root/drivers/usb/storage/transport.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. usb_stor_blocking_completion
  2. usb_stor_msg_common
  3. usb_stor_control_msg
  4. usb_stor_clear_halt
  5. interpret_urb_result
  6. usb_stor_ctrl_transfer
  7. usb_stor_intr_transfer
  8. usb_stor_bulk_transfer_buf
  9. usb_stor_bulk_transfer_sglist
  10. usb_stor_bulk_srb
  11. usb_stor_bulk_transfer_sg
  12. last_sector_hacks
  13. usb_stor_invoke_transport
  14. usb_stor_stop_transport
  15. usb_stor_CB_transport
  16. usb_stor_Bulk_max_lun
  17. usb_stor_Bulk_transport
  18. usb_stor_reset_common
  19. usb_stor_CB_reset
  20. usb_stor_Bulk_reset
  21. usb_stor_port_reset

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Driver for USB Mass Storage compliant devices
   4  *
   5  * Current development and maintenance by:
   6  *   (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
   7  *
   8  * Developed with the assistance of:
   9  *   (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
  10  *   (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
  11  *   (c) 2002 Alan Stern <stern@rowland.org>
  12  *
  13  * Initial work by:
  14  *   (c) 1999 Michael Gee (michael@linuxspecific.com)
  15  *
  16  * This driver is based on the 'USB Mass Storage Class' document. This
  17  * describes in detail the protocol used to communicate with such
  18  * devices.  Clearly, the designers had SCSI and ATAPI commands in
  19  * mind when they created this document.  The commands are all very
  20  * similar to commands in the SCSI-II and ATAPI specifications.
  21  *
  22  * It is important to note that in a number of cases this class
  23  * exhibits class-specific exemptions from the USB specification.
  24  * Notably the usage of NAK, STALL and ACK differs from the norm, in
  25  * that they are used to communicate wait, failed and OK on commands.
  26  *
  27  * Also, for certain devices, the interrupt endpoint is used to convey
  28  * status of a command.
  29  */
  30 
  31 #include <linux/sched.h>
  32 #include <linux/gfp.h>
  33 #include <linux/errno.h>
  34 #include <linux/export.h>
  35 
  36 #include <linux/usb/quirks.h>
  37 
  38 #include <scsi/scsi.h>
  39 #include <scsi/scsi_eh.h>
  40 #include <scsi/scsi_device.h>
  41 
  42 #include "usb.h"
  43 #include "transport.h"
  44 #include "protocol.h"
  45 #include "scsiglue.h"
  46 #include "debug.h"
  47 
  48 #include <linux/blkdev.h>
  49 #include "../../scsi/sd.h"
  50 
  51 
  52 /***********************************************************************
  53  * Data transfer routines
  54  ***********************************************************************/
  55 
  56 /*
  57  * This is subtle, so pay attention:
  58  * ---------------------------------
  59  * We're very concerned about races with a command abort.  Hanging this code
  60  * is a sure fire way to hang the kernel.  (Note that this discussion applies
  61  * only to transactions resulting from a scsi queued-command, since only
  62  * these transactions are subject to a scsi abort.  Other transactions, such
  63  * as those occurring during device-specific initialization, must be handled
  64  * by a separate code path.)
  65  *
  66  * The abort function (usb_storage_command_abort() in scsiglue.c) first
  67  * sets the machine state and the ABORTING bit in us->dflags to prevent
  68  * new URBs from being submitted.  It then calls usb_stor_stop_transport()
  69  * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
  70  * to see if the current_urb needs to be stopped.  Likewise, the SG_ACTIVE
  71  * bit is tested to see if the current_sg scatter-gather request needs to be
  72  * stopped.  The timeout callback routine does much the same thing.
  73  *
  74  * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
  75  * prevent new URBs from being submitted, and usb_stor_stop_transport() is
  76  * called to stop any ongoing requests.
  77  *
  78  * The submit function first verifies that the submitting is allowed
  79  * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
  80  * completes without errors, and only then sets the URB_ACTIVE bit.  This
  81  * prevents the stop_transport() function from trying to cancel the URB
  82  * while the submit call is underway.  Next, the submit function must test
  83  * the flags to see if an abort or disconnect occurred during the submission
  84  * or before the URB_ACTIVE bit was set.  If so, it's essential to cancel
  85  * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
  86  * is still set).  Either way, the function must then wait for the URB to
  87  * finish.  Note that the URB can still be in progress even after a call to
  88  * usb_unlink_urb() returns.
  89  *
  90  * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
  91  * either the stop_transport() function or the submitting function
  92  * is guaranteed to call usb_unlink_urb() for an active URB,
  93  * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
  94  * called more than once or from being called during usb_submit_urb().
  95  */
  96 
  97 /*
  98  * This is the completion handler which will wake us up when an URB
  99  * completes.
 100  */
 101 static void usb_stor_blocking_completion(struct urb *urb)
 102 {
 103         struct completion *urb_done_ptr = urb->context;
 104 
 105         complete(urb_done_ptr);
 106 }
 107 
 108 /*
 109  * This is the common part of the URB message submission code
 110  *
 111  * All URBs from the usb-storage driver involved in handling a queued scsi
 112  * command _must_ pass through this function (or something like it) for the
 113  * abort mechanisms to work properly.
 114  */
 115 static int usb_stor_msg_common(struct us_data *us, int timeout)
 116 {
 117         struct completion urb_done;
 118         long timeleft;
 119         int status;
 120 
 121         /* don't submit URBs during abort processing */
 122         if (test_bit(US_FLIDX_ABORTING, &us->dflags))
 123                 return -EIO;
 124 
 125         /* set up data structures for the wakeup system */
 126         init_completion(&urb_done);
 127 
 128         /* fill the common fields in the URB */
 129         us->current_urb->context = &urb_done;
 130         us->current_urb->transfer_flags = 0;
 131 
 132         /*
 133          * we assume that if transfer_buffer isn't us->iobuf then it
 134          * hasn't been mapped for DMA.  Yes, this is clunky, but it's
 135          * easier than always having the caller tell us whether the
 136          * transfer buffer has already been mapped.
 137          */
 138         if (us->current_urb->transfer_buffer == us->iobuf)
 139                 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 140         us->current_urb->transfer_dma = us->iobuf_dma;
 141 
 142         /* submit the URB */
 143         status = usb_submit_urb(us->current_urb, GFP_NOIO);
 144         if (status) {
 145                 /* something went wrong */
 146                 return status;
 147         }
 148 
 149         /*
 150          * since the URB has been submitted successfully, it's now okay
 151          * to cancel it
 152          */
 153         set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
 154 
 155         /* did an abort occur during the submission? */
 156         if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
 157 
 158                 /* cancel the URB, if it hasn't been cancelled already */
 159                 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
 160                         usb_stor_dbg(us, "-- cancelling URB\n");
 161                         usb_unlink_urb(us->current_urb);
 162                 }
 163         }
 164  
 165         /* wait for the completion of the URB */
 166         timeleft = wait_for_completion_interruptible_timeout(
 167                         &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
 168  
 169         clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
 170 
 171         if (timeleft <= 0) {
 172                 usb_stor_dbg(us, "%s -- cancelling URB\n",
 173                              timeleft == 0 ? "Timeout" : "Signal");
 174                 usb_kill_urb(us->current_urb);
 175         }
 176 
 177         /* return the URB status */
 178         return us->current_urb->status;
 179 }
 180 
 181 /*
 182  * Transfer one control message, with timeouts, and allowing early
 183  * termination.  Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
 184  */
 185 int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
 186                  u8 request, u8 requesttype, u16 value, u16 index, 
 187                  void *data, u16 size, int timeout)
 188 {
 189         int status;
 190 
 191         usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
 192                      request, requesttype, value, index, size);
 193 
 194         /* fill in the devrequest structure */
 195         us->cr->bRequestType = requesttype;
 196         us->cr->bRequest = request;
 197         us->cr->wValue = cpu_to_le16(value);
 198         us->cr->wIndex = cpu_to_le16(index);
 199         us->cr->wLength = cpu_to_le16(size);
 200 
 201         /* fill and submit the URB */
 202         usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 
 203                          (unsigned char*) us->cr, data, size, 
 204                          usb_stor_blocking_completion, NULL);
 205         status = usb_stor_msg_common(us, timeout);
 206 
 207         /* return the actual length of the data transferred if no error */
 208         if (status == 0)
 209                 status = us->current_urb->actual_length;
 210         return status;
 211 }
 212 EXPORT_SYMBOL_GPL(usb_stor_control_msg);
 213 
 214 /*
 215  * This is a version of usb_clear_halt() that allows early termination and
 216  * doesn't read the status from the device -- this is because some devices
 217  * crash their internal firmware when the status is requested after a halt.
 218  *
 219  * A definitive list of these 'bad' devices is too difficult to maintain or
 220  * make complete enough to be useful.  This problem was first observed on the
 221  * Hagiwara FlashGate DUAL unit.  However, bus traces reveal that neither
 222  * MacOS nor Windows checks the status after clearing a halt.
 223  *
 224  * Since many vendors in this space limit their testing to interoperability
 225  * with these two OSes, specification violations like this one are common.
 226  */
 227 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
 228 {
 229         int result;
 230         int endp = usb_pipeendpoint(pipe);
 231 
 232         if (usb_pipein (pipe))
 233                 endp |= USB_DIR_IN;
 234 
 235         result = usb_stor_control_msg(us, us->send_ctrl_pipe,
 236                 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
 237                 USB_ENDPOINT_HALT, endp,
 238                 NULL, 0, 3*HZ);
 239 
 240         if (result >= 0)
 241                 usb_reset_endpoint(us->pusb_dev, endp);
 242 
 243         usb_stor_dbg(us, "result = %d\n", result);
 244         return result;
 245 }
 246 EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
 247 
 248 
 249 /*
 250  * Interpret the results of a URB transfer
 251  *
 252  * This function prints appropriate debugging messages, clears halts on
 253  * non-control endpoints, and translates the status to the corresponding
 254  * USB_STOR_XFER_xxx return code.
 255  */
 256 static int interpret_urb_result(struct us_data *us, unsigned int pipe,
 257                 unsigned int length, int result, unsigned int partial)
 258 {
 259         usb_stor_dbg(us, "Status code %d; transferred %u/%u\n",
 260                      result, partial, length);
 261         switch (result) {
 262 
 263         /* no error code; did we send all the data? */
 264         case 0:
 265                 if (partial != length) {
 266                         usb_stor_dbg(us, "-- short transfer\n");
 267                         return USB_STOR_XFER_SHORT;
 268                 }
 269 
 270                 usb_stor_dbg(us, "-- transfer complete\n");
 271                 return USB_STOR_XFER_GOOD;
 272 
 273         /* stalled */
 274         case -EPIPE:
 275                 /*
 276                  * for control endpoints, (used by CB[I]) a stall indicates
 277                  * a failed command
 278                  */
 279                 if (usb_pipecontrol(pipe)) {
 280                         usb_stor_dbg(us, "-- stall on control pipe\n");
 281                         return USB_STOR_XFER_STALLED;
 282                 }
 283 
 284                 /* for other sorts of endpoint, clear the stall */
 285                 usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n",
 286                              pipe);
 287                 if (usb_stor_clear_halt(us, pipe) < 0)
 288                         return USB_STOR_XFER_ERROR;
 289                 return USB_STOR_XFER_STALLED;
 290 
 291         /* babble - the device tried to send more than we wanted to read */
 292         case -EOVERFLOW:
 293                 usb_stor_dbg(us, "-- babble\n");
 294                 return USB_STOR_XFER_LONG;
 295 
 296         /* the transfer was cancelled by abort, disconnect, or timeout */
 297         case -ECONNRESET:
 298                 usb_stor_dbg(us, "-- transfer cancelled\n");
 299                 return USB_STOR_XFER_ERROR;
 300 
 301         /* short scatter-gather read transfer */
 302         case -EREMOTEIO:
 303                 usb_stor_dbg(us, "-- short read transfer\n");
 304                 return USB_STOR_XFER_SHORT;
 305 
 306         /* abort or disconnect in progress */
 307         case -EIO:
 308                 usb_stor_dbg(us, "-- abort or disconnect in progress\n");
 309                 return USB_STOR_XFER_ERROR;
 310 
 311         /* the catch-all error case */
 312         default:
 313                 usb_stor_dbg(us, "-- unknown error\n");
 314                 return USB_STOR_XFER_ERROR;
 315         }
 316 }
 317 
 318 /*
 319  * Transfer one control message, without timeouts, but allowing early
 320  * termination.  Return codes are USB_STOR_XFER_xxx.
 321  */
 322 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
 323                 u8 request, u8 requesttype, u16 value, u16 index,
 324                 void *data, u16 size)
 325 {
 326         int result;
 327 
 328         usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
 329                      request, requesttype, value, index, size);
 330 
 331         /* fill in the devrequest structure */
 332         us->cr->bRequestType = requesttype;
 333         us->cr->bRequest = request;
 334         us->cr->wValue = cpu_to_le16(value);
 335         us->cr->wIndex = cpu_to_le16(index);
 336         us->cr->wLength = cpu_to_le16(size);
 337 
 338         /* fill and submit the URB */
 339         usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 
 340                          (unsigned char*) us->cr, data, size, 
 341                          usb_stor_blocking_completion, NULL);
 342         result = usb_stor_msg_common(us, 0);
 343 
 344         return interpret_urb_result(us, pipe, size, result,
 345                         us->current_urb->actual_length);
 346 }
 347 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
 348 
 349 /*
 350  * Receive one interrupt buffer, without timeouts, but allowing early
 351  * termination.  Return codes are USB_STOR_XFER_xxx.
 352  *
 353  * This routine always uses us->recv_intr_pipe as the pipe and
 354  * us->ep_bInterval as the interrupt interval.
 355  */
 356 static int usb_stor_intr_transfer(struct us_data *us, void *buf,
 357                                   unsigned int length)
 358 {
 359         int result;
 360         unsigned int pipe = us->recv_intr_pipe;
 361         unsigned int maxp;
 362 
 363         usb_stor_dbg(us, "xfer %u bytes\n", length);
 364 
 365         /* calculate the max packet size */
 366         maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
 367         if (maxp > length)
 368                 maxp = length;
 369 
 370         /* fill and submit the URB */
 371         usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
 372                         maxp, usb_stor_blocking_completion, NULL,
 373                         us->ep_bInterval);
 374         result = usb_stor_msg_common(us, 0);
 375 
 376         return interpret_urb_result(us, pipe, length, result,
 377                         us->current_urb->actual_length);
 378 }
 379 
 380 /*
 381  * Transfer one buffer via bulk pipe, without timeouts, but allowing early
 382  * termination.  Return codes are USB_STOR_XFER_xxx.  If the bulk pipe
 383  * stalls during the transfer, the halt is automatically cleared.
 384  */
 385 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
 386         void *buf, unsigned int length, unsigned int *act_len)
 387 {
 388         int result;
 389 
 390         usb_stor_dbg(us, "xfer %u bytes\n", length);
 391 
 392         /* fill and submit the URB */
 393         usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
 394                       usb_stor_blocking_completion, NULL);
 395         result = usb_stor_msg_common(us, 0);
 396 
 397         /* store the actual length of the data transferred */
 398         if (act_len)
 399                 *act_len = us->current_urb->actual_length;
 400         return interpret_urb_result(us, pipe, length, result, 
 401                         us->current_urb->actual_length);
 402 }
 403 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
 404 
 405 /*
 406  * Transfer a scatter-gather list via bulk transfer
 407  *
 408  * This function does basically the same thing as usb_stor_bulk_transfer_buf()
 409  * above, but it uses the usbcore scatter-gather library.
 410  */
 411 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
 412                 struct scatterlist *sg, int num_sg, unsigned int length,
 413                 unsigned int *act_len)
 414 {
 415         int result;
 416 
 417         /* don't submit s-g requests during abort processing */
 418         if (test_bit(US_FLIDX_ABORTING, &us->dflags))
 419                 return USB_STOR_XFER_ERROR;
 420 
 421         /* initialize the scatter-gather request block */
 422         usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg);
 423         result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
 424                         sg, num_sg, length, GFP_NOIO);
 425         if (result) {
 426                 usb_stor_dbg(us, "usb_sg_init returned %d\n", result);
 427                 return USB_STOR_XFER_ERROR;
 428         }
 429 
 430         /*
 431          * since the block has been initialized successfully, it's now
 432          * okay to cancel it
 433          */
 434         set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
 435 
 436         /* did an abort occur during the submission? */
 437         if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
 438 
 439                 /* cancel the request, if it hasn't been cancelled already */
 440                 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
 441                         usb_stor_dbg(us, "-- cancelling sg request\n");
 442                         usb_sg_cancel(&us->current_sg);
 443                 }
 444         }
 445 
 446         /* wait for the completion of the transfer */
 447         usb_sg_wait(&us->current_sg);
 448         clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
 449 
 450         result = us->current_sg.status;
 451         if (act_len)
 452                 *act_len = us->current_sg.bytes;
 453         return interpret_urb_result(us, pipe, length, result,
 454                         us->current_sg.bytes);
 455 }
 456 
 457 /*
 458  * Common used function. Transfer a complete command
 459  * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
 460  */
 461 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
 462                       struct scsi_cmnd* srb)
 463 {
 464         unsigned int partial;
 465         int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
 466                                       scsi_sg_count(srb), scsi_bufflen(srb),
 467                                       &partial);
 468 
 469         scsi_set_resid(srb, scsi_bufflen(srb) - partial);
 470         return result;
 471 }
 472 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
 473 
 474 /*
 475  * Transfer an entire SCSI command's worth of data payload over the bulk
 476  * pipe.
 477  *
 478  * Note that this uses usb_stor_bulk_transfer_buf() and
 479  * usb_stor_bulk_transfer_sglist() to achieve its goals --
 480  * this function simply determines whether we're going to use
 481  * scatter-gather or not, and acts appropriately.
 482  */
 483 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
 484                 void *buf, unsigned int length_left, int use_sg, int *residual)
 485 {
 486         int result;
 487         unsigned int partial;
 488 
 489         /* are we scatter-gathering? */
 490         if (use_sg) {
 491                 /* use the usb core scatter-gather primitives */
 492                 result = usb_stor_bulk_transfer_sglist(us, pipe,
 493                                 (struct scatterlist *) buf, use_sg,
 494                                 length_left, &partial);
 495                 length_left -= partial;
 496         } else {
 497                 /* no scatter-gather, just make the request */
 498                 result = usb_stor_bulk_transfer_buf(us, pipe, buf, 
 499                                 length_left, &partial);
 500                 length_left -= partial;
 501         }
 502 
 503         /* store the residual and return the error code */
 504         if (residual)
 505                 *residual = length_left;
 506         return result;
 507 }
 508 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
 509 
 510 /***********************************************************************
 511  * Transport routines
 512  ***********************************************************************/
 513 
 514 /*
 515  * There are so many devices that report the capacity incorrectly,
 516  * this routine was written to counteract some of the resulting
 517  * problems.
 518  */
 519 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
 520 {
 521         struct gendisk *disk;
 522         struct scsi_disk *sdkp;
 523         u32 sector;
 524 
 525         /* To Report "Medium Error: Record Not Found */
 526         static unsigned char record_not_found[18] = {
 527                 [0]     = 0x70,                 /* current error */
 528                 [2]     = MEDIUM_ERROR,         /* = 0x03 */
 529                 [7]     = 0x0a,                 /* additional length */
 530                 [12]    = 0x14                  /* Record Not Found */
 531         };
 532 
 533         /*
 534          * If last-sector problems can't occur, whether because the
 535          * capacity was already decremented or because the device is
 536          * known to report the correct capacity, then we don't need
 537          * to do anything.
 538          */
 539         if (!us->use_last_sector_hacks)
 540                 return;
 541 
 542         /* Was this command a READ(10) or a WRITE(10)? */
 543         if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
 544                 goto done;
 545 
 546         /* Did this command access the last sector? */
 547         sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
 548                         (srb->cmnd[4] << 8) | (srb->cmnd[5]);
 549         disk = srb->request->rq_disk;
 550         if (!disk)
 551                 goto done;
 552         sdkp = scsi_disk(disk);
 553         if (!sdkp)
 554                 goto done;
 555         if (sector + 1 != sdkp->capacity)
 556                 goto done;
 557 
 558         if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
 559 
 560                 /*
 561                  * The command succeeded.  We know this device doesn't
 562                  * have the last-sector bug, so stop checking it.
 563                  */
 564                 us->use_last_sector_hacks = 0;
 565 
 566         } else {
 567                 /*
 568                  * The command failed.  Allow up to 3 retries in case this
 569                  * is some normal sort of failure.  After that, assume the
 570                  * capacity is wrong and we're trying to access the sector
 571                  * beyond the end.  Replace the result code and sense data
 572                  * with values that will cause the SCSI core to fail the
 573                  * command immediately, instead of going into an infinite
 574                  * (or even just a very long) retry loop.
 575                  */
 576                 if (++us->last_sector_retries < 3)
 577                         return;
 578                 srb->result = SAM_STAT_CHECK_CONDITION;
 579                 memcpy(srb->sense_buffer, record_not_found,
 580                                 sizeof(record_not_found));
 581         }
 582 
 583  done:
 584         /*
 585          * Don't reset the retry counter for TEST UNIT READY commands,
 586          * because they get issued after device resets which might be
 587          * caused by a failed last-sector access.
 588          */
 589         if (srb->cmnd[0] != TEST_UNIT_READY)
 590                 us->last_sector_retries = 0;
 591 }
 592 
 593 /*
 594  * Invoke the transport and basic error-handling/recovery methods
 595  *
 596  * This is used by the protocol layers to actually send the message to
 597  * the device and receive the response.
 598  */
 599 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
 600 {
 601         int need_auto_sense;
 602         int result;
 603 
 604         /* send the command to the transport layer */
 605         scsi_set_resid(srb, 0);
 606         result = us->transport(srb, us);
 607 
 608         /*
 609          * if the command gets aborted by the higher layers, we need to
 610          * short-circuit all other processing
 611          */
 612         if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
 613                 usb_stor_dbg(us, "-- command was aborted\n");
 614                 srb->result = DID_ABORT << 16;
 615                 goto Handle_Errors;
 616         }
 617 
 618         /* if there is a transport error, reset and don't auto-sense */
 619         if (result == USB_STOR_TRANSPORT_ERROR) {
 620                 usb_stor_dbg(us, "-- transport indicates error, resetting\n");
 621                 srb->result = DID_ERROR << 16;
 622                 goto Handle_Errors;
 623         }
 624 
 625         /* if the transport provided its own sense data, don't auto-sense */
 626         if (result == USB_STOR_TRANSPORT_NO_SENSE) {
 627                 srb->result = SAM_STAT_CHECK_CONDITION;
 628                 last_sector_hacks(us, srb);
 629                 return;
 630         }
 631 
 632         srb->result = SAM_STAT_GOOD;
 633 
 634         /*
 635          * Determine if we need to auto-sense
 636          *
 637          * I normally don't use a flag like this, but it's almost impossible
 638          * to understand what's going on here if I don't.
 639          */
 640         need_auto_sense = 0;
 641 
 642         /*
 643          * If we're running the CB transport, which is incapable
 644          * of determining status on its own, we will auto-sense
 645          * unless the operation involved a data-in transfer.  Devices
 646          * can signal most data-in errors by stalling the bulk-in pipe.
 647          */
 648         if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) &&
 649                         srb->sc_data_direction != DMA_FROM_DEVICE) {
 650                 usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n");
 651                 need_auto_sense = 1;
 652         }
 653 
 654         /*
 655          * If we have a failure, we're going to do a REQUEST_SENSE 
 656          * automatically.  Note that we differentiate between a command
 657          * "failure" and an "error" in the transport mechanism.
 658          */
 659         if (result == USB_STOR_TRANSPORT_FAILED) {
 660                 usb_stor_dbg(us, "-- transport indicates command failure\n");
 661                 need_auto_sense = 1;
 662         }
 663 
 664         /*
 665          * Determine if this device is SAT by seeing if the
 666          * command executed successfully.  Otherwise we'll have
 667          * to wait for at least one CHECK_CONDITION to determine
 668          * SANE_SENSE support
 669          */
 670         if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
 671             result == USB_STOR_TRANSPORT_GOOD &&
 672             !(us->fflags & US_FL_SANE_SENSE) &&
 673             !(us->fflags & US_FL_BAD_SENSE) &&
 674             !(srb->cmnd[2] & 0x20))) {
 675                 usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n");
 676                 us->fflags |= US_FL_SANE_SENSE;
 677         }
 678 
 679         /*
 680          * A short transfer on a command where we don't expect it
 681          * is unusual, but it doesn't mean we need to auto-sense.
 682          */
 683         if ((scsi_get_resid(srb) > 0) &&
 684             !((srb->cmnd[0] == REQUEST_SENSE) ||
 685               (srb->cmnd[0] == INQUIRY) ||
 686               (srb->cmnd[0] == MODE_SENSE) ||
 687               (srb->cmnd[0] == LOG_SENSE) ||
 688               (srb->cmnd[0] == MODE_SENSE_10))) {
 689                 usb_stor_dbg(us, "-- unexpectedly short transfer\n");
 690         }
 691 
 692         /* Now, if we need to do the auto-sense, let's do it */
 693         if (need_auto_sense) {
 694                 int temp_result;
 695                 struct scsi_eh_save ses;
 696                 int sense_size = US_SENSE_SIZE;
 697                 struct scsi_sense_hdr sshdr;
 698                 const u8 *scdd;
 699                 u8 fm_ili;
 700 
 701                 /* device supports and needs bigger sense buffer */
 702                 if (us->fflags & US_FL_SANE_SENSE)
 703                         sense_size = ~0;
 704 Retry_Sense:
 705                 usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n");
 706 
 707                 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
 708 
 709                 /* FIXME: we must do the protocol translation here */
 710                 if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI ||
 711                                 us->subclass == USB_SC_CYP_ATACB)
 712                         srb->cmd_len = 6;
 713                 else
 714                         srb->cmd_len = 12;
 715 
 716                 /* issue the auto-sense command */
 717                 scsi_set_resid(srb, 0);
 718                 temp_result = us->transport(us->srb, us);
 719 
 720                 /* let's clean up right away */
 721                 scsi_eh_restore_cmnd(srb, &ses);
 722 
 723                 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
 724                         usb_stor_dbg(us, "-- auto-sense aborted\n");
 725                         srb->result = DID_ABORT << 16;
 726 
 727                         /* If SANE_SENSE caused this problem, disable it */
 728                         if (sense_size != US_SENSE_SIZE) {
 729                                 us->fflags &= ~US_FL_SANE_SENSE;
 730                                 us->fflags |= US_FL_BAD_SENSE;
 731                         }
 732                         goto Handle_Errors;
 733                 }
 734 
 735                 /*
 736                  * Some devices claim to support larger sense but fail when
 737                  * trying to request it. When a transport failure happens
 738                  * using US_FS_SANE_SENSE, we always retry with a standard
 739                  * (small) sense request. This fixes some USB GSM modems
 740                  */
 741                 if (temp_result == USB_STOR_TRANSPORT_FAILED &&
 742                                 sense_size != US_SENSE_SIZE) {
 743                         usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n");
 744                         sense_size = US_SENSE_SIZE;
 745                         us->fflags &= ~US_FL_SANE_SENSE;
 746                         us->fflags |= US_FL_BAD_SENSE;
 747                         goto Retry_Sense;
 748                 }
 749 
 750                 /* Other failures */
 751                 if (temp_result != USB_STOR_TRANSPORT_GOOD) {
 752                         usb_stor_dbg(us, "-- auto-sense failure\n");
 753 
 754                         /*
 755                          * we skip the reset if this happens to be a
 756                          * multi-target device, since failure of an
 757                          * auto-sense is perfectly valid
 758                          */
 759                         srb->result = DID_ERROR << 16;
 760                         if (!(us->fflags & US_FL_SCM_MULT_TARG))
 761                                 goto Handle_Errors;
 762                         return;
 763                 }
 764 
 765                 /*
 766                  * If the sense data returned is larger than 18-bytes then we
 767                  * assume this device supports requesting more in the future.
 768                  * The response code must be 70h through 73h inclusive.
 769                  */
 770                 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
 771                     !(us->fflags & US_FL_SANE_SENSE) &&
 772                     !(us->fflags & US_FL_BAD_SENSE) &&
 773                     (srb->sense_buffer[0] & 0x7C) == 0x70) {
 774                         usb_stor_dbg(us, "-- SANE_SENSE support enabled\n");
 775                         us->fflags |= US_FL_SANE_SENSE;
 776 
 777                         /*
 778                          * Indicate to the user that we truncated their sense
 779                          * because we didn't know it supported larger sense.
 780                          */
 781                         usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n",
 782                                      US_SENSE_SIZE,
 783                                      srb->sense_buffer[7] + 8);
 784                         srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
 785                 }
 786 
 787                 scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE,
 788                                      &sshdr);
 789 
 790                 usb_stor_dbg(us, "-- Result from auto-sense is %d\n",
 791                              temp_result);
 792                 usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
 793                              sshdr.response_code, sshdr.sense_key,
 794                              sshdr.asc, sshdr.ascq);
 795 #ifdef CONFIG_USB_STORAGE_DEBUG
 796                 usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq);
 797 #endif
 798 
 799                 /* set the result so the higher layers expect this data */
 800                 srb->result = SAM_STAT_CHECK_CONDITION;
 801 
 802                 scdd = scsi_sense_desc_find(srb->sense_buffer,
 803                                             SCSI_SENSE_BUFFERSIZE, 4);
 804                 fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0;
 805 
 806                 /*
 807                  * We often get empty sense data.  This could indicate that
 808                  * everything worked or that there was an unspecified
 809                  * problem.  We have to decide which.
 810                  */
 811                 if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 &&
 812                     fm_ili == 0) {
 813                         /*
 814                          * If things are really okay, then let's show that.
 815                          * Zero out the sense buffer so the higher layers
 816                          * won't realize we did an unsolicited auto-sense.
 817                          */
 818                         if (result == USB_STOR_TRANSPORT_GOOD) {
 819                                 srb->result = SAM_STAT_GOOD;
 820                                 srb->sense_buffer[0] = 0x0;
 821                         }
 822 
 823                         /*
 824                          * ATA-passthru commands use sense data to report
 825                          * the command completion status, and often devices
 826                          * return Check Condition status when nothing is
 827                          * wrong.
 828                          */
 829                         else if (srb->cmnd[0] == ATA_16 ||
 830                                         srb->cmnd[0] == ATA_12) {
 831                                 /* leave the data alone */
 832                         }
 833 
 834                         /*
 835                          * If there was a problem, report an unspecified
 836                          * hardware error to prevent the higher layers from
 837                          * entering an infinite retry loop.
 838                          */
 839                         else {
 840                                 srb->result = DID_ERROR << 16;
 841                                 if ((sshdr.response_code & 0x72) == 0x72)
 842                                         srb->sense_buffer[1] = HARDWARE_ERROR;
 843                                 else
 844                                         srb->sense_buffer[2] = HARDWARE_ERROR;
 845                         }
 846                 }
 847         }
 848 
 849         /*
 850          * Some devices don't work or return incorrect data the first
 851          * time they get a READ(10) command, or for the first READ(10)
 852          * after a media change.  If the INITIAL_READ10 flag is set,
 853          * keep track of whether READ(10) commands succeed.  If the
 854          * previous one succeeded and this one failed, set the REDO_READ10
 855          * flag to force a retry.
 856          */
 857         if (unlikely((us->fflags & US_FL_INITIAL_READ10) &&
 858                         srb->cmnd[0] == READ_10)) {
 859                 if (srb->result == SAM_STAT_GOOD) {
 860                         set_bit(US_FLIDX_READ10_WORKED, &us->dflags);
 861                 } else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) {
 862                         clear_bit(US_FLIDX_READ10_WORKED, &us->dflags);
 863                         set_bit(US_FLIDX_REDO_READ10, &us->dflags);
 864                 }
 865 
 866                 /*
 867                  * Next, if the REDO_READ10 flag is set, return a result
 868                  * code that will cause the SCSI core to retry the READ(10)
 869                  * command immediately.
 870                  */
 871                 if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) {
 872                         clear_bit(US_FLIDX_REDO_READ10, &us->dflags);
 873                         srb->result = DID_IMM_RETRY << 16;
 874                         srb->sense_buffer[0] = 0;
 875                 }
 876         }
 877 
 878         /* Did we transfer less than the minimum amount required? */
 879         if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
 880                         scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
 881                 srb->result = DID_ERROR << 16;
 882 
 883         last_sector_hacks(us, srb);
 884         return;
 885 
 886         /*
 887          * Error and abort processing: try to resynchronize with the device
 888          * by issuing a port reset.  If that fails, try a class-specific
 889          * device reset.
 890          */
 891   Handle_Errors:
 892 
 893         /*
 894          * Set the RESETTING bit, and clear the ABORTING bit so that
 895          * the reset may proceed.
 896          */
 897         scsi_lock(us_to_host(us));
 898         set_bit(US_FLIDX_RESETTING, &us->dflags);
 899         clear_bit(US_FLIDX_ABORTING, &us->dflags);
 900         scsi_unlock(us_to_host(us));
 901 
 902         /*
 903          * We must release the device lock because the pre_reset routine
 904          * will want to acquire it.
 905          */
 906         mutex_unlock(&us->dev_mutex);
 907         result = usb_stor_port_reset(us);
 908         mutex_lock(&us->dev_mutex);
 909 
 910         if (result < 0) {
 911                 scsi_lock(us_to_host(us));
 912                 usb_stor_report_device_reset(us);
 913                 scsi_unlock(us_to_host(us));
 914                 us->transport_reset(us);
 915         }
 916         clear_bit(US_FLIDX_RESETTING, &us->dflags);
 917         last_sector_hacks(us, srb);
 918 }
 919 
 920 /* Stop the current URB transfer */
 921 void usb_stor_stop_transport(struct us_data *us)
 922 {
 923         /*
 924          * If the state machine is blocked waiting for an URB,
 925          * let's wake it up.  The test_and_clear_bit() call
 926          * guarantees that if a URB has just been submitted,
 927          * it won't be cancelled more than once.
 928          */
 929         if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
 930                 usb_stor_dbg(us, "-- cancelling URB\n");
 931                 usb_unlink_urb(us->current_urb);
 932         }
 933 
 934         /* If we are waiting for a scatter-gather operation, cancel it. */
 935         if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
 936                 usb_stor_dbg(us, "-- cancelling sg request\n");
 937                 usb_sg_cancel(&us->current_sg);
 938         }
 939 }
 940 
 941 /*
 942  * Control/Bulk and Control/Bulk/Interrupt transport
 943  */
 944 
 945 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
 946 {
 947         unsigned int transfer_length = scsi_bufflen(srb);
 948         unsigned int pipe = 0;
 949         int result;
 950 
 951         /* COMMAND STAGE */
 952         /* let's send the command via the control pipe */
 953         /*
 954          * Command is sometime (f.e. after scsi_eh_prep_cmnd) on the stack.
 955          * Stack may be vmallocated.  So no DMA for us.  Make a copy.
 956          */
 957         memcpy(us->iobuf, srb->cmnd, srb->cmd_len);
 958         result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
 959                                       US_CBI_ADSC, 
 960                                       USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 
 961                                       us->ifnum, us->iobuf, srb->cmd_len);
 962 
 963         /* check the return code for the command */
 964         usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n",
 965                      result);
 966 
 967         /* if we stalled the command, it means command failed */
 968         if (result == USB_STOR_XFER_STALLED) {
 969                 return USB_STOR_TRANSPORT_FAILED;
 970         }
 971 
 972         /* Uh oh... serious problem here */
 973         if (result != USB_STOR_XFER_GOOD) {
 974                 return USB_STOR_TRANSPORT_ERROR;
 975         }
 976 
 977         /* DATA STAGE */
 978         /* transfer the data payload for this command, if one exists*/
 979         if (transfer_length) {
 980                 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 
 981                                 us->recv_bulk_pipe : us->send_bulk_pipe;
 982                 result = usb_stor_bulk_srb(us, pipe, srb);
 983                 usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result);
 984 
 985                 /* if we stalled the data transfer it means command failed */
 986                 if (result == USB_STOR_XFER_STALLED)
 987                         return USB_STOR_TRANSPORT_FAILED;
 988                 if (result > USB_STOR_XFER_STALLED)
 989                         return USB_STOR_TRANSPORT_ERROR;
 990         }
 991 
 992         /* STATUS STAGE */
 993 
 994         /*
 995          * NOTE: CB does not have a status stage.  Silly, I know.  So
 996          * we have to catch this at a higher level.
 997          */
 998         if (us->protocol != USB_PR_CBI)
 999                 return USB_STOR_TRANSPORT_GOOD;
1000 
1001         result = usb_stor_intr_transfer(us, us->iobuf, 2);
1002         usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n",
1003                      us->iobuf[0], us->iobuf[1]);
1004         if (result != USB_STOR_XFER_GOOD)
1005                 return USB_STOR_TRANSPORT_ERROR;
1006 
1007         /*
1008          * UFI gives us ASC and ASCQ, like a request sense
1009          *
1010          * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
1011          * devices, so we ignore the information for those commands.  Note
1012          * that this means we could be ignoring a real error on these
1013          * commands, but that can't be helped.
1014          */
1015         if (us->subclass == USB_SC_UFI) {
1016                 if (srb->cmnd[0] == REQUEST_SENSE ||
1017                     srb->cmnd[0] == INQUIRY)
1018                         return USB_STOR_TRANSPORT_GOOD;
1019                 if (us->iobuf[0])
1020                         goto Failed;
1021                 return USB_STOR_TRANSPORT_GOOD;
1022         }
1023 
1024         /*
1025          * If not UFI, we interpret the data as a result code 
1026          * The first byte should always be a 0x0.
1027          *
1028          * Some bogus devices don't follow that rule.  They stuff the ASC
1029          * into the first byte -- so if it's non-zero, call it a failure.
1030          */
1031         if (us->iobuf[0]) {
1032                 usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n",
1033                              us->iobuf[0]);
1034                 goto Failed;
1035 
1036         }
1037 
1038         /* The second byte & 0x0F should be 0x0 for good, otherwise error */
1039         switch (us->iobuf[1] & 0x0F) {
1040                 case 0x00: 
1041                         return USB_STOR_TRANSPORT_GOOD;
1042                 case 0x01: 
1043                         goto Failed;
1044         }
1045         return USB_STOR_TRANSPORT_ERROR;
1046 
1047         /*
1048          * the CBI spec requires that the bulk pipe must be cleared
1049          * following any data-in/out command failure (section 2.4.3.1.3)
1050          */
1051   Failed:
1052         if (pipe)
1053                 usb_stor_clear_halt(us, pipe);
1054         return USB_STOR_TRANSPORT_FAILED;
1055 }
1056 EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
1057 
1058 /*
1059  * Bulk only transport
1060  */
1061 
1062 /* Determine what the maximum LUN supported is */
1063 int usb_stor_Bulk_max_lun(struct us_data *us)
1064 {
1065         int result;
1066 
1067         /* issue the command */
1068         us->iobuf[0] = 0;
1069         result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
1070                                  US_BULK_GET_MAX_LUN, 
1071                                  USB_DIR_IN | USB_TYPE_CLASS | 
1072                                  USB_RECIP_INTERFACE,
1073                                  0, us->ifnum, us->iobuf, 1, 10*HZ);
1074 
1075         usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n",
1076                      result, us->iobuf[0]);
1077 
1078         /*
1079          * If we have a successful request, return the result if valid. The
1080          * CBW LUN field is 4 bits wide, so the value reported by the device
1081          * should fit into that.
1082          */
1083         if (result > 0) {
1084                 if (us->iobuf[0] < 16) {
1085                         return us->iobuf[0];
1086                 } else {
1087                         dev_info(&us->pusb_intf->dev,
1088                                  "Max LUN %d is not valid, using 0 instead",
1089                                  us->iobuf[0]);
1090                 }
1091         }
1092 
1093         /*
1094          * Some devices don't like GetMaxLUN.  They may STALL the control
1095          * pipe, they may return a zero-length result, they may do nothing at
1096          * all and timeout, or they may fail in even more bizarrely creative
1097          * ways.  In these cases the best approach is to use the default
1098          * value: only one LUN.
1099          */
1100         return 0;
1101 }
1102 
1103 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
1104 {
1105         struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
1106         struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
1107         unsigned int transfer_length = scsi_bufflen(srb);
1108         unsigned int residue;
1109         int result;
1110         int fake_sense = 0;
1111         unsigned int cswlen;
1112         unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
1113 
1114         /* Take care of BULK32 devices; set extra byte to 0 */
1115         if (unlikely(us->fflags & US_FL_BULK32)) {
1116                 cbwlen = 32;
1117                 us->iobuf[31] = 0;
1118         }
1119 
1120         /* set up the command wrapper */
1121         bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
1122         bcb->DataTransferLength = cpu_to_le32(transfer_length);
1123         bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ?
1124                 US_BULK_FLAG_IN : 0;
1125         bcb->Tag = ++us->tag;
1126         bcb->Lun = srb->device->lun;
1127         if (us->fflags & US_FL_SCM_MULT_TARG)
1128                 bcb->Lun |= srb->device->id << 4;
1129         bcb->Length = srb->cmd_len;
1130 
1131         /* copy the command payload */
1132         memset(bcb->CDB, 0, sizeof(bcb->CDB));
1133         memcpy(bcb->CDB, srb->cmnd, bcb->Length);
1134 
1135         /* send it to out endpoint */
1136         usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1137                      le32_to_cpu(bcb->Signature), bcb->Tag,
1138                      le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
1139                      (bcb->Lun >> 4), (bcb->Lun & 0x0F),
1140                      bcb->Length);
1141         result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
1142                                 bcb, cbwlen, NULL);
1143         usb_stor_dbg(us, "Bulk command transfer result=%d\n", result);
1144         if (result != USB_STOR_XFER_GOOD)
1145                 return USB_STOR_TRANSPORT_ERROR;
1146 
1147         /* DATA STAGE */
1148         /* send/receive data payload, if there is any */
1149 
1150         /*
1151          * Some USB-IDE converter chips need a 100us delay between the
1152          * command phase and the data phase.  Some devices need a little
1153          * more than that, probably because of clock rate inaccuracies.
1154          */
1155         if (unlikely(us->fflags & US_FL_GO_SLOW))
1156                 usleep_range(125, 150);
1157 
1158         if (transfer_length) {
1159                 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 
1160                                 us->recv_bulk_pipe : us->send_bulk_pipe;
1161                 result = usb_stor_bulk_srb(us, pipe, srb);
1162                 usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result);
1163                 if (result == USB_STOR_XFER_ERROR)
1164                         return USB_STOR_TRANSPORT_ERROR;
1165 
1166                 /*
1167                  * If the device tried to send back more data than the
1168                  * amount requested, the spec requires us to transfer
1169                  * the CSW anyway.  Since there's no point retrying the
1170                  * the command, we'll return fake sense data indicating
1171                  * Illegal Request, Invalid Field in CDB.
1172                  */
1173                 if (result == USB_STOR_XFER_LONG)
1174                         fake_sense = 1;
1175 
1176                 /*
1177                  * Sometimes a device will mistakenly skip the data phase
1178                  * and go directly to the status phase without sending a
1179                  * zero-length packet.  If we get a 13-byte response here,
1180                  * check whether it really is a CSW.
1181                  */
1182                 if (result == USB_STOR_XFER_SHORT &&
1183                                 srb->sc_data_direction == DMA_FROM_DEVICE &&
1184                                 transfer_length - scsi_get_resid(srb) ==
1185                                         US_BULK_CS_WRAP_LEN) {
1186                         struct scatterlist *sg = NULL;
1187                         unsigned int offset = 0;
1188 
1189                         if (usb_stor_access_xfer_buf((unsigned char *) bcs,
1190                                         US_BULK_CS_WRAP_LEN, srb, &sg,
1191                                         &offset, FROM_XFER_BUF) ==
1192                                                 US_BULK_CS_WRAP_LEN &&
1193                                         bcs->Signature ==
1194                                                 cpu_to_le32(US_BULK_CS_SIGN)) {
1195                                 usb_stor_dbg(us, "Device skipped data phase\n");
1196                                 scsi_set_resid(srb, transfer_length);
1197                                 goto skipped_data_phase;
1198                         }
1199                 }
1200         }
1201 
1202         /*
1203          * See flow chart on pg 15 of the Bulk Only Transport spec for
1204          * an explanation of how this code works.
1205          */
1206 
1207         /* get CSW for device status */
1208         usb_stor_dbg(us, "Attempting to get CSW...\n");
1209         result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1210                                 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1211 
1212         /*
1213          * Some broken devices add unnecessary zero-length packets to the
1214          * end of their data transfers.  Such packets show up as 0-length
1215          * CSWs.  If we encounter such a thing, try to read the CSW again.
1216          */
1217         if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
1218                 usb_stor_dbg(us, "Received 0-length CSW; retrying...\n");
1219                 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1220                                 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1221         }
1222 
1223         /* did the attempt to read the CSW fail? */
1224         if (result == USB_STOR_XFER_STALLED) {
1225 
1226                 /* get the status again */
1227                 usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n");
1228                 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1229                                 bcs, US_BULK_CS_WRAP_LEN, NULL);
1230         }
1231 
1232         /* if we still have a failure at this point, we're in trouble */
1233         usb_stor_dbg(us, "Bulk status result = %d\n", result);
1234         if (result != USB_STOR_XFER_GOOD)
1235                 return USB_STOR_TRANSPORT_ERROR;
1236 
1237  skipped_data_phase:
1238         /* check bulk status */
1239         residue = le32_to_cpu(bcs->Residue);
1240         usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1241                      le32_to_cpu(bcs->Signature), bcs->Tag,
1242                      residue, bcs->Status);
1243         if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1244                 bcs->Status > US_BULK_STAT_PHASE) {
1245                 usb_stor_dbg(us, "Bulk logical error\n");
1246                 return USB_STOR_TRANSPORT_ERROR;
1247         }
1248 
1249         /*
1250          * Some broken devices report odd signatures, so we do not check them
1251          * for validity against the spec. We store the first one we see,
1252          * and check subsequent transfers for validity against this signature.
1253          */
1254         if (!us->bcs_signature) {
1255                 us->bcs_signature = bcs->Signature;
1256                 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1257                         usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n",
1258                                      le32_to_cpu(us->bcs_signature));
1259         } else if (bcs->Signature != us->bcs_signature) {
1260                 usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n",
1261                              le32_to_cpu(bcs->Signature),
1262                              le32_to_cpu(us->bcs_signature));
1263                 return USB_STOR_TRANSPORT_ERROR;
1264         }
1265 
1266         /*
1267          * try to compute the actual residue, based on how much data
1268          * was really transferred and what the device tells us
1269          */
1270         if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1271 
1272                 /*
1273                  * Heuristically detect devices that generate bogus residues
1274                  * by seeing what happens with INQUIRY and READ CAPACITY
1275                  * commands.
1276                  */
1277                 if (bcs->Status == US_BULK_STAT_OK &&
1278                                 scsi_get_resid(srb) == 0 &&
1279                                         ((srb->cmnd[0] == INQUIRY &&
1280                                                 transfer_length == 36) ||
1281                                         (srb->cmnd[0] == READ_CAPACITY &&
1282                                                 transfer_length == 8))) {
1283                         us->fflags |= US_FL_IGNORE_RESIDUE;
1284 
1285                 } else {
1286                         residue = min(residue, transfer_length);
1287                         scsi_set_resid(srb, max(scsi_get_resid(srb),
1288                                                                (int) residue));
1289                 }
1290         }
1291 
1292         /* based on the status code, we report good or bad */
1293         switch (bcs->Status) {
1294                 case US_BULK_STAT_OK:
1295                         /* device babbled -- return fake sense data */
1296                         if (fake_sense) {
1297                                 memcpy(srb->sense_buffer, 
1298                                        usb_stor_sense_invalidCDB, 
1299                                        sizeof(usb_stor_sense_invalidCDB));
1300                                 return USB_STOR_TRANSPORT_NO_SENSE;
1301                         }
1302 
1303                         /* command good -- note that data could be short */
1304                         return USB_STOR_TRANSPORT_GOOD;
1305 
1306                 case US_BULK_STAT_FAIL:
1307                         /* command failed */
1308                         return USB_STOR_TRANSPORT_FAILED;
1309 
1310                 case US_BULK_STAT_PHASE:
1311                         /*
1312                          * phase error -- note that a transport reset will be
1313                          * invoked by the invoke_transport() function
1314                          */
1315                         return USB_STOR_TRANSPORT_ERROR;
1316         }
1317 
1318         /* we should never get here, but if we do, we're in trouble */
1319         return USB_STOR_TRANSPORT_ERROR;
1320 }
1321 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
1322 
1323 /***********************************************************************
1324  * Reset routines
1325  ***********************************************************************/
1326 
1327 /*
1328  * This is the common part of the device reset code.
1329  *
1330  * It's handy that every transport mechanism uses the control endpoint for
1331  * resets.
1332  *
1333  * Basically, we send a reset with a 5-second timeout, so we don't get
1334  * jammed attempting to do the reset.
1335  */
1336 static int usb_stor_reset_common(struct us_data *us,
1337                 u8 request, u8 requesttype,
1338                 u16 value, u16 index, void *data, u16 size)
1339 {
1340         int result;
1341         int result2;
1342 
1343         if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1344                 usb_stor_dbg(us, "No reset during disconnect\n");
1345                 return -EIO;
1346         }
1347 
1348         result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1349                         request, requesttype, value, index, data, size,
1350                         5*HZ);
1351         if (result < 0) {
1352                 usb_stor_dbg(us, "Soft reset failed: %d\n", result);
1353                 return result;
1354         }
1355 
1356         /*
1357          * Give the device some time to recover from the reset,
1358          * but don't delay disconnect processing.
1359          */
1360         wait_event_interruptible_timeout(us->delay_wait,
1361                         test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1362                         HZ*6);
1363         if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1364                 usb_stor_dbg(us, "Reset interrupted by disconnect\n");
1365                 return -EIO;
1366         }
1367 
1368         usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n");
1369         result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1370 
1371         usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n");
1372         result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1373 
1374         /* return a result code based on the result of the clear-halts */
1375         if (result >= 0)
1376                 result = result2;
1377         if (result < 0)
1378                 usb_stor_dbg(us, "Soft reset failed\n");
1379         else
1380                 usb_stor_dbg(us, "Soft reset done\n");
1381         return result;
1382 }
1383 
1384 /* This issues a CB[I] Reset to the device in question */
1385 #define CB_RESET_CMD_SIZE       12
1386 
1387 int usb_stor_CB_reset(struct us_data *us)
1388 {
1389         memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1390         us->iobuf[0] = SEND_DIAGNOSTIC;
1391         us->iobuf[1] = 4;
1392         return usb_stor_reset_common(us, US_CBI_ADSC, 
1393                                  USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1394                                  0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1395 }
1396 EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
1397 
1398 /*
1399  * This issues a Bulk-only Reset to the device in question, including
1400  * clearing the subsequent endpoint halts that may occur.
1401  */
1402 int usb_stor_Bulk_reset(struct us_data *us)
1403 {
1404         return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, 
1405                                  USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1406                                  0, us->ifnum, NULL, 0);
1407 }
1408 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
1409 
1410 /*
1411  * Issue a USB port reset to the device.  The caller must not hold
1412  * us->dev_mutex.
1413  */
1414 int usb_stor_port_reset(struct us_data *us)
1415 {
1416         int result;
1417 
1418         /*for these devices we must use the class specific method */
1419         if (us->pusb_dev->quirks & USB_QUIRK_RESET)
1420                 return -EPERM;
1421 
1422         result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1423         if (result < 0)
1424                 usb_stor_dbg(us, "unable to lock device for reset: %d\n",
1425                              result);
1426         else {
1427                 /* Were we disconnected while waiting for the lock? */
1428                 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1429                         result = -EIO;
1430                         usb_stor_dbg(us, "No reset during disconnect\n");
1431                 } else {
1432                         result = usb_reset_device(us->pusb_dev);
1433                         usb_stor_dbg(us, "usb_reset_device returns %d\n",
1434                                      result);
1435                 }
1436                 usb_unlock_device(us->pusb_dev);
1437         }
1438         return result;
1439 }

/* [<][>][^][v][top][bottom][index][help] */