->data.nbytes = f->devtype_data->txfifo;
 832         } else {
 833                 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 834                         op->data.nbytes = f->devtype_data->ahb_buf_size;
 835                 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 836                         op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 837         }
 838 
 839         return 0;
 840 }
 841 
 842 static int nxp_fspi_default_setup(struct nxp_fspi *f)
 843 {
 844         void __iomem *base = f->iobase;
 845         int ret, i;
 846         u32 reg;
 847 
 848         /* disable and unprepare clock to avoid glitch pass to controller */
 849         nxp_fspi_clk_disable_unprep(f);
 850 
 851         /* the default frequency, we will change it later if necessary. */
 852         ret = clk_set_rate(f->clk, 20000000);
 853         if (ret)
 854                 return ret;
 855 
 856         ret = nxp_fspi_clk_prep_enable(f);
 857         if (ret)
 858                 return ret;
 859 
 860         /* Reset the module */
 861         /* w1c register, wait unit clear */
 862         ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 863                                    FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 864         WARN_ON(ret);
 865 
 866         /* Disable the module */
 867         fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
 868 
 869         /* Reset the DLL register to default value */
 870         fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
 871         fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
 872 
 873         /* enable module */
 874         fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
 875                  base + FSPI_MCR0);
 876 
 877         /*
 878          * Disable same device enable bit and configure all slave devices
 879          * independently.
 880          */
 881         reg = fspi_readl(f, f->iobase + FSPI_MCR2);
 882         reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
 883         fspi_writel(f, reg, base + FSPI_MCR2);
 884 
 885         /* AHB configuration for access buffer 0~7. */
 886         for (i = 0; i < 7; i++)
 887                 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
 888 
 889         /*
 890          * Set ADATSZ with the maximum AHB buffer size to improve the read
 891          * performance.
 892          */
 893         fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
 894                   FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
 895 
 896         /* prefetch and no start address alignment limitation */
 897         fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
 898                  base + FSPI_AHBCR);
 899 
 900         /* AHB Read - Set lut sequence ID for all CS. */
 901         fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
 902         fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
 903         fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
 904         fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
 905 
 906         f->selected = -1;
 907 
 908         /* enable the interrupt */
 909         fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
 910 
 911         return 0;
 912 }
 913 
 914 static const char *nxp_fspi_get_name(struct spi_mem *mem)
 915 {
 916         struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 917         struct device *dev = &mem->spi->dev;
 918         const char *name;
 919 
 920         // Set custom name derived from the platform_device of the controller.
 921         if (of_get_available_child_count(f->dev->of_node) == 1)
 922                 return dev_name(f->dev);
 923 
 924         name = devm_kasprintf(dev, GFP_KERNEL,
 925                               "%s-%d", dev_name(f->dev),
 926                               mem->spi->chip_select);
 927 
 928         if (!name) {
 929                 dev_err(dev, "failed to get memory for custom flash name\n");
 930                 return ERR_PTR(-ENOMEM);
 931         }
 932 
 933         return name;
 934 }
 935 
 936 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
 937         .adjust_op_size = nxp_fspi_adjust_op_size,
 938         .supports_op = nxp_fspi_supports_op,
 939         .exec_op = nxp_fspi_exec_op,
 940         .get_name = nxp_fspi_get_name,
 941 };
 942 
 943 static int nxp_fspi_probe(struct platform_device *pdev)
 944 {
 945         struct spi_controller *ctlr;
 946         struct device *dev = &pdev->dev;
 947         struct device_node *np = dev->of_node;
 948         struct resource *res;
 949         struct nxp_fspi *f;
 950         int ret;
 951 
 952         ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
 953         if (!ctlr)
 954                 return -ENOMEM;
 955 
 956         ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
 957                           SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
 958 
 959         f = spi_controller_get_devdata(ctlr);
 960         f->dev = dev;
 961         f->devtype_data = of_device_get_match_data(dev);
 962         if (!f->devtype_data) {
 963                 ret = -ENODEV;
 964                 goto err_put_ctrl;
 965         }
 966 
 967         platform_set_drvdata(pdev, f);
 968 
 969         /* find the resources - configuration register address space */
 970         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base");
 971         f->iobase = devm_ioremap_resource(dev, res);
 972         if (IS_ERR(f->iobase)) {
 973                 ret = PTR_ERR(f->iobase);
 974                 goto err_put_ctrl;
 975         }
 976 
 977         /* find the resources - controller memory mapped space */
 978         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap");
 979         f->ahb_addr = devm_ioremap_resource(dev, res);
 980         if (IS_ERR(f->ahb_addr)) {
 981                 ret = PTR_ERR(f->ahb_addr);
 982                 goto err_put_ctrl;
 983         }
 984 
 985         /* assign memory mapped starting address and mapped size. */
 986         f->memmap_phy = res->start;
 987         f->memmap_phy_size = resource_size(res);
 988 
 989         /* find the clocks */
 990         f->clk_en = devm_clk_get(dev, "fspi_en");
 991         if (IS_ERR(f->clk_en)) {
 992                 ret = PTR_ERR(f->clk_en);
 993                 goto err_put_ctrl;
 994         }
 995 
 996         f->clk = devm_clk_get(dev, "fspi");
 997         if (IS_ERR(f->clk)) {
 998                 ret = PTR_ERR(f->clk);
 999                 goto err_put_ctrl;
1000         }
1001 
1002         ret = nxp_fspi_clk_prep_enable(f);
1003         if (ret) {
1004                 dev_err(dev, "can not enable the clock\n");
1005                 goto err_put_ctrl;
1006         }
1007 
1008         /* find the irq */
1009         ret = platform_get_irq(pdev, 0);
1010         if (ret < 0)
1011                 goto err_disable_clk;
1012 
1013         ret = devm_request_irq(dev, ret,
1014                         nxp_fspi_irq_handler, 0, pdev->name, f);
1015         if (ret) {
1016                 dev_err(dev, "failed to request irq: %d\n", ret);
1017                 goto err_disable_clk;
1018         }
1019 
1020         mutex_init(&f->lock);
1021 
1022         ctlr->bus_num = -1;
1023         ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1024         ctlr->mem_ops = &nxp_fspi_mem_ops;
1025 
1026         nxp_fspi_default_setup(f);
1027 
1028         ctlr->dev.of_node = np;
1029 
1030         ret = spi_register_controller(ctlr);
1031         if (ret)
1032                 goto err_destroy_mutex;
1033 
1034         return 0;
1035 
1036 err_destroy_mutex:
1037         mutex_destroy(&f->lock);
1038 
1039 err_disable_clk:
1040         nxp_fspi_clk_disable_unprep(f);
1041 
1042 err_put_ctrl:
1043         spi_controller_put(ctlr);
1044 
1045         dev_err(dev, "NXP FSPI probe failed\n");
1046         return ret;
1047 }
1048 
1049 static int nxp_fspi_remove(struct platform_device *pdev)
1050 {
1051         struct nxp_fspi *f = platform_get_drvdata(pdev);
1052 
1053         /* disable the hardware */
1054         fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1055 
1056         nxp_fspi_clk_disable_unprep(f);
1057 
1058         mutex_destroy(&f->lock);
1059 
1060         return 0;
1061 }
1062 
1063 static int nxp_fspi_suspend(struct device *dev)
1064 {
1065         return 0;
1066 }
1067 
1068 static int nxp_fspi_resume(struct device *dev)
1069 {
1070         struct nxp_fspi *f = dev_get_drvdata(dev);
1071 
1072         nxp_fspi_default_setup(f);
1073 
1074         return 0;
1075 }
1076 
1077 static const struct of_device_id nxp_fspi_dt_ids[] = {
1078         { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1079         { /* sentinel */ }
1080 };
1081 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1082 
1083 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1084         .suspend        = nxp_fspi_suspend,
1085         .resume         = nxp_fspi_resume,
1086 };
1087 
1088 static struct platform_driver nxp_fspi_driver = {
1089         .driver = {
1090                 .name   = "nxp-fspi",
1091                 .of_match_table = nxp_fspi_dt_ids,
1092                 .pm =   &nxp_fspi_pm_ops,
1093         },
1094         .probe          = nxp_fspi_probe,
1095         .remove         = nxp_fspi_remove,
1096 };
1097 module_platform_driver(nxp_fspi_driver);
1098 
1099 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1100 MODULE_AUTHOR("NXP Semiconductor");
1101 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1102 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1103 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1104 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */