root/drivers/md/persistent-data/dm-btree.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. memcpy_disk
  2. array_insert
  3. bsearch
  4. lower_bound
  5. upper_bound
  6. inc_children
  7. insert_at
  8. calc_max_entries
  9. dm_btree_empty
  10. top_frame
  11. unprocessed_frames
  12. prefetch_children
  13. is_internal_level
  14. push_frame
  15. pop_frame
  16. unlock_all_frames
  17. dm_btree_del
  18. btree_lookup_raw
  19. dm_btree_lookup
  20. dm_btree_lookup_next_single
  21. dm_btree_lookup_next
  22. btree_split_sibling
  23. btree_split_beneath
  24. btree_insert_raw
  25. need_insert
  26. insert
  27. dm_btree_insert
  28. dm_btree_insert_notify
  29. find_key
  30. dm_btree_find_key
  31. dm_btree_find_highest_key
  32. dm_btree_find_lowest_key
  33. walk_node
  34. dm_btree_walk
  35. prefetch_values
  36. leaf_node
  37. push_node
  38. pop_node
  39. inc_or_backtrack
  40. find_leaf
  41. dm_btree_cursor_begin
  42. dm_btree_cursor_end
  43. dm_btree_cursor_next
  44. dm_btree_cursor_skip
  45. dm_btree_cursor_get_value

   1 /*
   2  * Copyright (C) 2011 Red Hat, Inc.
   3  *
   4  * This file is released under the GPL.
   5  */
   6 
   7 #include "dm-btree-internal.h"
   8 #include "dm-space-map.h"
   9 #include "dm-transaction-manager.h"
  10 
  11 #include <linux/export.h>
  12 #include <linux/device-mapper.h>
  13 
  14 #define DM_MSG_PREFIX "btree"
  15 
  16 /*----------------------------------------------------------------
  17  * Array manipulation
  18  *--------------------------------------------------------------*/
  19 static void memcpy_disk(void *dest, const void *src, size_t len)
  20         __dm_written_to_disk(src)
  21 {
  22         memcpy(dest, src, len);
  23         __dm_unbless_for_disk(src);
  24 }
  25 
  26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  27                          unsigned index, void *elt)
  28         __dm_written_to_disk(elt)
  29 {
  30         if (index < nr_elts)
  31                 memmove(base + (elt_size * (index + 1)),
  32                         base + (elt_size * index),
  33                         (nr_elts - index) * elt_size);
  34 
  35         memcpy_disk(base + (elt_size * index), elt, elt_size);
  36 }
  37 
  38 /*----------------------------------------------------------------*/
  39 
  40 /* makes the assumption that no two keys are the same. */
  41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  42 {
  43         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  44 
  45         while (hi - lo > 1) {
  46                 int mid = lo + ((hi - lo) / 2);
  47                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  48 
  49                 if (mid_key == key)
  50                         return mid;
  51 
  52                 if (mid_key < key)
  53                         lo = mid;
  54                 else
  55                         hi = mid;
  56         }
  57 
  58         return want_hi ? hi : lo;
  59 }
  60 
  61 int lower_bound(struct btree_node *n, uint64_t key)
  62 {
  63         return bsearch(n, key, 0);
  64 }
  65 
  66 static int upper_bound(struct btree_node *n, uint64_t key)
  67 {
  68         return bsearch(n, key, 1);
  69 }
  70 
  71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  72                   struct dm_btree_value_type *vt)
  73 {
  74         unsigned i;
  75         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  76 
  77         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  78                 for (i = 0; i < nr_entries; i++)
  79                         dm_tm_inc(tm, value64(n, i));
  80         else if (vt->inc)
  81                 for (i = 0; i < nr_entries; i++)
  82                         vt->inc(vt->context, value_ptr(n, i));
  83 }
  84 
  85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
  86                       uint64_t key, void *value)
  87                       __dm_written_to_disk(value)
  88 {
  89         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  90         __le64 key_le = cpu_to_le64(key);
  91 
  92         if (index > nr_entries ||
  93             index >= le32_to_cpu(node->header.max_entries)) {
  94                 DMERR("too many entries in btree node for insert");
  95                 __dm_unbless_for_disk(value);
  96                 return -ENOMEM;
  97         }
  98 
  99         __dm_bless_for_disk(&key_le);
 100 
 101         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 102         array_insert(value_base(node), value_size, nr_entries, index, value);
 103         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 104 
 105         return 0;
 106 }
 107 
 108 /*----------------------------------------------------------------*/
 109 
 110 /*
 111  * We want 3n entries (for some n).  This works more nicely for repeated
 112  * insert remove loops than (2n + 1).
 113  */
 114 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 115 {
 116         uint32_t total, n;
 117         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 118 
 119         block_size -= sizeof(struct node_header);
 120         total = block_size / elt_size;
 121         n = total / 3;          /* rounds down */
 122 
 123         return 3 * n;
 124 }
 125 
 126 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 127 {
 128         int r;
 129         struct dm_block *b;
 130         struct btree_node *n;
 131         size_t block_size;
 132         uint32_t max_entries;
 133 
 134         r = new_block(info, &b);
 135         if (r < 0)
 136                 return r;
 137 
 138         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 139         max_entries = calc_max_entries(info->value_type.size, block_size);
 140 
 141         n = dm_block_data(b);
 142         memset(n, 0, block_size);
 143         n->header.flags = cpu_to_le32(LEAF_NODE);
 144         n->header.nr_entries = cpu_to_le32(0);
 145         n->header.max_entries = cpu_to_le32(max_entries);
 146         n->header.value_size = cpu_to_le32(info->value_type.size);
 147 
 148         *root = dm_block_location(b);
 149         unlock_block(info, b);
 150 
 151         return 0;
 152 }
 153 EXPORT_SYMBOL_GPL(dm_btree_empty);
 154 
 155 /*----------------------------------------------------------------*/
 156 
 157 /*
 158  * Deletion uses a recursive algorithm, since we have limited stack space
 159  * we explicitly manage our own stack on the heap.
 160  */
 161 #define MAX_SPINE_DEPTH 64
 162 struct frame {
 163         struct dm_block *b;
 164         struct btree_node *n;
 165         unsigned level;
 166         unsigned nr_children;
 167         unsigned current_child;
 168 };
 169 
 170 struct del_stack {
 171         struct dm_btree_info *info;
 172         struct dm_transaction_manager *tm;
 173         int top;
 174         struct frame spine[MAX_SPINE_DEPTH];
 175 };
 176 
 177 static int top_frame(struct del_stack *s, struct frame **f)
 178 {
 179         if (s->top < 0) {
 180                 DMERR("btree deletion stack empty");
 181                 return -EINVAL;
 182         }
 183 
 184         *f = s->spine + s->top;
 185 
 186         return 0;
 187 }
 188 
 189 static int unprocessed_frames(struct del_stack *s)
 190 {
 191         return s->top >= 0;
 192 }
 193 
 194 static void prefetch_children(struct del_stack *s, struct frame *f)
 195 {
 196         unsigned i;
 197         struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 198 
 199         for (i = 0; i < f->nr_children; i++)
 200                 dm_bm_prefetch(bm, value64(f->n, i));
 201 }
 202 
 203 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 204 {
 205         return f->level < (info->levels - 1);
 206 }
 207 
 208 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 209 {
 210         int r;
 211         uint32_t ref_count;
 212 
 213         if (s->top >= MAX_SPINE_DEPTH - 1) {
 214                 DMERR("btree deletion stack out of memory");
 215                 return -ENOMEM;
 216         }
 217 
 218         r = dm_tm_ref(s->tm, b, &ref_count);
 219         if (r)
 220                 return r;
 221 
 222         if (ref_count > 1)
 223                 /*
 224                  * This is a shared node, so we can just decrement it's
 225                  * reference counter and leave the children.
 226                  */
 227                 dm_tm_dec(s->tm, b);
 228 
 229         else {
 230                 uint32_t flags;
 231                 struct frame *f = s->spine + ++s->top;
 232 
 233                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 234                 if (r) {
 235                         s->top--;
 236                         return r;
 237                 }
 238 
 239                 f->n = dm_block_data(f->b);
 240                 f->level = level;
 241                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 242                 f->current_child = 0;
 243 
 244                 flags = le32_to_cpu(f->n->header.flags);
 245                 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 246                         prefetch_children(s, f);
 247         }
 248 
 249         return 0;
 250 }
 251 
 252 static void pop_frame(struct del_stack *s)
 253 {
 254         struct frame *f = s->spine + s->top--;
 255 
 256         dm_tm_dec(s->tm, dm_block_location(f->b));
 257         dm_tm_unlock(s->tm, f->b);
 258 }
 259 
 260 static void unlock_all_frames(struct del_stack *s)
 261 {
 262         struct frame *f;
 263 
 264         while (unprocessed_frames(s)) {
 265                 f = s->spine + s->top--;
 266                 dm_tm_unlock(s->tm, f->b);
 267         }
 268 }
 269 
 270 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 271 {
 272         int r;
 273         struct del_stack *s;
 274 
 275         /*
 276          * dm_btree_del() is called via an ioctl, as such should be
 277          * considered an FS op.  We can't recurse back into the FS, so we
 278          * allocate GFP_NOFS.
 279          */
 280         s = kmalloc(sizeof(*s), GFP_NOFS);
 281         if (!s)
 282                 return -ENOMEM;
 283         s->info = info;
 284         s->tm = info->tm;
 285         s->top = -1;
 286 
 287         r = push_frame(s, root, 0);
 288         if (r)
 289                 goto out;
 290 
 291         while (unprocessed_frames(s)) {
 292                 uint32_t flags;
 293                 struct frame *f;
 294                 dm_block_t b;
 295 
 296                 r = top_frame(s, &f);
 297                 if (r)
 298                         goto out;
 299 
 300                 if (f->current_child >= f->nr_children) {
 301                         pop_frame(s);
 302                         continue;
 303                 }
 304 
 305                 flags = le32_to_cpu(f->n->header.flags);
 306                 if (flags & INTERNAL_NODE) {
 307                         b = value64(f->n, f->current_child);
 308                         f->current_child++;
 309                         r = push_frame(s, b, f->level);
 310                         if (r)
 311                                 goto out;
 312 
 313                 } else if (is_internal_level(info, f)) {
 314                         b = value64(f->n, f->current_child);
 315                         f->current_child++;
 316                         r = push_frame(s, b, f->level + 1);
 317                         if (r)
 318                                 goto out;
 319 
 320                 } else {
 321                         if (info->value_type.dec) {
 322                                 unsigned i;
 323 
 324                                 for (i = 0; i < f->nr_children; i++)
 325                                         info->value_type.dec(info->value_type.context,
 326                                                              value_ptr(f->n, i));
 327                         }
 328                         pop_frame(s);
 329                 }
 330         }
 331 out:
 332         if (r) {
 333                 /* cleanup all frames of del_stack */
 334                 unlock_all_frames(s);
 335         }
 336         kfree(s);
 337 
 338         return r;
 339 }
 340 EXPORT_SYMBOL_GPL(dm_btree_del);
 341 
 342 /*----------------------------------------------------------------*/
 343 
 344 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 345                             int (*search_fn)(struct btree_node *, uint64_t),
 346                             uint64_t *result_key, void *v, size_t value_size)
 347 {
 348         int i, r;
 349         uint32_t flags, nr_entries;
 350 
 351         do {
 352                 r = ro_step(s, block);
 353                 if (r < 0)
 354                         return r;
 355 
 356                 i = search_fn(ro_node(s), key);
 357 
 358                 flags = le32_to_cpu(ro_node(s)->header.flags);
 359                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 360                 if (i < 0 || i >= nr_entries)
 361                         return -ENODATA;
 362 
 363                 if (flags & INTERNAL_NODE)
 364                         block = value64(ro_node(s), i);
 365 
 366         } while (!(flags & LEAF_NODE));
 367 
 368         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 369         memcpy(v, value_ptr(ro_node(s), i), value_size);
 370 
 371         return 0;
 372 }
 373 
 374 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 375                     uint64_t *keys, void *value_le)
 376 {
 377         unsigned level, last_level = info->levels - 1;
 378         int r = -ENODATA;
 379         uint64_t rkey;
 380         __le64 internal_value_le;
 381         struct ro_spine spine;
 382 
 383         init_ro_spine(&spine, info);
 384         for (level = 0; level < info->levels; level++) {
 385                 size_t size;
 386                 void *value_p;
 387 
 388                 if (level == last_level) {
 389                         value_p = value_le;
 390                         size = info->value_type.size;
 391 
 392                 } else {
 393                         value_p = &internal_value_le;
 394                         size = sizeof(uint64_t);
 395                 }
 396 
 397                 r = btree_lookup_raw(&spine, root, keys[level],
 398                                      lower_bound, &rkey,
 399                                      value_p, size);
 400 
 401                 if (!r) {
 402                         if (rkey != keys[level]) {
 403                                 exit_ro_spine(&spine);
 404                                 return -ENODATA;
 405                         }
 406                 } else {
 407                         exit_ro_spine(&spine);
 408                         return r;
 409                 }
 410 
 411                 root = le64_to_cpu(internal_value_le);
 412         }
 413         exit_ro_spine(&spine);
 414 
 415         return r;
 416 }
 417 EXPORT_SYMBOL_GPL(dm_btree_lookup);
 418 
 419 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 420                                        uint64_t key, uint64_t *rkey, void *value_le)
 421 {
 422         int r, i;
 423         uint32_t flags, nr_entries;
 424         struct dm_block *node;
 425         struct btree_node *n;
 426 
 427         r = bn_read_lock(info, root, &node);
 428         if (r)
 429                 return r;
 430 
 431         n = dm_block_data(node);
 432         flags = le32_to_cpu(n->header.flags);
 433         nr_entries = le32_to_cpu(n->header.nr_entries);
 434 
 435         if (flags & INTERNAL_NODE) {
 436                 i = lower_bound(n, key);
 437                 if (i < 0) {
 438                         /*
 439                          * avoid early -ENODATA return when all entries are
 440                          * higher than the search @key.
 441                          */
 442                         i = 0;
 443                 }
 444                 if (i >= nr_entries) {
 445                         r = -ENODATA;
 446                         goto out;
 447                 }
 448 
 449                 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 450                 if (r == -ENODATA && i < (nr_entries - 1)) {
 451                         i++;
 452                         r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 453                 }
 454 
 455         } else {
 456                 i = upper_bound(n, key);
 457                 if (i < 0 || i >= nr_entries) {
 458                         r = -ENODATA;
 459                         goto out;
 460                 }
 461 
 462                 *rkey = le64_to_cpu(n->keys[i]);
 463                 memcpy(value_le, value_ptr(n, i), info->value_type.size);
 464         }
 465 out:
 466         dm_tm_unlock(info->tm, node);
 467         return r;
 468 }
 469 
 470 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 471                          uint64_t *keys, uint64_t *rkey, void *value_le)
 472 {
 473         unsigned level;
 474         int r = -ENODATA;
 475         __le64 internal_value_le;
 476         struct ro_spine spine;
 477 
 478         init_ro_spine(&spine, info);
 479         for (level = 0; level < info->levels - 1u; level++) {
 480                 r = btree_lookup_raw(&spine, root, keys[level],
 481                                      lower_bound, rkey,
 482                                      &internal_value_le, sizeof(uint64_t));
 483                 if (r)
 484                         goto out;
 485 
 486                 if (*rkey != keys[level]) {
 487                         r = -ENODATA;
 488                         goto out;
 489                 }
 490 
 491                 root = le64_to_cpu(internal_value_le);
 492         }
 493 
 494         r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 495 out:
 496         exit_ro_spine(&spine);
 497         return r;
 498 }
 499 
 500 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 501 
 502 /*
 503  * Splits a node by creating a sibling node and shifting half the nodes
 504  * contents across.  Assumes there is a parent node, and it has room for
 505  * another child.
 506  *
 507  * Before:
 508  *        +--------+
 509  *        | Parent |
 510  *        +--------+
 511  *           |
 512  *           v
 513  *      +----------+
 514  *      | A ++++++ |
 515  *      +----------+
 516  *
 517  *
 518  * After:
 519  *              +--------+
 520  *              | Parent |
 521  *              +--------+
 522  *                |     |
 523  *                v     +------+
 524  *          +---------+        |
 525  *          | A* +++  |        v
 526  *          +---------+   +-------+
 527  *                        | B +++ |
 528  *                        +-------+
 529  *
 530  * Where A* is a shadow of A.
 531  */
 532 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
 533                                uint64_t key)
 534 {
 535         int r;
 536         size_t size;
 537         unsigned nr_left, nr_right;
 538         struct dm_block *left, *right, *parent;
 539         struct btree_node *ln, *rn, *pn;
 540         __le64 location;
 541 
 542         left = shadow_current(s);
 543 
 544         r = new_block(s->info, &right);
 545         if (r < 0)
 546                 return r;
 547 
 548         ln = dm_block_data(left);
 549         rn = dm_block_data(right);
 550 
 551         nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
 552         nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
 553 
 554         ln->header.nr_entries = cpu_to_le32(nr_left);
 555 
 556         rn->header.flags = ln->header.flags;
 557         rn->header.nr_entries = cpu_to_le32(nr_right);
 558         rn->header.max_entries = ln->header.max_entries;
 559         rn->header.value_size = ln->header.value_size;
 560         memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
 561 
 562         size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
 563                 sizeof(uint64_t) : s->info->value_type.size;
 564         memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
 565                size * nr_right);
 566 
 567         /*
 568          * Patch up the parent
 569          */
 570         parent = shadow_parent(s);
 571 
 572         pn = dm_block_data(parent);
 573         location = cpu_to_le64(dm_block_location(left));
 574         __dm_bless_for_disk(&location);
 575         memcpy_disk(value_ptr(pn, parent_index),
 576                     &location, sizeof(__le64));
 577 
 578         location = cpu_to_le64(dm_block_location(right));
 579         __dm_bless_for_disk(&location);
 580 
 581         r = insert_at(sizeof(__le64), pn, parent_index + 1,
 582                       le64_to_cpu(rn->keys[0]), &location);
 583         if (r) {
 584                 unlock_block(s->info, right);
 585                 return r;
 586         }
 587 
 588         if (key < le64_to_cpu(rn->keys[0])) {
 589                 unlock_block(s->info, right);
 590                 s->nodes[1] = left;
 591         } else {
 592                 unlock_block(s->info, left);
 593                 s->nodes[1] = right;
 594         }
 595 
 596         return 0;
 597 }
 598 
 599 /*
 600  * Splits a node by creating two new children beneath the given node.
 601  *
 602  * Before:
 603  *        +----------+
 604  *        | A ++++++ |
 605  *        +----------+
 606  *
 607  *
 608  * After:
 609  *      +------------+
 610  *      | A (shadow) |
 611  *      +------------+
 612  *          |   |
 613  *   +------+   +----+
 614  *   |               |
 615  *   v               v
 616  * +-------+     +-------+
 617  * | B +++ |     | C +++ |
 618  * +-------+     +-------+
 619  */
 620 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 621 {
 622         int r;
 623         size_t size;
 624         unsigned nr_left, nr_right;
 625         struct dm_block *left, *right, *new_parent;
 626         struct btree_node *pn, *ln, *rn;
 627         __le64 val;
 628 
 629         new_parent = shadow_current(s);
 630 
 631         pn = dm_block_data(new_parent);
 632         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 633                 sizeof(__le64) : s->info->value_type.size;
 634 
 635         /* create & init the left block */
 636         r = new_block(s->info, &left);
 637         if (r < 0)
 638                 return r;
 639 
 640         ln = dm_block_data(left);
 641         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 642 
 643         ln->header.flags = pn->header.flags;
 644         ln->header.nr_entries = cpu_to_le32(nr_left);
 645         ln->header.max_entries = pn->header.max_entries;
 646         ln->header.value_size = pn->header.value_size;
 647         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 648         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 649 
 650         /* create & init the right block */
 651         r = new_block(s->info, &right);
 652         if (r < 0) {
 653                 unlock_block(s->info, left);
 654                 return r;
 655         }
 656 
 657         rn = dm_block_data(right);
 658         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 659 
 660         rn->header.flags = pn->header.flags;
 661         rn->header.nr_entries = cpu_to_le32(nr_right);
 662         rn->header.max_entries = pn->header.max_entries;
 663         rn->header.value_size = pn->header.value_size;
 664         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 665         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 666                nr_right * size);
 667 
 668         /* new_parent should just point to l and r now */
 669         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 670         pn->header.nr_entries = cpu_to_le32(2);
 671         pn->header.max_entries = cpu_to_le32(
 672                 calc_max_entries(sizeof(__le64),
 673                                  dm_bm_block_size(
 674                                          dm_tm_get_bm(s->info->tm))));
 675         pn->header.value_size = cpu_to_le32(sizeof(__le64));
 676 
 677         val = cpu_to_le64(dm_block_location(left));
 678         __dm_bless_for_disk(&val);
 679         pn->keys[0] = ln->keys[0];
 680         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 681 
 682         val = cpu_to_le64(dm_block_location(right));
 683         __dm_bless_for_disk(&val);
 684         pn->keys[1] = rn->keys[0];
 685         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 686 
 687         unlock_block(s->info, left);
 688         unlock_block(s->info, right);
 689         return 0;
 690 }
 691 
 692 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 693                             struct dm_btree_value_type *vt,
 694                             uint64_t key, unsigned *index)
 695 {
 696         int r, i = *index, top = 1;
 697         struct btree_node *node;
 698 
 699         for (;;) {
 700                 r = shadow_step(s, root, vt);
 701                 if (r < 0)
 702                         return r;
 703 
 704                 node = dm_block_data(shadow_current(s));
 705 
 706                 /*
 707                  * We have to patch up the parent node, ugly, but I don't
 708                  * see a way to do this automatically as part of the spine
 709                  * op.
 710                  */
 711                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 712                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 713 
 714                         __dm_bless_for_disk(&location);
 715                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 716                                     &location, sizeof(__le64));
 717                 }
 718 
 719                 node = dm_block_data(shadow_current(s));
 720 
 721                 if (node->header.nr_entries == node->header.max_entries) {
 722                         if (top)
 723                                 r = btree_split_beneath(s, key);
 724                         else
 725                                 r = btree_split_sibling(s, i, key);
 726 
 727                         if (r < 0)
 728                                 return r;
 729                 }
 730 
 731                 node = dm_block_data(shadow_current(s));
 732 
 733                 i = lower_bound(node, key);
 734 
 735                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 736                         break;
 737 
 738                 if (i < 0) {
 739                         /* change the bounds on the lowest key */
 740                         node->keys[0] = cpu_to_le64(key);
 741                         i = 0;
 742                 }
 743 
 744                 root = value64(node, i);
 745                 top = 0;
 746         }
 747 
 748         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 749                 i++;
 750 
 751         *index = i;
 752         return 0;
 753 }
 754 
 755 static bool need_insert(struct btree_node *node, uint64_t *keys,
 756                         unsigned level, unsigned index)
 757 {
 758         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
 759                 (le64_to_cpu(node->keys[index]) != keys[level]));
 760 }
 761 
 762 static int insert(struct dm_btree_info *info, dm_block_t root,
 763                   uint64_t *keys, void *value, dm_block_t *new_root,
 764                   int *inserted)
 765                   __dm_written_to_disk(value)
 766 {
 767         int r;
 768         unsigned level, index = -1, last_level = info->levels - 1;
 769         dm_block_t block = root;
 770         struct shadow_spine spine;
 771         struct btree_node *n;
 772         struct dm_btree_value_type le64_type;
 773 
 774         init_le64_type(info->tm, &le64_type);
 775         init_shadow_spine(&spine, info);
 776 
 777         for (level = 0; level < (info->levels - 1); level++) {
 778                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 779                 if (r < 0)
 780                         goto bad;
 781 
 782                 n = dm_block_data(shadow_current(&spine));
 783 
 784                 if (need_insert(n, keys, level, index)) {
 785                         dm_block_t new_tree;
 786                         __le64 new_le;
 787 
 788                         r = dm_btree_empty(info, &new_tree);
 789                         if (r < 0)
 790                                 goto bad;
 791 
 792                         new_le = cpu_to_le64(new_tree);
 793                         __dm_bless_for_disk(&new_le);
 794 
 795                         r = insert_at(sizeof(uint64_t), n, index,
 796                                       keys[level], &new_le);
 797                         if (r)
 798                                 goto bad;
 799                 }
 800 
 801                 if (level < last_level)
 802                         block = value64(n, index);
 803         }
 804 
 805         r = btree_insert_raw(&spine, block, &info->value_type,
 806                              keys[level], &index);
 807         if (r < 0)
 808                 goto bad;
 809 
 810         n = dm_block_data(shadow_current(&spine));
 811 
 812         if (need_insert(n, keys, level, index)) {
 813                 if (inserted)
 814                         *inserted = 1;
 815 
 816                 r = insert_at(info->value_type.size, n, index,
 817                               keys[level], value);
 818                 if (r)
 819                         goto bad_unblessed;
 820         } else {
 821                 if (inserted)
 822                         *inserted = 0;
 823 
 824                 if (info->value_type.dec &&
 825                     (!info->value_type.equal ||
 826                      !info->value_type.equal(
 827                              info->value_type.context,
 828                              value_ptr(n, index),
 829                              value))) {
 830                         info->value_type.dec(info->value_type.context,
 831                                              value_ptr(n, index));
 832                 }
 833                 memcpy_disk(value_ptr(n, index),
 834                             value, info->value_type.size);
 835         }
 836 
 837         *new_root = shadow_root(&spine);
 838         exit_shadow_spine(&spine);
 839 
 840         return 0;
 841 
 842 bad:
 843         __dm_unbless_for_disk(value);
 844 bad_unblessed:
 845         exit_shadow_spine(&spine);
 846         return r;
 847 }
 848 
 849 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 850                     uint64_t *keys, void *value, dm_block_t *new_root)
 851                     __dm_written_to_disk(value)
 852 {
 853         return insert(info, root, keys, value, new_root, NULL);
 854 }
 855 EXPORT_SYMBOL_GPL(dm_btree_insert);
 856 
 857 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 858                            uint64_t *keys, void *value, dm_block_t *new_root,
 859                            int *inserted)
 860                            __dm_written_to_disk(value)
 861 {
 862         return insert(info, root, keys, value, new_root, inserted);
 863 }
 864 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 865 
 866 /*----------------------------------------------------------------*/
 867 
 868 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
 869                     uint64_t *result_key, dm_block_t *next_block)
 870 {
 871         int i, r;
 872         uint32_t flags;
 873 
 874         do {
 875                 r = ro_step(s, block);
 876                 if (r < 0)
 877                         return r;
 878 
 879                 flags = le32_to_cpu(ro_node(s)->header.flags);
 880                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
 881                 if (!i)
 882                         return -ENODATA;
 883                 else
 884                         i--;
 885 
 886                 if (find_highest)
 887                         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 888                 else
 889                         *result_key = le64_to_cpu(ro_node(s)->keys[0]);
 890 
 891                 if (next_block || flags & INTERNAL_NODE) {
 892                         if (find_highest)
 893                                 block = value64(ro_node(s), i);
 894                         else
 895                                 block = value64(ro_node(s), 0);
 896                 }
 897 
 898         } while (flags & INTERNAL_NODE);
 899 
 900         if (next_block)
 901                 *next_block = block;
 902         return 0;
 903 }
 904 
 905 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
 906                              bool find_highest, uint64_t *result_keys)
 907 {
 908         int r = 0, count = 0, level;
 909         struct ro_spine spine;
 910 
 911         init_ro_spine(&spine, info);
 912         for (level = 0; level < info->levels; level++) {
 913                 r = find_key(&spine, root, find_highest, result_keys + level,
 914                              level == info->levels - 1 ? NULL : &root);
 915                 if (r == -ENODATA) {
 916                         r = 0;
 917                         break;
 918 
 919                 } else if (r)
 920                         break;
 921 
 922                 count++;
 923         }
 924         exit_ro_spine(&spine);
 925 
 926         return r ? r : count;
 927 }
 928 
 929 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 930                               uint64_t *result_keys)
 931 {
 932         return dm_btree_find_key(info, root, true, result_keys);
 933 }
 934 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 935 
 936 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
 937                              uint64_t *result_keys)
 938 {
 939         return dm_btree_find_key(info, root, false, result_keys);
 940 }
 941 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
 942 
 943 /*----------------------------------------------------------------*/
 944 
 945 /*
 946  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 947  * space.  Also this only works for single level trees.
 948  */
 949 static int walk_node(struct dm_btree_info *info, dm_block_t block,
 950                      int (*fn)(void *context, uint64_t *keys, void *leaf),
 951                      void *context)
 952 {
 953         int r;
 954         unsigned i, nr;
 955         struct dm_block *node;
 956         struct btree_node *n;
 957         uint64_t keys;
 958 
 959         r = bn_read_lock(info, block, &node);
 960         if (r)
 961                 return r;
 962 
 963         n = dm_block_data(node);
 964 
 965         nr = le32_to_cpu(n->header.nr_entries);
 966         for (i = 0; i < nr; i++) {
 967                 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
 968                         r = walk_node(info, value64(n, i), fn, context);
 969                         if (r)
 970                                 goto out;
 971                 } else {
 972                         keys = le64_to_cpu(*key_ptr(n, i));
 973                         r = fn(context, &keys, value_ptr(n, i));
 974                         if (r)
 975                                 goto out;
 976                 }
 977         }
 978 
 979 out:
 980         dm_tm_unlock(info->tm, node);
 981         return r;
 982 }
 983 
 984 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
 985                   int (*fn)(void *context, uint64_t *keys, void *leaf),
 986                   void *context)
 987 {
 988         BUG_ON(info->levels > 1);
 989         return walk_node(info, root, fn, context);
 990 }
 991 EXPORT_SYMBOL_GPL(dm_btree_walk);
 992 
 993 /*----------------------------------------------------------------*/
 994 
 995 static void prefetch_values(struct dm_btree_cursor *c)
 996 {
 997         unsigned i, nr;
 998         __le64 value_le;
 999         struct cursor_node *n = c->nodes + c->depth - 1;
1000         struct btree_node *bn = dm_block_data(n->b);
1001         struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1002 
1003         BUG_ON(c->info->value_type.size != sizeof(value_le));
1004 
1005         nr = le32_to_cpu(bn->header.nr_entries);
1006         for (i = 0; i < nr; i++) {
1007                 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1008                 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1009         }
1010 }
1011 
1012 static bool leaf_node(struct dm_btree_cursor *c)
1013 {
1014         struct cursor_node *n = c->nodes + c->depth - 1;
1015         struct btree_node *bn = dm_block_data(n->b);
1016 
1017         return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1018 }
1019 
1020 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1021 {
1022         int r;
1023         struct cursor_node *n = c->nodes + c->depth;
1024 
1025         if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1026                 DMERR("couldn't push cursor node, stack depth too high");
1027                 return -EINVAL;
1028         }
1029 
1030         r = bn_read_lock(c->info, b, &n->b);
1031         if (r)
1032                 return r;
1033 
1034         n->index = 0;
1035         c->depth++;
1036 
1037         if (c->prefetch_leaves || !leaf_node(c))
1038                 prefetch_values(c);
1039 
1040         return 0;
1041 }
1042 
1043 static void pop_node(struct dm_btree_cursor *c)
1044 {
1045         c->depth--;
1046         unlock_block(c->info, c->nodes[c->depth].b);
1047 }
1048 
1049 static int inc_or_backtrack(struct dm_btree_cursor *c)
1050 {
1051         struct cursor_node *n;
1052         struct btree_node *bn;
1053 
1054         for (;;) {
1055                 if (!c->depth)
1056                         return -ENODATA;
1057 
1058                 n = c->nodes + c->depth - 1;
1059                 bn = dm_block_data(n->b);
1060 
1061                 n->index++;
1062                 if (n->index < le32_to_cpu(bn->header.nr_entries))
1063                         break;
1064 
1065                 pop_node(c);
1066         }
1067 
1068         return 0;
1069 }
1070 
1071 static int find_leaf(struct dm_btree_cursor *c)
1072 {
1073         int r = 0;
1074         struct cursor_node *n;
1075         struct btree_node *bn;
1076         __le64 value_le;
1077 
1078         for (;;) {
1079                 n = c->nodes + c->depth - 1;
1080                 bn = dm_block_data(n->b);
1081 
1082                 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1083                         break;
1084 
1085                 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1086                 r = push_node(c, le64_to_cpu(value_le));
1087                 if (r) {
1088                         DMERR("push_node failed");
1089                         break;
1090                 }
1091         }
1092 
1093         if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1094                 return -ENODATA;
1095 
1096         return r;
1097 }
1098 
1099 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1100                           bool prefetch_leaves, struct dm_btree_cursor *c)
1101 {
1102         int r;
1103 
1104         c->info = info;
1105         c->root = root;
1106         c->depth = 0;
1107         c->prefetch_leaves = prefetch_leaves;
1108 
1109         r = push_node(c, root);
1110         if (r)
1111                 return r;
1112 
1113         return find_leaf(c);
1114 }
1115 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1116 
1117 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1118 {
1119         while (c->depth)
1120                 pop_node(c);
1121 }
1122 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1123 
1124 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1125 {
1126         int r = inc_or_backtrack(c);
1127         if (!r) {
1128                 r = find_leaf(c);
1129                 if (r)
1130                         DMERR("find_leaf failed");
1131         }
1132 
1133         return r;
1134 }
1135 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1136 
1137 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1138 {
1139         int r = 0;
1140 
1141         while (count-- && !r)
1142                 r = dm_btree_cursor_next(c);
1143 
1144         return r;
1145 }
1146 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1147 
1148 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1149 {
1150         if (c->depth) {
1151                 struct cursor_node *n = c->nodes + c->depth - 1;
1152                 struct btree_node *bn = dm_block_data(n->b);
1153 
1154                 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1155                         return -EINVAL;
1156 
1157                 *key = le64_to_cpu(*key_ptr(bn, n->index));
1158                 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1159                 return 0;
1160 
1161         } else
1162                 return -ENODATA;
1163 }
1164 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);

/* [<][>][^][v][top][bottom][index][help] */