root/drivers/md/bcache/bset.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. bset_tree_last
  2. bset_written
  3. bkey_written
  4. bset_byte_offset
  5. bset_sector_offset
  6. bch_btree_keys_u64s_remaining
  7. bset_next_set
  8. bch_bset_search
  9. bch_btree_sort
  10. bset_bkey_idx
  11. bkey_init
  12. bkey_cmp
  13. bch_cut_front
  14. bch_cut_back
  15. preceding_key
  16. bch_ptr_invalid
  17. bch_ptr_bad
  18. bch_bkey_to_text
  19. bch_bkey_equal_header
  20. bch_keylist_init
  21. bch_keylist_init_single
  22. bch_keylist_push
  23. bch_keylist_add
  24. bch_keylist_empty
  25. bch_keylist_reset
  26. bch_keylist_free
  27. bch_keylist_nkeys
  28. bch_keylist_bytes
  29. __printf
  30. __printf
  31. bch_dump_bucket
  32. btree_keys_expensive_checks
  33. bch_count_data

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 #ifndef _BCACHE_BSET_H
   3 #define _BCACHE_BSET_H
   4 
   5 #include <linux/bcache.h>
   6 #include <linux/kernel.h>
   7 #include <linux/types.h>
   8 
   9 #include "util.h" /* for time_stats */
  10 
  11 /*
  12  * BKEYS:
  13  *
  14  * A bkey contains a key, a size field, a variable number of pointers, and some
  15  * ancillary flag bits.
  16  *
  17  * We use two different functions for validating bkeys, bch_ptr_invalid and
  18  * bch_ptr_bad().
  19  *
  20  * bch_ptr_invalid() primarily filters out keys and pointers that would be
  21  * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
  22  * pointer that occur in normal practice but don't point to real data.
  23  *
  24  * The one exception to the rule that ptr_invalid() filters out invalid keys is
  25  * that it also filters out keys of size 0 - these are keys that have been
  26  * completely overwritten. It'd be safe to delete these in memory while leaving
  27  * them on disk, just unnecessary work - so we filter them out when resorting
  28  * instead.
  29  *
  30  * We can't filter out stale keys when we're resorting, because garbage
  31  * collection needs to find them to ensure bucket gens don't wrap around -
  32  * unless we're rewriting the btree node those stale keys still exist on disk.
  33  *
  34  * We also implement functions here for removing some number of sectors from the
  35  * front or the back of a bkey - this is mainly used for fixing overlapping
  36  * extents, by removing the overlapping sectors from the older key.
  37  *
  38  * BSETS:
  39  *
  40  * A bset is an array of bkeys laid out contiguously in memory in sorted order,
  41  * along with a header. A btree node is made up of a number of these, written at
  42  * different times.
  43  *
  44  * There could be many of them on disk, but we never allow there to be more than
  45  * 4 in memory - we lazily resort as needed.
  46  *
  47  * We implement code here for creating and maintaining auxiliary search trees
  48  * (described below) for searching an individial bset, and on top of that we
  49  * implement a btree iterator.
  50  *
  51  * BTREE ITERATOR:
  52  *
  53  * Most of the code in bcache doesn't care about an individual bset - it needs
  54  * to search entire btree nodes and iterate over them in sorted order.
  55  *
  56  * The btree iterator code serves both functions; it iterates through the keys
  57  * in a btree node in sorted order, starting from either keys after a specific
  58  * point (if you pass it a search key) or the start of the btree node.
  59  *
  60  * AUXILIARY SEARCH TREES:
  61  *
  62  * Since keys are variable length, we can't use a binary search on a bset - we
  63  * wouldn't be able to find the start of the next key. But binary searches are
  64  * slow anyways, due to terrible cache behaviour; bcache originally used binary
  65  * searches and that code topped out at under 50k lookups/second.
  66  *
  67  * So we need to construct some sort of lookup table. Since we only insert keys
  68  * into the last (unwritten) set, most of the keys within a given btree node are
  69  * usually in sets that are mostly constant. We use two different types of
  70  * lookup tables to take advantage of this.
  71  *
  72  * Both lookup tables share in common that they don't index every key in the
  73  * set; they index one key every BSET_CACHELINE bytes, and then a linear search
  74  * is used for the rest.
  75  *
  76  * For sets that have been written to disk and are no longer being inserted
  77  * into, we construct a binary search tree in an array - traversing a binary
  78  * search tree in an array gives excellent locality of reference and is very
  79  * fast, since both children of any node are adjacent to each other in memory
  80  * (and their grandchildren, and great grandchildren...) - this means
  81  * prefetching can be used to great effect.
  82  *
  83  * It's quite useful performance wise to keep these nodes small - not just
  84  * because they're more likely to be in L2, but also because we can prefetch
  85  * more nodes on a single cacheline and thus prefetch more iterations in advance
  86  * when traversing this tree.
  87  *
  88  * Nodes in the auxiliary search tree must contain both a key to compare against
  89  * (we don't want to fetch the key from the set, that would defeat the purpose),
  90  * and a pointer to the key. We use a few tricks to compress both of these.
  91  *
  92  * To compress the pointer, we take advantage of the fact that one node in the
  93  * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
  94  * a function (to_inorder()) that takes the index of a node in a binary tree and
  95  * returns what its index would be in an inorder traversal, so we only have to
  96  * store the low bits of the offset.
  97  *
  98  * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
  99  * compress that,  we take advantage of the fact that when we're traversing the
 100  * search tree at every iteration we know that both our search key and the key
 101  * we're looking for lie within some range - bounded by our previous
 102  * comparisons. (We special case the start of a search so that this is true even
 103  * at the root of the tree).
 104  *
 105  * So we know the key we're looking for is between a and b, and a and b don't
 106  * differ higher than bit 50, we don't need to check anything higher than bit
 107  * 50.
 108  *
 109  * We don't usually need the rest of the bits, either; we only need enough bits
 110  * to partition the key range we're currently checking.  Consider key n - the
 111  * key our auxiliary search tree node corresponds to, and key p, the key
 112  * immediately preceding n.  The lowest bit we need to store in the auxiliary
 113  * search tree is the highest bit that differs between n and p.
 114  *
 115  * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
 116  * comparison. But we'd really like our nodes in the auxiliary search tree to be
 117  * of fixed size.
 118  *
 119  * The solution is to make them fixed size, and when we're constructing a node
 120  * check if p and n differed in the bits we needed them to. If they don't we
 121  * flag that node, and when doing lookups we fallback to comparing against the
 122  * real key. As long as this doesn't happen to often (and it seems to reliably
 123  * happen a bit less than 1% of the time), we win - even on failures, that key
 124  * is then more likely to be in cache than if we were doing binary searches all
 125  * the way, since we're touching so much less memory.
 126  *
 127  * The keys in the auxiliary search tree are stored in (software) floating
 128  * point, with an exponent and a mantissa. The exponent needs to be big enough
 129  * to address all the bits in the original key, but the number of bits in the
 130  * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
 131  *
 132  * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
 133  * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
 134  * We need one node per 128 bytes in the btree node, which means the auxiliary
 135  * search trees take up 3% as much memory as the btree itself.
 136  *
 137  * Constructing these auxiliary search trees is moderately expensive, and we
 138  * don't want to be constantly rebuilding the search tree for the last set
 139  * whenever we insert another key into it. For the unwritten set, we use a much
 140  * simpler lookup table - it's just a flat array, so index i in the lookup table
 141  * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
 142  * within each byte range works the same as with the auxiliary search trees.
 143  *
 144  * These are much easier to keep up to date when we insert a key - we do it
 145  * somewhat lazily; when we shift a key up we usually just increment the pointer
 146  * to it, only when it would overflow do we go to the trouble of finding the
 147  * first key in that range of bytes again.
 148  */
 149 
 150 struct btree_keys;
 151 struct btree_iter;
 152 struct btree_iter_set;
 153 struct bkey_float;
 154 
 155 #define MAX_BSETS               4U
 156 
 157 struct bset_tree {
 158         /*
 159          * We construct a binary tree in an array as if the array
 160          * started at 1, so that things line up on the same cachelines
 161          * better: see comments in bset.c at cacheline_to_bkey() for
 162          * details
 163          */
 164 
 165         /* size of the binary tree and prev array */
 166         unsigned int            size;
 167 
 168         /* function of size - precalculated for to_inorder() */
 169         unsigned int            extra;
 170 
 171         /* copy of the last key in the set */
 172         struct bkey             end;
 173         struct bkey_float       *tree;
 174 
 175         /*
 176          * The nodes in the bset tree point to specific keys - this
 177          * array holds the sizes of the previous key.
 178          *
 179          * Conceptually it's a member of struct bkey_float, but we want
 180          * to keep bkey_float to 4 bytes and prev isn't used in the fast
 181          * path.
 182          */
 183         uint8_t                 *prev;
 184 
 185         /* The actual btree node, with pointers to each sorted set */
 186         struct bset             *data;
 187 };
 188 
 189 struct btree_keys_ops {
 190         bool            (*sort_cmp)(struct btree_iter_set l,
 191                                     struct btree_iter_set r);
 192         struct bkey     *(*sort_fixup)(struct btree_iter *iter,
 193                                        struct bkey *tmp);
 194         bool            (*insert_fixup)(struct btree_keys *b,
 195                                         struct bkey *insert,
 196                                         struct btree_iter *iter,
 197                                         struct bkey *replace_key);
 198         bool            (*key_invalid)(struct btree_keys *bk,
 199                                        const struct bkey *k);
 200         bool            (*key_bad)(struct btree_keys *bk,
 201                                    const struct bkey *k);
 202         bool            (*key_merge)(struct btree_keys *bk,
 203                                      struct bkey *l, struct bkey *r);
 204         void            (*key_to_text)(char *buf,
 205                                        size_t size,
 206                                        const struct bkey *k);
 207         void            (*key_dump)(struct btree_keys *keys,
 208                                     const struct bkey *k);
 209 
 210         /*
 211          * Only used for deciding whether to use START_KEY(k) or just the key
 212          * itself in a couple places
 213          */
 214         bool            is_extents;
 215 };
 216 
 217 struct btree_keys {
 218         const struct btree_keys_ops     *ops;
 219         uint8_t                 page_order;
 220         uint8_t                 nsets;
 221         unsigned int            last_set_unwritten:1;
 222         bool                    *expensive_debug_checks;
 223 
 224         /*
 225          * Sets of sorted keys - the real btree node - plus a binary search tree
 226          *
 227          * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
 228          * to the memory we have allocated for this btree node. Additionally,
 229          * set[0]->data points to the entire btree node as it exists on disk.
 230          */
 231         struct bset_tree        set[MAX_BSETS];
 232 };
 233 
 234 static inline struct bset_tree *bset_tree_last(struct btree_keys *b)
 235 {
 236         return b->set + b->nsets;
 237 }
 238 
 239 static inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
 240 {
 241         return t <= b->set + b->nsets - b->last_set_unwritten;
 242 }
 243 
 244 static inline bool bkey_written(struct btree_keys *b, struct bkey *k)
 245 {
 246         return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
 247 }
 248 
 249 static inline unsigned int bset_byte_offset(struct btree_keys *b,
 250                                             struct bset *i)
 251 {
 252         return ((size_t) i) - ((size_t) b->set->data);
 253 }
 254 
 255 static inline unsigned int bset_sector_offset(struct btree_keys *b,
 256                                               struct bset *i)
 257 {
 258         return bset_byte_offset(b, i) >> 9;
 259 }
 260 
 261 #define __set_bytes(i, k)       (sizeof(*(i)) + (k) * sizeof(uint64_t))
 262 #define set_bytes(i)            __set_bytes(i, i->keys)
 263 
 264 #define __set_blocks(i, k, block_bytes)                         \
 265         DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
 266 #define set_blocks(i, block_bytes)                              \
 267         __set_blocks(i, (i)->keys, block_bytes)
 268 
 269 static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
 270 {
 271         struct bset_tree *t = bset_tree_last(b);
 272 
 273         BUG_ON((PAGE_SIZE << b->page_order) <
 274                (bset_byte_offset(b, t->data) + set_bytes(t->data)));
 275 
 276         if (!b->last_set_unwritten)
 277                 return 0;
 278 
 279         return ((PAGE_SIZE << b->page_order) -
 280                 (bset_byte_offset(b, t->data) + set_bytes(t->data))) /
 281                 sizeof(u64);
 282 }
 283 
 284 static inline struct bset *bset_next_set(struct btree_keys *b,
 285                                          unsigned int block_bytes)
 286 {
 287         struct bset *i = bset_tree_last(b)->data;
 288 
 289         return ((void *) i) + roundup(set_bytes(i), block_bytes);
 290 }
 291 
 292 void bch_btree_keys_free(struct btree_keys *b);
 293 int bch_btree_keys_alloc(struct btree_keys *b, unsigned int page_order,
 294                          gfp_t gfp);
 295 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
 296                          bool *expensive_debug_checks);
 297 
 298 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic);
 299 void bch_bset_build_written_tree(struct btree_keys *b);
 300 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k);
 301 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r);
 302 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
 303                      struct bkey *insert);
 304 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
 305                               struct bkey *replace_key);
 306 
 307 enum {
 308         BTREE_INSERT_STATUS_NO_INSERT = 0,
 309         BTREE_INSERT_STATUS_INSERT,
 310         BTREE_INSERT_STATUS_BACK_MERGE,
 311         BTREE_INSERT_STATUS_OVERWROTE,
 312         BTREE_INSERT_STATUS_FRONT_MERGE,
 313 };
 314 
 315 /* Btree key iteration */
 316 
 317 struct btree_iter {
 318         size_t size, used;
 319 #ifdef CONFIG_BCACHE_DEBUG
 320         struct btree_keys *b;
 321 #endif
 322         struct btree_iter_set {
 323                 struct bkey *k, *end;
 324         } data[MAX_BSETS];
 325 };
 326 
 327 typedef bool (*ptr_filter_fn)(struct btree_keys *b, const struct bkey *k);
 328 
 329 struct bkey *bch_btree_iter_next(struct btree_iter *iter);
 330 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
 331                                         struct btree_keys *b,
 332                                         ptr_filter_fn fn);
 333 
 334 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
 335                          struct bkey *end);
 336 struct bkey *bch_btree_iter_init(struct btree_keys *b,
 337                                  struct btree_iter *iter,
 338                                  struct bkey *search);
 339 
 340 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
 341                                const struct bkey *search);
 342 
 343 /*
 344  * Returns the first key that is strictly greater than search
 345  */
 346 static inline struct bkey *bch_bset_search(struct btree_keys *b,
 347                                            struct bset_tree *t,
 348                                            const struct bkey *search)
 349 {
 350         return search ? __bch_bset_search(b, t, search) : t->data->start;
 351 }
 352 
 353 #define for_each_key_filter(b, k, iter, filter)                         \
 354         for (bch_btree_iter_init((b), (iter), NULL);                    \
 355              ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
 356 
 357 #define for_each_key(b, k, iter)                                        \
 358         for (bch_btree_iter_init((b), (iter), NULL);                    \
 359              ((k) = bch_btree_iter_next(iter));)
 360 
 361 /* Sorting */
 362 
 363 struct bset_sort_state {
 364         mempool_t               pool;
 365 
 366         unsigned int            page_order;
 367         unsigned int            crit_factor;
 368 
 369         struct time_stats       time;
 370 };
 371 
 372 void bch_bset_sort_state_free(struct bset_sort_state *state);
 373 int bch_bset_sort_state_init(struct bset_sort_state *state,
 374                              unsigned int page_order);
 375 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state);
 376 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
 377                          struct bset_sort_state *state);
 378 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
 379                                     struct btree_iter *iter,
 380                                     struct bset_sort_state *state);
 381 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
 382                             struct bset_sort_state *state);
 383 
 384 static inline void bch_btree_sort(struct btree_keys *b,
 385                                   struct bset_sort_state *state)
 386 {
 387         bch_btree_sort_partial(b, 0, state);
 388 }
 389 
 390 struct bset_stats {
 391         size_t sets_written, sets_unwritten;
 392         size_t bytes_written, bytes_unwritten;
 393         size_t floats, failed;
 394 };
 395 
 396 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *state);
 397 
 398 /* Bkey utility code */
 399 
 400 #define bset_bkey_last(i)       bkey_idx((struct bkey *) (i)->d, \
 401                                          (unsigned int)(i)->keys)
 402 
 403 static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned int idx)
 404 {
 405         return bkey_idx(i->start, idx);
 406 }
 407 
 408 static inline void bkey_init(struct bkey *k)
 409 {
 410         *k = ZERO_KEY;
 411 }
 412 
 413 static __always_inline int64_t bkey_cmp(const struct bkey *l,
 414                                         const struct bkey *r)
 415 {
 416         return unlikely(KEY_INODE(l) != KEY_INODE(r))
 417                 ? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
 418                 : (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
 419 }
 420 
 421 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
 422                               unsigned int i);
 423 bool __bch_cut_front(const struct bkey *where, struct bkey *k);
 424 bool __bch_cut_back(const struct bkey *where, struct bkey *k);
 425 
 426 static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
 427 {
 428         BUG_ON(bkey_cmp(where, k) > 0);
 429         return __bch_cut_front(where, k);
 430 }
 431 
 432 static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
 433 {
 434         BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
 435         return __bch_cut_back(where, k);
 436 }
 437 
 438 /*
 439  * Pointer '*preceding_key_p' points to a memory object to store preceding
 440  * key of k. If the preceding key does not exist, set '*preceding_key_p' to
 441  * NULL. So the caller of preceding_key() needs to take care of memory
 442  * which '*preceding_key_p' pointed to before calling preceding_key().
 443  * Currently the only caller of preceding_key() is bch_btree_insert_key(),
 444  * and it points to an on-stack variable, so the memory release is handled
 445  * by stackframe itself.
 446  */
 447 static inline void preceding_key(struct bkey *k, struct bkey **preceding_key_p)
 448 {
 449         if (KEY_INODE(k) || KEY_OFFSET(k)) {
 450                 (**preceding_key_p) = KEY(KEY_INODE(k), KEY_OFFSET(k), 0);
 451                 if (!(*preceding_key_p)->low)
 452                         (*preceding_key_p)->high--;
 453                 (*preceding_key_p)->low--;
 454         } else {
 455                 (*preceding_key_p) = NULL;
 456         }
 457 }
 458 
 459 static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
 460 {
 461         return b->ops->key_invalid(b, k);
 462 }
 463 
 464 static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
 465 {
 466         return b->ops->key_bad(b, k);
 467 }
 468 
 469 static inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
 470                                     size_t size, const struct bkey *k)
 471 {
 472         return b->ops->key_to_text(buf, size, k);
 473 }
 474 
 475 static inline bool bch_bkey_equal_header(const struct bkey *l,
 476                                          const struct bkey *r)
 477 {
 478         return (KEY_DIRTY(l) == KEY_DIRTY(r) &&
 479                 KEY_PTRS(l) == KEY_PTRS(r) &&
 480                 KEY_CSUM(l) == KEY_CSUM(r));
 481 }
 482 
 483 /* Keylists */
 484 
 485 struct keylist {
 486         union {
 487                 struct bkey             *keys;
 488                 uint64_t                *keys_p;
 489         };
 490         union {
 491                 struct bkey             *top;
 492                 uint64_t                *top_p;
 493         };
 494 
 495         /* Enough room for btree_split's keys without realloc */
 496 #define KEYLIST_INLINE          16
 497         uint64_t                inline_keys[KEYLIST_INLINE];
 498 };
 499 
 500 static inline void bch_keylist_init(struct keylist *l)
 501 {
 502         l->top_p = l->keys_p = l->inline_keys;
 503 }
 504 
 505 static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k)
 506 {
 507         l->keys = k;
 508         l->top = bkey_next(k);
 509 }
 510 
 511 static inline void bch_keylist_push(struct keylist *l)
 512 {
 513         l->top = bkey_next(l->top);
 514 }
 515 
 516 static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
 517 {
 518         bkey_copy(l->top, k);
 519         bch_keylist_push(l);
 520 }
 521 
 522 static inline bool bch_keylist_empty(struct keylist *l)
 523 {
 524         return l->top == l->keys;
 525 }
 526 
 527 static inline void bch_keylist_reset(struct keylist *l)
 528 {
 529         l->top = l->keys;
 530 }
 531 
 532 static inline void bch_keylist_free(struct keylist *l)
 533 {
 534         if (l->keys_p != l->inline_keys)
 535                 kfree(l->keys_p);
 536 }
 537 
 538 static inline size_t bch_keylist_nkeys(struct keylist *l)
 539 {
 540         return l->top_p - l->keys_p;
 541 }
 542 
 543 static inline size_t bch_keylist_bytes(struct keylist *l)
 544 {
 545         return bch_keylist_nkeys(l) * sizeof(uint64_t);
 546 }
 547 
 548 struct bkey *bch_keylist_pop(struct keylist *l);
 549 void bch_keylist_pop_front(struct keylist *l);
 550 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s);
 551 
 552 /* Debug stuff */
 553 
 554 #ifdef CONFIG_BCACHE_DEBUG
 555 
 556 int __bch_count_data(struct btree_keys *b);
 557 void __printf(2, 3) __bch_check_keys(struct btree_keys *b,
 558                                      const char *fmt,
 559                                      ...);
 560 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
 561 void bch_dump_bucket(struct btree_keys *b);
 562 
 563 #else
 564 
 565 static inline int __bch_count_data(struct btree_keys *b) { return -1; }
 566 static inline void __printf(2, 3)
 567         __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
 568 static inline void bch_dump_bucket(struct btree_keys *b) {}
 569 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
 570 
 571 #endif
 572 
 573 static inline bool btree_keys_expensive_checks(struct btree_keys *b)
 574 {
 575 #ifdef CONFIG_BCACHE_DEBUG
 576         return *b->expensive_debug_checks;
 577 #else
 578         return false;
 579 #endif
 580 }
 581 
 582 static inline int bch_count_data(struct btree_keys *b)
 583 {
 584         return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
 585 }
 586 
 587 #define bch_check_keys(b, ...)                                          \
 588 do {                                                                    \
 589         if (btree_keys_expensive_checks(b))                             \
 590                 __bch_check_keys(b, __VA_ARGS__);                       \
 591 } while (0)
 592 
 593 #endif

/* [<][>][^][v][top][bottom][index][help] */