root/drivers/iommu/ipmmu-vmsa.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. to_vmsa_domain
  2. to_ipmmu
  3. ipmmu_is_root
  4. __ipmmu_check_device
  5. ipmmu_find_root
  6. ipmmu_read
  7. ipmmu_write
  8. ipmmu_ctx_read_root
  9. ipmmu_ctx_write_root
  10. ipmmu_ctx_write_all
  11. ipmmu_tlb_sync
  12. ipmmu_tlb_invalidate
  13. ipmmu_utlb_enable
  14. ipmmu_utlb_disable
  15. ipmmu_tlb_flush_all
  16. ipmmu_tlb_flush
  17. ipmmu_domain_allocate_context
  18. ipmmu_domain_free_context
  19. ipmmu_domain_setup_context
  20. ipmmu_domain_init_context
  21. ipmmu_domain_destroy_context
  22. ipmmu_domain_irq
  23. ipmmu_irq
  24. __ipmmu_domain_alloc
  25. ipmmu_domain_alloc
  26. ipmmu_domain_free
  27. ipmmu_attach_device
  28. ipmmu_detach_device
  29. ipmmu_map
  30. ipmmu_unmap
  31. ipmmu_flush_iotlb_all
  32. ipmmu_iotlb_sync
  33. ipmmu_iova_to_phys
  34. ipmmu_init_platform_device
  35. ipmmu_slave_whitelist
  36. ipmmu_of_xlate
  37. ipmmu_init_arm_mapping
  38. ipmmu_add_device
  39. ipmmu_remove_device
  40. ipmmu_find_group
  41. ipmmu_device_reset
  42. ipmmu_probe
  43. ipmmu_remove
  44. ipmmu_resume_noirq
  45. ipmmu_init

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * IOMMU API for Renesas VMSA-compatible IPMMU
   4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   5  *
   6  * Copyright (C) 2014 Renesas Electronics Corporation
   7  */
   8 
   9 #include <linux/bitmap.h>
  10 #include <linux/delay.h>
  11 #include <linux/dma-iommu.h>
  12 #include <linux/dma-mapping.h>
  13 #include <linux/err.h>
  14 #include <linux/export.h>
  15 #include <linux/init.h>
  16 #include <linux/interrupt.h>
  17 #include <linux/io.h>
  18 #include <linux/io-pgtable.h>
  19 #include <linux/iommu.h>
  20 #include <linux/of.h>
  21 #include <linux/of_device.h>
  22 #include <linux/of_iommu.h>
  23 #include <linux/of_platform.h>
  24 #include <linux/platform_device.h>
  25 #include <linux/sizes.h>
  26 #include <linux/slab.h>
  27 #include <linux/sys_soc.h>
  28 
  29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
  30 #include <asm/dma-iommu.h>
  31 #include <asm/pgalloc.h>
  32 #else
  33 #define arm_iommu_create_mapping(...)   NULL
  34 #define arm_iommu_attach_device(...)    -ENODEV
  35 #define arm_iommu_release_mapping(...)  do {} while (0)
  36 #define arm_iommu_detach_device(...)    do {} while (0)
  37 #endif
  38 
  39 #define IPMMU_CTX_MAX           8U
  40 #define IPMMU_CTX_INVALID       -1
  41 
  42 #define IPMMU_UTLB_MAX          48U
  43 
  44 struct ipmmu_features {
  45         bool use_ns_alias_offset;
  46         bool has_cache_leaf_nodes;
  47         unsigned int number_of_contexts;
  48         unsigned int num_utlbs;
  49         bool setup_imbuscr;
  50         bool twobit_imttbcr_sl0;
  51         bool reserved_context;
  52         bool cache_snoop;
  53 };
  54 
  55 struct ipmmu_vmsa_device {
  56         struct device *dev;
  57         void __iomem *base;
  58         struct iommu_device iommu;
  59         struct ipmmu_vmsa_device *root;
  60         const struct ipmmu_features *features;
  61         unsigned int num_ctx;
  62         spinlock_t lock;                        /* Protects ctx and domains[] */
  63         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
  64         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
  65         s8 utlb_ctx[IPMMU_UTLB_MAX];
  66 
  67         struct iommu_group *group;
  68         struct dma_iommu_mapping *mapping;
  69 };
  70 
  71 struct ipmmu_vmsa_domain {
  72         struct ipmmu_vmsa_device *mmu;
  73         struct iommu_domain io_domain;
  74 
  75         struct io_pgtable_cfg cfg;
  76         struct io_pgtable_ops *iop;
  77 
  78         unsigned int context_id;
  79         struct mutex mutex;                     /* Protects mappings */
  80 };
  81 
  82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
  83 {
  84         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
  85 }
  86 
  87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
  88 {
  89         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
  90 
  91         return fwspec ? fwspec->iommu_priv : NULL;
  92 }
  93 
  94 #define TLB_LOOP_TIMEOUT                100     /* 100us */
  95 
  96 /* -----------------------------------------------------------------------------
  97  * Registers Definition
  98  */
  99 
 100 #define IM_NS_ALIAS_OFFSET              0x800
 101 
 102 #define IM_CTX_SIZE                     0x40
 103 
 104 #define IMCTR                           0x0000
 105 #define IMCTR_TRE                       (1 << 17)
 106 #define IMCTR_AFE                       (1 << 16)
 107 #define IMCTR_RTSEL_MASK                (3 << 4)
 108 #define IMCTR_RTSEL_SHIFT               4
 109 #define IMCTR_TREN                      (1 << 3)
 110 #define IMCTR_INTEN                     (1 << 2)
 111 #define IMCTR_FLUSH                     (1 << 1)
 112 #define IMCTR_MMUEN                     (1 << 0)
 113 
 114 #define IMCAAR                          0x0004
 115 
 116 #define IMTTBCR                         0x0008
 117 #define IMTTBCR_EAE                     (1 << 31)
 118 #define IMTTBCR_PMB                     (1 << 30)
 119 #define IMTTBCR_SH1_NON_SHAREABLE       (0 << 28)       /* R-Car Gen2 only */
 120 #define IMTTBCR_SH1_OUTER_SHAREABLE     (2 << 28)       /* R-Car Gen2 only */
 121 #define IMTTBCR_SH1_INNER_SHAREABLE     (3 << 28)       /* R-Car Gen2 only */
 122 #define IMTTBCR_SH1_MASK                (3 << 28)       /* R-Car Gen2 only */
 123 #define IMTTBCR_ORGN1_NC                (0 << 26)       /* R-Car Gen2 only */
 124 #define IMTTBCR_ORGN1_WB_WA             (1 << 26)       /* R-Car Gen2 only */
 125 #define IMTTBCR_ORGN1_WT                (2 << 26)       /* R-Car Gen2 only */
 126 #define IMTTBCR_ORGN1_WB                (3 << 26)       /* R-Car Gen2 only */
 127 #define IMTTBCR_ORGN1_MASK              (3 << 26)       /* R-Car Gen2 only */
 128 #define IMTTBCR_IRGN1_NC                (0 << 24)       /* R-Car Gen2 only */
 129 #define IMTTBCR_IRGN1_WB_WA             (1 << 24)       /* R-Car Gen2 only */
 130 #define IMTTBCR_IRGN1_WT                (2 << 24)       /* R-Car Gen2 only */
 131 #define IMTTBCR_IRGN1_WB                (3 << 24)       /* R-Car Gen2 only */
 132 #define IMTTBCR_IRGN1_MASK              (3 << 24)       /* R-Car Gen2 only */
 133 #define IMTTBCR_TSZ1_MASK               (7 << 16)
 134 #define IMTTBCR_TSZ1_SHIFT              16
 135 #define IMTTBCR_SH0_NON_SHAREABLE       (0 << 12)       /* R-Car Gen2 only */
 136 #define IMTTBCR_SH0_OUTER_SHAREABLE     (2 << 12)       /* R-Car Gen2 only */
 137 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
 138 #define IMTTBCR_SH0_MASK                (3 << 12)       /* R-Car Gen2 only */
 139 #define IMTTBCR_ORGN0_NC                (0 << 10)       /* R-Car Gen2 only */
 140 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
 141 #define IMTTBCR_ORGN0_WT                (2 << 10)       /* R-Car Gen2 only */
 142 #define IMTTBCR_ORGN0_WB                (3 << 10)       /* R-Car Gen2 only */
 143 #define IMTTBCR_ORGN0_MASK              (3 << 10)       /* R-Car Gen2 only */
 144 #define IMTTBCR_IRGN0_NC                (0 << 8)        /* R-Car Gen2 only */
 145 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
 146 #define IMTTBCR_IRGN0_WT                (2 << 8)        /* R-Car Gen2 only */
 147 #define IMTTBCR_IRGN0_WB                (3 << 8)        /* R-Car Gen2 only */
 148 #define IMTTBCR_IRGN0_MASK              (3 << 8)        /* R-Car Gen2 only */
 149 #define IMTTBCR_SL0_TWOBIT_LVL_3        (0 << 6)        /* R-Car Gen3 only */
 150 #define IMTTBCR_SL0_TWOBIT_LVL_2        (1 << 6)        /* R-Car Gen3 only */
 151 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
 152 #define IMTTBCR_SL0_LVL_2               (0 << 4)
 153 #define IMTTBCR_SL0_LVL_1               (1 << 4)
 154 #define IMTTBCR_TSZ0_MASK               (7 << 0)
 155 #define IMTTBCR_TSZ0_SHIFT              O
 156 
 157 #define IMBUSCR                         0x000c
 158 #define IMBUSCR_DVM                     (1 << 2)
 159 #define IMBUSCR_BUSSEL_SYS              (0 << 0)
 160 #define IMBUSCR_BUSSEL_CCI              (1 << 0)
 161 #define IMBUSCR_BUSSEL_IMCAAR           (2 << 0)
 162 #define IMBUSCR_BUSSEL_CCI_IMCAAR       (3 << 0)
 163 #define IMBUSCR_BUSSEL_MASK             (3 << 0)
 164 
 165 #define IMTTLBR0                        0x0010
 166 #define IMTTUBR0                        0x0014
 167 #define IMTTLBR1                        0x0018
 168 #define IMTTUBR1                        0x001c
 169 
 170 #define IMSTR                           0x0020
 171 #define IMSTR_ERRLVL_MASK               (3 << 12)
 172 #define IMSTR_ERRLVL_SHIFT              12
 173 #define IMSTR_ERRCODE_TLB_FORMAT        (1 << 8)
 174 #define IMSTR_ERRCODE_ACCESS_PERM       (4 << 8)
 175 #define IMSTR_ERRCODE_SECURE_ACCESS     (5 << 8)
 176 #define IMSTR_ERRCODE_MASK              (7 << 8)
 177 #define IMSTR_MHIT                      (1 << 4)
 178 #define IMSTR_ABORT                     (1 << 2)
 179 #define IMSTR_PF                        (1 << 1)
 180 #define IMSTR_TF                        (1 << 0)
 181 
 182 #define IMMAIR0                         0x0028
 183 #define IMMAIR1                         0x002c
 184 #define IMMAIR_ATTR_MASK                0xff
 185 #define IMMAIR_ATTR_DEVICE              0x04
 186 #define IMMAIR_ATTR_NC                  0x44
 187 #define IMMAIR_ATTR_WBRWA               0xff
 188 #define IMMAIR_ATTR_SHIFT(n)            ((n) << 3)
 189 #define IMMAIR_ATTR_IDX_NC              0
 190 #define IMMAIR_ATTR_IDX_WBRWA           1
 191 #define IMMAIR_ATTR_IDX_DEV             2
 192 
 193 #define IMELAR                          0x0030  /* IMEAR on R-Car Gen2 */
 194 #define IMEUAR                          0x0034  /* R-Car Gen3 only */
 195 
 196 #define IMPCTR                          0x0200
 197 #define IMPSTR                          0x0208
 198 #define IMPEAR                          0x020c
 199 #define IMPMBA(n)                       (0x0280 + ((n) * 4))
 200 #define IMPMBD(n)                       (0x02c0 + ((n) * 4))
 201 
 202 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
 203 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))
 204 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))
 205 #define IMUCTR_FIXADDEN                 (1 << 31)
 206 #define IMUCTR_FIXADD_MASK              (0xff << 16)
 207 #define IMUCTR_FIXADD_SHIFT             16
 208 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)
 209 #define IMUCTR_TTSEL_PMB                (8 << 4)
 210 #define IMUCTR_TTSEL_MASK               (15 << 4)
 211 #define IMUCTR_FLUSH                    (1 << 1)
 212 #define IMUCTR_MMUEN                    (1 << 0)
 213 
 214 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
 215 #define IMUASID0(n)                     (0x0308 + ((n) * 16))
 216 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))
 217 #define IMUASID_ASID8_MASK              (0xff << 8)
 218 #define IMUASID_ASID8_SHIFT             8
 219 #define IMUASID_ASID0_MASK              (0xff << 0)
 220 #define IMUASID_ASID0_SHIFT             0
 221 
 222 /* -----------------------------------------------------------------------------
 223  * Root device handling
 224  */
 225 
 226 static struct platform_driver ipmmu_driver;
 227 
 228 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
 229 {
 230         return mmu->root == mmu;
 231 }
 232 
 233 static int __ipmmu_check_device(struct device *dev, void *data)
 234 {
 235         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
 236         struct ipmmu_vmsa_device **rootp = data;
 237 
 238         if (ipmmu_is_root(mmu))
 239                 *rootp = mmu;
 240 
 241         return 0;
 242 }
 243 
 244 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
 245 {
 246         struct ipmmu_vmsa_device *root = NULL;
 247 
 248         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
 249                                       __ipmmu_check_device) == 0 ? root : NULL;
 250 }
 251 
 252 /* -----------------------------------------------------------------------------
 253  * Read/Write Access
 254  */
 255 
 256 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
 257 {
 258         return ioread32(mmu->base + offset);
 259 }
 260 
 261 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
 262                         u32 data)
 263 {
 264         iowrite32(data, mmu->base + offset);
 265 }
 266 
 267 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
 268                                unsigned int reg)
 269 {
 270         return ipmmu_read(domain->mmu->root,
 271                           domain->context_id * IM_CTX_SIZE + reg);
 272 }
 273 
 274 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
 275                                  unsigned int reg, u32 data)
 276 {
 277         ipmmu_write(domain->mmu->root,
 278                     domain->context_id * IM_CTX_SIZE + reg, data);
 279 }
 280 
 281 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
 282                                 unsigned int reg, u32 data)
 283 {
 284         if (domain->mmu != domain->mmu->root)
 285                 ipmmu_write(domain->mmu,
 286                             domain->context_id * IM_CTX_SIZE + reg, data);
 287 
 288         ipmmu_write(domain->mmu->root,
 289                     domain->context_id * IM_CTX_SIZE + reg, data);
 290 }
 291 
 292 /* -----------------------------------------------------------------------------
 293  * TLB and microTLB Management
 294  */
 295 
 296 /* Wait for any pending TLB invalidations to complete */
 297 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
 298 {
 299         unsigned int count = 0;
 300 
 301         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
 302                 cpu_relax();
 303                 if (++count == TLB_LOOP_TIMEOUT) {
 304                         dev_err_ratelimited(domain->mmu->dev,
 305                         "TLB sync timed out -- MMU may be deadlocked\n");
 306                         return;
 307                 }
 308                 udelay(1);
 309         }
 310 }
 311 
 312 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
 313 {
 314         u32 reg;
 315 
 316         reg = ipmmu_ctx_read_root(domain, IMCTR);
 317         reg |= IMCTR_FLUSH;
 318         ipmmu_ctx_write_all(domain, IMCTR, reg);
 319 
 320         ipmmu_tlb_sync(domain);
 321 }
 322 
 323 /*
 324  * Enable MMU translation for the microTLB.
 325  */
 326 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
 327                               unsigned int utlb)
 328 {
 329         struct ipmmu_vmsa_device *mmu = domain->mmu;
 330 
 331         /*
 332          * TODO: Reference-count the microTLB as several bus masters can be
 333          * connected to the same microTLB.
 334          */
 335 
 336         /* TODO: What should we set the ASID to ? */
 337         ipmmu_write(mmu, IMUASID(utlb), 0);
 338         /* TODO: Do we need to flush the microTLB ? */
 339         ipmmu_write(mmu, IMUCTR(utlb),
 340                     IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
 341                     IMUCTR_MMUEN);
 342         mmu->utlb_ctx[utlb] = domain->context_id;
 343 }
 344 
 345 /*
 346  * Disable MMU translation for the microTLB.
 347  */
 348 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
 349                                unsigned int utlb)
 350 {
 351         struct ipmmu_vmsa_device *mmu = domain->mmu;
 352 
 353         ipmmu_write(mmu, IMUCTR(utlb), 0);
 354         mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
 355 }
 356 
 357 static void ipmmu_tlb_flush_all(void *cookie)
 358 {
 359         struct ipmmu_vmsa_domain *domain = cookie;
 360 
 361         ipmmu_tlb_invalidate(domain);
 362 }
 363 
 364 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
 365                                 size_t granule, void *cookie)
 366 {
 367         ipmmu_tlb_flush_all(cookie);
 368 }
 369 
 370 static const struct iommu_flush_ops ipmmu_flush_ops = {
 371         .tlb_flush_all = ipmmu_tlb_flush_all,
 372         .tlb_flush_walk = ipmmu_tlb_flush,
 373         .tlb_flush_leaf = ipmmu_tlb_flush,
 374 };
 375 
 376 /* -----------------------------------------------------------------------------
 377  * Domain/Context Management
 378  */
 379 
 380 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
 381                                          struct ipmmu_vmsa_domain *domain)
 382 {
 383         unsigned long flags;
 384         int ret;
 385 
 386         spin_lock_irqsave(&mmu->lock, flags);
 387 
 388         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
 389         if (ret != mmu->num_ctx) {
 390                 mmu->domains[ret] = domain;
 391                 set_bit(ret, mmu->ctx);
 392         } else
 393                 ret = -EBUSY;
 394 
 395         spin_unlock_irqrestore(&mmu->lock, flags);
 396 
 397         return ret;
 398 }
 399 
 400 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
 401                                       unsigned int context_id)
 402 {
 403         unsigned long flags;
 404 
 405         spin_lock_irqsave(&mmu->lock, flags);
 406 
 407         clear_bit(context_id, mmu->ctx);
 408         mmu->domains[context_id] = NULL;
 409 
 410         spin_unlock_irqrestore(&mmu->lock, flags);
 411 }
 412 
 413 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
 414 {
 415         u64 ttbr;
 416         u32 tmp;
 417 
 418         /* TTBR0 */
 419         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
 420         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
 421         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
 422 
 423         /*
 424          * TTBCR
 425          * We use long descriptors and allocate the whole 32-bit VA space to
 426          * TTBR0.
 427          */
 428         if (domain->mmu->features->twobit_imttbcr_sl0)
 429                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
 430         else
 431                 tmp = IMTTBCR_SL0_LVL_1;
 432 
 433         if (domain->mmu->features->cache_snoop)
 434                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
 435                        IMTTBCR_IRGN0_WB_WA;
 436 
 437         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
 438 
 439         /* MAIR0 */
 440         ipmmu_ctx_write_root(domain, IMMAIR0,
 441                              domain->cfg.arm_lpae_s1_cfg.mair[0]);
 442 
 443         /* IMBUSCR */
 444         if (domain->mmu->features->setup_imbuscr)
 445                 ipmmu_ctx_write_root(domain, IMBUSCR,
 446                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
 447                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
 448 
 449         /*
 450          * IMSTR
 451          * Clear all interrupt flags.
 452          */
 453         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
 454 
 455         /*
 456          * IMCTR
 457          * Enable the MMU and interrupt generation. The long-descriptor
 458          * translation table format doesn't use TEX remapping. Don't enable AF
 459          * software management as we have no use for it. Flush the TLB as
 460          * required when modifying the context registers.
 461          */
 462         ipmmu_ctx_write_all(domain, IMCTR,
 463                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
 464 }
 465 
 466 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
 467 {
 468         int ret;
 469 
 470         /*
 471          * Allocate the page table operations.
 472          *
 473          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
 474          * access, Long-descriptor format" that the NStable bit being set in a
 475          * table descriptor will result in the NStable and NS bits of all child
 476          * entries being ignored and considered as being set. The IPMMU seems
 477          * not to comply with this, as it generates a secure access page fault
 478          * if any of the NStable and NS bits isn't set when running in
 479          * non-secure mode.
 480          */
 481         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
 482         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
 483         domain->cfg.ias = 32;
 484         domain->cfg.oas = 40;
 485         domain->cfg.tlb = &ipmmu_flush_ops;
 486         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
 487         domain->io_domain.geometry.force_aperture = true;
 488         /*
 489          * TODO: Add support for coherent walk through CCI with DVM and remove
 490          * cache handling. For now, delegate it to the io-pgtable code.
 491          */
 492         domain->cfg.coherent_walk = false;
 493         domain->cfg.iommu_dev = domain->mmu->root->dev;
 494 
 495         /*
 496          * Find an unused context.
 497          */
 498         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
 499         if (ret < 0)
 500                 return ret;
 501 
 502         domain->context_id = ret;
 503 
 504         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
 505                                            domain);
 506         if (!domain->iop) {
 507                 ipmmu_domain_free_context(domain->mmu->root,
 508                                           domain->context_id);
 509                 return -EINVAL;
 510         }
 511 
 512         ipmmu_domain_setup_context(domain);
 513         return 0;
 514 }
 515 
 516 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
 517 {
 518         if (!domain->mmu)
 519                 return;
 520 
 521         /*
 522          * Disable the context. Flush the TLB as required when modifying the
 523          * context registers.
 524          *
 525          * TODO: Is TLB flush really needed ?
 526          */
 527         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
 528         ipmmu_tlb_sync(domain);
 529         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
 530 }
 531 
 532 /* -----------------------------------------------------------------------------
 533  * Fault Handling
 534  */
 535 
 536 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
 537 {
 538         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
 539         struct ipmmu_vmsa_device *mmu = domain->mmu;
 540         unsigned long iova;
 541         u32 status;
 542 
 543         status = ipmmu_ctx_read_root(domain, IMSTR);
 544         if (!(status & err_mask))
 545                 return IRQ_NONE;
 546 
 547         iova = ipmmu_ctx_read_root(domain, IMELAR);
 548         if (IS_ENABLED(CONFIG_64BIT))
 549                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
 550 
 551         /*
 552          * Clear the error status flags. Unlike traditional interrupt flag
 553          * registers that must be cleared by writing 1, this status register
 554          * seems to require 0. The error address register must be read before,
 555          * otherwise its value will be 0.
 556          */
 557         ipmmu_ctx_write_root(domain, IMSTR, 0);
 558 
 559         /* Log fatal errors. */
 560         if (status & IMSTR_MHIT)
 561                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
 562                                     iova);
 563         if (status & IMSTR_ABORT)
 564                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
 565                                     iova);
 566 
 567         if (!(status & (IMSTR_PF | IMSTR_TF)))
 568                 return IRQ_NONE;
 569 
 570         /*
 571          * Try to handle page faults and translation faults.
 572          *
 573          * TODO: We need to look up the faulty device based on the I/O VA. Use
 574          * the IOMMU device for now.
 575          */
 576         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
 577                 return IRQ_HANDLED;
 578 
 579         dev_err_ratelimited(mmu->dev,
 580                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
 581                             status, iova);
 582 
 583         return IRQ_HANDLED;
 584 }
 585 
 586 static irqreturn_t ipmmu_irq(int irq, void *dev)
 587 {
 588         struct ipmmu_vmsa_device *mmu = dev;
 589         irqreturn_t status = IRQ_NONE;
 590         unsigned int i;
 591         unsigned long flags;
 592 
 593         spin_lock_irqsave(&mmu->lock, flags);
 594 
 595         /*
 596          * Check interrupts for all active contexts.
 597          */
 598         for (i = 0; i < mmu->num_ctx; i++) {
 599                 if (!mmu->domains[i])
 600                         continue;
 601                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
 602                         status = IRQ_HANDLED;
 603         }
 604 
 605         spin_unlock_irqrestore(&mmu->lock, flags);
 606 
 607         return status;
 608 }
 609 
 610 /* -----------------------------------------------------------------------------
 611  * IOMMU Operations
 612  */
 613 
 614 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
 615 {
 616         struct ipmmu_vmsa_domain *domain;
 617 
 618         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
 619         if (!domain)
 620                 return NULL;
 621 
 622         mutex_init(&domain->mutex);
 623 
 624         return &domain->io_domain;
 625 }
 626 
 627 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
 628 {
 629         struct iommu_domain *io_domain = NULL;
 630 
 631         switch (type) {
 632         case IOMMU_DOMAIN_UNMANAGED:
 633                 io_domain = __ipmmu_domain_alloc(type);
 634                 break;
 635 
 636         case IOMMU_DOMAIN_DMA:
 637                 io_domain = __ipmmu_domain_alloc(type);
 638                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
 639                         kfree(io_domain);
 640                         io_domain = NULL;
 641                 }
 642                 break;
 643         }
 644 
 645         return io_domain;
 646 }
 647 
 648 static void ipmmu_domain_free(struct iommu_domain *io_domain)
 649 {
 650         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 651 
 652         /*
 653          * Free the domain resources. We assume that all devices have already
 654          * been detached.
 655          */
 656         iommu_put_dma_cookie(io_domain);
 657         ipmmu_domain_destroy_context(domain);
 658         free_io_pgtable_ops(domain->iop);
 659         kfree(domain);
 660 }
 661 
 662 static int ipmmu_attach_device(struct iommu_domain *io_domain,
 663                                struct device *dev)
 664 {
 665         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 666         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 667         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 668         unsigned int i;
 669         int ret = 0;
 670 
 671         if (!mmu) {
 672                 dev_err(dev, "Cannot attach to IPMMU\n");
 673                 return -ENXIO;
 674         }
 675 
 676         mutex_lock(&domain->mutex);
 677 
 678         if (!domain->mmu) {
 679                 /* The domain hasn't been used yet, initialize it. */
 680                 domain->mmu = mmu;
 681                 ret = ipmmu_domain_init_context(domain);
 682                 if (ret < 0) {
 683                         dev_err(dev, "Unable to initialize IPMMU context\n");
 684                         domain->mmu = NULL;
 685                 } else {
 686                         dev_info(dev, "Using IPMMU context %u\n",
 687                                  domain->context_id);
 688                 }
 689         } else if (domain->mmu != mmu) {
 690                 /*
 691                  * Something is wrong, we can't attach two devices using
 692                  * different IOMMUs to the same domain.
 693                  */
 694                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
 695                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
 696                 ret = -EINVAL;
 697         } else
 698                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
 699 
 700         mutex_unlock(&domain->mutex);
 701 
 702         if (ret < 0)
 703                 return ret;
 704 
 705         for (i = 0; i < fwspec->num_ids; ++i)
 706                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
 707 
 708         return 0;
 709 }
 710 
 711 static void ipmmu_detach_device(struct iommu_domain *io_domain,
 712                                 struct device *dev)
 713 {
 714         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 715         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 716         unsigned int i;
 717 
 718         for (i = 0; i < fwspec->num_ids; ++i)
 719                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
 720 
 721         /*
 722          * TODO: Optimize by disabling the context when no device is attached.
 723          */
 724 }
 725 
 726 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
 727                      phys_addr_t paddr, size_t size, int prot)
 728 {
 729         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 730 
 731         if (!domain)
 732                 return -ENODEV;
 733 
 734         return domain->iop->map(domain->iop, iova, paddr, size, prot);
 735 }
 736 
 737 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
 738                           size_t size, struct iommu_iotlb_gather *gather)
 739 {
 740         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 741 
 742         return domain->iop->unmap(domain->iop, iova, size, gather);
 743 }
 744 
 745 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
 746 {
 747         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 748 
 749         if (domain->mmu)
 750                 ipmmu_tlb_flush_all(domain);
 751 }
 752 
 753 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
 754                              struct iommu_iotlb_gather *gather)
 755 {
 756         ipmmu_flush_iotlb_all(io_domain);
 757 }
 758 
 759 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
 760                                       dma_addr_t iova)
 761 {
 762         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 763 
 764         /* TODO: Is locking needed ? */
 765 
 766         return domain->iop->iova_to_phys(domain->iop, iova);
 767 }
 768 
 769 static int ipmmu_init_platform_device(struct device *dev,
 770                                       struct of_phandle_args *args)
 771 {
 772         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 773         struct platform_device *ipmmu_pdev;
 774 
 775         ipmmu_pdev = of_find_device_by_node(args->np);
 776         if (!ipmmu_pdev)
 777                 return -ENODEV;
 778 
 779         fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
 780 
 781         return 0;
 782 }
 783 
 784 static const struct soc_device_attribute soc_rcar_gen3[] = {
 785         { .soc_id = "r8a774a1", },
 786         { .soc_id = "r8a774c0", },
 787         { .soc_id = "r8a7795", },
 788         { .soc_id = "r8a7796", },
 789         { .soc_id = "r8a77965", },
 790         { .soc_id = "r8a77970", },
 791         { .soc_id = "r8a77990", },
 792         { .soc_id = "r8a77995", },
 793         { /* sentinel */ }
 794 };
 795 
 796 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
 797         { .soc_id = "r8a774c0", },
 798         { .soc_id = "r8a7795", .revision = "ES3.*" },
 799         { .soc_id = "r8a77965", },
 800         { .soc_id = "r8a77990", },
 801         { .soc_id = "r8a77995", },
 802         { /* sentinel */ }
 803 };
 804 
 805 static const char * const rcar_gen3_slave_whitelist[] = {
 806 };
 807 
 808 static bool ipmmu_slave_whitelist(struct device *dev)
 809 {
 810         unsigned int i;
 811 
 812         /*
 813          * For R-Car Gen3 use a white list to opt-in slave devices.
 814          * For Other SoCs, this returns true anyway.
 815          */
 816         if (!soc_device_match(soc_rcar_gen3))
 817                 return true;
 818 
 819         /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
 820         if (!soc_device_match(soc_rcar_gen3_whitelist))
 821                 return false;
 822 
 823         /* Check whether this slave device can work with the IPMMU */
 824         for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
 825                 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
 826                         return true;
 827         }
 828 
 829         /* Otherwise, do not allow use of IPMMU */
 830         return false;
 831 }
 832 
 833 static int ipmmu_of_xlate(struct device *dev,
 834                           struct of_phandle_args *spec)
 835 {
 836         if (!ipmmu_slave_whitelist(dev))
 837                 return -ENODEV;
 838 
 839         iommu_fwspec_add_ids(dev, spec->args, 1);
 840 
 841         /* Initialize once - xlate() will call multiple times */
 842         if (to_ipmmu(dev))
 843                 return 0;
 844 
 845         return ipmmu_init_platform_device(dev, spec);
 846 }
 847 
 848 static int ipmmu_init_arm_mapping(struct device *dev)
 849 {
 850         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 851         struct iommu_group *group;
 852         int ret;
 853 
 854         /* Create a device group and add the device to it. */
 855         group = iommu_group_alloc();
 856         if (IS_ERR(group)) {
 857                 dev_err(dev, "Failed to allocate IOMMU group\n");
 858                 return PTR_ERR(group);
 859         }
 860 
 861         ret = iommu_group_add_device(group, dev);
 862         iommu_group_put(group);
 863 
 864         if (ret < 0) {
 865                 dev_err(dev, "Failed to add device to IPMMU group\n");
 866                 return ret;
 867         }
 868 
 869         /*
 870          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
 871          * VAs. This will allocate a corresponding IOMMU domain.
 872          *
 873          * TODO:
 874          * - Create one mapping per context (TLB).
 875          * - Make the mapping size configurable ? We currently use a 2GB mapping
 876          *   at a 1GB offset to ensure that NULL VAs will fault.
 877          */
 878         if (!mmu->mapping) {
 879                 struct dma_iommu_mapping *mapping;
 880 
 881                 mapping = arm_iommu_create_mapping(&platform_bus_type,
 882                                                    SZ_1G, SZ_2G);
 883                 if (IS_ERR(mapping)) {
 884                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
 885                         ret = PTR_ERR(mapping);
 886                         goto error;
 887                 }
 888 
 889                 mmu->mapping = mapping;
 890         }
 891 
 892         /* Attach the ARM VA mapping to the device. */
 893         ret = arm_iommu_attach_device(dev, mmu->mapping);
 894         if (ret < 0) {
 895                 dev_err(dev, "Failed to attach device to VA mapping\n");
 896                 goto error;
 897         }
 898 
 899         return 0;
 900 
 901 error:
 902         iommu_group_remove_device(dev);
 903         if (mmu->mapping)
 904                 arm_iommu_release_mapping(mmu->mapping);
 905 
 906         return ret;
 907 }
 908 
 909 static int ipmmu_add_device(struct device *dev)
 910 {
 911         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 912         struct iommu_group *group;
 913         int ret;
 914 
 915         /*
 916          * Only let through devices that have been verified in xlate()
 917          */
 918         if (!mmu)
 919                 return -ENODEV;
 920 
 921         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
 922                 ret = ipmmu_init_arm_mapping(dev);
 923                 if (ret)
 924                         return ret;
 925         } else {
 926                 group = iommu_group_get_for_dev(dev);
 927                 if (IS_ERR(group))
 928                         return PTR_ERR(group);
 929 
 930                 iommu_group_put(group);
 931         }
 932 
 933         iommu_device_link(&mmu->iommu, dev);
 934         return 0;
 935 }
 936 
 937 static void ipmmu_remove_device(struct device *dev)
 938 {
 939         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 940 
 941         iommu_device_unlink(&mmu->iommu, dev);
 942         arm_iommu_detach_device(dev);
 943         iommu_group_remove_device(dev);
 944 }
 945 
 946 static struct iommu_group *ipmmu_find_group(struct device *dev)
 947 {
 948         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 949         struct iommu_group *group;
 950 
 951         if (mmu->group)
 952                 return iommu_group_ref_get(mmu->group);
 953 
 954         group = iommu_group_alloc();
 955         if (!IS_ERR(group))
 956                 mmu->group = group;
 957 
 958         return group;
 959 }
 960 
 961 static const struct iommu_ops ipmmu_ops = {
 962         .domain_alloc = ipmmu_domain_alloc,
 963         .domain_free = ipmmu_domain_free,
 964         .attach_dev = ipmmu_attach_device,
 965         .detach_dev = ipmmu_detach_device,
 966         .map = ipmmu_map,
 967         .unmap = ipmmu_unmap,
 968         .flush_iotlb_all = ipmmu_flush_iotlb_all,
 969         .iotlb_sync = ipmmu_iotlb_sync,
 970         .iova_to_phys = ipmmu_iova_to_phys,
 971         .add_device = ipmmu_add_device,
 972         .remove_device = ipmmu_remove_device,
 973         .device_group = ipmmu_find_group,
 974         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
 975         .of_xlate = ipmmu_of_xlate,
 976 };
 977 
 978 /* -----------------------------------------------------------------------------
 979  * Probe/remove and init
 980  */
 981 
 982 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
 983 {
 984         unsigned int i;
 985 
 986         /* Disable all contexts. */
 987         for (i = 0; i < mmu->num_ctx; ++i)
 988                 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
 989 }
 990 
 991 static const struct ipmmu_features ipmmu_features_default = {
 992         .use_ns_alias_offset = true,
 993         .has_cache_leaf_nodes = false,
 994         .number_of_contexts = 1, /* software only tested with one context */
 995         .num_utlbs = 32,
 996         .setup_imbuscr = true,
 997         .twobit_imttbcr_sl0 = false,
 998         .reserved_context = false,
 999         .cache_snoop = true,
1000 };
1001 
1002 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
1003         .use_ns_alias_offset = false,
1004         .has_cache_leaf_nodes = true,
1005         .number_of_contexts = 8,
1006         .num_utlbs = 48,
1007         .setup_imbuscr = false,
1008         .twobit_imttbcr_sl0 = true,
1009         .reserved_context = true,
1010         .cache_snoop = false,
1011 };
1012 
1013 static const struct of_device_id ipmmu_of_ids[] = {
1014         {
1015                 .compatible = "renesas,ipmmu-vmsa",
1016                 .data = &ipmmu_features_default,
1017         }, {
1018                 .compatible = "renesas,ipmmu-r8a774a1",
1019                 .data = &ipmmu_features_rcar_gen3,
1020         }, {
1021                 .compatible = "renesas,ipmmu-r8a774c0",
1022                 .data = &ipmmu_features_rcar_gen3,
1023         }, {
1024                 .compatible = "renesas,ipmmu-r8a7795",
1025                 .data = &ipmmu_features_rcar_gen3,
1026         }, {
1027                 .compatible = "renesas,ipmmu-r8a7796",
1028                 .data = &ipmmu_features_rcar_gen3,
1029         }, {
1030                 .compatible = "renesas,ipmmu-r8a77965",
1031                 .data = &ipmmu_features_rcar_gen3,
1032         }, {
1033                 .compatible = "renesas,ipmmu-r8a77970",
1034                 .data = &ipmmu_features_rcar_gen3,
1035         }, {
1036                 .compatible = "renesas,ipmmu-r8a77990",
1037                 .data = &ipmmu_features_rcar_gen3,
1038         }, {
1039                 .compatible = "renesas,ipmmu-r8a77995",
1040                 .data = &ipmmu_features_rcar_gen3,
1041         }, {
1042                 /* Terminator */
1043         },
1044 };
1045 
1046 static int ipmmu_probe(struct platform_device *pdev)
1047 {
1048         struct ipmmu_vmsa_device *mmu;
1049         struct resource *res;
1050         int irq;
1051         int ret;
1052 
1053         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1054         if (!mmu) {
1055                 dev_err(&pdev->dev, "cannot allocate device data\n");
1056                 return -ENOMEM;
1057         }
1058 
1059         mmu->dev = &pdev->dev;
1060         spin_lock_init(&mmu->lock);
1061         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1062         mmu->features = of_device_get_match_data(&pdev->dev);
1063         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1064         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1065 
1066         /* Map I/O memory and request IRQ. */
1067         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1068         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1069         if (IS_ERR(mmu->base))
1070                 return PTR_ERR(mmu->base);
1071 
1072         /*
1073          * The IPMMU has two register banks, for secure and non-secure modes.
1074          * The bank mapped at the beginning of the IPMMU address space
1075          * corresponds to the running mode of the CPU. When running in secure
1076          * mode the non-secure register bank is also available at an offset.
1077          *
1078          * Secure mode operation isn't clearly documented and is thus currently
1079          * not implemented in the driver. Furthermore, preliminary tests of
1080          * non-secure operation with the main register bank were not successful.
1081          * Offset the registers base unconditionally to point to the non-secure
1082          * alias space for now.
1083          */
1084         if (mmu->features->use_ns_alias_offset)
1085                 mmu->base += IM_NS_ALIAS_OFFSET;
1086 
1087         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1088 
1089         /*
1090          * Determine if this IPMMU instance is a root device by checking for
1091          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1092          */
1093         if (!mmu->features->has_cache_leaf_nodes ||
1094             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1095                 mmu->root = mmu;
1096         else
1097                 mmu->root = ipmmu_find_root();
1098 
1099         /*
1100          * Wait until the root device has been registered for sure.
1101          */
1102         if (!mmu->root)
1103                 return -EPROBE_DEFER;
1104 
1105         /* Root devices have mandatory IRQs */
1106         if (ipmmu_is_root(mmu)) {
1107                 irq = platform_get_irq(pdev, 0);
1108                 if (irq < 0)
1109                         return irq;
1110 
1111                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1112                                        dev_name(&pdev->dev), mmu);
1113                 if (ret < 0) {
1114                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1115                         return ret;
1116                 }
1117 
1118                 ipmmu_device_reset(mmu);
1119 
1120                 if (mmu->features->reserved_context) {
1121                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1122                         set_bit(0, mmu->ctx);
1123                 }
1124         }
1125 
1126         /*
1127          * Register the IPMMU to the IOMMU subsystem in the following cases:
1128          * - R-Car Gen2 IPMMU (all devices registered)
1129          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1130          */
1131         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1132                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1133                                              dev_name(&pdev->dev));
1134                 if (ret)
1135                         return ret;
1136 
1137                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1138                 iommu_device_set_fwnode(&mmu->iommu,
1139                                         &pdev->dev.of_node->fwnode);
1140 
1141                 ret = iommu_device_register(&mmu->iommu);
1142                 if (ret)
1143                         return ret;
1144 
1145 #if defined(CONFIG_IOMMU_DMA)
1146                 if (!iommu_present(&platform_bus_type))
1147                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1148 #endif
1149         }
1150 
1151         /*
1152          * We can't create the ARM mapping here as it requires the bus to have
1153          * an IOMMU, which only happens when bus_set_iommu() is called in
1154          * ipmmu_init() after the probe function returns.
1155          */
1156 
1157         platform_set_drvdata(pdev, mmu);
1158 
1159         return 0;
1160 }
1161 
1162 static int ipmmu_remove(struct platform_device *pdev)
1163 {
1164         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1165 
1166         iommu_device_sysfs_remove(&mmu->iommu);
1167         iommu_device_unregister(&mmu->iommu);
1168 
1169         arm_iommu_release_mapping(mmu->mapping);
1170 
1171         ipmmu_device_reset(mmu);
1172 
1173         return 0;
1174 }
1175 
1176 #ifdef CONFIG_PM_SLEEP
1177 static int ipmmu_resume_noirq(struct device *dev)
1178 {
1179         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1180         unsigned int i;
1181 
1182         /* Reset root MMU and restore contexts */
1183         if (ipmmu_is_root(mmu)) {
1184                 ipmmu_device_reset(mmu);
1185 
1186                 for (i = 0; i < mmu->num_ctx; i++) {
1187                         if (!mmu->domains[i])
1188                                 continue;
1189 
1190                         ipmmu_domain_setup_context(mmu->domains[i]);
1191                 }
1192         }
1193 
1194         /* Re-enable active micro-TLBs */
1195         for (i = 0; i < mmu->features->num_utlbs; i++) {
1196                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1197                         continue;
1198 
1199                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1200         }
1201 
1202         return 0;
1203 }
1204 
1205 static const struct dev_pm_ops ipmmu_pm  = {
1206         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1207 };
1208 #define DEV_PM_OPS      &ipmmu_pm
1209 #else
1210 #define DEV_PM_OPS      NULL
1211 #endif /* CONFIG_PM_SLEEP */
1212 
1213 static struct platform_driver ipmmu_driver = {
1214         .driver = {
1215                 .name = "ipmmu-vmsa",
1216                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1217                 .pm = DEV_PM_OPS,
1218         },
1219         .probe = ipmmu_probe,
1220         .remove = ipmmu_remove,
1221 };
1222 
1223 static int __init ipmmu_init(void)
1224 {
1225         struct device_node *np;
1226         static bool setup_done;
1227         int ret;
1228 
1229         if (setup_done)
1230                 return 0;
1231 
1232         np = of_find_matching_node(NULL, ipmmu_of_ids);
1233         if (!np)
1234                 return 0;
1235 
1236         of_node_put(np);
1237 
1238         ret = platform_driver_register(&ipmmu_driver);
1239         if (ret < 0)
1240                 return ret;
1241 
1242 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1243         if (!iommu_present(&platform_bus_type))
1244                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1245 #endif
1246 
1247         setup_done = true;
1248         return 0;
1249 }
1250 subsys_initcall(ipmmu_init);

/* [<][>][^][v][top][bottom][index][help] */