root/drivers/iio/accel/sca3000.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sca3000_write_reg
  2. sca3000_read_data_short
  3. sca3000_reg_lock_on
  4. __sca3000_unlock_reg_lock
  5. sca3000_write_ctrl_reg
  6. sca3000_read_ctrl_reg
  7. sca3000_print_rev
  8. sca3000_show_available_3db_freqs
  9. __sca3000_get_base_freq
  10. sca3000_read_raw_samp_freq
  11. sca3000_write_raw_samp_freq
  12. sca3000_read_3db_freq
  13. sca3000_write_3db_freq
  14. sca3000_read_raw
  15. sca3000_write_raw
  16. sca3000_read_av_freq
  17. sca3000_read_event_value
  18. sca3000_write_event_value
  19. sca3000_read_data
  20. sca3000_ring_int_process
  21. sca3000_event_handler
  22. sca3000_read_event_config
  23. sca3000_freefall_set_state
  24. sca3000_motion_detect_set_state
  25. sca3000_write_event_config
  26. sca3000_configure_ring
  27. __sca3000_hw_ring_state_set
  28. sca3000_hw_ring_preenable
  29. sca3000_hw_ring_postdisable
  30. sca3000_clean_setup
  31. sca3000_probe
  32. sca3000_stop_all_interrupts
  33. sca3000_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
   4  *
   5  * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
   6  *
   7  * See industrialio/accels/sca3000.h for comments.
   8  */
   9 
  10 #include <linux/interrupt.h>
  11 #include <linux/fs.h>
  12 #include <linux/device.h>
  13 #include <linux/slab.h>
  14 #include <linux/kernel.h>
  15 #include <linux/spi/spi.h>
  16 #include <linux/sysfs.h>
  17 #include <linux/module.h>
  18 #include <linux/uaccess.h>
  19 #include <linux/iio/iio.h>
  20 #include <linux/iio/sysfs.h>
  21 #include <linux/iio/events.h>
  22 #include <linux/iio/buffer.h>
  23 #include <linux/iio/kfifo_buf.h>
  24 
  25 #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
  26 #define SCA3000_READ_REG(a) ((a) << 2)
  27 
  28 #define SCA3000_REG_REVID_ADDR                          0x00
  29 #define   SCA3000_REG_REVID_MAJOR_MASK                  GENMASK(8, 4)
  30 #define   SCA3000_REG_REVID_MINOR_MASK                  GENMASK(3, 0)
  31 
  32 #define SCA3000_REG_STATUS_ADDR                         0x02
  33 #define   SCA3000_LOCKED                                BIT(5)
  34 #define   SCA3000_EEPROM_CS_ERROR                       BIT(1)
  35 #define   SCA3000_SPI_FRAME_ERROR                       BIT(0)
  36 
  37 /* All reads done using register decrement so no need to directly access LSBs */
  38 #define SCA3000_REG_X_MSB_ADDR                          0x05
  39 #define SCA3000_REG_Y_MSB_ADDR                          0x07
  40 #define SCA3000_REG_Z_MSB_ADDR                          0x09
  41 
  42 #define SCA3000_REG_RING_OUT_ADDR                       0x0f
  43 
  44 /* Temp read untested - the e05 doesn't have the sensor */
  45 #define SCA3000_REG_TEMP_MSB_ADDR                       0x13
  46 
  47 #define SCA3000_REG_MODE_ADDR                           0x14
  48 #define SCA3000_MODE_PROT_MASK                          0x28
  49 #define   SCA3000_REG_MODE_RING_BUF_ENABLE              BIT(7)
  50 #define   SCA3000_REG_MODE_RING_BUF_8BIT                BIT(6)
  51 
  52 /*
  53  * Free fall detection triggers an interrupt if the acceleration
  54  * is below a threshold for equivalent of 25cm drop
  55  */
  56 #define   SCA3000_REG_MODE_FREE_FALL_DETECT             BIT(4)
  57 #define   SCA3000_REG_MODE_MEAS_MODE_NORMAL             0x00
  58 #define   SCA3000_REG_MODE_MEAS_MODE_OP_1               0x01
  59 #define   SCA3000_REG_MODE_MEAS_MODE_OP_2               0x02
  60 
  61 /*
  62  * In motion detection mode the accelerations are band pass filtered
  63  * (approx 1 - 25Hz) and then a programmable threshold used to trigger
  64  * and interrupt.
  65  */
  66 #define   SCA3000_REG_MODE_MEAS_MODE_MOT_DET            0x03
  67 #define   SCA3000_REG_MODE_MODE_MASK                    0x03
  68 
  69 #define SCA3000_REG_BUF_COUNT_ADDR                      0x15
  70 
  71 #define SCA3000_REG_INT_STATUS_ADDR                     0x16
  72 #define   SCA3000_REG_INT_STATUS_THREE_QUARTERS         BIT(7)
  73 #define   SCA3000_REG_INT_STATUS_HALF                   BIT(6)
  74 
  75 #define SCA3000_INT_STATUS_FREE_FALL                    BIT(3)
  76 #define SCA3000_INT_STATUS_Y_TRIGGER                    BIT(2)
  77 #define SCA3000_INT_STATUS_X_TRIGGER                    BIT(1)
  78 #define SCA3000_INT_STATUS_Z_TRIGGER                    BIT(0)
  79 
  80 /* Used to allow access to multiplexed registers */
  81 #define SCA3000_REG_CTRL_SEL_ADDR                       0x18
  82 /* Only available for SCA3000-D03 and SCA3000-D01 */
  83 #define   SCA3000_REG_CTRL_SEL_I2C_DISABLE              0x01
  84 #define   SCA3000_REG_CTRL_SEL_MD_CTRL                  0x02
  85 #define   SCA3000_REG_CTRL_SEL_MD_Y_TH                  0x03
  86 #define   SCA3000_REG_CTRL_SEL_MD_X_TH                  0x04
  87 #define   SCA3000_REG_CTRL_SEL_MD_Z_TH                  0x05
  88 /*
  89  * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
  90  * will not function
  91  */
  92 #define   SCA3000_REG_CTRL_SEL_OUT_CTRL                 0x0B
  93 
  94 #define     SCA3000_REG_OUT_CTRL_PROT_MASK              0xE0
  95 #define     SCA3000_REG_OUT_CTRL_BUF_X_EN               0x10
  96 #define     SCA3000_REG_OUT_CTRL_BUF_Y_EN               0x08
  97 #define     SCA3000_REG_OUT_CTRL_BUF_Z_EN               0x04
  98 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_MASK           0x03
  99 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_4              0x02
 100 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_2              0x01
 101 
 102 
 103 /*
 104  * Control which motion detector interrupts are on.
 105  * For now only OR combinations are supported.
 106  */
 107 #define SCA3000_MD_CTRL_PROT_MASK                       0xC0
 108 #define SCA3000_MD_CTRL_OR_Y                            BIT(0)
 109 #define SCA3000_MD_CTRL_OR_X                            BIT(1)
 110 #define SCA3000_MD_CTRL_OR_Z                            BIT(2)
 111 /* Currently unsupported */
 112 #define SCA3000_MD_CTRL_AND_Y                           BIT(3)
 113 #define SCA3000_MD_CTRL_AND_X                           BIT(4)
 114 #define SCA3000_MD_CTRL_AND_Z                           BIT(5)
 115 
 116 /*
 117  * Some control registers of complex access methods requiring this register to
 118  * be used to remove a lock.
 119  */
 120 #define SCA3000_REG_UNLOCK_ADDR                         0x1e
 121 
 122 #define SCA3000_REG_INT_MASK_ADDR                       0x21
 123 #define   SCA3000_REG_INT_MASK_PROT_MASK                0x1C
 124 
 125 #define   SCA3000_REG_INT_MASK_RING_THREE_QUARTER       BIT(7)
 126 #define   SCA3000_REG_INT_MASK_RING_HALF                BIT(6)
 127 
 128 #define SCA3000_REG_INT_MASK_ALL_INTS                   0x02
 129 #define SCA3000_REG_INT_MASK_ACTIVE_HIGH                0x01
 130 #define SCA3000_REG_INT_MASK_ACTIVE_LOW                 0x00
 131 /* Values of multiplexed registers (write to ctrl_data after select) */
 132 #define SCA3000_REG_CTRL_DATA_ADDR                      0x22
 133 
 134 /*
 135  * Measurement modes available on some sca3000 series chips. Code assumes others
 136  * may become available in the future.
 137  *
 138  * Bypass - Bypass the low-pass filter in the signal channel so as to increase
 139  *          signal bandwidth.
 140  *
 141  * Narrow - Narrow low-pass filtering of the signal channel and half output
 142  *          data rate by decimation.
 143  *
 144  * Wide - Widen low-pass filtering of signal channel to increase bandwidth
 145  */
 146 #define SCA3000_OP_MODE_BYPASS                          0x01
 147 #define SCA3000_OP_MODE_NARROW                          0x02
 148 #define SCA3000_OP_MODE_WIDE                            0x04
 149 #define SCA3000_MAX_TX 6
 150 #define SCA3000_MAX_RX 2
 151 
 152 /**
 153  * struct sca3000_state - device instance state information
 154  * @us:                 the associated spi device
 155  * @info:                       chip variant information
 156  * @last_timestamp:             the timestamp of the last event
 157  * @mo_det_use_count:           reference counter for the motion detection unit
 158  * @lock:                       lock used to protect elements of sca3000_state
 159  *                              and the underlying device state.
 160  * @tx:                 dma-able transmit buffer
 161  * @rx:                 dma-able receive buffer
 162  **/
 163 struct sca3000_state {
 164         struct spi_device               *us;
 165         const struct sca3000_chip_info  *info;
 166         s64                             last_timestamp;
 167         int                             mo_det_use_count;
 168         struct mutex                    lock;
 169         /* Can these share a cacheline ? */
 170         u8                              rx[384] ____cacheline_aligned;
 171         u8                              tx[6] ____cacheline_aligned;
 172 };
 173 
 174 /**
 175  * struct sca3000_chip_info - model dependent parameters
 176  * @scale:                      scale * 10^-6
 177  * @temp_output:                some devices have temperature sensors.
 178  * @measurement_mode_freq:      normal mode sampling frequency
 179  * @measurement_mode_3db_freq:  3db cutoff frequency of the low pass filter for
 180  * the normal measurement mode.
 181  * @option_mode_1:              first optional mode. Not all models have one
 182  * @option_mode_1_freq:         option mode 1 sampling frequency
 183  * @option_mode_1_3db_freq:     3db cutoff frequency of the low pass filter for
 184  * the first option mode.
 185  * @option_mode_2:              second optional mode. Not all chips have one
 186  * @option_mode_2_freq:         option mode 2 sampling frequency
 187  * @option_mode_2_3db_freq:     3db cutoff frequency of the low pass filter for
 188  * the second option mode.
 189  * @mod_det_mult_xz:            Bit wise multipliers to calculate the threshold
 190  * for motion detection in the x and z axis.
 191  * @mod_det_mult_y:             Bit wise multipliers to calculate the threshold
 192  * for motion detection in the y axis.
 193  *
 194  * This structure is used to hold information about the functionality of a given
 195  * sca3000 variant.
 196  **/
 197 struct sca3000_chip_info {
 198         unsigned int            scale;
 199         bool                    temp_output;
 200         int                     measurement_mode_freq;
 201         int                     measurement_mode_3db_freq;
 202         int                     option_mode_1;
 203         int                     option_mode_1_freq;
 204         int                     option_mode_1_3db_freq;
 205         int                     option_mode_2;
 206         int                     option_mode_2_freq;
 207         int                     option_mode_2_3db_freq;
 208         int                     mot_det_mult_xz[6];
 209         int                     mot_det_mult_y[7];
 210 };
 211 
 212 enum sca3000_variant {
 213         d01,
 214         e02,
 215         e04,
 216         e05,
 217 };
 218 
 219 /*
 220  * Note where option modes are not defined, the chip simply does not
 221  * support any.
 222  * Other chips in the sca3000 series use i2c and are not included here.
 223  *
 224  * Some of these devices are only listed in the family data sheet and
 225  * do not actually appear to be available.
 226  */
 227 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
 228         [d01] = {
 229                 .scale = 7357,
 230                 .temp_output = true,
 231                 .measurement_mode_freq = 250,
 232                 .measurement_mode_3db_freq = 45,
 233                 .option_mode_1 = SCA3000_OP_MODE_BYPASS,
 234                 .option_mode_1_freq = 250,
 235                 .option_mode_1_3db_freq = 70,
 236                 .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
 237                 .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
 238         },
 239         [e02] = {
 240                 .scale = 9810,
 241                 .measurement_mode_freq = 125,
 242                 .measurement_mode_3db_freq = 40,
 243                 .option_mode_1 = SCA3000_OP_MODE_NARROW,
 244                 .option_mode_1_freq = 63,
 245                 .option_mode_1_3db_freq = 11,
 246                 .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
 247                 .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
 248         },
 249         [e04] = {
 250                 .scale = 19620,
 251                 .measurement_mode_freq = 100,
 252                 .measurement_mode_3db_freq = 38,
 253                 .option_mode_1 = SCA3000_OP_MODE_NARROW,
 254                 .option_mode_1_freq = 50,
 255                 .option_mode_1_3db_freq = 9,
 256                 .option_mode_2 = SCA3000_OP_MODE_WIDE,
 257                 .option_mode_2_freq = 400,
 258                 .option_mode_2_3db_freq = 70,
 259                 .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
 260                 .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
 261         },
 262         [e05] = {
 263                 .scale = 61313,
 264                 .measurement_mode_freq = 200,
 265                 .measurement_mode_3db_freq = 60,
 266                 .option_mode_1 = SCA3000_OP_MODE_NARROW,
 267                 .option_mode_1_freq = 50,
 268                 .option_mode_1_3db_freq = 9,
 269                 .option_mode_2 = SCA3000_OP_MODE_WIDE,
 270                 .option_mode_2_freq = 400,
 271                 .option_mode_2_3db_freq = 75,
 272                 .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
 273                 .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
 274         },
 275 };
 276 
 277 static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
 278 {
 279         st->tx[0] = SCA3000_WRITE_REG(address);
 280         st->tx[1] = val;
 281         return spi_write(st->us, st->tx, 2);
 282 }
 283 
 284 static int sca3000_read_data_short(struct sca3000_state *st,
 285                                    u8 reg_address_high,
 286                                    int len)
 287 {
 288         struct spi_transfer xfer[2] = {
 289                 {
 290                         .len = 1,
 291                         .tx_buf = st->tx,
 292                 }, {
 293                         .len = len,
 294                         .rx_buf = st->rx,
 295                 }
 296         };
 297         st->tx[0] = SCA3000_READ_REG(reg_address_high);
 298 
 299         return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
 300 }
 301 
 302 /**
 303  * sca3000_reg_lock_on() - test if the ctrl register lock is on
 304  * @st: Driver specific device instance data.
 305  *
 306  * Lock must be held.
 307  **/
 308 static int sca3000_reg_lock_on(struct sca3000_state *st)
 309 {
 310         int ret;
 311 
 312         ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
 313         if (ret < 0)
 314                 return ret;
 315 
 316         return !(st->rx[0] & SCA3000_LOCKED);
 317 }
 318 
 319 /**
 320  * __sca3000_unlock_reg_lock() - unlock the control registers
 321  * @st: Driver specific device instance data.
 322  *
 323  * Note the device does not appear to support doing this in a single transfer.
 324  * This should only ever be used as part of ctrl reg read.
 325  * Lock must be held before calling this
 326  */
 327 static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
 328 {
 329         struct spi_transfer xfer[3] = {
 330                 {
 331                         .len = 2,
 332                         .cs_change = 1,
 333                         .tx_buf = st->tx,
 334                 }, {
 335                         .len = 2,
 336                         .cs_change = 1,
 337                         .tx_buf = st->tx + 2,
 338                 }, {
 339                         .len = 2,
 340                         .tx_buf = st->tx + 4,
 341                 },
 342         };
 343         st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
 344         st->tx[1] = 0x00;
 345         st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
 346         st->tx[3] = 0x50;
 347         st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
 348         st->tx[5] = 0xA0;
 349 
 350         return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
 351 }
 352 
 353 /**
 354  * sca3000_write_ctrl_reg() write to a lock protect ctrl register
 355  * @st: Driver specific device instance data.
 356  * @sel: selects which registers we wish to write to
 357  * @val: the value to be written
 358  *
 359  * Certain control registers are protected against overwriting by the lock
 360  * register and use a shared write address. This function allows writing of
 361  * these registers.
 362  * Lock must be held.
 363  */
 364 static int sca3000_write_ctrl_reg(struct sca3000_state *st,
 365                                   u8 sel,
 366                                   uint8_t val)
 367 {
 368         int ret;
 369 
 370         ret = sca3000_reg_lock_on(st);
 371         if (ret < 0)
 372                 goto error_ret;
 373         if (ret) {
 374                 ret = __sca3000_unlock_reg_lock(st);
 375                 if (ret)
 376                         goto error_ret;
 377         }
 378 
 379         /* Set the control select register */
 380         ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
 381         if (ret)
 382                 goto error_ret;
 383 
 384         /* Write the actual value into the register */
 385         ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
 386 
 387 error_ret:
 388         return ret;
 389 }
 390 
 391 /**
 392  * sca3000_read_ctrl_reg() read from lock protected control register.
 393  * @st: Driver specific device instance data.
 394  * @ctrl_reg: Which ctrl register do we want to read.
 395  *
 396  * Lock must be held.
 397  */
 398 static int sca3000_read_ctrl_reg(struct sca3000_state *st,
 399                                  u8 ctrl_reg)
 400 {
 401         int ret;
 402 
 403         ret = sca3000_reg_lock_on(st);
 404         if (ret < 0)
 405                 goto error_ret;
 406         if (ret) {
 407                 ret = __sca3000_unlock_reg_lock(st);
 408                 if (ret)
 409                         goto error_ret;
 410         }
 411         /* Set the control select register */
 412         ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
 413         if (ret)
 414                 goto error_ret;
 415         ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
 416         if (ret)
 417                 goto error_ret;
 418         return st->rx[0];
 419 error_ret:
 420         return ret;
 421 }
 422 
 423 /**
 424  * sca3000_show_rev() - sysfs interface to read the chip revision number
 425  * @indio_dev: Device instance specific generic IIO data.
 426  * Driver specific device instance data can be obtained via
 427  * via iio_priv(indio_dev)
 428  */
 429 static int sca3000_print_rev(struct iio_dev *indio_dev)
 430 {
 431         int ret;
 432         struct sca3000_state *st = iio_priv(indio_dev);
 433 
 434         mutex_lock(&st->lock);
 435         ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
 436         if (ret < 0)
 437                 goto error_ret;
 438         dev_info(&indio_dev->dev,
 439                  "sca3000 revision major=%lu, minor=%lu\n",
 440                  st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
 441                  st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
 442 error_ret:
 443         mutex_unlock(&st->lock);
 444 
 445         return ret;
 446 }
 447 
 448 static ssize_t
 449 sca3000_show_available_3db_freqs(struct device *dev,
 450                                  struct device_attribute *attr,
 451                                  char *buf)
 452 {
 453         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 454         struct sca3000_state *st = iio_priv(indio_dev);
 455         int len;
 456 
 457         len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
 458         if (st->info->option_mode_1)
 459                 len += sprintf(buf + len, " %d",
 460                                st->info->option_mode_1_3db_freq);
 461         if (st->info->option_mode_2)
 462                 len += sprintf(buf + len, " %d",
 463                                st->info->option_mode_2_3db_freq);
 464         len += sprintf(buf + len, "\n");
 465 
 466         return len;
 467 }
 468 
 469 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
 470                        S_IRUGO, sca3000_show_available_3db_freqs,
 471                        NULL, 0);
 472 
 473 static const struct iio_event_spec sca3000_event = {
 474         .type = IIO_EV_TYPE_MAG,
 475         .dir = IIO_EV_DIR_RISING,
 476         .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
 477 };
 478 
 479 /*
 480  * Note the hack in the number of bits to pretend we have 2 more than
 481  * we do in the fifo.
 482  */
 483 #define SCA3000_CHAN(index, mod)                                \
 484         {                                                       \
 485                 .type = IIO_ACCEL,                              \
 486                 .modified = 1,                                  \
 487                 .channel2 = mod,                                \
 488                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),   \
 489                 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
 490                         BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
 491                 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
 492                 .address = index,                               \
 493                 .scan_index = index,                            \
 494                 .scan_type = {                                  \
 495                         .sign = 's',                            \
 496                         .realbits = 13,                         \
 497                         .storagebits = 16,                      \
 498                         .shift = 3,                             \
 499                         .endianness = IIO_BE,                   \
 500                 },                                              \
 501                 .event_spec = &sca3000_event,                   \
 502                 .num_event_specs = 1,                           \
 503         }
 504 
 505 static const struct iio_event_spec sca3000_freefall_event_spec = {
 506         .type = IIO_EV_TYPE_MAG,
 507         .dir = IIO_EV_DIR_FALLING,
 508         .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
 509                 BIT(IIO_EV_INFO_PERIOD),
 510 };
 511 
 512 static const struct iio_chan_spec sca3000_channels[] = {
 513         SCA3000_CHAN(0, IIO_MOD_X),
 514         SCA3000_CHAN(1, IIO_MOD_Y),
 515         SCA3000_CHAN(2, IIO_MOD_Z),
 516         {
 517                 .type = IIO_ACCEL,
 518                 .modified = 1,
 519                 .channel2 = IIO_MOD_X_AND_Y_AND_Z,
 520                 .scan_index = -1, /* Fake channel */
 521                 .event_spec = &sca3000_freefall_event_spec,
 522                 .num_event_specs = 1,
 523         },
 524 };
 525 
 526 static const struct iio_chan_spec sca3000_channels_with_temp[] = {
 527         SCA3000_CHAN(0, IIO_MOD_X),
 528         SCA3000_CHAN(1, IIO_MOD_Y),
 529         SCA3000_CHAN(2, IIO_MOD_Z),
 530         {
 531                 .type = IIO_TEMP,
 532                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
 533                 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
 534                         BIT(IIO_CHAN_INFO_OFFSET),
 535                 /* No buffer support */
 536                 .scan_index = -1,
 537         },
 538         {
 539                 .type = IIO_ACCEL,
 540                 .modified = 1,
 541                 .channel2 = IIO_MOD_X_AND_Y_AND_Z,
 542                 .scan_index = -1, /* Fake channel */
 543                 .event_spec = &sca3000_freefall_event_spec,
 544                 .num_event_specs = 1,
 545         },
 546 };
 547 
 548 static u8 sca3000_addresses[3][3] = {
 549         [0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
 550                SCA3000_MD_CTRL_OR_X},
 551         [1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
 552                SCA3000_MD_CTRL_OR_Y},
 553         [2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
 554                SCA3000_MD_CTRL_OR_Z},
 555 };
 556 
 557 /**
 558  * __sca3000_get_base_freq() - obtain mode specific base frequency
 559  * @st: Private driver specific device instance specific state.
 560  * @info: chip type specific information.
 561  * @base_freq: Base frequency for the current measurement mode.
 562  *
 563  * lock must be held
 564  */
 565 static inline int __sca3000_get_base_freq(struct sca3000_state *st,
 566                                           const struct sca3000_chip_info *info,
 567                                           int *base_freq)
 568 {
 569         int ret;
 570 
 571         ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
 572         if (ret)
 573                 goto error_ret;
 574         switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
 575         case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
 576                 *base_freq = info->measurement_mode_freq;
 577                 break;
 578         case SCA3000_REG_MODE_MEAS_MODE_OP_1:
 579                 *base_freq = info->option_mode_1_freq;
 580                 break;
 581         case SCA3000_REG_MODE_MEAS_MODE_OP_2:
 582                 *base_freq = info->option_mode_2_freq;
 583                 break;
 584         default:
 585                 ret = -EINVAL;
 586         }
 587 error_ret:
 588         return ret;
 589 }
 590 
 591 /**
 592  * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
 593  * @st: Private driver specific device instance specific state.
 594  * @val: The frequency read back.
 595  *
 596  * lock must be held
 597  **/
 598 static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
 599 {
 600         int ret;
 601 
 602         ret = __sca3000_get_base_freq(st, st->info, val);
 603         if (ret)
 604                 return ret;
 605 
 606         ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
 607         if (ret < 0)
 608                 return ret;
 609 
 610         if (*val > 0) {
 611                 ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
 612                 switch (ret) {
 613                 case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
 614                         *val /= 2;
 615                         break;
 616                 case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
 617                         *val /= 4;
 618                         break;
 619                 }
 620         }
 621 
 622         return 0;
 623 }
 624 
 625 /**
 626  * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
 627  * @st: Private driver specific device instance specific state.
 628  * @val: The frequency desired.
 629  *
 630  * lock must be held
 631  */
 632 static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
 633 {
 634         int ret, base_freq, ctrlval;
 635 
 636         ret = __sca3000_get_base_freq(st, st->info, &base_freq);
 637         if (ret)
 638                 return ret;
 639 
 640         ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
 641         if (ret < 0)
 642                 return ret;
 643 
 644         ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
 645 
 646         if (val == base_freq / 2)
 647                 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
 648         if (val == base_freq / 4)
 649                 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
 650         else if (val != base_freq)
 651                 return -EINVAL;
 652 
 653         return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
 654                                      ctrlval);
 655 }
 656 
 657 static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
 658 {
 659         int ret;
 660 
 661         ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
 662         if (ret)
 663                 return ret;
 664 
 665         /* mask bottom 2 bits - only ones that are relevant */
 666         st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
 667         switch (st->rx[0]) {
 668         case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
 669                 *val = st->info->measurement_mode_3db_freq;
 670                 return IIO_VAL_INT;
 671         case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
 672                 return -EBUSY;
 673         case SCA3000_REG_MODE_MEAS_MODE_OP_1:
 674                 *val = st->info->option_mode_1_3db_freq;
 675                 return IIO_VAL_INT;
 676         case SCA3000_REG_MODE_MEAS_MODE_OP_2:
 677                 *val = st->info->option_mode_2_3db_freq;
 678                 return IIO_VAL_INT;
 679         default:
 680                 return -EINVAL;
 681         }
 682 }
 683 
 684 static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
 685 {
 686         int ret;
 687         int mode;
 688 
 689         if (val == st->info->measurement_mode_3db_freq)
 690                 mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
 691         else if (st->info->option_mode_1 &&
 692                  (val == st->info->option_mode_1_3db_freq))
 693                 mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
 694         else if (st->info->option_mode_2 &&
 695                  (val == st->info->option_mode_2_3db_freq))
 696                 mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
 697         else
 698                 return -EINVAL;
 699         ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
 700         if (ret)
 701                 return ret;
 702 
 703         st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
 704         st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
 705 
 706         return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
 707 }
 708 
 709 static int sca3000_read_raw(struct iio_dev *indio_dev,
 710                             struct iio_chan_spec const *chan,
 711                             int *val,
 712                             int *val2,
 713                             long mask)
 714 {
 715         struct sca3000_state *st = iio_priv(indio_dev);
 716         int ret;
 717         u8 address;
 718 
 719         switch (mask) {
 720         case IIO_CHAN_INFO_RAW:
 721                 mutex_lock(&st->lock);
 722                 if (chan->type == IIO_ACCEL) {
 723                         if (st->mo_det_use_count) {
 724                                 mutex_unlock(&st->lock);
 725                                 return -EBUSY;
 726                         }
 727                         address = sca3000_addresses[chan->address][0];
 728                         ret = sca3000_read_data_short(st, address, 2);
 729                         if (ret < 0) {
 730                                 mutex_unlock(&st->lock);
 731                                 return ret;
 732                         }
 733                         *val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
 734                         *val = ((*val) << (sizeof(*val) * 8 - 13)) >>
 735                                 (sizeof(*val) * 8 - 13);
 736                 } else {
 737                         /* get the temperature when available */
 738                         ret = sca3000_read_data_short(st,
 739                                                       SCA3000_REG_TEMP_MSB_ADDR,
 740                                                       2);
 741                         if (ret < 0) {
 742                                 mutex_unlock(&st->lock);
 743                                 return ret;
 744                         }
 745                         *val = ((st->rx[0] & 0x3F) << 3) |
 746                                ((st->rx[1] & 0xE0) >> 5);
 747                 }
 748                 mutex_unlock(&st->lock);
 749                 return IIO_VAL_INT;
 750         case IIO_CHAN_INFO_SCALE:
 751                 *val = 0;
 752                 if (chan->type == IIO_ACCEL)
 753                         *val2 = st->info->scale;
 754                 else /* temperature */
 755                         *val2 = 555556;
 756                 return IIO_VAL_INT_PLUS_MICRO;
 757         case IIO_CHAN_INFO_OFFSET:
 758                 *val = -214;
 759                 *val2 = 600000;
 760                 return IIO_VAL_INT_PLUS_MICRO;
 761         case IIO_CHAN_INFO_SAMP_FREQ:
 762                 mutex_lock(&st->lock);
 763                 ret = sca3000_read_raw_samp_freq(st, val);
 764                 mutex_unlock(&st->lock);
 765                 return ret ? ret : IIO_VAL_INT;
 766         case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
 767                 mutex_lock(&st->lock);
 768                 ret = sca3000_read_3db_freq(st, val);
 769                 mutex_unlock(&st->lock);
 770                 return ret;
 771         default:
 772                 return -EINVAL;
 773         }
 774 }
 775 
 776 static int sca3000_write_raw(struct iio_dev *indio_dev,
 777                              struct iio_chan_spec const *chan,
 778                              int val, int val2, long mask)
 779 {
 780         struct sca3000_state *st = iio_priv(indio_dev);
 781         int ret;
 782 
 783         switch (mask) {
 784         case IIO_CHAN_INFO_SAMP_FREQ:
 785                 if (val2)
 786                         return -EINVAL;
 787                 mutex_lock(&st->lock);
 788                 ret = sca3000_write_raw_samp_freq(st, val);
 789                 mutex_unlock(&st->lock);
 790                 return ret;
 791         case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
 792                 if (val2)
 793                         return -EINVAL;
 794                 mutex_lock(&st->lock);
 795                 ret = sca3000_write_3db_freq(st, val);
 796                 mutex_unlock(&st->lock);
 797                 return ret;
 798         default:
 799                 return -EINVAL;
 800         }
 801 
 802         return ret;
 803 }
 804 
 805 /**
 806  * sca3000_read_av_freq() - sysfs function to get available frequencies
 807  * @dev: Device structure for this device.
 808  * @attr: Description of the attribute.
 809  * @buf: Incoming string
 810  *
 811  * The later modes are only relevant to the ring buffer - and depend on current
 812  * mode. Note that data sheet gives rather wide tolerances for these so integer
 813  * division will give good enough answer and not all chips have them specified
 814  * at all.
 815  **/
 816 static ssize_t sca3000_read_av_freq(struct device *dev,
 817                                     struct device_attribute *attr,
 818                                     char *buf)
 819 {
 820         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 821         struct sca3000_state *st = iio_priv(indio_dev);
 822         int len = 0, ret, val;
 823 
 824         mutex_lock(&st->lock);
 825         ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
 826         val = st->rx[0];
 827         mutex_unlock(&st->lock);
 828         if (ret)
 829                 goto error_ret;
 830 
 831         switch (val & SCA3000_REG_MODE_MODE_MASK) {
 832         case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
 833                 len += sprintf(buf + len, "%d %d %d\n",
 834                                st->info->measurement_mode_freq,
 835                                st->info->measurement_mode_freq / 2,
 836                                st->info->measurement_mode_freq / 4);
 837                 break;
 838         case SCA3000_REG_MODE_MEAS_MODE_OP_1:
 839                 len += sprintf(buf + len, "%d %d %d\n",
 840                                st->info->option_mode_1_freq,
 841                                st->info->option_mode_1_freq / 2,
 842                                st->info->option_mode_1_freq / 4);
 843                 break;
 844         case SCA3000_REG_MODE_MEAS_MODE_OP_2:
 845                 len += sprintf(buf + len, "%d %d %d\n",
 846                                st->info->option_mode_2_freq,
 847                                st->info->option_mode_2_freq / 2,
 848                                st->info->option_mode_2_freq / 4);
 849                 break;
 850         }
 851         return len;
 852 error_ret:
 853         return ret;
 854 }
 855 
 856 /*
 857  * Should only really be registered if ring buffer support is compiled in.
 858  * Does no harm however and doing it right would add a fair bit of complexity
 859  */
 860 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
 861 
 862 /**
 863  * sca3000_read_event_value() - query of a threshold or period
 864  **/
 865 static int sca3000_read_event_value(struct iio_dev *indio_dev,
 866                                     const struct iio_chan_spec *chan,
 867                                     enum iio_event_type type,
 868                                     enum iio_event_direction dir,
 869                                     enum iio_event_info info,
 870                                     int *val, int *val2)
 871 {
 872         struct sca3000_state *st = iio_priv(indio_dev);
 873         long ret;
 874         int i;
 875 
 876         switch (info) {
 877         case IIO_EV_INFO_VALUE:
 878                 mutex_lock(&st->lock);
 879                 ret = sca3000_read_ctrl_reg(st,
 880                                             sca3000_addresses[chan->address][1]);
 881                 mutex_unlock(&st->lock);
 882                 if (ret < 0)
 883                         return ret;
 884                 *val = 0;
 885                 if (chan->channel2 == IIO_MOD_Y)
 886                         for_each_set_bit(i, &ret,
 887                                          ARRAY_SIZE(st->info->mot_det_mult_y))
 888                                 *val += st->info->mot_det_mult_y[i];
 889                 else
 890                         for_each_set_bit(i, &ret,
 891                                          ARRAY_SIZE(st->info->mot_det_mult_xz))
 892                                 *val += st->info->mot_det_mult_xz[i];
 893 
 894                 return IIO_VAL_INT;
 895         case IIO_EV_INFO_PERIOD:
 896                 *val = 0;
 897                 *val2 = 226000;
 898                 return IIO_VAL_INT_PLUS_MICRO;
 899         default:
 900                 return -EINVAL;
 901         }
 902 }
 903 
 904 /**
 905  * sca3000_write_value() - control of threshold and period
 906  * @indio_dev: Device instance specific IIO information.
 907  * @chan: Description of the channel for which the event is being
 908  * configured.
 909  * @type: The type of event being configured, here magnitude rising
 910  * as everything else is read only.
 911  * @dir: Direction of the event (here rising)
 912  * @info: What information about the event are we configuring.
 913  * Here the threshold only.
 914  * @val: Integer part of the value being written..
 915  * @val2: Non integer part of the value being written. Here always 0.
 916  */
 917 static int sca3000_write_event_value(struct iio_dev *indio_dev,
 918                                      const struct iio_chan_spec *chan,
 919                                      enum iio_event_type type,
 920                                      enum iio_event_direction dir,
 921                                      enum iio_event_info info,
 922                                      int val, int val2)
 923 {
 924         struct sca3000_state *st = iio_priv(indio_dev);
 925         int ret;
 926         int i;
 927         u8 nonlinear = 0;
 928 
 929         if (chan->channel2 == IIO_MOD_Y) {
 930                 i = ARRAY_SIZE(st->info->mot_det_mult_y);
 931                 while (i > 0)
 932                         if (val >= st->info->mot_det_mult_y[--i]) {
 933                                 nonlinear |= (1 << i);
 934                                 val -= st->info->mot_det_mult_y[i];
 935                         }
 936         } else {
 937                 i = ARRAY_SIZE(st->info->mot_det_mult_xz);
 938                 while (i > 0)
 939                         if (val >= st->info->mot_det_mult_xz[--i]) {
 940                                 nonlinear |= (1 << i);
 941                                 val -= st->info->mot_det_mult_xz[i];
 942                         }
 943         }
 944 
 945         mutex_lock(&st->lock);
 946         ret = sca3000_write_ctrl_reg(st,
 947                                      sca3000_addresses[chan->address][1],
 948                                      nonlinear);
 949         mutex_unlock(&st->lock);
 950 
 951         return ret;
 952 }
 953 
 954 static struct attribute *sca3000_attributes[] = {
 955         &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
 956         &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
 957         NULL,
 958 };
 959 
 960 static const struct attribute_group sca3000_attribute_group = {
 961         .attrs = sca3000_attributes,
 962 };
 963 
 964 static int sca3000_read_data(struct sca3000_state *st,
 965                              u8 reg_address_high,
 966                              u8 *rx,
 967                              int len)
 968 {
 969         int ret;
 970         struct spi_transfer xfer[2] = {
 971                 {
 972                         .len = 1,
 973                         .tx_buf = st->tx,
 974                 }, {
 975                         .len = len,
 976                         .rx_buf = rx,
 977                 }
 978         };
 979 
 980         st->tx[0] = SCA3000_READ_REG(reg_address_high);
 981         ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
 982         if (ret) {
 983                 dev_err(&st->us->dev, "problem reading register\n");
 984                 return ret;
 985         }
 986 
 987         return 0;
 988 }
 989 
 990 /**
 991  * sca3000_ring_int_process() - ring specific interrupt handling.
 992  * @val: Value of the interrupt status register.
 993  * @indio_dev: Device instance specific IIO device structure.
 994  */
 995 static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
 996 {
 997         struct sca3000_state *st = iio_priv(indio_dev);
 998         int ret, i, num_available;
 999 
1000         mutex_lock(&st->lock);
1001 
1002         if (val & SCA3000_REG_INT_STATUS_HALF) {
1003                 ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1004                                               1);
1005                 if (ret)
1006                         goto error_ret;
1007                 num_available = st->rx[0];
1008                 /*
1009                  * num_available is the total number of samples available
1010                  * i.e. number of time points * number of channels.
1011                  */
1012                 ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1013                                         num_available * 2);
1014                 if (ret)
1015                         goto error_ret;
1016                 for (i = 0; i < num_available / 3; i++) {
1017                         /*
1018                          * Dirty hack to cover for 11 bit in fifo, 13 bit
1019                          * direct reading.
1020                          *
1021                          * In theory the bottom two bits are undefined.
1022                          * In reality they appear to always be 0.
1023                          */
1024                         iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1025                 }
1026         }
1027 error_ret:
1028         mutex_unlock(&st->lock);
1029 }
1030 
1031 /**
1032  * sca3000_event_handler() - handling ring and non ring events
1033  * @irq: The irq being handled.
1034  * @private: struct iio_device pointer for the device.
1035  *
1036  * Ring related interrupt handler. Depending on event, push to
1037  * the ring buffer event chrdev or the event one.
1038  *
1039  * This function is complicated by the fact that the devices can signify ring
1040  * and non ring events via the same interrupt line and they can only
1041  * be distinguished via a read of the relevant status register.
1042  */
1043 static irqreturn_t sca3000_event_handler(int irq, void *private)
1044 {
1045         struct iio_dev *indio_dev = private;
1046         struct sca3000_state *st = iio_priv(indio_dev);
1047         int ret, val;
1048         s64 last_timestamp = iio_get_time_ns(indio_dev);
1049 
1050         /*
1051          * Could lead if badly timed to an extra read of status reg,
1052          * but ensures no interrupt is missed.
1053          */
1054         mutex_lock(&st->lock);
1055         ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1056         val = st->rx[0];
1057         mutex_unlock(&st->lock);
1058         if (ret)
1059                 goto done;
1060 
1061         sca3000_ring_int_process(val, indio_dev);
1062 
1063         if (val & SCA3000_INT_STATUS_FREE_FALL)
1064                 iio_push_event(indio_dev,
1065                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1066                                                   0,
1067                                                   IIO_MOD_X_AND_Y_AND_Z,
1068                                                   IIO_EV_TYPE_MAG,
1069                                                   IIO_EV_DIR_FALLING),
1070                                last_timestamp);
1071 
1072         if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1073                 iio_push_event(indio_dev,
1074                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1075                                                   0,
1076                                                   IIO_MOD_Y,
1077                                                   IIO_EV_TYPE_MAG,
1078                                                   IIO_EV_DIR_RISING),
1079                                last_timestamp);
1080 
1081         if (val & SCA3000_INT_STATUS_X_TRIGGER)
1082                 iio_push_event(indio_dev,
1083                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1084                                                   0,
1085                                                   IIO_MOD_X,
1086                                                   IIO_EV_TYPE_MAG,
1087                                                   IIO_EV_DIR_RISING),
1088                                last_timestamp);
1089 
1090         if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1091                 iio_push_event(indio_dev,
1092                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1093                                                   0,
1094                                                   IIO_MOD_Z,
1095                                                   IIO_EV_TYPE_MAG,
1096                                                   IIO_EV_DIR_RISING),
1097                                last_timestamp);
1098 
1099 done:
1100         return IRQ_HANDLED;
1101 }
1102 
1103 /**
1104  * sca3000_read_event_config() what events are enabled
1105  **/
1106 static int sca3000_read_event_config(struct iio_dev *indio_dev,
1107                                      const struct iio_chan_spec *chan,
1108                                      enum iio_event_type type,
1109                                      enum iio_event_direction dir)
1110 {
1111         struct sca3000_state *st = iio_priv(indio_dev);
1112         int ret;
1113         /* read current value of mode register */
1114         mutex_lock(&st->lock);
1115 
1116         ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1117         if (ret)
1118                 goto error_ret;
1119 
1120         switch (chan->channel2) {
1121         case IIO_MOD_X_AND_Y_AND_Z:
1122                 ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1123                 break;
1124         case IIO_MOD_X:
1125         case IIO_MOD_Y:
1126         case IIO_MOD_Z:
1127                 /*
1128                  * Motion detection mode cannot run at the same time as
1129                  * acceleration data being read.
1130                  */
1131                 if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1132                     != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1133                         ret = 0;
1134                 } else {
1135                         ret = sca3000_read_ctrl_reg(st,
1136                                                 SCA3000_REG_CTRL_SEL_MD_CTRL);
1137                         if (ret < 0)
1138                                 goto error_ret;
1139                         /* only supporting logical or's for now */
1140                         ret = !!(ret & sca3000_addresses[chan->address][2]);
1141                 }
1142                 break;
1143         default:
1144                 ret = -EINVAL;
1145         }
1146 
1147 error_ret:
1148         mutex_unlock(&st->lock);
1149 
1150         return ret;
1151 }
1152 
1153 static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
1154 {
1155         struct sca3000_state *st = iio_priv(indio_dev);
1156         int ret;
1157 
1158         /* read current value of mode register */
1159         ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1160         if (ret)
1161                 return ret;
1162 
1163         /* if off and should be on */
1164         if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1165                 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1166                                          st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1167         /* if on and should be off */
1168         else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1169                 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1170                                          st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1171         else
1172                 return 0;
1173 }
1174 
1175 static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1176                                            int state)
1177 {
1178         struct sca3000_state *st = iio_priv(indio_dev);
1179         int ret, ctrlval;
1180 
1181         /*
1182          * First read the motion detector config to find out if
1183          * this axis is on
1184          */
1185         ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1186         if (ret < 0)
1187                 return ret;
1188         ctrlval = ret;
1189         /* if off and should be on */
1190         if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1191                 ret = sca3000_write_ctrl_reg(st,
1192                                              SCA3000_REG_CTRL_SEL_MD_CTRL,
1193                                              ctrlval |
1194                                              sca3000_addresses[axis][2]);
1195                 if (ret)
1196                         return ret;
1197                 st->mo_det_use_count++;
1198         } else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1199                 ret = sca3000_write_ctrl_reg(st,
1200                                              SCA3000_REG_CTRL_SEL_MD_CTRL,
1201                                              ctrlval &
1202                                              ~(sca3000_addresses[axis][2]));
1203                 if (ret)
1204                         return ret;
1205                 st->mo_det_use_count--;
1206         }
1207 
1208         /* read current value of mode register */
1209         ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1210         if (ret)
1211                 return ret;
1212         /* if off and should be on */
1213         if ((st->mo_det_use_count) &&
1214             ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1215              != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1216                 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1217                         (st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1218                         | SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1219         /* if on and should be off */
1220         else if (!(st->mo_det_use_count) &&
1221                  ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1222                   == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1223                 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1224                         st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1225         else
1226                 return 0;
1227 }
1228 
1229 /**
1230  * sca3000_write_event_config() - simple on off control for motion detector
1231  * @indio_dev: IIO device instance specific structure. Data specific to this
1232  * particular driver may be accessed via iio_priv(indio_dev).
1233  * @chan: Description of the channel whose event we are configuring.
1234  * @type: The type of event.
1235  * @dir: The direction of the event.
1236  * @state: Desired state of event being configured.
1237  *
1238  * This is a per axis control, but enabling any will result in the
1239  * motion detector unit being enabled.
1240  * N.B. enabling motion detector stops normal data acquisition.
1241  * There is a complexity in knowing which mode to return to when
1242  * this mode is disabled.  Currently normal mode is assumed.
1243  **/
1244 static int sca3000_write_event_config(struct iio_dev *indio_dev,
1245                                       const struct iio_chan_spec *chan,
1246                                       enum iio_event_type type,
1247                                       enum iio_event_direction dir,
1248                                       int state)
1249 {
1250         struct sca3000_state *st = iio_priv(indio_dev);
1251         int ret;
1252 
1253         mutex_lock(&st->lock);
1254         switch (chan->channel2) {
1255         case IIO_MOD_X_AND_Y_AND_Z:
1256                 ret = sca3000_freefall_set_state(indio_dev, state);
1257                 break;
1258 
1259         case IIO_MOD_X:
1260         case IIO_MOD_Y:
1261         case IIO_MOD_Z:
1262                 ret = sca3000_motion_detect_set_state(indio_dev,
1263                                                       chan->address,
1264                                                       state);
1265                 break;
1266         default:
1267                 ret = -EINVAL;
1268                 break;
1269         }
1270         mutex_unlock(&st->lock);
1271 
1272         return ret;
1273 }
1274 
1275 static int sca3000_configure_ring(struct iio_dev *indio_dev)
1276 {
1277         struct iio_buffer *buffer;
1278 
1279         buffer = devm_iio_kfifo_allocate(&indio_dev->dev);
1280         if (!buffer)
1281                 return -ENOMEM;
1282 
1283         iio_device_attach_buffer(indio_dev, buffer);
1284         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1285 
1286         return 0;
1287 }
1288 
1289 static inline
1290 int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1291 {
1292         struct sca3000_state *st = iio_priv(indio_dev);
1293         int ret;
1294 
1295         mutex_lock(&st->lock);
1296         ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1297         if (ret)
1298                 goto error_ret;
1299         if (state) {
1300                 dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1301                 ret = sca3000_write_reg(st,
1302                         SCA3000_REG_MODE_ADDR,
1303                         (st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1304         } else
1305                 ret = sca3000_write_reg(st,
1306                         SCA3000_REG_MODE_ADDR,
1307                         (st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1308 error_ret:
1309         mutex_unlock(&st->lock);
1310 
1311         return ret;
1312 }
1313 
1314 /**
1315  * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1316  * @indio_dev: structure representing the IIO device. Device instance
1317  * specific state can be accessed via iio_priv(indio_dev).
1318  *
1319  * Very simple enable function as the chip will allows normal reads
1320  * during ring buffer operation so as long as it is indeed running
1321  * before we notify the core, the precise ordering does not matter.
1322  */
1323 static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1324 {
1325         int ret;
1326         struct sca3000_state *st = iio_priv(indio_dev);
1327 
1328         mutex_lock(&st->lock);
1329 
1330         /* Enable the 50% full interrupt */
1331         ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1332         if (ret)
1333                 goto error_unlock;
1334         ret = sca3000_write_reg(st,
1335                                 SCA3000_REG_INT_MASK_ADDR,
1336                                 st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1337         if (ret)
1338                 goto error_unlock;
1339 
1340         mutex_unlock(&st->lock);
1341 
1342         return __sca3000_hw_ring_state_set(indio_dev, 1);
1343 
1344 error_unlock:
1345         mutex_unlock(&st->lock);
1346 
1347         return ret;
1348 }
1349 
1350 static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1351 {
1352         int ret;
1353         struct sca3000_state *st = iio_priv(indio_dev);
1354 
1355         ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1356         if (ret)
1357                 return ret;
1358 
1359         /* Disable the 50% full interrupt */
1360         mutex_lock(&st->lock);
1361 
1362         ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1363         if (ret)
1364                 goto unlock;
1365         ret = sca3000_write_reg(st,
1366                                 SCA3000_REG_INT_MASK_ADDR,
1367                                 st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1368 unlock:
1369         mutex_unlock(&st->lock);
1370         return ret;
1371 }
1372 
1373 static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1374         .preenable = &sca3000_hw_ring_preenable,
1375         .postdisable = &sca3000_hw_ring_postdisable,
1376 };
1377 
1378 /**
1379  * sca3000_clean_setup() - get the device into a predictable state
1380  * @st: Device instance specific private data structure
1381  *
1382  * Devices use flash memory to store many of the register values
1383  * and hence can come up in somewhat unpredictable states.
1384  * Hence reset everything on driver load.
1385  */
1386 static int sca3000_clean_setup(struct sca3000_state *st)
1387 {
1388         int ret;
1389 
1390         mutex_lock(&st->lock);
1391         /* Ensure all interrupts have been acknowledged */
1392         ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1393         if (ret)
1394                 goto error_ret;
1395 
1396         /* Turn off all motion detection channels */
1397         ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1398         if (ret < 0)
1399                 goto error_ret;
1400         ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1401                                      ret & SCA3000_MD_CTRL_PROT_MASK);
1402         if (ret)
1403                 goto error_ret;
1404 
1405         /* Disable ring buffer */
1406         ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1407         if (ret < 0)
1408                 goto error_ret;
1409         ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1410                                      (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1411                                      | SCA3000_REG_OUT_CTRL_BUF_X_EN
1412                                      | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1413                                      | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1414                                      | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1415         if (ret)
1416                 goto error_ret;
1417         /* Enable interrupts, relevant to mode and set up as active low */
1418         ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1419         if (ret)
1420                 goto error_ret;
1421         ret = sca3000_write_reg(st,
1422                                 SCA3000_REG_INT_MASK_ADDR,
1423                                 (ret & SCA3000_REG_INT_MASK_PROT_MASK)
1424                                 | SCA3000_REG_INT_MASK_ACTIVE_LOW);
1425         if (ret)
1426                 goto error_ret;
1427         /*
1428          * Select normal measurement mode, free fall off, ring off
1429          * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1430          * as that occurs in one of the example on the datasheet
1431          */
1432         ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1433         if (ret)
1434                 goto error_ret;
1435         ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1436                                 (st->rx[0] & SCA3000_MODE_PROT_MASK));
1437 
1438 error_ret:
1439         mutex_unlock(&st->lock);
1440         return ret;
1441 }
1442 
1443 static const struct iio_info sca3000_info = {
1444         .attrs = &sca3000_attribute_group,
1445         .read_raw = &sca3000_read_raw,
1446         .write_raw = &sca3000_write_raw,
1447         .read_event_value = &sca3000_read_event_value,
1448         .write_event_value = &sca3000_write_event_value,
1449         .read_event_config = &sca3000_read_event_config,
1450         .write_event_config = &sca3000_write_event_config,
1451 };
1452 
1453 static int sca3000_probe(struct spi_device *spi)
1454 {
1455         int ret;
1456         struct sca3000_state *st;
1457         struct iio_dev *indio_dev;
1458 
1459         indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1460         if (!indio_dev)
1461                 return -ENOMEM;
1462 
1463         st = iio_priv(indio_dev);
1464         spi_set_drvdata(spi, indio_dev);
1465         st->us = spi;
1466         mutex_init(&st->lock);
1467         st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1468                                               ->driver_data];
1469 
1470         indio_dev->dev.parent = &spi->dev;
1471         indio_dev->name = spi_get_device_id(spi)->name;
1472         indio_dev->info = &sca3000_info;
1473         if (st->info->temp_output) {
1474                 indio_dev->channels = sca3000_channels_with_temp;
1475                 indio_dev->num_channels =
1476                         ARRAY_SIZE(sca3000_channels_with_temp);
1477         } else {
1478                 indio_dev->channels = sca3000_channels;
1479                 indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1480         }
1481         indio_dev->modes = INDIO_DIRECT_MODE;
1482 
1483         ret = sca3000_configure_ring(indio_dev);
1484         if (ret)
1485                 return ret;
1486 
1487         if (spi->irq) {
1488                 ret = request_threaded_irq(spi->irq,
1489                                            NULL,
1490                                            &sca3000_event_handler,
1491                                            IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1492                                            "sca3000",
1493                                            indio_dev);
1494                 if (ret)
1495                         return ret;
1496         }
1497         indio_dev->setup_ops = &sca3000_ring_setup_ops;
1498         ret = sca3000_clean_setup(st);
1499         if (ret)
1500                 goto error_free_irq;
1501 
1502         ret = sca3000_print_rev(indio_dev);
1503         if (ret)
1504                 goto error_free_irq;
1505 
1506         return iio_device_register(indio_dev);
1507 
1508 error_free_irq:
1509         if (spi->irq)
1510                 free_irq(spi->irq, indio_dev);
1511 
1512         return ret;
1513 }
1514 
1515 static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1516 {
1517         int ret;
1518 
1519         mutex_lock(&st->lock);
1520         ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1521         if (ret)
1522                 goto error_ret;
1523         ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1524                                 (st->rx[0] &
1525                                  ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1526                                    SCA3000_REG_INT_MASK_RING_HALF |
1527                                    SCA3000_REG_INT_MASK_ALL_INTS)));
1528 error_ret:
1529         mutex_unlock(&st->lock);
1530         return ret;
1531 }
1532 
1533 static int sca3000_remove(struct spi_device *spi)
1534 {
1535         struct iio_dev *indio_dev = spi_get_drvdata(spi);
1536         struct sca3000_state *st = iio_priv(indio_dev);
1537 
1538         iio_device_unregister(indio_dev);
1539 
1540         /* Must ensure no interrupts can be generated after this! */
1541         sca3000_stop_all_interrupts(st);
1542         if (spi->irq)
1543                 free_irq(spi->irq, indio_dev);
1544 
1545         return 0;
1546 }
1547 
1548 static const struct spi_device_id sca3000_id[] = {
1549         {"sca3000_d01", d01},
1550         {"sca3000_e02", e02},
1551         {"sca3000_e04", e04},
1552         {"sca3000_e05", e05},
1553         {}
1554 };
1555 MODULE_DEVICE_TABLE(spi, sca3000_id);
1556 
1557 static struct spi_driver sca3000_driver = {
1558         .driver = {
1559                 .name = "sca3000",
1560         },
1561         .probe = sca3000_probe,
1562         .remove = sca3000_remove,
1563         .id_table = sca3000_id,
1564 };
1565 module_spi_driver(sca3000_driver);
1566 
1567 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1568 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1569 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */