root/drivers/clocksource/timer-atmel-tcb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. tc_get_cycles
  2. tc_get_cycles32
  3. tc_clksrc_suspend
  4. tc_clksrc_resume
  5. tc_sched_clock_read
  6. tc_sched_clock_read32
  7. tc_delay_timer_read
  8. tc_delay_timer_read32
  9. to_tc_clkevt
  10. tc_shutdown
  11. tc_set_oneshot
  12. tc_set_periodic
  13. tc_next_event
  14. ch2_irq
  15. setup_clkevents
  16. setup_clkevents
  17. tcb_setup_dual_chan
  18. tcb_setup_single_chan
  19. tcb_clksrc_init

   1 // SPDX-License-Identifier: GPL-2.0
   2 #include <linux/init.h>
   3 #include <linux/clocksource.h>
   4 #include <linux/clockchips.h>
   5 #include <linux/interrupt.h>
   6 #include <linux/irq.h>
   7 
   8 #include <linux/clk.h>
   9 #include <linux/delay.h>
  10 #include <linux/err.h>
  11 #include <linux/ioport.h>
  12 #include <linux/io.h>
  13 #include <linux/of_address.h>
  14 #include <linux/of_irq.h>
  15 #include <linux/sched_clock.h>
  16 #include <linux/syscore_ops.h>
  17 #include <soc/at91/atmel_tcb.h>
  18 
  19 
  20 /*
  21  * We're configured to use a specific TC block, one that's not hooked
  22  * up to external hardware, to provide a time solution:
  23  *
  24  *   - Two channels combine to create a free-running 32 bit counter
  25  *     with a base rate of 5+ MHz, packaged as a clocksource (with
  26  *     resolution better than 200 nsec).
  27  *   - Some chips support 32 bit counter. A single channel is used for
  28  *     this 32 bit free-running counter. the second channel is not used.
  29  *
  30  *   - The third channel may be used to provide a 16-bit clockevent
  31  *     source, used in either periodic or oneshot mode.  This runs
  32  *     at 32 KiHZ, and can handle delays of up to two seconds.
  33  *
  34  * REVISIT behavior during system suspend states... we should disable
  35  * all clocks and save the power.  Easily done for clockevent devices,
  36  * but clocksources won't necessarily get the needed notifications.
  37  * For deeper system sleep states, this will be mandatory...
  38  */
  39 
  40 static void __iomem *tcaddr;
  41 static struct
  42 {
  43         u32 cmr;
  44         u32 imr;
  45         u32 rc;
  46         bool clken;
  47 } tcb_cache[3];
  48 static u32 bmr_cache;
  49 
  50 static u64 tc_get_cycles(struct clocksource *cs)
  51 {
  52         unsigned long   flags;
  53         u32             lower, upper;
  54 
  55         raw_local_irq_save(flags);
  56         do {
  57                 upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
  58                 lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
  59         } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
  60 
  61         raw_local_irq_restore(flags);
  62         return (upper << 16) | lower;
  63 }
  64 
  65 static u64 tc_get_cycles32(struct clocksource *cs)
  66 {
  67         return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
  68 }
  69 
  70 static void tc_clksrc_suspend(struct clocksource *cs)
  71 {
  72         int i;
  73 
  74         for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
  75                 tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
  76                 tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
  77                 tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
  78                 tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
  79                                         ATMEL_TC_CLKSTA);
  80         }
  81 
  82         bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
  83 }
  84 
  85 static void tc_clksrc_resume(struct clocksource *cs)
  86 {
  87         int i;
  88 
  89         for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
  90                 /* Restore registers for the channel, RA and RB are not used  */
  91                 writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
  92                 writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
  93                 writel(0, tcaddr + ATMEL_TC_REG(i, RA));
  94                 writel(0, tcaddr + ATMEL_TC_REG(i, RB));
  95                 /* Disable all the interrupts */
  96                 writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
  97                 /* Reenable interrupts that were enabled before suspending */
  98                 writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
  99                 /* Start the clock if it was used */
 100                 if (tcb_cache[i].clken)
 101                         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
 102         }
 103 
 104         /* Dual channel, chain channels */
 105         writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
 106         /* Finally, trigger all the channels*/
 107         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 108 }
 109 
 110 static struct clocksource clksrc = {
 111         .rating         = 200,
 112         .read           = tc_get_cycles,
 113         .mask           = CLOCKSOURCE_MASK(32),
 114         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 115         .suspend        = tc_clksrc_suspend,
 116         .resume         = tc_clksrc_resume,
 117 };
 118 
 119 static u64 notrace tc_sched_clock_read(void)
 120 {
 121         return tc_get_cycles(&clksrc);
 122 }
 123 
 124 static u64 notrace tc_sched_clock_read32(void)
 125 {
 126         return tc_get_cycles32(&clksrc);
 127 }
 128 
 129 static struct delay_timer tc_delay_timer;
 130 
 131 static unsigned long tc_delay_timer_read(void)
 132 {
 133         return tc_get_cycles(&clksrc);
 134 }
 135 
 136 static unsigned long notrace tc_delay_timer_read32(void)
 137 {
 138         return tc_get_cycles32(&clksrc);
 139 }
 140 
 141 #ifdef CONFIG_GENERIC_CLOCKEVENTS
 142 
 143 struct tc_clkevt_device {
 144         struct clock_event_device       clkevt;
 145         struct clk                      *clk;
 146         void __iomem                    *regs;
 147 };
 148 
 149 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
 150 {
 151         return container_of(clkevt, struct tc_clkevt_device, clkevt);
 152 }
 153 
 154 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
 155  * because using one of the divided clocks would usually mean the
 156  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
 157  *
 158  * A divided clock could be good for high resolution timers, since
 159  * 30.5 usec resolution can seem "low".
 160  */
 161 static u32 timer_clock;
 162 
 163 static int tc_shutdown(struct clock_event_device *d)
 164 {
 165         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 166         void __iomem            *regs = tcd->regs;
 167 
 168         writel(0xff, regs + ATMEL_TC_REG(2, IDR));
 169         writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
 170         if (!clockevent_state_detached(d))
 171                 clk_disable(tcd->clk);
 172 
 173         return 0;
 174 }
 175 
 176 static int tc_set_oneshot(struct clock_event_device *d)
 177 {
 178         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 179         void __iomem            *regs = tcd->regs;
 180 
 181         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
 182                 tc_shutdown(d);
 183 
 184         clk_enable(tcd->clk);
 185 
 186         /* slow clock, count up to RC, then irq and stop */
 187         writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
 188                      ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
 189         writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 190 
 191         /* set_next_event() configures and starts the timer */
 192         return 0;
 193 }
 194 
 195 static int tc_set_periodic(struct clock_event_device *d)
 196 {
 197         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 198         void __iomem            *regs = tcd->regs;
 199 
 200         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
 201                 tc_shutdown(d);
 202 
 203         /* By not making the gentime core emulate periodic mode on top
 204          * of oneshot, we get lower overhead and improved accuracy.
 205          */
 206         clk_enable(tcd->clk);
 207 
 208         /* slow clock, count up to RC, then irq and restart */
 209         writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
 210                      regs + ATMEL_TC_REG(2, CMR));
 211         writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
 212 
 213         /* Enable clock and interrupts on RC compare */
 214         writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 215 
 216         /* go go gadget! */
 217         writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
 218                      ATMEL_TC_REG(2, CCR));
 219         return 0;
 220 }
 221 
 222 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
 223 {
 224         writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
 225 
 226         /* go go gadget! */
 227         writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
 228                         tcaddr + ATMEL_TC_REG(2, CCR));
 229         return 0;
 230 }
 231 
 232 static struct tc_clkevt_device clkevt = {
 233         .clkevt = {
 234                 .features               = CLOCK_EVT_FEAT_PERIODIC |
 235                                           CLOCK_EVT_FEAT_ONESHOT,
 236                 /* Should be lower than at91rm9200's system timer */
 237                 .rating                 = 125,
 238                 .set_next_event         = tc_next_event,
 239                 .set_state_shutdown     = tc_shutdown,
 240                 .set_state_periodic     = tc_set_periodic,
 241                 .set_state_oneshot      = tc_set_oneshot,
 242         },
 243 };
 244 
 245 static irqreturn_t ch2_irq(int irq, void *handle)
 246 {
 247         struct tc_clkevt_device *dev = handle;
 248         unsigned int            sr;
 249 
 250         sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
 251         if (sr & ATMEL_TC_CPCS) {
 252                 dev->clkevt.event_handler(&dev->clkevt);
 253                 return IRQ_HANDLED;
 254         }
 255 
 256         return IRQ_NONE;
 257 }
 258 
 259 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 260 {
 261         int ret;
 262         struct clk *t2_clk = tc->clk[2];
 263         int irq = tc->irq[2];
 264 
 265         ret = clk_prepare_enable(tc->slow_clk);
 266         if (ret)
 267                 return ret;
 268 
 269         /* try to enable t2 clk to avoid future errors in mode change */
 270         ret = clk_prepare_enable(t2_clk);
 271         if (ret) {
 272                 clk_disable_unprepare(tc->slow_clk);
 273                 return ret;
 274         }
 275 
 276         clk_disable(t2_clk);
 277 
 278         clkevt.regs = tc->regs;
 279         clkevt.clk = t2_clk;
 280 
 281         timer_clock = clk32k_divisor_idx;
 282 
 283         clkevt.clkevt.cpumask = cpumask_of(0);
 284 
 285         ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
 286         if (ret) {
 287                 clk_unprepare(t2_clk);
 288                 clk_disable_unprepare(tc->slow_clk);
 289                 return ret;
 290         }
 291 
 292         clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
 293 
 294         return ret;
 295 }
 296 
 297 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
 298 
 299 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 300 {
 301         /* NOTHING */
 302         return 0;
 303 }
 304 
 305 #endif
 306 
 307 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
 308 {
 309         /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
 310         writel(mck_divisor_idx                  /* likely divide-by-8 */
 311                         | ATMEL_TC_WAVE
 312                         | ATMEL_TC_WAVESEL_UP           /* free-run */
 313                         | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
 314                         | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
 315                         tcaddr + ATMEL_TC_REG(0, CMR));
 316         writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
 317         writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
 318         writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
 319         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
 320 
 321         /* channel 1:  waveform mode, input TIOA0 */
 322         writel(ATMEL_TC_XC1                     /* input: TIOA0 */
 323                         | ATMEL_TC_WAVE
 324                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
 325                         tcaddr + ATMEL_TC_REG(1, CMR));
 326         writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));    /* no irqs */
 327         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
 328 
 329         /* chain channel 0 to channel 1*/
 330         writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
 331         /* then reset all the timers */
 332         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 333 }
 334 
 335 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
 336 {
 337         /* channel 0:  waveform mode, input mclk/8 */
 338         writel(mck_divisor_idx                  /* likely divide-by-8 */
 339                         | ATMEL_TC_WAVE
 340                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
 341                         tcaddr + ATMEL_TC_REG(0, CMR));
 342         writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
 343         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
 344 
 345         /* then reset all the timers */
 346         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 347 }
 348 
 349 static const u8 atmel_tcb_divisors[5] = { 2, 8, 32, 128, 0, };
 350 
 351 static const struct of_device_id atmel_tcb_of_match[] = {
 352         { .compatible = "atmel,at91rm9200-tcb", .data = (void *)16, },
 353         { .compatible = "atmel,at91sam9x5-tcb", .data = (void *)32, },
 354         { /* sentinel */ }
 355 };
 356 
 357 static int __init tcb_clksrc_init(struct device_node *node)
 358 {
 359         struct atmel_tc tc;
 360         struct clk *t0_clk;
 361         const struct of_device_id *match;
 362         u64 (*tc_sched_clock)(void);
 363         u32 rate, divided_rate = 0;
 364         int best_divisor_idx = -1;
 365         int clk32k_divisor_idx = -1;
 366         int bits;
 367         int i;
 368         int ret;
 369 
 370         /* Protect against multiple calls */
 371         if (tcaddr)
 372                 return 0;
 373 
 374         tc.regs = of_iomap(node->parent, 0);
 375         if (!tc.regs)
 376                 return -ENXIO;
 377 
 378         t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
 379         if (IS_ERR(t0_clk))
 380                 return PTR_ERR(t0_clk);
 381 
 382         tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
 383         if (IS_ERR(tc.slow_clk))
 384                 return PTR_ERR(tc.slow_clk);
 385 
 386         tc.clk[0] = t0_clk;
 387         tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
 388         if (IS_ERR(tc.clk[1]))
 389                 tc.clk[1] = t0_clk;
 390         tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
 391         if (IS_ERR(tc.clk[2]))
 392                 tc.clk[2] = t0_clk;
 393 
 394         tc.irq[2] = of_irq_get(node->parent, 2);
 395         if (tc.irq[2] <= 0) {
 396                 tc.irq[2] = of_irq_get(node->parent, 0);
 397                 if (tc.irq[2] <= 0)
 398                         return -EINVAL;
 399         }
 400 
 401         match = of_match_node(atmel_tcb_of_match, node->parent);
 402         bits = (uintptr_t)match->data;
 403 
 404         for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
 405                 writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
 406 
 407         ret = clk_prepare_enable(t0_clk);
 408         if (ret) {
 409                 pr_debug("can't enable T0 clk\n");
 410                 return ret;
 411         }
 412 
 413         /* How fast will we be counting?  Pick something over 5 MHz.  */
 414         rate = (u32) clk_get_rate(t0_clk);
 415         for (i = 0; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
 416                 unsigned divisor = atmel_tcb_divisors[i];
 417                 unsigned tmp;
 418 
 419                 /* remember 32 KiHz clock for later */
 420                 if (!divisor) {
 421                         clk32k_divisor_idx = i;
 422                         continue;
 423                 }
 424 
 425                 tmp = rate / divisor;
 426                 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
 427                 if (best_divisor_idx > 0) {
 428                         if (tmp < 5 * 1000 * 1000)
 429                                 continue;
 430                 }
 431                 divided_rate = tmp;
 432                 best_divisor_idx = i;
 433         }
 434 
 435         clksrc.name = kbasename(node->parent->full_name);
 436         clkevt.clkevt.name = kbasename(node->parent->full_name);
 437         pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
 438                         ((divided_rate % 1000000) + 500) / 1000);
 439 
 440         tcaddr = tc.regs;
 441 
 442         if (bits == 32) {
 443                 /* use apropriate function to read 32 bit counter */
 444                 clksrc.read = tc_get_cycles32;
 445                 /* setup ony channel 0 */
 446                 tcb_setup_single_chan(&tc, best_divisor_idx);
 447                 tc_sched_clock = tc_sched_clock_read32;
 448                 tc_delay_timer.read_current_timer = tc_delay_timer_read32;
 449         } else {
 450                 /* we have three clocks no matter what the
 451                  * underlying platform supports.
 452                  */
 453                 ret = clk_prepare_enable(tc.clk[1]);
 454                 if (ret) {
 455                         pr_debug("can't enable T1 clk\n");
 456                         goto err_disable_t0;
 457                 }
 458                 /* setup both channel 0 & 1 */
 459                 tcb_setup_dual_chan(&tc, best_divisor_idx);
 460                 tc_sched_clock = tc_sched_clock_read;
 461                 tc_delay_timer.read_current_timer = tc_delay_timer_read;
 462         }
 463 
 464         /* and away we go! */
 465         ret = clocksource_register_hz(&clksrc, divided_rate);
 466         if (ret)
 467                 goto err_disable_t1;
 468 
 469         /* channel 2:  periodic and oneshot timer support */
 470         ret = setup_clkevents(&tc, clk32k_divisor_idx);
 471         if (ret)
 472                 goto err_unregister_clksrc;
 473 
 474         sched_clock_register(tc_sched_clock, 32, divided_rate);
 475 
 476         tc_delay_timer.freq = divided_rate;
 477         register_current_timer_delay(&tc_delay_timer);
 478 
 479         return 0;
 480 
 481 err_unregister_clksrc:
 482         clocksource_unregister(&clksrc);
 483 
 484 err_disable_t1:
 485         if (bits != 32)
 486                 clk_disable_unprepare(tc.clk[1]);
 487 
 488 err_disable_t0:
 489         clk_disable_unprepare(t0_clk);
 490 
 491         tcaddr = NULL;
 492 
 493         return ret;
 494 }
 495 TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);

/* [<][>][^][v][top][bottom][index][help] */