root/drivers/clk/bcm/clk-kona.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bitfield_mask
  2. bitfield_extract
  3. bitfield_replace
  4. scaled_div_value
  5. scaled_div_build
  6. scaled_div_min
  7. scaled_div_max
  8. divider
  9. scale_rate
  10. __ccu_read
  11. __ccu_write
  12. ccu_lock
  13. ccu_unlock
  14. __ccu_write_enable
  15. __ccu_write_disable
  16. __ccu_wait_bit
  17. __ccu_policy_engine_start
  18. __ccu_policy_engine_stop
  19. policy_init
  20. __is_clk_gate_enabled
  21. is_clk_gate_enabled
  22. __gate_commit
  23. gate_init
  24. __clk_gate
  25. clk_gate
  26. hyst_init
  27. __clk_trigger
  28. divider_read_scaled
  29. __div_commit
  30. div_init
  31. divider_write
  32. clk_recalc_rate
  33. round_rate
  34. parent_index
  35. selector_read_index
  36. __sel_commit
  37. sel_init
  38. selector_write
  39. kona_peri_clk_enable
  40. kona_peri_clk_disable
  41. kona_peri_clk_is_enabled
  42. kona_peri_clk_recalc_rate
  43. kona_peri_clk_round_rate
  44. kona_peri_clk_determine_rate
  45. kona_peri_clk_set_parent
  46. kona_peri_clk_get_parent
  47. kona_peri_clk_set_rate
  48. __peri_clk_init
  49. __kona_clk_init
  50. kona_ccu_init

   1 /*
   2  * Copyright (C) 2013 Broadcom Corporation
   3  * Copyright 2013 Linaro Limited
   4  *
   5  * This program is free software; you can redistribute it and/or
   6  * modify it under the terms of the GNU General Public License as
   7  * published by the Free Software Foundation version 2.
   8  *
   9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  10  * kind, whether express or implied; without even the implied warranty
  11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12  * GNU General Public License for more details.
  13  */
  14 
  15 #include "clk-kona.h"
  16 
  17 #include <linux/delay.h>
  18 #include <linux/io.h>
  19 #include <linux/kernel.h>
  20 #include <linux/clk-provider.h>
  21 
  22 /*
  23  * "Policies" affect the frequencies of bus clocks provided by a
  24  * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
  25  * "Normal", and "Turbo".)  A lower policy number has lower power
  26  * consumption, and policy 2 is the default.
  27  */
  28 #define CCU_POLICY_COUNT        4
  29 
  30 #define CCU_ACCESS_PASSWORD      0xA5A500
  31 #define CLK_GATE_DELAY_LOOP      2000
  32 
  33 /* Bitfield operations */
  34 
  35 /* Produces a mask of set bits covering a range of a 32-bit value */
  36 static inline u32 bitfield_mask(u32 shift, u32 width)
  37 {
  38         return ((1 << width) - 1) << shift;
  39 }
  40 
  41 /* Extract the value of a bitfield found within a given register value */
  42 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
  43 {
  44         return (reg_val & bitfield_mask(shift, width)) >> shift;
  45 }
  46 
  47 /* Replace the value of a bitfield found within a given register value */
  48 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
  49 {
  50         u32 mask = bitfield_mask(shift, width);
  51 
  52         return (reg_val & ~mask) | (val << shift);
  53 }
  54 
  55 /* Divider and scaling helpers */
  56 
  57 /* Convert a divider into the scaled divisor value it represents. */
  58 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
  59 {
  60         return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
  61 }
  62 
  63 /*
  64  * Build a scaled divider value as close as possible to the
  65  * given whole part (div_value) and fractional part (expressed
  66  * in billionths).
  67  */
  68 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
  69 {
  70         u64 combined;
  71 
  72         BUG_ON(!div_value);
  73         BUG_ON(billionths >= BILLION);
  74 
  75         combined = (u64)div_value * BILLION + billionths;
  76         combined <<= div->u.s.frac_width;
  77 
  78         return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
  79 }
  80 
  81 /* The scaled minimum divisor representable by a divider */
  82 static inline u64
  83 scaled_div_min(struct bcm_clk_div *div)
  84 {
  85         if (divider_is_fixed(div))
  86                 return (u64)div->u.fixed;
  87 
  88         return scaled_div_value(div, 0);
  89 }
  90 
  91 /* The scaled maximum divisor representable by a divider */
  92 u64 scaled_div_max(struct bcm_clk_div *div)
  93 {
  94         u32 reg_div;
  95 
  96         if (divider_is_fixed(div))
  97                 return (u64)div->u.fixed;
  98 
  99         reg_div = ((u32)1 << div->u.s.width) - 1;
 100 
 101         return scaled_div_value(div, reg_div);
 102 }
 103 
 104 /*
 105  * Convert a scaled divisor into its divider representation as
 106  * stored in a divider register field.
 107  */
 108 static inline u32
 109 divider(struct bcm_clk_div *div, u64 scaled_div)
 110 {
 111         BUG_ON(scaled_div < scaled_div_min(div));
 112         BUG_ON(scaled_div > scaled_div_max(div));
 113 
 114         return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
 115 }
 116 
 117 /* Return a rate scaled for use when dividing by a scaled divisor. */
 118 static inline u64
 119 scale_rate(struct bcm_clk_div *div, u32 rate)
 120 {
 121         if (divider_is_fixed(div))
 122                 return (u64)rate;
 123 
 124         return (u64)rate << div->u.s.frac_width;
 125 }
 126 
 127 /* CCU access */
 128 
 129 /* Read a 32-bit register value from a CCU's address space. */
 130 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
 131 {
 132         return readl(ccu->base + reg_offset);
 133 }
 134 
 135 /* Write a 32-bit register value into a CCU's address space. */
 136 static inline void
 137 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
 138 {
 139         writel(reg_val, ccu->base + reg_offset);
 140 }
 141 
 142 static inline unsigned long ccu_lock(struct ccu_data *ccu)
 143 {
 144         unsigned long flags;
 145 
 146         spin_lock_irqsave(&ccu->lock, flags);
 147 
 148         return flags;
 149 }
 150 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
 151 {
 152         spin_unlock_irqrestore(&ccu->lock, flags);
 153 }
 154 
 155 /*
 156  * Enable/disable write access to CCU protected registers.  The
 157  * WR_ACCESS register for all CCUs is at offset 0.
 158  */
 159 static inline void __ccu_write_enable(struct ccu_data *ccu)
 160 {
 161         if (ccu->write_enabled) {
 162                 pr_err("%s: access already enabled for %s\n", __func__,
 163                         ccu->name);
 164                 return;
 165         }
 166         ccu->write_enabled = true;
 167         __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
 168 }
 169 
 170 static inline void __ccu_write_disable(struct ccu_data *ccu)
 171 {
 172         if (!ccu->write_enabled) {
 173                 pr_err("%s: access wasn't enabled for %s\n", __func__,
 174                         ccu->name);
 175                 return;
 176         }
 177 
 178         __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
 179         ccu->write_enabled = false;
 180 }
 181 
 182 /*
 183  * Poll a register in a CCU's address space, returning when the
 184  * specified bit in that register's value is set (or clear).  Delay
 185  * a microsecond after each read of the register.  Returns true if
 186  * successful, or false if we gave up trying.
 187  *
 188  * Caller must ensure the CCU lock is held.
 189  */
 190 static inline bool
 191 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
 192 {
 193         unsigned int tries;
 194         u32 bit_mask = 1 << bit;
 195 
 196         for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
 197                 u32 val;
 198                 bool bit_val;
 199 
 200                 val = __ccu_read(ccu, reg_offset);
 201                 bit_val = (val & bit_mask) != 0;
 202                 if (bit_val == want)
 203                         return true;
 204                 udelay(1);
 205         }
 206         pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
 207                 ccu->name, reg_offset, bit, want ? "set" : "clear");
 208 
 209         return false;
 210 }
 211 
 212 /* Policy operations */
 213 
 214 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
 215 {
 216         struct bcm_policy_ctl *control = &ccu->policy.control;
 217         u32 offset;
 218         u32 go_bit;
 219         u32 mask;
 220         bool ret;
 221 
 222         /* If we don't need to control policy for this CCU, we're done. */
 223         if (!policy_ctl_exists(control))
 224                 return true;
 225 
 226         offset = control->offset;
 227         go_bit = control->go_bit;
 228 
 229         /* Ensure we're not busy before we start */
 230         ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 231         if (!ret) {
 232                 pr_err("%s: ccu %s policy engine wouldn't go idle\n",
 233                         __func__, ccu->name);
 234                 return false;
 235         }
 236 
 237         /*
 238          * If it's a synchronous request, we'll wait for the voltage
 239          * and frequency of the active load to stabilize before
 240          * returning.  To do this we select the active load by
 241          * setting the ATL bit.
 242          *
 243          * An asynchronous request instead ramps the voltage in the
 244          * background, and when that process stabilizes, the target
 245          * load is copied to the active load and the CCU frequency
 246          * is switched.  We do this by selecting the target load
 247          * (ATL bit clear) and setting the request auto-copy (AC bit
 248          * set).
 249          *
 250          * Note, we do NOT read-modify-write this register.
 251          */
 252         mask = (u32)1 << go_bit;
 253         if (sync)
 254                 mask |= 1 << control->atl_bit;
 255         else
 256                 mask |= 1 << control->ac_bit;
 257         __ccu_write(ccu, offset, mask);
 258 
 259         /* Wait for indication that operation is complete. */
 260         ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 261         if (!ret)
 262                 pr_err("%s: ccu %s policy engine never started\n",
 263                         __func__, ccu->name);
 264 
 265         return ret;
 266 }
 267 
 268 static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
 269 {
 270         struct bcm_lvm_en *enable = &ccu->policy.enable;
 271         u32 offset;
 272         u32 enable_bit;
 273         bool ret;
 274 
 275         /* If we don't need to control policy for this CCU, we're done. */
 276         if (!policy_lvm_en_exists(enable))
 277                 return true;
 278 
 279         /* Ensure we're not busy before we start */
 280         offset = enable->offset;
 281         enable_bit = enable->bit;
 282         ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 283         if (!ret) {
 284                 pr_err("%s: ccu %s policy engine already stopped\n",
 285                         __func__, ccu->name);
 286                 return false;
 287         }
 288 
 289         /* Now set the bit to stop the engine (NO read-modify-write) */
 290         __ccu_write(ccu, offset, (u32)1 << enable_bit);
 291 
 292         /* Wait for indication that it has stopped. */
 293         ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 294         if (!ret)
 295                 pr_err("%s: ccu %s policy engine never stopped\n",
 296                         __func__, ccu->name);
 297 
 298         return ret;
 299 }
 300 
 301 /*
 302  * A CCU has four operating conditions ("policies"), and some clocks
 303  * can be disabled or enabled based on which policy is currently in
 304  * effect.  Such clocks have a bit in a "policy mask" register for
 305  * each policy indicating whether the clock is enabled for that
 306  * policy or not.  The bit position for a clock is the same for all
 307  * four registers, and the 32-bit registers are at consecutive
 308  * addresses.
 309  */
 310 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
 311 {
 312         u32 offset;
 313         u32 mask;
 314         int i;
 315         bool ret;
 316 
 317         if (!policy_exists(policy))
 318                 return true;
 319 
 320         /*
 321          * We need to stop the CCU policy engine to allow update
 322          * of our policy bits.
 323          */
 324         if (!__ccu_policy_engine_stop(ccu)) {
 325                 pr_err("%s: unable to stop CCU %s policy engine\n",
 326                         __func__, ccu->name);
 327                 return false;
 328         }
 329 
 330         /*
 331          * For now, if a clock defines its policy bit we just mark
 332          * it "enabled" for all four policies.
 333          */
 334         offset = policy->offset;
 335         mask = (u32)1 << policy->bit;
 336         for (i = 0; i < CCU_POLICY_COUNT; i++) {
 337                 u32 reg_val;
 338 
 339                 reg_val = __ccu_read(ccu, offset);
 340                 reg_val |= mask;
 341                 __ccu_write(ccu, offset, reg_val);
 342                 offset += sizeof(u32);
 343         }
 344 
 345         /* We're done updating; fire up the policy engine again. */
 346         ret = __ccu_policy_engine_start(ccu, true);
 347         if (!ret)
 348                 pr_err("%s: unable to restart CCU %s policy engine\n",
 349                         __func__, ccu->name);
 350 
 351         return ret;
 352 }
 353 
 354 /* Gate operations */
 355 
 356 /* Determine whether a clock is gated.  CCU lock must be held.  */
 357 static bool
 358 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 359 {
 360         u32 bit_mask;
 361         u32 reg_val;
 362 
 363         /* If there is no gate we can assume it's enabled. */
 364         if (!gate_exists(gate))
 365                 return true;
 366 
 367         bit_mask = 1 << gate->status_bit;
 368         reg_val = __ccu_read(ccu, gate->offset);
 369 
 370         return (reg_val & bit_mask) != 0;
 371 }
 372 
 373 /* Determine whether a clock is gated. */
 374 static bool
 375 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 376 {
 377         long flags;
 378         bool ret;
 379 
 380         /* Avoid taking the lock if we can */
 381         if (!gate_exists(gate))
 382                 return true;
 383 
 384         flags = ccu_lock(ccu);
 385         ret = __is_clk_gate_enabled(ccu, gate);
 386         ccu_unlock(ccu, flags);
 387 
 388         return ret;
 389 }
 390 
 391 /*
 392  * Commit our desired gate state to the hardware.
 393  * Returns true if successful, false otherwise.
 394  */
 395 static bool
 396 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 397 {
 398         u32 reg_val;
 399         u32 mask;
 400         bool enabled = false;
 401 
 402         BUG_ON(!gate_exists(gate));
 403         if (!gate_is_sw_controllable(gate))
 404                 return true;            /* Nothing we can change */
 405 
 406         reg_val = __ccu_read(ccu, gate->offset);
 407 
 408         /* For a hardware/software gate, set which is in control */
 409         if (gate_is_hw_controllable(gate)) {
 410                 mask = (u32)1 << gate->hw_sw_sel_bit;
 411                 if (gate_is_sw_managed(gate))
 412                         reg_val |= mask;
 413                 else
 414                         reg_val &= ~mask;
 415         }
 416 
 417         /*
 418          * If software is in control, enable or disable the gate.
 419          * If hardware is, clear the enabled bit for good measure.
 420          * If a software controlled gate can't be disabled, we're
 421          * required to write a 0 into the enable bit (but the gate
 422          * will be enabled).
 423          */
 424         mask = (u32)1 << gate->en_bit;
 425         if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
 426                         !gate_is_no_disable(gate))
 427                 reg_val |= mask;
 428         else
 429                 reg_val &= ~mask;
 430 
 431         __ccu_write(ccu, gate->offset, reg_val);
 432 
 433         /* For a hardware controlled gate, we're done */
 434         if (!gate_is_sw_managed(gate))
 435                 return true;
 436 
 437         /* Otherwise wait for the gate to be in desired state */
 438         return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
 439 }
 440 
 441 /*
 442  * Initialize a gate.  Our desired state (hardware/software select,
 443  * and if software, its enable state) is committed to hardware
 444  * without the usual checks to see if it's already set up that way.
 445  * Returns true if successful, false otherwise.
 446  */
 447 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 448 {
 449         if (!gate_exists(gate))
 450                 return true;
 451         return __gate_commit(ccu, gate);
 452 }
 453 
 454 /*
 455  * Set a gate to enabled or disabled state.  Does nothing if the
 456  * gate is not currently under software control, or if it is already
 457  * in the requested state.  Returns true if successful, false
 458  * otherwise.  CCU lock must be held.
 459  */
 460 static bool
 461 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
 462 {
 463         bool ret;
 464 
 465         if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 466                 return true;    /* Nothing to do */
 467 
 468         if (!enable && gate_is_no_disable(gate)) {
 469                 pr_warn("%s: invalid gate disable request (ignoring)\n",
 470                         __func__);
 471                 return true;
 472         }
 473 
 474         if (enable == gate_is_enabled(gate))
 475                 return true;    /* No change */
 476 
 477         gate_flip_enabled(gate);
 478         ret = __gate_commit(ccu, gate);
 479         if (!ret)
 480                 gate_flip_enabled(gate);        /* Revert the change */
 481 
 482         return ret;
 483 }
 484 
 485 /* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
 486 static int clk_gate(struct ccu_data *ccu, const char *name,
 487                         struct bcm_clk_gate *gate, bool enable)
 488 {
 489         unsigned long flags;
 490         bool success;
 491 
 492         /*
 493          * Avoid taking the lock if we can.  We quietly ignore
 494          * requests to change state that don't make sense.
 495          */
 496         if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 497                 return 0;
 498         if (!enable && gate_is_no_disable(gate))
 499                 return 0;
 500 
 501         flags = ccu_lock(ccu);
 502         __ccu_write_enable(ccu);
 503 
 504         success = __clk_gate(ccu, gate, enable);
 505 
 506         __ccu_write_disable(ccu);
 507         ccu_unlock(ccu, flags);
 508 
 509         if (success)
 510                 return 0;
 511 
 512         pr_err("%s: failed to %s gate for %s\n", __func__,
 513                 enable ? "enable" : "disable", name);
 514 
 515         return -EIO;
 516 }
 517 
 518 /* Hysteresis operations */
 519 
 520 /*
 521  * If a clock gate requires a turn-off delay it will have
 522  * "hysteresis" register bits defined.  The first, if set, enables
 523  * the delay; and if enabled, the second bit determines whether the
 524  * delay is "low" or "high" (1 means high).  For now, if it's
 525  * defined for a clock, we set it.
 526  */
 527 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
 528 {
 529         u32 offset;
 530         u32 reg_val;
 531         u32 mask;
 532 
 533         if (!hyst_exists(hyst))
 534                 return true;
 535 
 536         offset = hyst->offset;
 537         mask = (u32)1 << hyst->en_bit;
 538         mask |= (u32)1 << hyst->val_bit;
 539 
 540         reg_val = __ccu_read(ccu, offset);
 541         reg_val |= mask;
 542         __ccu_write(ccu, offset, reg_val);
 543 
 544         return true;
 545 }
 546 
 547 /* Trigger operations */
 548 
 549 /*
 550  * Caller must ensure CCU lock is held and access is enabled.
 551  * Returns true if successful, false otherwise.
 552  */
 553 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
 554 {
 555         /* Trigger the clock and wait for it to finish */
 556         __ccu_write(ccu, trig->offset, 1 << trig->bit);
 557 
 558         return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
 559 }
 560 
 561 /* Divider operations */
 562 
 563 /* Read a divider value and return the scaled divisor it represents. */
 564 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
 565 {
 566         unsigned long flags;
 567         u32 reg_val;
 568         u32 reg_div;
 569 
 570         if (divider_is_fixed(div))
 571                 return (u64)div->u.fixed;
 572 
 573         flags = ccu_lock(ccu);
 574         reg_val = __ccu_read(ccu, div->u.s.offset);
 575         ccu_unlock(ccu, flags);
 576 
 577         /* Extract the full divider field from the register value */
 578         reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
 579 
 580         /* Return the scaled divisor value it represents */
 581         return scaled_div_value(div, reg_div);
 582 }
 583 
 584 /*
 585  * Convert a divider's scaled divisor value into its recorded form
 586  * and commit it into the hardware divider register.
 587  *
 588  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 589  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 590  */
 591 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 592                         struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 593 {
 594         bool enabled;
 595         u32 reg_div;
 596         u32 reg_val;
 597         int ret = 0;
 598 
 599         BUG_ON(divider_is_fixed(div));
 600 
 601         /*
 602          * If we're just initializing the divider, and no initial
 603          * state was defined in the device tree, we just find out
 604          * what its current value is rather than updating it.
 605          */
 606         if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
 607                 reg_val = __ccu_read(ccu, div->u.s.offset);
 608                 reg_div = bitfield_extract(reg_val, div->u.s.shift,
 609                                                 div->u.s.width);
 610                 div->u.s.scaled_div = scaled_div_value(div, reg_div);
 611 
 612                 return 0;
 613         }
 614 
 615         /* Convert the scaled divisor to the value we need to record */
 616         reg_div = divider(div, div->u.s.scaled_div);
 617 
 618         /* Clock needs to be enabled before changing the rate */
 619         enabled = __is_clk_gate_enabled(ccu, gate);
 620         if (!enabled && !__clk_gate(ccu, gate, true)) {
 621                 ret = -ENXIO;
 622                 goto out;
 623         }
 624 
 625         /* Replace the divider value and record the result */
 626         reg_val = __ccu_read(ccu, div->u.s.offset);
 627         reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
 628                                         reg_div);
 629         __ccu_write(ccu, div->u.s.offset, reg_val);
 630 
 631         /* If the trigger fails we still want to disable the gate */
 632         if (!__clk_trigger(ccu, trig))
 633                 ret = -EIO;
 634 
 635         /* Disable the clock again if it was disabled to begin with */
 636         if (!enabled && !__clk_gate(ccu, gate, false))
 637                 ret = ret ? ret : -ENXIO;       /* return first error */
 638 out:
 639         return ret;
 640 }
 641 
 642 /*
 643  * Initialize a divider by committing our desired state to hardware
 644  * without the usual checks to see if it's already set up that way.
 645  * Returns true if successful, false otherwise.
 646  */
 647 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 648                         struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 649 {
 650         if (!divider_exists(div) || divider_is_fixed(div))
 651                 return true;
 652         return !__div_commit(ccu, gate, div, trig);
 653 }
 654 
 655 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 656                         struct bcm_clk_div *div, struct bcm_clk_trig *trig,
 657                         u64 scaled_div)
 658 {
 659         unsigned long flags;
 660         u64 previous;
 661         int ret;
 662 
 663         BUG_ON(divider_is_fixed(div));
 664 
 665         previous = div->u.s.scaled_div;
 666         if (previous == scaled_div)
 667                 return 0;       /* No change */
 668 
 669         div->u.s.scaled_div = scaled_div;
 670 
 671         flags = ccu_lock(ccu);
 672         __ccu_write_enable(ccu);
 673 
 674         ret = __div_commit(ccu, gate, div, trig);
 675 
 676         __ccu_write_disable(ccu);
 677         ccu_unlock(ccu, flags);
 678 
 679         if (ret)
 680                 div->u.s.scaled_div = previous;         /* Revert the change */
 681 
 682         return ret;
 683 
 684 }
 685 
 686 /* Common clock rate helpers */
 687 
 688 /*
 689  * Implement the common clock framework recalc_rate method, taking
 690  * into account a divider and an optional pre-divider.  The
 691  * pre-divider register pointer may be NULL.
 692  */
 693 static unsigned long clk_recalc_rate(struct ccu_data *ccu,
 694                         struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
 695                         unsigned long parent_rate)
 696 {
 697         u64 scaled_parent_rate;
 698         u64 scaled_div;
 699         u64 result;
 700 
 701         if (!divider_exists(div))
 702                 return parent_rate;
 703 
 704         if (parent_rate > (unsigned long)LONG_MAX)
 705                 return 0;       /* actually this would be a caller bug */
 706 
 707         /*
 708          * If there is a pre-divider, divide the scaled parent rate
 709          * by the pre-divider value first.  In this case--to improve
 710          * accuracy--scale the parent rate by *both* the pre-divider
 711          * value and the divider before actually computing the
 712          * result of the pre-divider.
 713          *
 714          * If there's only one divider, just scale the parent rate.
 715          */
 716         if (pre_div && divider_exists(pre_div)) {
 717                 u64 scaled_rate;
 718 
 719                 scaled_rate = scale_rate(pre_div, parent_rate);
 720                 scaled_rate = scale_rate(div, scaled_rate);
 721                 scaled_div = divider_read_scaled(ccu, pre_div);
 722                 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 723                                                         scaled_div);
 724         } else  {
 725                 scaled_parent_rate = scale_rate(div, parent_rate);
 726         }
 727 
 728         /*
 729          * Get the scaled divisor value, and divide the scaled
 730          * parent rate by that to determine this clock's resulting
 731          * rate.
 732          */
 733         scaled_div = divider_read_scaled(ccu, div);
 734         result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
 735 
 736         return (unsigned long)result;
 737 }
 738 
 739 /*
 740  * Compute the output rate produced when a given parent rate is fed
 741  * into two dividers.  The pre-divider can be NULL, and even if it's
 742  * non-null it may be nonexistent.  It's also OK for the divider to
 743  * be nonexistent, and in that case the pre-divider is also ignored.
 744  *
 745  * If scaled_div is non-null, it is used to return the scaled divisor
 746  * value used by the (downstream) divider to produce that rate.
 747  */
 748 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
 749                                 struct bcm_clk_div *pre_div,
 750                                 unsigned long rate, unsigned long parent_rate,
 751                                 u64 *scaled_div)
 752 {
 753         u64 scaled_parent_rate;
 754         u64 min_scaled_div;
 755         u64 max_scaled_div;
 756         u64 best_scaled_div;
 757         u64 result;
 758 
 759         BUG_ON(!divider_exists(div));
 760         BUG_ON(!rate);
 761         BUG_ON(parent_rate > (u64)LONG_MAX);
 762 
 763         /*
 764          * If there is a pre-divider, divide the scaled parent rate
 765          * by the pre-divider value first.  In this case--to improve
 766          * accuracy--scale the parent rate by *both* the pre-divider
 767          * value and the divider before actually computing the
 768          * result of the pre-divider.
 769          *
 770          * If there's only one divider, just scale the parent rate.
 771          *
 772          * For simplicity we treat the pre-divider as fixed (for now).
 773          */
 774         if (divider_exists(pre_div)) {
 775                 u64 scaled_rate;
 776                 u64 scaled_pre_div;
 777 
 778                 scaled_rate = scale_rate(pre_div, parent_rate);
 779                 scaled_rate = scale_rate(div, scaled_rate);
 780                 scaled_pre_div = divider_read_scaled(ccu, pre_div);
 781                 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 782                                                         scaled_pre_div);
 783         } else {
 784                 scaled_parent_rate = scale_rate(div, parent_rate);
 785         }
 786 
 787         /*
 788          * Compute the best possible divider and ensure it is in
 789          * range.  A fixed divider can't be changed, so just report
 790          * the best we can do.
 791          */
 792         if (!divider_is_fixed(div)) {
 793                 best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
 794                                                         rate);
 795                 min_scaled_div = scaled_div_min(div);
 796                 max_scaled_div = scaled_div_max(div);
 797                 if (best_scaled_div > max_scaled_div)
 798                         best_scaled_div = max_scaled_div;
 799                 else if (best_scaled_div < min_scaled_div)
 800                         best_scaled_div = min_scaled_div;
 801         } else {
 802                 best_scaled_div = divider_read_scaled(ccu, div);
 803         }
 804 
 805         /* OK, figure out the resulting rate */
 806         result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
 807 
 808         if (scaled_div)
 809                 *scaled_div = best_scaled_div;
 810 
 811         return (long)result;
 812 }
 813 
 814 /* Common clock parent helpers */
 815 
 816 /*
 817  * For a given parent selector (register field) value, find the
 818  * index into a selector's parent_sel array that contains it.
 819  * Returns the index, or BAD_CLK_INDEX if it's not found.
 820  */
 821 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
 822 {
 823         u8 i;
 824 
 825         BUG_ON(sel->parent_count > (u32)U8_MAX);
 826         for (i = 0; i < sel->parent_count; i++)
 827                 if (sel->parent_sel[i] == parent_sel)
 828                         return i;
 829         return BAD_CLK_INDEX;
 830 }
 831 
 832 /*
 833  * Fetch the current value of the selector, and translate that into
 834  * its corresponding index in the parent array we registered with
 835  * the clock framework.
 836  *
 837  * Returns parent array index that corresponds with the value found,
 838  * or BAD_CLK_INDEX if the found value is out of range.
 839  */
 840 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
 841 {
 842         unsigned long flags;
 843         u32 reg_val;
 844         u32 parent_sel;
 845         u8 index;
 846 
 847         /* If there's no selector, there's only one parent */
 848         if (!selector_exists(sel))
 849                 return 0;
 850 
 851         /* Get the value in the selector register */
 852         flags = ccu_lock(ccu);
 853         reg_val = __ccu_read(ccu, sel->offset);
 854         ccu_unlock(ccu, flags);
 855 
 856         parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 857 
 858         /* Look up that selector's parent array index and return it */
 859         index = parent_index(sel, parent_sel);
 860         if (index == BAD_CLK_INDEX)
 861                 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
 862                         __func__, parent_sel, ccu->name, sel->offset);
 863 
 864         return index;
 865 }
 866 
 867 /*
 868  * Commit our desired selector value to the hardware.
 869  *
 870  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 871  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 872  */
 873 static int
 874 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 875                         struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 876 {
 877         u32 parent_sel;
 878         u32 reg_val;
 879         bool enabled;
 880         int ret = 0;
 881 
 882         BUG_ON(!selector_exists(sel));
 883 
 884         /*
 885          * If we're just initializing the selector, and no initial
 886          * state was defined in the device tree, we just find out
 887          * what its current value is rather than updating it.
 888          */
 889         if (sel->clk_index == BAD_CLK_INDEX) {
 890                 u8 index;
 891 
 892                 reg_val = __ccu_read(ccu, sel->offset);
 893                 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 894                 index = parent_index(sel, parent_sel);
 895                 if (index == BAD_CLK_INDEX)
 896                         return -EINVAL;
 897                 sel->clk_index = index;
 898 
 899                 return 0;
 900         }
 901 
 902         BUG_ON((u32)sel->clk_index >= sel->parent_count);
 903         parent_sel = sel->parent_sel[sel->clk_index];
 904 
 905         /* Clock needs to be enabled before changing the parent */
 906         enabled = __is_clk_gate_enabled(ccu, gate);
 907         if (!enabled && !__clk_gate(ccu, gate, true))
 908                 return -ENXIO;
 909 
 910         /* Replace the selector value and record the result */
 911         reg_val = __ccu_read(ccu, sel->offset);
 912         reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
 913         __ccu_write(ccu, sel->offset, reg_val);
 914 
 915         /* If the trigger fails we still want to disable the gate */
 916         if (!__clk_trigger(ccu, trig))
 917                 ret = -EIO;
 918 
 919         /* Disable the clock again if it was disabled to begin with */
 920         if (!enabled && !__clk_gate(ccu, gate, false))
 921                 ret = ret ? ret : -ENXIO;       /* return first error */
 922 
 923         return ret;
 924 }
 925 
 926 /*
 927  * Initialize a selector by committing our desired state to hardware
 928  * without the usual checks to see if it's already set up that way.
 929  * Returns true if successful, false otherwise.
 930  */
 931 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 932                         struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 933 {
 934         if (!selector_exists(sel))
 935                 return true;
 936         return !__sel_commit(ccu, gate, sel, trig);
 937 }
 938 
 939 /*
 940  * Write a new value into a selector register to switch to a
 941  * different parent clock.  Returns 0 on success, or an error code
 942  * (from __sel_commit()) otherwise.
 943  */
 944 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 945                         struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
 946                         u8 index)
 947 {
 948         unsigned long flags;
 949         u8 previous;
 950         int ret;
 951 
 952         previous = sel->clk_index;
 953         if (previous == index)
 954                 return 0;       /* No change */
 955 
 956         sel->clk_index = index;
 957 
 958         flags = ccu_lock(ccu);
 959         __ccu_write_enable(ccu);
 960 
 961         ret = __sel_commit(ccu, gate, sel, trig);
 962 
 963         __ccu_write_disable(ccu);
 964         ccu_unlock(ccu, flags);
 965 
 966         if (ret)
 967                 sel->clk_index = previous;      /* Revert the change */
 968 
 969         return ret;
 970 }
 971 
 972 /* Clock operations */
 973 
 974 static int kona_peri_clk_enable(struct clk_hw *hw)
 975 {
 976         struct kona_clk *bcm_clk = to_kona_clk(hw);
 977         struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 978 
 979         return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
 980 }
 981 
 982 static void kona_peri_clk_disable(struct clk_hw *hw)
 983 {
 984         struct kona_clk *bcm_clk = to_kona_clk(hw);
 985         struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 986 
 987         (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
 988 }
 989 
 990 static int kona_peri_clk_is_enabled(struct clk_hw *hw)
 991 {
 992         struct kona_clk *bcm_clk = to_kona_clk(hw);
 993         struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 994 
 995         return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
 996 }
 997 
 998 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
 999                         unsigned long parent_rate)
1000 {
1001         struct kona_clk *bcm_clk = to_kona_clk(hw);
1002         struct peri_clk_data *data = bcm_clk->u.peri;
1003 
1004         return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1005                                 parent_rate);
1006 }
1007 
1008 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1009                         unsigned long *parent_rate)
1010 {
1011         struct kona_clk *bcm_clk = to_kona_clk(hw);
1012         struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1013 
1014         if (!divider_exists(div))
1015                 return clk_hw_get_rate(hw);
1016 
1017         /* Quietly avoid a zero rate */
1018         return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1019                                 rate ? rate : 1, *parent_rate, NULL);
1020 }
1021 
1022 static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1023                                         struct clk_rate_request *req)
1024 {
1025         struct kona_clk *bcm_clk = to_kona_clk(hw);
1026         struct clk_hw *current_parent;
1027         unsigned long parent_rate;
1028         unsigned long best_delta;
1029         unsigned long best_rate;
1030         u32 parent_count;
1031         long rate;
1032         u32 which;
1033 
1034         /*
1035          * If there is no other parent to choose, use the current one.
1036          * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1037          */
1038         WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1039         parent_count = (u32)bcm_clk->init_data.num_parents;
1040         if (parent_count < 2) {
1041                 rate = kona_peri_clk_round_rate(hw, req->rate,
1042                                                 &req->best_parent_rate);
1043                 if (rate < 0)
1044                         return rate;
1045 
1046                 req->rate = rate;
1047                 return 0;
1048         }
1049 
1050         /* Unless we can do better, stick with current parent */
1051         current_parent = clk_hw_get_parent(hw);
1052         parent_rate = clk_hw_get_rate(current_parent);
1053         best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1054         best_delta = abs(best_rate - req->rate);
1055 
1056         /* Check whether any other parent clock can produce a better result */
1057         for (which = 0; which < parent_count; which++) {
1058                 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1059                 unsigned long delta;
1060                 unsigned long other_rate;
1061 
1062                 BUG_ON(!parent);
1063                 if (parent == current_parent)
1064                         continue;
1065 
1066                 /* We don't support CLK_SET_RATE_PARENT */
1067                 parent_rate = clk_hw_get_rate(parent);
1068                 other_rate = kona_peri_clk_round_rate(hw, req->rate,
1069                                                       &parent_rate);
1070                 delta = abs(other_rate - req->rate);
1071                 if (delta < best_delta) {
1072                         best_delta = delta;
1073                         best_rate = other_rate;
1074                         req->best_parent_hw = parent;
1075                         req->best_parent_rate = parent_rate;
1076                 }
1077         }
1078 
1079         req->rate = best_rate;
1080         return 0;
1081 }
1082 
1083 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1084 {
1085         struct kona_clk *bcm_clk = to_kona_clk(hw);
1086         struct peri_clk_data *data = bcm_clk->u.peri;
1087         struct bcm_clk_sel *sel = &data->sel;
1088         struct bcm_clk_trig *trig;
1089         int ret;
1090 
1091         BUG_ON(index >= sel->parent_count);
1092 
1093         /* If there's only one parent we don't require a selector */
1094         if (!selector_exists(sel))
1095                 return 0;
1096 
1097         /*
1098          * The regular trigger is used by default, but if there's a
1099          * pre-trigger we want to use that instead.
1100          */
1101         trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1102                                                : &data->trig;
1103 
1104         ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1105         if (ret == -ENXIO) {
1106                 pr_err("%s: gating failure for %s\n", __func__,
1107                         bcm_clk->init_data.name);
1108                 ret = -EIO;     /* Don't proliferate weird errors */
1109         } else if (ret == -EIO) {
1110                 pr_err("%s: %strigger failed for %s\n", __func__,
1111                         trig == &data->pre_trig ? "pre-" : "",
1112                         bcm_clk->init_data.name);
1113         }
1114 
1115         return ret;
1116 }
1117 
1118 static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1119 {
1120         struct kona_clk *bcm_clk = to_kona_clk(hw);
1121         struct peri_clk_data *data = bcm_clk->u.peri;
1122         u8 index;
1123 
1124         index = selector_read_index(bcm_clk->ccu, &data->sel);
1125 
1126         /* Not all callers would handle an out-of-range value gracefully */
1127         return index == BAD_CLK_INDEX ? 0 : index;
1128 }
1129 
1130 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1131                         unsigned long parent_rate)
1132 {
1133         struct kona_clk *bcm_clk = to_kona_clk(hw);
1134         struct peri_clk_data *data = bcm_clk->u.peri;
1135         struct bcm_clk_div *div = &data->div;
1136         u64 scaled_div = 0;
1137         int ret;
1138 
1139         if (parent_rate > (unsigned long)LONG_MAX)
1140                 return -EINVAL;
1141 
1142         if (rate == clk_hw_get_rate(hw))
1143                 return 0;
1144 
1145         if (!divider_exists(div))
1146                 return rate == parent_rate ? 0 : -EINVAL;
1147 
1148         /*
1149          * A fixed divider can't be changed.  (Nor can a fixed
1150          * pre-divider be, but for now we never actually try to
1151          * change that.)  Tolerate a request for a no-op change.
1152          */
1153         if (divider_is_fixed(&data->div))
1154                 return rate == parent_rate ? 0 : -EINVAL;
1155 
1156         /*
1157          * Get the scaled divisor value needed to achieve a clock
1158          * rate as close as possible to what was requested, given
1159          * the parent clock rate supplied.
1160          */
1161         (void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1162                                 rate ? rate : 1, parent_rate, &scaled_div);
1163 
1164         /*
1165          * We aren't updating any pre-divider at this point, so
1166          * we'll use the regular trigger.
1167          */
1168         ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1169                                 &data->trig, scaled_div);
1170         if (ret == -ENXIO) {
1171                 pr_err("%s: gating failure for %s\n", __func__,
1172                         bcm_clk->init_data.name);
1173                 ret = -EIO;     /* Don't proliferate weird errors */
1174         } else if (ret == -EIO) {
1175                 pr_err("%s: trigger failed for %s\n", __func__,
1176                         bcm_clk->init_data.name);
1177         }
1178 
1179         return ret;
1180 }
1181 
1182 struct clk_ops kona_peri_clk_ops = {
1183         .enable = kona_peri_clk_enable,
1184         .disable = kona_peri_clk_disable,
1185         .is_enabled = kona_peri_clk_is_enabled,
1186         .recalc_rate = kona_peri_clk_recalc_rate,
1187         .determine_rate = kona_peri_clk_determine_rate,
1188         .set_parent = kona_peri_clk_set_parent,
1189         .get_parent = kona_peri_clk_get_parent,
1190         .set_rate = kona_peri_clk_set_rate,
1191 };
1192 
1193 /* Put a peripheral clock into its initial state */
1194 static bool __peri_clk_init(struct kona_clk *bcm_clk)
1195 {
1196         struct ccu_data *ccu = bcm_clk->ccu;
1197         struct peri_clk_data *peri = bcm_clk->u.peri;
1198         const char *name = bcm_clk->init_data.name;
1199         struct bcm_clk_trig *trig;
1200 
1201         BUG_ON(bcm_clk->type != bcm_clk_peri);
1202 
1203         if (!policy_init(ccu, &peri->policy)) {
1204                 pr_err("%s: error initializing policy for %s\n",
1205                         __func__, name);
1206                 return false;
1207         }
1208         if (!gate_init(ccu, &peri->gate)) {
1209                 pr_err("%s: error initializing gate for %s\n", __func__, name);
1210                 return false;
1211         }
1212         if (!hyst_init(ccu, &peri->hyst)) {
1213                 pr_err("%s: error initializing hyst for %s\n", __func__, name);
1214                 return false;
1215         }
1216         if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1217                 pr_err("%s: error initializing divider for %s\n", __func__,
1218                         name);
1219                 return false;
1220         }
1221 
1222         /*
1223          * For the pre-divider and selector, the pre-trigger is used
1224          * if it's present, otherwise we just use the regular trigger.
1225          */
1226         trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1227                                                : &peri->trig;
1228 
1229         if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1230                 pr_err("%s: error initializing pre-divider for %s\n", __func__,
1231                         name);
1232                 return false;
1233         }
1234 
1235         if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1236                 pr_err("%s: error initializing selector for %s\n", __func__,
1237                         name);
1238                 return false;
1239         }
1240 
1241         return true;
1242 }
1243 
1244 static bool __kona_clk_init(struct kona_clk *bcm_clk)
1245 {
1246         switch (bcm_clk->type) {
1247         case bcm_clk_peri:
1248                 return __peri_clk_init(bcm_clk);
1249         default:
1250                 BUG();
1251         }
1252         return false;
1253 }
1254 
1255 /* Set a CCU and all its clocks into their desired initial state */
1256 bool __init kona_ccu_init(struct ccu_data *ccu)
1257 {
1258         unsigned long flags;
1259         unsigned int which;
1260         struct kona_clk *kona_clks = ccu->kona_clks;
1261         bool success = true;
1262 
1263         flags = ccu_lock(ccu);
1264         __ccu_write_enable(ccu);
1265 
1266         for (which = 0; which < ccu->clk_num; which++) {
1267                 struct kona_clk *bcm_clk = &kona_clks[which];
1268 
1269                 if (!bcm_clk->ccu)
1270                         continue;
1271 
1272                 success &= __kona_clk_init(bcm_clk);
1273         }
1274 
1275         __ccu_write_disable(ccu);
1276         ccu_unlock(ccu, flags);
1277         return success;
1278 }

/* [<][>][^][v][top][bottom][index][help] */