root/drivers/dma/mediatek/mtk-hsdma.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. to_hsdma_dev
  2. to_hsdma_vchan
  3. to_hsdma_vdesc
  4. hsdma2dev
  5. mtk_dma_read
  6. mtk_dma_write
  7. mtk_dma_rmw
  8. mtk_dma_set
  9. mtk_dma_clr
  10. mtk_hsdma_vdesc_free
  11. mtk_hsdma_busy_wait
  12. mtk_hsdma_alloc_pchan
  13. mtk_hsdma_free_pchan
  14. mtk_hsdma_issue_pending_vdesc
  15. mtk_hsdma_issue_vchan_pending
  16. mtk_hsdma_free_rooms_in_ring
  17. mtk_hsdma_irq
  18. mtk_hsdma_find_active_desc
  19. mtk_hsdma_tx_status
  20. mtk_hsdma_issue_pending
  21. mtk_hsdma_prep_dma_memcpy
  22. mtk_hsdma_free_inactive_desc
  23. mtk_hsdma_free_active_desc
  24. mtk_hsdma_terminate_all
  25. mtk_hsdma_alloc_chan_resources
  26. mtk_hsdma_free_chan_resources
  27. mtk_hsdma_hw_init
  28. mtk_hsdma_hw_deinit
  29. mtk_hsdma_probe
  30. mtk_hsdma_remove

   1 // SPDX-License-Identifier: GPL-2.0
   2 // Copyright (c) 2017-2018 MediaTek Inc.
   3 
   4 /*
   5  * Driver for MediaTek High-Speed DMA Controller
   6  *
   7  * Author: Sean Wang <sean.wang@mediatek.com>
   8  *
   9  */
  10 
  11 #include <linux/bitops.h>
  12 #include <linux/clk.h>
  13 #include <linux/dmaengine.h>
  14 #include <linux/dma-mapping.h>
  15 #include <linux/err.h>
  16 #include <linux/iopoll.h>
  17 #include <linux/list.h>
  18 #include <linux/module.h>
  19 #include <linux/of.h>
  20 #include <linux/of_device.h>
  21 #include <linux/of_dma.h>
  22 #include <linux/platform_device.h>
  23 #include <linux/pm_runtime.h>
  24 #include <linux/refcount.h>
  25 #include <linux/slab.h>
  26 
  27 #include "../virt-dma.h"
  28 
  29 #define MTK_HSDMA_USEC_POLL             20
  30 #define MTK_HSDMA_TIMEOUT_POLL          200000
  31 #define MTK_HSDMA_DMA_BUSWIDTHS         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  32 
  33 /* The default number of virtual channel */
  34 #define MTK_HSDMA_NR_VCHANS             3
  35 
  36 /* Only one physical channel supported */
  37 #define MTK_HSDMA_NR_MAX_PCHANS         1
  38 
  39 /* Macro for physical descriptor (PD) manipulation */
  40 /* The number of PD which must be 2 of power */
  41 #define MTK_DMA_SIZE                    64
  42 #define MTK_HSDMA_NEXT_DESP_IDX(x, y)   (((x) + 1) & ((y) - 1))
  43 #define MTK_HSDMA_LAST_DESP_IDX(x, y)   (((x) - 1) & ((y) - 1))
  44 #define MTK_HSDMA_MAX_LEN               0x3f80
  45 #define MTK_HSDMA_ALIGN_SIZE            4
  46 #define MTK_HSDMA_PLEN_MASK             0x3fff
  47 #define MTK_HSDMA_DESC_PLEN(x)          (((x) & MTK_HSDMA_PLEN_MASK) << 16)
  48 #define MTK_HSDMA_DESC_PLEN_GET(x)      (((x) >> 16) & MTK_HSDMA_PLEN_MASK)
  49 
  50 /* Registers for underlying ring manipulation */
  51 #define MTK_HSDMA_TX_BASE               0x0
  52 #define MTK_HSDMA_TX_CNT                0x4
  53 #define MTK_HSDMA_TX_CPU                0x8
  54 #define MTK_HSDMA_TX_DMA                0xc
  55 #define MTK_HSDMA_RX_BASE               0x100
  56 #define MTK_HSDMA_RX_CNT                0x104
  57 #define MTK_HSDMA_RX_CPU                0x108
  58 #define MTK_HSDMA_RX_DMA                0x10c
  59 
  60 /* Registers for global setup */
  61 #define MTK_HSDMA_GLO                   0x204
  62 #define MTK_HSDMA_GLO_MULTI_DMA         BIT(10)
  63 #define MTK_HSDMA_TX_WB_DDONE           BIT(6)
  64 #define MTK_HSDMA_BURST_64BYTES         (0x2 << 4)
  65 #define MTK_HSDMA_GLO_RX_BUSY           BIT(3)
  66 #define MTK_HSDMA_GLO_RX_DMA            BIT(2)
  67 #define MTK_HSDMA_GLO_TX_BUSY           BIT(1)
  68 #define MTK_HSDMA_GLO_TX_DMA            BIT(0)
  69 #define MTK_HSDMA_GLO_DMA               (MTK_HSDMA_GLO_TX_DMA | \
  70                                          MTK_HSDMA_GLO_RX_DMA)
  71 #define MTK_HSDMA_GLO_BUSY              (MTK_HSDMA_GLO_RX_BUSY | \
  72                                          MTK_HSDMA_GLO_TX_BUSY)
  73 #define MTK_HSDMA_GLO_DEFAULT           (MTK_HSDMA_GLO_TX_DMA | \
  74                                          MTK_HSDMA_GLO_RX_DMA | \
  75                                          MTK_HSDMA_TX_WB_DDONE | \
  76                                          MTK_HSDMA_BURST_64BYTES | \
  77                                          MTK_HSDMA_GLO_MULTI_DMA)
  78 
  79 /* Registers for reset */
  80 #define MTK_HSDMA_RESET                 0x208
  81 #define MTK_HSDMA_RST_TX                BIT(0)
  82 #define MTK_HSDMA_RST_RX                BIT(16)
  83 
  84 /* Registers for interrupt control */
  85 #define MTK_HSDMA_DLYINT                0x20c
  86 #define MTK_HSDMA_RXDLY_INT_EN          BIT(15)
  87 
  88 /* Interrupt fires when the pending number's more than the specified */
  89 #define MTK_HSDMA_RXMAX_PINT(x)         (((x) & 0x7f) << 8)
  90 
  91 /* Interrupt fires when the pending time's more than the specified in 20 us */
  92 #define MTK_HSDMA_RXMAX_PTIME(x)        ((x) & 0x7f)
  93 #define MTK_HSDMA_DLYINT_DEFAULT        (MTK_HSDMA_RXDLY_INT_EN | \
  94                                          MTK_HSDMA_RXMAX_PINT(20) | \
  95                                          MTK_HSDMA_RXMAX_PTIME(20))
  96 #define MTK_HSDMA_INT_STATUS            0x220
  97 #define MTK_HSDMA_INT_ENABLE            0x228
  98 #define MTK_HSDMA_INT_RXDONE            BIT(16)
  99 
 100 enum mtk_hsdma_vdesc_flag {
 101         MTK_HSDMA_VDESC_FINISHED        = 0x01,
 102 };
 103 
 104 #define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
 105 
 106 /**
 107  * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
 108  *                          descriptor (PD) and its placement must be kept at
 109  *                          4-bytes alignment in little endian order.
 110  * @desc[1-4]:              The control pad used to indicate hardware how to
 111  *                          deal with the descriptor such as source and
 112  *                          destination address and data length. The maximum
 113  *                          data length each pdesc can handle is 0x3f80 bytes
 114  */
 115 struct mtk_hsdma_pdesc {
 116         __le32 desc1;
 117         __le32 desc2;
 118         __le32 desc3;
 119         __le32 desc4;
 120 } __packed __aligned(4);
 121 
 122 /**
 123  * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
 124  *                          descriptor (VD)
 125  * @vd:                     An instance for struct virt_dma_desc
 126  * @len:                    The total data size device wants to move
 127  * @residue:                The remaining data size device will move
 128  * @dest:                   The destination address device wants to move to
 129  * @src:                    The source address device wants to move from
 130  */
 131 struct mtk_hsdma_vdesc {
 132         struct virt_dma_desc vd;
 133         size_t len;
 134         size_t residue;
 135         dma_addr_t dest;
 136         dma_addr_t src;
 137 };
 138 
 139 /**
 140  * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
 141  *                       ring to know what relevant VD the the PD is being
 142  *                       mapped to.
 143  * @vd:                  Pointer to the relevant VD.
 144  * @flag:                Flag indicating what action should be taken when VD
 145  *                       is completed.
 146  */
 147 struct mtk_hsdma_cb {
 148         struct virt_dma_desc *vd;
 149         enum mtk_hsdma_vdesc_flag flag;
 150 };
 151 
 152 /**
 153  * struct mtk_hsdma_ring - This struct holds info describing underlying ring
 154  *                         space
 155  * @txd:                   The descriptor TX ring which describes DMA source
 156  *                         information
 157  * @rxd:                   The descriptor RX ring which describes DMA
 158  *                         destination information
 159  * @cb:                    The extra information pointed at by RX ring
 160  * @tphys:                 The physical addr of TX ring
 161  * @rphys:                 The physical addr of RX ring
 162  * @cur_tptr:              Pointer to the next free descriptor used by the host
 163  * @cur_rptr:              Pointer to the last done descriptor by the device
 164  */
 165 struct mtk_hsdma_ring {
 166         struct mtk_hsdma_pdesc *txd;
 167         struct mtk_hsdma_pdesc *rxd;
 168         struct mtk_hsdma_cb *cb;
 169         dma_addr_t tphys;
 170         dma_addr_t rphys;
 171         u16 cur_tptr;
 172         u16 cur_rptr;
 173 };
 174 
 175 /**
 176  * struct mtk_hsdma_pchan - This is the struct holding info describing physical
 177  *                         channel (PC)
 178  * @ring:                  An instance for the underlying ring
 179  * @sz_ring:               Total size allocated for the ring
 180  * @nr_free:               Total number of free rooms in the ring. It would
 181  *                         be accessed and updated frequently between IRQ
 182  *                         context and user context to reflect whether ring
 183  *                         can accept requests from VD.
 184  */
 185 struct mtk_hsdma_pchan {
 186         struct mtk_hsdma_ring ring;
 187         size_t sz_ring;
 188         atomic_t nr_free;
 189 };
 190 
 191 /**
 192  * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
 193  *                         channel (VC)
 194  * @vc:                    An instance for struct virt_dma_chan
 195  * @issue_completion:      The wait for all issued descriptors completited
 196  * @issue_synchronize:     Bool indicating channel synchronization starts
 197  * @desc_hw_processing:    List those descriptors the hardware is processing,
 198  *                         which is protected by vc.lock
 199  */
 200 struct mtk_hsdma_vchan {
 201         struct virt_dma_chan vc;
 202         struct completion issue_completion;
 203         bool issue_synchronize;
 204         struct list_head desc_hw_processing;
 205 };
 206 
 207 /**
 208  * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
 209  * @ddone:                Bit mask for DDONE
 210  * @ls0:                  Bit mask for LS0
 211  */
 212 struct mtk_hsdma_soc {
 213         __le32 ddone;
 214         __le32 ls0;
 215 };
 216 
 217 /**
 218  * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
 219  *                           device
 220  * @ddev:                    An instance for struct dma_device
 221  * @base:                    The mapped register I/O base
 222  * @clk:                     The clock that device internal is using
 223  * @irq:                     The IRQ that device are using
 224  * @dma_requests:            The number of VCs the device supports to
 225  * @vc:                      The pointer to all available VCs
 226  * @pc:                      The pointer to the underlying PC
 227  * @pc_refcnt:               Track how many VCs are using the PC
 228  * @lock:                    Lock protect agaisting multiple VCs access PC
 229  * @soc:                     The pointer to area holding differences among
 230  *                           vaious platform
 231  */
 232 struct mtk_hsdma_device {
 233         struct dma_device ddev;
 234         void __iomem *base;
 235         struct clk *clk;
 236         u32 irq;
 237 
 238         u32 dma_requests;
 239         struct mtk_hsdma_vchan *vc;
 240         struct mtk_hsdma_pchan *pc;
 241         refcount_t pc_refcnt;
 242 
 243         /* Lock used to protect against multiple VCs access PC */
 244         spinlock_t lock;
 245 
 246         const struct mtk_hsdma_soc *soc;
 247 };
 248 
 249 static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
 250 {
 251         return container_of(chan->device, struct mtk_hsdma_device, ddev);
 252 }
 253 
 254 static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
 255 {
 256         return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
 257 }
 258 
 259 static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
 260 {
 261         return container_of(vd, struct mtk_hsdma_vdesc, vd);
 262 }
 263 
 264 static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
 265 {
 266         return hsdma->ddev.dev;
 267 }
 268 
 269 static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
 270 {
 271         return readl(hsdma->base + reg);
 272 }
 273 
 274 static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 275 {
 276         writel(val, hsdma->base + reg);
 277 }
 278 
 279 static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
 280                         u32 mask, u32 set)
 281 {
 282         u32 val;
 283 
 284         val = mtk_dma_read(hsdma, reg);
 285         val &= ~mask;
 286         val |= set;
 287         mtk_dma_write(hsdma, reg, val);
 288 }
 289 
 290 static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 291 {
 292         mtk_dma_rmw(hsdma, reg, 0, val);
 293 }
 294 
 295 static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 296 {
 297         mtk_dma_rmw(hsdma, reg, val, 0);
 298 }
 299 
 300 static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
 301 {
 302         kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
 303 }
 304 
 305 static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
 306 {
 307         u32 status = 0;
 308 
 309         return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
 310                                   !(status & MTK_HSDMA_GLO_BUSY),
 311                                   MTK_HSDMA_USEC_POLL,
 312                                   MTK_HSDMA_TIMEOUT_POLL);
 313 }
 314 
 315 static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
 316                                  struct mtk_hsdma_pchan *pc)
 317 {
 318         struct mtk_hsdma_ring *ring = &pc->ring;
 319         int err;
 320 
 321         memset(pc, 0, sizeof(*pc));
 322 
 323         /*
 324          * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
 325          * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
 326          */
 327         pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
 328         ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
 329                                        &ring->tphys, GFP_NOWAIT);
 330         if (!ring->txd)
 331                 return -ENOMEM;
 332 
 333         ring->rxd = &ring->txd[MTK_DMA_SIZE];
 334         ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
 335         ring->cur_tptr = 0;
 336         ring->cur_rptr = MTK_DMA_SIZE - 1;
 337 
 338         ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
 339         if (!ring->cb) {
 340                 err = -ENOMEM;
 341                 goto err_free_dma;
 342         }
 343 
 344         atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
 345 
 346         /* Disable HSDMA and wait for the completion */
 347         mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 348         err = mtk_hsdma_busy_wait(hsdma);
 349         if (err)
 350                 goto err_free_cb;
 351 
 352         /* Reset */
 353         mtk_dma_set(hsdma, MTK_HSDMA_RESET,
 354                     MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 355         mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
 356                     MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 357 
 358         /* Setup HSDMA initial pointer in the ring */
 359         mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
 360         mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
 361         mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 362         mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
 363         mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
 364         mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
 365         mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
 366         mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
 367 
 368         /* Enable HSDMA */
 369         mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 370 
 371         /* Setup delayed interrupt */
 372         mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
 373 
 374         /* Enable interrupt */
 375         mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 376 
 377         return 0;
 378 
 379 err_free_cb:
 380         kfree(ring->cb);
 381 
 382 err_free_dma:
 383         dma_free_coherent(hsdma2dev(hsdma),
 384                           pc->sz_ring, ring->txd, ring->tphys);
 385         return err;
 386 }
 387 
 388 static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
 389                                  struct mtk_hsdma_pchan *pc)
 390 {
 391         struct mtk_hsdma_ring *ring = &pc->ring;
 392 
 393         /* Disable HSDMA and then wait for the completion */
 394         mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 395         mtk_hsdma_busy_wait(hsdma);
 396 
 397         /* Reset pointer in the ring */
 398         mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 399         mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
 400         mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
 401         mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
 402         mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
 403         mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
 404         mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
 405 
 406         kfree(ring->cb);
 407 
 408         dma_free_coherent(hsdma2dev(hsdma),
 409                           pc->sz_ring, ring->txd, ring->tphys);
 410 }
 411 
 412 static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
 413                                          struct mtk_hsdma_pchan *pc,
 414                                          struct mtk_hsdma_vdesc *hvd)
 415 {
 416         struct mtk_hsdma_ring *ring = &pc->ring;
 417         struct mtk_hsdma_pdesc *txd, *rxd;
 418         u16 reserved, prev, tlen, num_sgs;
 419         unsigned long flags;
 420 
 421         /* Protect against PC is accessed by multiple VCs simultaneously */
 422         spin_lock_irqsave(&hsdma->lock, flags);
 423 
 424         /*
 425          * Reserve rooms, where pc->nr_free is used to track how many free
 426          * rooms in the ring being updated in user and IRQ context.
 427          */
 428         num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
 429         reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
 430 
 431         if (!reserved) {
 432                 spin_unlock_irqrestore(&hsdma->lock, flags);
 433                 return -ENOSPC;
 434         }
 435 
 436         atomic_sub(reserved, &pc->nr_free);
 437 
 438         while (reserved--) {
 439                 /* Limit size by PD capability for valid data moving */
 440                 tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
 441                        MTK_HSDMA_MAX_LEN : hvd->len;
 442 
 443                 /*
 444                  * Setup PDs using the remaining VD info mapped on those
 445                  * reserved rooms. And since RXD is shared memory between the
 446                  * host and the device allocated by dma_alloc_coherent call,
 447                  * the helper macro WRITE_ONCE can ensure the data written to
 448                  * RAM would really happens.
 449                  */
 450                 txd = &ring->txd[ring->cur_tptr];
 451                 WRITE_ONCE(txd->desc1, hvd->src);
 452                 WRITE_ONCE(txd->desc2,
 453                            hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
 454 
 455                 rxd = &ring->rxd[ring->cur_tptr];
 456                 WRITE_ONCE(rxd->desc1, hvd->dest);
 457                 WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
 458 
 459                 /* Associate VD, the PD belonged to */
 460                 ring->cb[ring->cur_tptr].vd = &hvd->vd;
 461 
 462                 /* Move forward the pointer of TX ring */
 463                 ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
 464                                                          MTK_DMA_SIZE);
 465 
 466                 /* Update VD with remaining data */
 467                 hvd->src  += tlen;
 468                 hvd->dest += tlen;
 469                 hvd->len  -= tlen;
 470         }
 471 
 472         /*
 473          * Tagging flag for the last PD for VD will be responsible for
 474          * completing VD.
 475          */
 476         if (!hvd->len) {
 477                 prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
 478                 ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
 479         }
 480 
 481         /* Ensure all changes indeed done before we're going on */
 482         wmb();
 483 
 484         /*
 485          * Updating into hardware the pointer of TX ring lets HSDMA to take
 486          * action for those pending PDs.
 487          */
 488         mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 489 
 490         spin_unlock_irqrestore(&hsdma->lock, flags);
 491 
 492         return 0;
 493 }
 494 
 495 static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
 496                                           struct mtk_hsdma_vchan *hvc)
 497 {
 498         struct virt_dma_desc *vd, *vd2;
 499         int err;
 500 
 501         lockdep_assert_held(&hvc->vc.lock);
 502 
 503         list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
 504                 struct mtk_hsdma_vdesc *hvd;
 505 
 506                 hvd = to_hsdma_vdesc(vd);
 507 
 508                 /* Map VD into PC and all VCs shares a single PC */
 509                 err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
 510 
 511                 /*
 512                  * Move VD from desc_issued to desc_hw_processing when entire
 513                  * VD is fit into available PDs. Otherwise, the uncompleted
 514                  * VDs would stay in list desc_issued and then restart the
 515                  * processing as soon as possible once underlying ring space
 516                  * got freed.
 517                  */
 518                 if (err == -ENOSPC || hvd->len > 0)
 519                         break;
 520 
 521                 /*
 522                  * The extra list desc_hw_processing is used because
 523                  * hardware can't provide sufficient information allowing us
 524                  * to know what VDs are still working on the underlying ring.
 525                  * Through the additional list, it can help us to implement
 526                  * terminate_all, residue calculation and such thing needed
 527                  * to know detail descriptor status on the hardware.
 528                  */
 529                 list_move_tail(&vd->node, &hvc->desc_hw_processing);
 530         }
 531 }
 532 
 533 static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
 534 {
 535         struct mtk_hsdma_vchan *hvc;
 536         struct mtk_hsdma_pdesc *rxd;
 537         struct mtk_hsdma_vdesc *hvd;
 538         struct mtk_hsdma_pchan *pc;
 539         struct mtk_hsdma_cb *cb;
 540         int i = MTK_DMA_SIZE;
 541         __le32 desc2;
 542         u32 status;
 543         u16 next;
 544 
 545         /* Read IRQ status */
 546         status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
 547         if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
 548                 goto rx_done;
 549 
 550         pc = hsdma->pc;
 551 
 552         /*
 553          * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
 554          * reclaim these finished descriptors: The most number of PDs the ISR
 555          * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
 556          * take it as limited count instead of just using a dangerous infinite
 557          * poll.
 558          */
 559         while (i--) {
 560                 next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
 561                                                MTK_DMA_SIZE);
 562                 rxd = &pc->ring.rxd[next];
 563 
 564                 /*
 565                  * If MTK_HSDMA_DESC_DDONE is no specified, that means data
 566                  * moving for the PD is still under going.
 567                  */
 568                 desc2 = READ_ONCE(rxd->desc2);
 569                 if (!(desc2 & hsdma->soc->ddone))
 570                         break;
 571 
 572                 cb = &pc->ring.cb[next];
 573                 if (unlikely(!cb->vd)) {
 574                         dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
 575                         break;
 576                 }
 577 
 578                 /* Update residue of VD the associated PD belonged to */
 579                 hvd = to_hsdma_vdesc(cb->vd);
 580                 hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
 581 
 582                 /* Complete VD until the relevant last PD is finished */
 583                 if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
 584                         hvc = to_hsdma_vchan(cb->vd->tx.chan);
 585 
 586                         spin_lock(&hvc->vc.lock);
 587 
 588                         /* Remove VD from list desc_hw_processing */
 589                         list_del(&cb->vd->node);
 590 
 591                         /* Add VD into list desc_completed */
 592                         vchan_cookie_complete(cb->vd);
 593 
 594                         if (hvc->issue_synchronize &&
 595                             list_empty(&hvc->desc_hw_processing)) {
 596                                 complete(&hvc->issue_completion);
 597                                 hvc->issue_synchronize = false;
 598                         }
 599                         spin_unlock(&hvc->vc.lock);
 600 
 601                         cb->flag = 0;
 602                 }
 603 
 604                 cb->vd = 0;
 605 
 606                 /*
 607                  * Recycle the RXD with the helper WRITE_ONCE that can ensure
 608                  * data written into RAM would really happens.
 609                  */
 610                 WRITE_ONCE(rxd->desc1, 0);
 611                 WRITE_ONCE(rxd->desc2, 0);
 612                 pc->ring.cur_rptr = next;
 613 
 614                 /* Release rooms */
 615                 atomic_inc(&pc->nr_free);
 616         }
 617 
 618         /* Ensure all changes indeed done before we're going on */
 619         wmb();
 620 
 621         /* Update CPU pointer for those completed PDs */
 622         mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
 623 
 624         /*
 625          * Acking the pending IRQ allows hardware no longer to keep the used
 626          * IRQ line in certain trigger state when software has completed all
 627          * the finished physical descriptors.
 628          */
 629         if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
 630                 mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
 631 
 632         /* ASAP handles pending VDs in all VCs after freeing some rooms */
 633         for (i = 0; i < hsdma->dma_requests; i++) {
 634                 hvc = &hsdma->vc[i];
 635                 spin_lock(&hvc->vc.lock);
 636                 mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 637                 spin_unlock(&hvc->vc.lock);
 638         }
 639 
 640 rx_done:
 641         /* All completed PDs are cleaned up, so enable interrupt again */
 642         mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 643 }
 644 
 645 static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
 646 {
 647         struct mtk_hsdma_device *hsdma = devid;
 648 
 649         /*
 650          * Disable interrupt until all completed PDs are cleaned up in
 651          * mtk_hsdma_free_rooms call.
 652          */
 653         mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 654 
 655         mtk_hsdma_free_rooms_in_ring(hsdma);
 656 
 657         return IRQ_HANDLED;
 658 }
 659 
 660 static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
 661                                                         dma_cookie_t cookie)
 662 {
 663         struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 664         struct virt_dma_desc *vd;
 665 
 666         list_for_each_entry(vd, &hvc->desc_hw_processing, node)
 667                 if (vd->tx.cookie == cookie)
 668                         return vd;
 669 
 670         list_for_each_entry(vd, &hvc->vc.desc_issued, node)
 671                 if (vd->tx.cookie == cookie)
 672                         return vd;
 673 
 674         return NULL;
 675 }
 676 
 677 static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
 678                                            dma_cookie_t cookie,
 679                                            struct dma_tx_state *txstate)
 680 {
 681         struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 682         struct mtk_hsdma_vdesc *hvd;
 683         struct virt_dma_desc *vd;
 684         enum dma_status ret;
 685         unsigned long flags;
 686         size_t bytes = 0;
 687 
 688         ret = dma_cookie_status(c, cookie, txstate);
 689         if (ret == DMA_COMPLETE || !txstate)
 690                 return ret;
 691 
 692         spin_lock_irqsave(&hvc->vc.lock, flags);
 693         vd = mtk_hsdma_find_active_desc(c, cookie);
 694         spin_unlock_irqrestore(&hvc->vc.lock, flags);
 695 
 696         if (vd) {
 697                 hvd = to_hsdma_vdesc(vd);
 698                 bytes = hvd->residue;
 699         }
 700 
 701         dma_set_residue(txstate, bytes);
 702 
 703         return ret;
 704 }
 705 
 706 static void mtk_hsdma_issue_pending(struct dma_chan *c)
 707 {
 708         struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 709         struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 710         unsigned long flags;
 711 
 712         spin_lock_irqsave(&hvc->vc.lock, flags);
 713 
 714         if (vchan_issue_pending(&hvc->vc))
 715                 mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 716 
 717         spin_unlock_irqrestore(&hvc->vc.lock, flags);
 718 }
 719 
 720 static struct dma_async_tx_descriptor *
 721 mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
 722                           dma_addr_t src, size_t len, unsigned long flags)
 723 {
 724         struct mtk_hsdma_vdesc *hvd;
 725 
 726         hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
 727         if (!hvd)
 728                 return NULL;
 729 
 730         hvd->len = len;
 731         hvd->residue = len;
 732         hvd->src = src;
 733         hvd->dest = dest;
 734 
 735         return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
 736 }
 737 
 738 static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
 739 {
 740         struct virt_dma_chan *vc = to_virt_chan(c);
 741         unsigned long flags;
 742         LIST_HEAD(head);
 743 
 744         spin_lock_irqsave(&vc->lock, flags);
 745         list_splice_tail_init(&vc->desc_allocated, &head);
 746         list_splice_tail_init(&vc->desc_submitted, &head);
 747         list_splice_tail_init(&vc->desc_issued, &head);
 748         spin_unlock_irqrestore(&vc->lock, flags);
 749 
 750         /* At the point, we don't expect users put descriptor into VC again */
 751         vchan_dma_desc_free_list(vc, &head);
 752 
 753         return 0;
 754 }
 755 
 756 static void mtk_hsdma_free_active_desc(struct dma_chan *c)
 757 {
 758         struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 759         bool sync_needed = false;
 760 
 761         /*
 762          * Once issue_synchronize is being set, which means once the hardware
 763          * consumes all descriptors for the channel in the ring, the
 764          * synchronization must be be notified immediately it is completed.
 765          */
 766         spin_lock(&hvc->vc.lock);
 767         if (!list_empty(&hvc->desc_hw_processing)) {
 768                 hvc->issue_synchronize = true;
 769                 sync_needed = true;
 770         }
 771         spin_unlock(&hvc->vc.lock);
 772 
 773         if (sync_needed)
 774                 wait_for_completion(&hvc->issue_completion);
 775         /*
 776          * At the point, we expect that all remaining descriptors in the ring
 777          * for the channel should be all processing done.
 778          */
 779         WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
 780                   "Desc pending still in list desc_hw_processing\n");
 781 
 782         /* Free all descriptors in list desc_completed */
 783         vchan_synchronize(&hvc->vc);
 784 
 785         WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
 786                   "Desc pending still in list desc_completed\n");
 787 }
 788 
 789 static int mtk_hsdma_terminate_all(struct dma_chan *c)
 790 {
 791         /*
 792          * Free pending descriptors not processed yet by hardware that have
 793          * previously been submitted to the channel.
 794          */
 795         mtk_hsdma_free_inactive_desc(c);
 796 
 797         /*
 798          * However, the DMA engine doesn't provide any way to stop these
 799          * descriptors being processed currently by hardware. The only way is
 800          * to just waiting until these descriptors are all processed completely
 801          * through mtk_hsdma_free_active_desc call.
 802          */
 803         mtk_hsdma_free_active_desc(c);
 804 
 805         return 0;
 806 }
 807 
 808 static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
 809 {
 810         struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 811         int err;
 812 
 813         /*
 814          * Since HSDMA has only one PC, the resource for PC is being allocated
 815          * when the first VC is being created and the other VCs would run on
 816          * the same PC.
 817          */
 818         if (!refcount_read(&hsdma->pc_refcnt)) {
 819                 err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
 820                 if (err)
 821                         return err;
 822                 /*
 823                  * refcount_inc would complain increment on 0; use-after-free.
 824                  * Thus, we need to explicitly set it as 1 initially.
 825                  */
 826                 refcount_set(&hsdma->pc_refcnt, 1);
 827         } else {
 828                 refcount_inc(&hsdma->pc_refcnt);
 829         }
 830 
 831         return 0;
 832 }
 833 
 834 static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
 835 {
 836         struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 837 
 838         /* Free all descriptors in all lists on the VC */
 839         mtk_hsdma_terminate_all(c);
 840 
 841         /* The resource for PC is not freed until all the VCs are destroyed */
 842         if (!refcount_dec_and_test(&hsdma->pc_refcnt))
 843                 return;
 844 
 845         mtk_hsdma_free_pchan(hsdma, hsdma->pc);
 846 }
 847 
 848 static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
 849 {
 850         int err;
 851 
 852         pm_runtime_enable(hsdma2dev(hsdma));
 853         pm_runtime_get_sync(hsdma2dev(hsdma));
 854 
 855         err = clk_prepare_enable(hsdma->clk);
 856         if (err)
 857                 return err;
 858 
 859         mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
 860         mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
 861 
 862         return 0;
 863 }
 864 
 865 static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
 866 {
 867         mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
 868 
 869         clk_disable_unprepare(hsdma->clk);
 870 
 871         pm_runtime_put_sync(hsdma2dev(hsdma));
 872         pm_runtime_disable(hsdma2dev(hsdma));
 873 
 874         return 0;
 875 }
 876 
 877 static const struct mtk_hsdma_soc mt7623_soc = {
 878         .ddone = BIT(31),
 879         .ls0 = BIT(30),
 880 };
 881 
 882 static const struct mtk_hsdma_soc mt7622_soc = {
 883         .ddone = BIT(15),
 884         .ls0 = BIT(14),
 885 };
 886 
 887 static const struct of_device_id mtk_hsdma_match[] = {
 888         { .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
 889         { .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
 890         { /* sentinel */ }
 891 };
 892 MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
 893 
 894 static int mtk_hsdma_probe(struct platform_device *pdev)
 895 {
 896         struct mtk_hsdma_device *hsdma;
 897         struct mtk_hsdma_vchan *vc;
 898         struct dma_device *dd;
 899         struct resource *res;
 900         int i, err;
 901 
 902         hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
 903         if (!hsdma)
 904                 return -ENOMEM;
 905 
 906         dd = &hsdma->ddev;
 907 
 908         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 909         hsdma->base = devm_ioremap_resource(&pdev->dev, res);
 910         if (IS_ERR(hsdma->base))
 911                 return PTR_ERR(hsdma->base);
 912 
 913         hsdma->soc = of_device_get_match_data(&pdev->dev);
 914         if (!hsdma->soc) {
 915                 dev_err(&pdev->dev, "No device match found\n");
 916                 return -ENODEV;
 917         }
 918 
 919         hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
 920         if (IS_ERR(hsdma->clk)) {
 921                 dev_err(&pdev->dev, "No clock for %s\n",
 922                         dev_name(&pdev->dev));
 923                 return PTR_ERR(hsdma->clk);
 924         }
 925 
 926         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
 927         if (!res) {
 928                 dev_err(&pdev->dev, "No irq resource for %s\n",
 929                         dev_name(&pdev->dev));
 930                 return -EINVAL;
 931         }
 932         hsdma->irq = res->start;
 933 
 934         refcount_set(&hsdma->pc_refcnt, 0);
 935         spin_lock_init(&hsdma->lock);
 936 
 937         dma_cap_set(DMA_MEMCPY, dd->cap_mask);
 938 
 939         dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
 940         dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
 941         dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
 942         dd->device_tx_status = mtk_hsdma_tx_status;
 943         dd->device_issue_pending = mtk_hsdma_issue_pending;
 944         dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
 945         dd->device_terminate_all = mtk_hsdma_terminate_all;
 946         dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 947         dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 948         dd->directions = BIT(DMA_MEM_TO_MEM);
 949         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
 950         dd->dev = &pdev->dev;
 951         INIT_LIST_HEAD(&dd->channels);
 952 
 953         hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
 954         if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
 955                                                       "dma-requests",
 956                                                       &hsdma->dma_requests)) {
 957                 dev_info(&pdev->dev,
 958                          "Using %u as missing dma-requests property\n",
 959                          MTK_HSDMA_NR_VCHANS);
 960         }
 961 
 962         hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
 963                                  sizeof(*hsdma->pc), GFP_KERNEL);
 964         if (!hsdma->pc)
 965                 return -ENOMEM;
 966 
 967         hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
 968                                  sizeof(*hsdma->vc), GFP_KERNEL);
 969         if (!hsdma->vc)
 970                 return -ENOMEM;
 971 
 972         for (i = 0; i < hsdma->dma_requests; i++) {
 973                 vc = &hsdma->vc[i];
 974                 vc->vc.desc_free = mtk_hsdma_vdesc_free;
 975                 vchan_init(&vc->vc, dd);
 976                 init_completion(&vc->issue_completion);
 977                 INIT_LIST_HEAD(&vc->desc_hw_processing);
 978         }
 979 
 980         err = dma_async_device_register(dd);
 981         if (err)
 982                 return err;
 983 
 984         err = of_dma_controller_register(pdev->dev.of_node,
 985                                          of_dma_xlate_by_chan_id, hsdma);
 986         if (err) {
 987                 dev_err(&pdev->dev,
 988                         "MediaTek HSDMA OF registration failed %d\n", err);
 989                 goto err_unregister;
 990         }
 991 
 992         mtk_hsdma_hw_init(hsdma);
 993 
 994         err = devm_request_irq(&pdev->dev, hsdma->irq,
 995                                mtk_hsdma_irq, 0,
 996                                dev_name(&pdev->dev), hsdma);
 997         if (err) {
 998                 dev_err(&pdev->dev,
 999                         "request_irq failed with err %d\n", err);
1000                 goto err_unregister;
1001         }
1002 
1003         platform_set_drvdata(pdev, hsdma);
1004 
1005         dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1006 
1007         return 0;
1008 
1009 err_unregister:
1010         dma_async_device_unregister(dd);
1011 
1012         return err;
1013 }
1014 
1015 static int mtk_hsdma_remove(struct platform_device *pdev)
1016 {
1017         struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1018         struct mtk_hsdma_vchan *vc;
1019         int i;
1020 
1021         /* Kill VC task */
1022         for (i = 0; i < hsdma->dma_requests; i++) {
1023                 vc = &hsdma->vc[i];
1024 
1025                 list_del(&vc->vc.chan.device_node);
1026                 tasklet_kill(&vc->vc.task);
1027         }
1028 
1029         /* Disable DMA interrupt */
1030         mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1031 
1032         /* Waits for any pending IRQ handlers to complete */
1033         synchronize_irq(hsdma->irq);
1034 
1035         /* Disable hardware */
1036         mtk_hsdma_hw_deinit(hsdma);
1037 
1038         dma_async_device_unregister(&hsdma->ddev);
1039         of_dma_controller_free(pdev->dev.of_node);
1040 
1041         return 0;
1042 }
1043 
1044 static struct platform_driver mtk_hsdma_driver = {
1045         .probe          = mtk_hsdma_probe,
1046         .remove         = mtk_hsdma_remove,
1047         .driver = {
1048                 .name           = KBUILD_MODNAME,
1049                 .of_match_table = mtk_hsdma_match,
1050         },
1051 };
1052 module_platform_driver(mtk_hsdma_driver);
1053 
1054 MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1055 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1056 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */