root/drivers/pci/hotplug/cpqphp_ctrl.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. long_delay
  2. handle_switch_change
  3. cpqhp_find_slot
  4. handle_presence_change
  5. handle_power_fault
  6. sort_by_size
  7. sort_by_max_size
  8. do_pre_bridge_resource_split
  9. do_bridge_resource_split
  10. get_io_resource
  11. get_max_resource
  12. get_resource
  13. cpqhp_resource_sort_and_combine
  14. cpqhp_ctrl_intr
  15. cpqhp_slot_create
  16. slot_remove
  17. bridge_slot_remove
  18. cpqhp_slot_find
  19. is_bridge
  20. set_controller_speed
  21. board_replaced
  22. board_added
  23. remove_board
  24. pushbutton_helper_thread
  25. event_thread
  26. cpqhp_event_start_thread
  27. cpqhp_event_stop_thread
  28. interrupt_event_handler
  29. cpqhp_pushbutton_thread
  30. cpqhp_process_SI
  31. cpqhp_process_SS
  32. switch_leds
  33. cpqhp_hardware_test
  34. configure_new_device
  35. configure_new_function

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Compaq Hot Plug Controller Driver
   4  *
   5  * Copyright (C) 1995,2001 Compaq Computer Corporation
   6  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   7  * Copyright (C) 2001 IBM Corp.
   8  *
   9  * All rights reserved.
  10  *
  11  * Send feedback to <greg@kroah.com>
  12  *
  13  */
  14 
  15 #include <linux/module.h>
  16 #include <linux/kernel.h>
  17 #include <linux/types.h>
  18 #include <linux/slab.h>
  19 #include <linux/workqueue.h>
  20 #include <linux/interrupt.h>
  21 #include <linux/delay.h>
  22 #include <linux/wait.h>
  23 #include <linux/pci.h>
  24 #include <linux/pci_hotplug.h>
  25 #include <linux/kthread.h>
  26 #include "cpqphp.h"
  27 
  28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
  29                         u8 behind_bridge, struct resource_lists *resources);
  30 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
  31                         u8 behind_bridge, struct resource_lists *resources);
  32 static void interrupt_event_handler(struct controller *ctrl);
  33 
  34 
  35 static struct task_struct *cpqhp_event_thread;
  36 static struct timer_list *pushbutton_pending;   /* = NULL */
  37 
  38 /* delay is in jiffies to wait for */
  39 static void long_delay(int delay)
  40 {
  41         /*
  42          * XXX(hch): if someone is bored please convert all callers
  43          * to call msleep_interruptible directly.  They really want
  44          * to specify timeouts in natural units and spend a lot of
  45          * effort converting them to jiffies..
  46          */
  47         msleep_interruptible(jiffies_to_msecs(delay));
  48 }
  49 
  50 
  51 /* FIXME: The following line needs to be somewhere else... */
  52 #define WRONG_BUS_FREQUENCY 0x07
  53 static u8 handle_switch_change(u8 change, struct controller *ctrl)
  54 {
  55         int hp_slot;
  56         u8 rc = 0;
  57         u16 temp_word;
  58         struct pci_func *func;
  59         struct event_info *taskInfo;
  60 
  61         if (!change)
  62                 return 0;
  63 
  64         /* Switch Change */
  65         dbg("cpqsbd:  Switch interrupt received.\n");
  66 
  67         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
  68                 if (change & (0x1L << hp_slot)) {
  69                         /*
  70                          * this one changed.
  71                          */
  72                         func = cpqhp_slot_find(ctrl->bus,
  73                                 (hp_slot + ctrl->slot_device_offset), 0);
  74 
  75                         /* this is the structure that tells the worker thread
  76                          * what to do
  77                          */
  78                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
  79                         ctrl->next_event = (ctrl->next_event + 1) % 10;
  80                         taskInfo->hp_slot = hp_slot;
  81 
  82                         rc++;
  83 
  84                         temp_word = ctrl->ctrl_int_comp >> 16;
  85                         func->presence_save = (temp_word >> hp_slot) & 0x01;
  86                         func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
  87 
  88                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
  89                                 /*
  90                                  * Switch opened
  91                                  */
  92 
  93                                 func->switch_save = 0;
  94 
  95                                 taskInfo->event_type = INT_SWITCH_OPEN;
  96                         } else {
  97                                 /*
  98                                  * Switch closed
  99                                  */
 100 
 101                                 func->switch_save = 0x10;
 102 
 103                                 taskInfo->event_type = INT_SWITCH_CLOSE;
 104                         }
 105                 }
 106         }
 107 
 108         return rc;
 109 }
 110 
 111 /**
 112  * cpqhp_find_slot - find the struct slot of given device
 113  * @ctrl: scan lots of this controller
 114  * @device: the device id to find
 115  */
 116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
 117 {
 118         struct slot *slot = ctrl->slot;
 119 
 120         while (slot && (slot->device != device))
 121                 slot = slot->next;
 122 
 123         return slot;
 124 }
 125 
 126 
 127 static u8 handle_presence_change(u16 change, struct controller *ctrl)
 128 {
 129         int hp_slot;
 130         u8 rc = 0;
 131         u8 temp_byte;
 132         u16 temp_word;
 133         struct pci_func *func;
 134         struct event_info *taskInfo;
 135         struct slot *p_slot;
 136 
 137         if (!change)
 138                 return 0;
 139 
 140         /*
 141          * Presence Change
 142          */
 143         dbg("cpqsbd:  Presence/Notify input change.\n");
 144         dbg("         Changed bits are 0x%4.4x\n", change);
 145 
 146         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 147                 if (change & (0x0101 << hp_slot)) {
 148                         /*
 149                          * this one changed.
 150                          */
 151                         func = cpqhp_slot_find(ctrl->bus,
 152                                 (hp_slot + ctrl->slot_device_offset), 0);
 153 
 154                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 155                         ctrl->next_event = (ctrl->next_event + 1) % 10;
 156                         taskInfo->hp_slot = hp_slot;
 157 
 158                         rc++;
 159 
 160                         p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
 161                         if (!p_slot)
 162                                 return 0;
 163 
 164                         /* If the switch closed, must be a button
 165                          * If not in button mode, nevermind
 166                          */
 167                         if (func->switch_save && (ctrl->push_button == 1)) {
 168                                 temp_word = ctrl->ctrl_int_comp >> 16;
 169                                 temp_byte = (temp_word >> hp_slot) & 0x01;
 170                                 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
 171 
 172                                 if (temp_byte != func->presence_save) {
 173                                         /*
 174                                          * button Pressed (doesn't do anything)
 175                                          */
 176                                         dbg("hp_slot %d button pressed\n", hp_slot);
 177                                         taskInfo->event_type = INT_BUTTON_PRESS;
 178                                 } else {
 179                                         /*
 180                                          * button Released - TAKE ACTION!!!!
 181                                          */
 182                                         dbg("hp_slot %d button released\n", hp_slot);
 183                                         taskInfo->event_type = INT_BUTTON_RELEASE;
 184 
 185                                         /* Cancel if we are still blinking */
 186                                         if ((p_slot->state == BLINKINGON_STATE)
 187                                             || (p_slot->state == BLINKINGOFF_STATE)) {
 188                                                 taskInfo->event_type = INT_BUTTON_CANCEL;
 189                                                 dbg("hp_slot %d button cancel\n", hp_slot);
 190                                         } else if ((p_slot->state == POWERON_STATE)
 191                                                    || (p_slot->state == POWEROFF_STATE)) {
 192                                                 /* info(msg_button_ignore, p_slot->number); */
 193                                                 taskInfo->event_type = INT_BUTTON_IGNORE;
 194                                                 dbg("hp_slot %d button ignore\n", hp_slot);
 195                                         }
 196                                 }
 197                         } else {
 198                                 /* Switch is open, assume a presence change
 199                                  * Save the presence state
 200                                  */
 201                                 temp_word = ctrl->ctrl_int_comp >> 16;
 202                                 func->presence_save = (temp_word >> hp_slot) & 0x01;
 203                                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 204 
 205                                 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
 206                                     (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
 207                                         /* Present */
 208                                         taskInfo->event_type = INT_PRESENCE_ON;
 209                                 } else {
 210                                         /* Not Present */
 211                                         taskInfo->event_type = INT_PRESENCE_OFF;
 212                                 }
 213                         }
 214                 }
 215         }
 216 
 217         return rc;
 218 }
 219 
 220 
 221 static u8 handle_power_fault(u8 change, struct controller *ctrl)
 222 {
 223         int hp_slot;
 224         u8 rc = 0;
 225         struct pci_func *func;
 226         struct event_info *taskInfo;
 227 
 228         if (!change)
 229                 return 0;
 230 
 231         /*
 232          * power fault
 233          */
 234 
 235         info("power fault interrupt\n");
 236 
 237         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 238                 if (change & (0x01 << hp_slot)) {
 239                         /*
 240                          * this one changed.
 241                          */
 242                         func = cpqhp_slot_find(ctrl->bus,
 243                                 (hp_slot + ctrl->slot_device_offset), 0);
 244 
 245                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 246                         ctrl->next_event = (ctrl->next_event + 1) % 10;
 247                         taskInfo->hp_slot = hp_slot;
 248 
 249                         rc++;
 250 
 251                         if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
 252                                 /*
 253                                  * power fault Cleared
 254                                  */
 255                                 func->status = 0x00;
 256 
 257                                 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
 258                         } else {
 259                                 /*
 260                                  * power fault
 261                                  */
 262                                 taskInfo->event_type = INT_POWER_FAULT;
 263 
 264                                 if (ctrl->rev < 4) {
 265                                         amber_LED_on(ctrl, hp_slot);
 266                                         green_LED_off(ctrl, hp_slot);
 267                                         set_SOGO(ctrl);
 268 
 269                                         /* this is a fatal condition, we want
 270                                          * to crash the machine to protect from
 271                                          * data corruption. simulated_NMI
 272                                          * shouldn't ever return */
 273                                         /* FIXME
 274                                         simulated_NMI(hp_slot, ctrl); */
 275 
 276                                         /* The following code causes a software
 277                                          * crash just in case simulated_NMI did
 278                                          * return */
 279                                         /*FIXME
 280                                         panic(msg_power_fault); */
 281                                 } else {
 282                                         /* set power fault status for this board */
 283                                         func->status = 0xFF;
 284                                         info("power fault bit %x set\n", hp_slot);
 285                                 }
 286                         }
 287                 }
 288         }
 289 
 290         return rc;
 291 }
 292 
 293 
 294 /**
 295  * sort_by_size - sort nodes on the list by their length, smallest first.
 296  * @head: list to sort
 297  */
 298 static int sort_by_size(struct pci_resource **head)
 299 {
 300         struct pci_resource *current_res;
 301         struct pci_resource *next_res;
 302         int out_of_order = 1;
 303 
 304         if (!(*head))
 305                 return 1;
 306 
 307         if (!((*head)->next))
 308                 return 0;
 309 
 310         while (out_of_order) {
 311                 out_of_order = 0;
 312 
 313                 /* Special case for swapping list head */
 314                 if (((*head)->next) &&
 315                     ((*head)->length > (*head)->next->length)) {
 316                         out_of_order++;
 317                         current_res = *head;
 318                         *head = (*head)->next;
 319                         current_res->next = (*head)->next;
 320                         (*head)->next = current_res;
 321                 }
 322 
 323                 current_res = *head;
 324 
 325                 while (current_res->next && current_res->next->next) {
 326                         if (current_res->next->length > current_res->next->next->length) {
 327                                 out_of_order++;
 328                                 next_res = current_res->next;
 329                                 current_res->next = current_res->next->next;
 330                                 current_res = current_res->next;
 331                                 next_res->next = current_res->next;
 332                                 current_res->next = next_res;
 333                         } else
 334                                 current_res = current_res->next;
 335                 }
 336         }  /* End of out_of_order loop */
 337 
 338         return 0;
 339 }
 340 
 341 
 342 /**
 343  * sort_by_max_size - sort nodes on the list by their length, largest first.
 344  * @head: list to sort
 345  */
 346 static int sort_by_max_size(struct pci_resource **head)
 347 {
 348         struct pci_resource *current_res;
 349         struct pci_resource *next_res;
 350         int out_of_order = 1;
 351 
 352         if (!(*head))
 353                 return 1;
 354 
 355         if (!((*head)->next))
 356                 return 0;
 357 
 358         while (out_of_order) {
 359                 out_of_order = 0;
 360 
 361                 /* Special case for swapping list head */
 362                 if (((*head)->next) &&
 363                     ((*head)->length < (*head)->next->length)) {
 364                         out_of_order++;
 365                         current_res = *head;
 366                         *head = (*head)->next;
 367                         current_res->next = (*head)->next;
 368                         (*head)->next = current_res;
 369                 }
 370 
 371                 current_res = *head;
 372 
 373                 while (current_res->next && current_res->next->next) {
 374                         if (current_res->next->length < current_res->next->next->length) {
 375                                 out_of_order++;
 376                                 next_res = current_res->next;
 377                                 current_res->next = current_res->next->next;
 378                                 current_res = current_res->next;
 379                                 next_res->next = current_res->next;
 380                                 current_res->next = next_res;
 381                         } else
 382                                 current_res = current_res->next;
 383                 }
 384         }  /* End of out_of_order loop */
 385 
 386         return 0;
 387 }
 388 
 389 
 390 /**
 391  * do_pre_bridge_resource_split - find node of resources that are unused
 392  * @head: new list head
 393  * @orig_head: original list head
 394  * @alignment: max node size (?)
 395  */
 396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
 397                                 struct pci_resource **orig_head, u32 alignment)
 398 {
 399         struct pci_resource *prevnode = NULL;
 400         struct pci_resource *node;
 401         struct pci_resource *split_node;
 402         u32 rc;
 403         u32 temp_dword;
 404         dbg("do_pre_bridge_resource_split\n");
 405 
 406         if (!(*head) || !(*orig_head))
 407                 return NULL;
 408 
 409         rc = cpqhp_resource_sort_and_combine(head);
 410 
 411         if (rc)
 412                 return NULL;
 413 
 414         if ((*head)->base != (*orig_head)->base)
 415                 return NULL;
 416 
 417         if ((*head)->length == (*orig_head)->length)
 418                 return NULL;
 419 
 420 
 421         /* If we got here, there the bridge requires some of the resource, but
 422          * we may be able to split some off of the front
 423          */
 424 
 425         node = *head;
 426 
 427         if (node->length & (alignment - 1)) {
 428                 /* this one isn't an aligned length, so we'll make a new entry
 429                  * and split it up.
 430                  */
 431                 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 432 
 433                 if (!split_node)
 434                         return NULL;
 435 
 436                 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
 437 
 438                 split_node->base = node->base;
 439                 split_node->length = temp_dword;
 440 
 441                 node->length -= temp_dword;
 442                 node->base += split_node->length;
 443 
 444                 /* Put it in the list */
 445                 *head = split_node;
 446                 split_node->next = node;
 447         }
 448 
 449         if (node->length < alignment)
 450                 return NULL;
 451 
 452         /* Now unlink it */
 453         if (*head == node) {
 454                 *head = node->next;
 455         } else {
 456                 prevnode = *head;
 457                 while (prevnode->next != node)
 458                         prevnode = prevnode->next;
 459 
 460                 prevnode->next = node->next;
 461         }
 462         node->next = NULL;
 463 
 464         return node;
 465 }
 466 
 467 
 468 /**
 469  * do_bridge_resource_split - find one node of resources that aren't in use
 470  * @head: list head
 471  * @alignment: max node size (?)
 472  */
 473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
 474 {
 475         struct pci_resource *prevnode = NULL;
 476         struct pci_resource *node;
 477         u32 rc;
 478         u32 temp_dword;
 479 
 480         rc = cpqhp_resource_sort_and_combine(head);
 481 
 482         if (rc)
 483                 return NULL;
 484 
 485         node = *head;
 486 
 487         while (node->next) {
 488                 prevnode = node;
 489                 node = node->next;
 490                 kfree(prevnode);
 491         }
 492 
 493         if (node->length < alignment)
 494                 goto error;
 495 
 496         if (node->base & (alignment - 1)) {
 497                 /* Short circuit if adjusted size is too small */
 498                 temp_dword = (node->base | (alignment-1)) + 1;
 499                 if ((node->length - (temp_dword - node->base)) < alignment)
 500                         goto error;
 501 
 502                 node->length -= (temp_dword - node->base);
 503                 node->base = temp_dword;
 504         }
 505 
 506         if (node->length & (alignment - 1))
 507                 /* There's stuff in use after this node */
 508                 goto error;
 509 
 510         return node;
 511 error:
 512         kfree(node);
 513         return NULL;
 514 }
 515 
 516 
 517 /**
 518  * get_io_resource - find first node of given size not in ISA aliasing window.
 519  * @head: list to search
 520  * @size: size of node to find, must be a power of two.
 521  *
 522  * Description: This function sorts the resource list by size and then returns
 523  * returns the first node of "size" length that is not in the ISA aliasing
 524  * window.  If it finds a node larger than "size" it will split it up.
 525  */
 526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
 527 {
 528         struct pci_resource *prevnode;
 529         struct pci_resource *node;
 530         struct pci_resource *split_node;
 531         u32 temp_dword;
 532 
 533         if (!(*head))
 534                 return NULL;
 535 
 536         if (cpqhp_resource_sort_and_combine(head))
 537                 return NULL;
 538 
 539         if (sort_by_size(head))
 540                 return NULL;
 541 
 542         for (node = *head; node; node = node->next) {
 543                 if (node->length < size)
 544                         continue;
 545 
 546                 if (node->base & (size - 1)) {
 547                         /* this one isn't base aligned properly
 548                          * so we'll make a new entry and split it up
 549                          */
 550                         temp_dword = (node->base | (size-1)) + 1;
 551 
 552                         /* Short circuit if adjusted size is too small */
 553                         if ((node->length - (temp_dword - node->base)) < size)
 554                                 continue;
 555 
 556                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 557 
 558                         if (!split_node)
 559                                 return NULL;
 560 
 561                         split_node->base = node->base;
 562                         split_node->length = temp_dword - node->base;
 563                         node->base = temp_dword;
 564                         node->length -= split_node->length;
 565 
 566                         /* Put it in the list */
 567                         split_node->next = node->next;
 568                         node->next = split_node;
 569                 } /* End of non-aligned base */
 570 
 571                 /* Don't need to check if too small since we already did */
 572                 if (node->length > size) {
 573                         /* this one is longer than we need
 574                          * so we'll make a new entry and split it up
 575                          */
 576                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 577 
 578                         if (!split_node)
 579                                 return NULL;
 580 
 581                         split_node->base = node->base + size;
 582                         split_node->length = node->length - size;
 583                         node->length = size;
 584 
 585                         /* Put it in the list */
 586                         split_node->next = node->next;
 587                         node->next = split_node;
 588                 }  /* End of too big on top end */
 589 
 590                 /* For IO make sure it's not in the ISA aliasing space */
 591                 if (node->base & 0x300L)
 592                         continue;
 593 
 594                 /* If we got here, then it is the right size
 595                  * Now take it out of the list and break
 596                  */
 597                 if (*head == node) {
 598                         *head = node->next;
 599                 } else {
 600                         prevnode = *head;
 601                         while (prevnode->next != node)
 602                                 prevnode = prevnode->next;
 603 
 604                         prevnode->next = node->next;
 605                 }
 606                 node->next = NULL;
 607                 break;
 608         }
 609 
 610         return node;
 611 }
 612 
 613 
 614 /**
 615  * get_max_resource - get largest node which has at least the given size.
 616  * @head: the list to search the node in
 617  * @size: the minimum size of the node to find
 618  *
 619  * Description: Gets the largest node that is at least "size" big from the
 620  * list pointed to by head.  It aligns the node on top and bottom
 621  * to "size" alignment before returning it.
 622  */
 623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
 624 {
 625         struct pci_resource *max;
 626         struct pci_resource *temp;
 627         struct pci_resource *split_node;
 628         u32 temp_dword;
 629 
 630         if (cpqhp_resource_sort_and_combine(head))
 631                 return NULL;
 632 
 633         if (sort_by_max_size(head))
 634                 return NULL;
 635 
 636         for (max = *head; max; max = max->next) {
 637                 /* If not big enough we could probably just bail,
 638                  * instead we'll continue to the next.
 639                  */
 640                 if (max->length < size)
 641                         continue;
 642 
 643                 if (max->base & (size - 1)) {
 644                         /* this one isn't base aligned properly
 645                          * so we'll make a new entry and split it up
 646                          */
 647                         temp_dword = (max->base | (size-1)) + 1;
 648 
 649                         /* Short circuit if adjusted size is too small */
 650                         if ((max->length - (temp_dword - max->base)) < size)
 651                                 continue;
 652 
 653                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 654 
 655                         if (!split_node)
 656                                 return NULL;
 657 
 658                         split_node->base = max->base;
 659                         split_node->length = temp_dword - max->base;
 660                         max->base = temp_dword;
 661                         max->length -= split_node->length;
 662 
 663                         split_node->next = max->next;
 664                         max->next = split_node;
 665                 }
 666 
 667                 if ((max->base + max->length) & (size - 1)) {
 668                         /* this one isn't end aligned properly at the top
 669                          * so we'll make a new entry and split it up
 670                          */
 671                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 672 
 673                         if (!split_node)
 674                                 return NULL;
 675                         temp_dword = ((max->base + max->length) & ~(size - 1));
 676                         split_node->base = temp_dword;
 677                         split_node->length = max->length + max->base
 678                                              - split_node->base;
 679                         max->length -= split_node->length;
 680 
 681                         split_node->next = max->next;
 682                         max->next = split_node;
 683                 }
 684 
 685                 /* Make sure it didn't shrink too much when we aligned it */
 686                 if (max->length < size)
 687                         continue;
 688 
 689                 /* Now take it out of the list */
 690                 temp = *head;
 691                 if (temp == max) {
 692                         *head = max->next;
 693                 } else {
 694                         while (temp && temp->next != max)
 695                                 temp = temp->next;
 696 
 697                         if (temp)
 698                                 temp->next = max->next;
 699                 }
 700 
 701                 max->next = NULL;
 702                 break;
 703         }
 704 
 705         return max;
 706 }
 707 
 708 
 709 /**
 710  * get_resource - find resource of given size and split up larger ones.
 711  * @head: the list to search for resources
 712  * @size: the size limit to use
 713  *
 714  * Description: This function sorts the resource list by size and then
 715  * returns the first node of "size" length.  If it finds a node
 716  * larger than "size" it will split it up.
 717  *
 718  * size must be a power of two.
 719  */
 720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
 721 {
 722         struct pci_resource *prevnode;
 723         struct pci_resource *node;
 724         struct pci_resource *split_node;
 725         u32 temp_dword;
 726 
 727         if (cpqhp_resource_sort_and_combine(head))
 728                 return NULL;
 729 
 730         if (sort_by_size(head))
 731                 return NULL;
 732 
 733         for (node = *head; node; node = node->next) {
 734                 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
 735                     __func__, size, node, node->base, node->length);
 736                 if (node->length < size)
 737                         continue;
 738 
 739                 if (node->base & (size - 1)) {
 740                         dbg("%s: not aligned\n", __func__);
 741                         /* this one isn't base aligned properly
 742                          * so we'll make a new entry and split it up
 743                          */
 744                         temp_dword = (node->base | (size-1)) + 1;
 745 
 746                         /* Short circuit if adjusted size is too small */
 747                         if ((node->length - (temp_dword - node->base)) < size)
 748                                 continue;
 749 
 750                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 751 
 752                         if (!split_node)
 753                                 return NULL;
 754 
 755                         split_node->base = node->base;
 756                         split_node->length = temp_dword - node->base;
 757                         node->base = temp_dword;
 758                         node->length -= split_node->length;
 759 
 760                         split_node->next = node->next;
 761                         node->next = split_node;
 762                 } /* End of non-aligned base */
 763 
 764                 /* Don't need to check if too small since we already did */
 765                 if (node->length > size) {
 766                         dbg("%s: too big\n", __func__);
 767                         /* this one is longer than we need
 768                          * so we'll make a new entry and split it up
 769                          */
 770                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 771 
 772                         if (!split_node)
 773                                 return NULL;
 774 
 775                         split_node->base = node->base + size;
 776                         split_node->length = node->length - size;
 777                         node->length = size;
 778 
 779                         /* Put it in the list */
 780                         split_node->next = node->next;
 781                         node->next = split_node;
 782                 }  /* End of too big on top end */
 783 
 784                 dbg("%s: got one!!!\n", __func__);
 785                 /* If we got here, then it is the right size
 786                  * Now take it out of the list */
 787                 if (*head == node) {
 788                         *head = node->next;
 789                 } else {
 790                         prevnode = *head;
 791                         while (prevnode->next != node)
 792                                 prevnode = prevnode->next;
 793 
 794                         prevnode->next = node->next;
 795                 }
 796                 node->next = NULL;
 797                 break;
 798         }
 799         return node;
 800 }
 801 
 802 
 803 /**
 804  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 805  * @head: the list to sort and clean up
 806  *
 807  * Description: Sorts all of the nodes in the list in ascending order by
 808  * their base addresses.  Also does garbage collection by
 809  * combining adjacent nodes.
 810  *
 811  * Returns %0 if success.
 812  */
 813 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
 814 {
 815         struct pci_resource *node1;
 816         struct pci_resource *node2;
 817         int out_of_order = 1;
 818 
 819         dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
 820 
 821         if (!(*head))
 822                 return 1;
 823 
 824         dbg("*head->next = %p\n", (*head)->next);
 825 
 826         if (!(*head)->next)
 827                 return 0;       /* only one item on the list, already sorted! */
 828 
 829         dbg("*head->base = 0x%x\n", (*head)->base);
 830         dbg("*head->next->base = 0x%x\n", (*head)->next->base);
 831         while (out_of_order) {
 832                 out_of_order = 0;
 833 
 834                 /* Special case for swapping list head */
 835                 if (((*head)->next) &&
 836                     ((*head)->base > (*head)->next->base)) {
 837                         node1 = *head;
 838                         (*head) = (*head)->next;
 839                         node1->next = (*head)->next;
 840                         (*head)->next = node1;
 841                         out_of_order++;
 842                 }
 843 
 844                 node1 = (*head);
 845 
 846                 while (node1->next && node1->next->next) {
 847                         if (node1->next->base > node1->next->next->base) {
 848                                 out_of_order++;
 849                                 node2 = node1->next;
 850                                 node1->next = node1->next->next;
 851                                 node1 = node1->next;
 852                                 node2->next = node1->next;
 853                                 node1->next = node2;
 854                         } else
 855                                 node1 = node1->next;
 856                 }
 857         }  /* End of out_of_order loop */
 858 
 859         node1 = *head;
 860 
 861         while (node1 && node1->next) {
 862                 if ((node1->base + node1->length) == node1->next->base) {
 863                         /* Combine */
 864                         dbg("8..\n");
 865                         node1->length += node1->next->length;
 866                         node2 = node1->next;
 867                         node1->next = node1->next->next;
 868                         kfree(node2);
 869                 } else
 870                         node1 = node1->next;
 871         }
 872 
 873         return 0;
 874 }
 875 
 876 
 877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
 878 {
 879         struct controller *ctrl = data;
 880         u8 schedule_flag = 0;
 881         u8 reset;
 882         u16 misc;
 883         u32 Diff;
 884         u32 temp_dword;
 885 
 886 
 887         misc = readw(ctrl->hpc_reg + MISC);
 888         /*
 889          * Check to see if it was our interrupt
 890          */
 891         if (!(misc & 0x000C))
 892                 return IRQ_NONE;
 893 
 894         if (misc & 0x0004) {
 895                 /*
 896                  * Serial Output interrupt Pending
 897                  */
 898 
 899                 /* Clear the interrupt */
 900                 misc |= 0x0004;
 901                 writew(misc, ctrl->hpc_reg + MISC);
 902 
 903                 /* Read to clear posted writes */
 904                 misc = readw(ctrl->hpc_reg + MISC);
 905 
 906                 dbg("%s - waking up\n", __func__);
 907                 wake_up_interruptible(&ctrl->queue);
 908         }
 909 
 910         if (misc & 0x0008) {
 911                 /* General-interrupt-input interrupt Pending */
 912                 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
 913 
 914                 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 915 
 916                 /* Clear the interrupt */
 917                 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
 918 
 919                 /* Read it back to clear any posted writes */
 920                 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 921 
 922                 if (!Diff)
 923                         /* Clear all interrupts */
 924                         writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
 925 
 926                 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
 927                 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
 928                 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
 929         }
 930 
 931         reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 932         if (reset & 0x40) {
 933                 /* Bus reset has completed */
 934                 reset &= 0xCF;
 935                 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
 936                 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 937                 wake_up_interruptible(&ctrl->queue);
 938         }
 939 
 940         if (schedule_flag) {
 941                 wake_up_process(cpqhp_event_thread);
 942                 dbg("Waking even thread");
 943         }
 944         return IRQ_HANDLED;
 945 }
 946 
 947 
 948 /**
 949  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 950  * @busnumber: bus where new node is to be located
 951  *
 952  * Returns pointer to the new node or %NULL if unsuccessful.
 953  */
 954 struct pci_func *cpqhp_slot_create(u8 busnumber)
 955 {
 956         struct pci_func *new_slot;
 957         struct pci_func *next;
 958 
 959         new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
 960         if (new_slot == NULL)
 961                 return new_slot;
 962 
 963         new_slot->next = NULL;
 964         new_slot->configured = 1;
 965 
 966         if (cpqhp_slot_list[busnumber] == NULL) {
 967                 cpqhp_slot_list[busnumber] = new_slot;
 968         } else {
 969                 next = cpqhp_slot_list[busnumber];
 970                 while (next->next != NULL)
 971                         next = next->next;
 972                 next->next = new_slot;
 973         }
 974         return new_slot;
 975 }
 976 
 977 
 978 /**
 979  * slot_remove - Removes a node from the linked list of slots.
 980  * @old_slot: slot to remove
 981  *
 982  * Returns %0 if successful, !0 otherwise.
 983  */
 984 static int slot_remove(struct pci_func *old_slot)
 985 {
 986         struct pci_func *next;
 987 
 988         if (old_slot == NULL)
 989                 return 1;
 990 
 991         next = cpqhp_slot_list[old_slot->bus];
 992         if (next == NULL)
 993                 return 1;
 994 
 995         if (next == old_slot) {
 996                 cpqhp_slot_list[old_slot->bus] = old_slot->next;
 997                 cpqhp_destroy_board_resources(old_slot);
 998                 kfree(old_slot);
 999                 return 0;
1000         }
1001 
1002         while ((next->next != old_slot) && (next->next != NULL))
1003                 next = next->next;
1004 
1005         if (next->next == old_slot) {
1006                 next->next = old_slot->next;
1007                 cpqhp_destroy_board_resources(old_slot);
1008                 kfree(old_slot);
1009                 return 0;
1010         } else
1011                 return 2;
1012 }
1013 
1014 
1015 /**
1016  * bridge_slot_remove - Removes a node from the linked list of slots.
1017  * @bridge: bridge to remove
1018  *
1019  * Returns %0 if successful, !0 otherwise.
1020  */
1021 static int bridge_slot_remove(struct pci_func *bridge)
1022 {
1023         u8 subordinateBus, secondaryBus;
1024         u8 tempBus;
1025         struct pci_func *next;
1026 
1027         secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028         subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029 
1030         for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031                 next = cpqhp_slot_list[tempBus];
1032 
1033                 while (!slot_remove(next))
1034                         next = cpqhp_slot_list[tempBus];
1035         }
1036 
1037         next = cpqhp_slot_list[bridge->bus];
1038 
1039         if (next == NULL)
1040                 return 1;
1041 
1042         if (next == bridge) {
1043                 cpqhp_slot_list[bridge->bus] = bridge->next;
1044                 goto out;
1045         }
1046 
1047         while ((next->next != bridge) && (next->next != NULL))
1048                 next = next->next;
1049 
1050         if (next->next != bridge)
1051                 return 2;
1052         next->next = bridge->next;
1053 out:
1054         kfree(bridge);
1055         return 0;
1056 }
1057 
1058 
1059 /**
1060  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061  * @bus: bus to find
1062  * @device: device to find
1063  * @index: is %0 for first function found, %1 for the second...
1064  *
1065  * Returns pointer to the node if successful, %NULL otherwise.
1066  */
1067 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068 {
1069         int found = -1;
1070         struct pci_func *func;
1071 
1072         func = cpqhp_slot_list[bus];
1073 
1074         if ((func == NULL) || ((func->device == device) && (index == 0)))
1075                 return func;
1076 
1077         if (func->device == device)
1078                 found++;
1079 
1080         while (func->next != NULL) {
1081                 func = func->next;
1082 
1083                 if (func->device == device)
1084                         found++;
1085 
1086                 if (found == index)
1087                         return func;
1088         }
1089 
1090         return NULL;
1091 }
1092 
1093 
1094 /* DJZ: I don't think is_bridge will work as is.
1095  * FIXME */
1096 static int is_bridge(struct pci_func *func)
1097 {
1098         /* Check the header type */
1099         if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100                 return 1;
1101         else
1102                 return 0;
1103 }
1104 
1105 
1106 /**
1107  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108  * @ctrl: controller to change frequency/mode for.
1109  * @adapter_speed: the speed of the adapter we want to match.
1110  * @hp_slot: the slot number where the adapter is installed.
1111  *
1112  * Returns %0 if we successfully change frequency and/or mode to match the
1113  * adapter speed.
1114  */
1115 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116 {
1117         struct slot *slot;
1118         struct pci_bus *bus = ctrl->pci_bus;
1119         u8 reg;
1120         u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121         u16 reg16;
1122         u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123 
1124         if (bus->cur_bus_speed == adapter_speed)
1125                 return 0;
1126 
1127         /* We don't allow freq/mode changes if we find another adapter running
1128          * in another slot on this controller
1129          */
1130         for (slot = ctrl->slot; slot; slot = slot->next) {
1131                 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132                         continue;
1133                 if (get_presence_status(ctrl, slot) == 0)
1134                         continue;
1135                 /* If another adapter is running on the same segment but at a
1136                  * lower speed/mode, we allow the new adapter to function at
1137                  * this rate if supported
1138                  */
1139                 if (bus->cur_bus_speed < adapter_speed)
1140                         return 0;
1141 
1142                 return 1;
1143         }
1144 
1145         /* If the controller doesn't support freq/mode changes and the
1146          * controller is running at a higher mode, we bail
1147          */
1148         if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1149                 return 1;
1150 
1151         /* But we allow the adapter to run at a lower rate if possible */
1152         if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1153                 return 0;
1154 
1155         /* We try to set the max speed supported by both the adapter and
1156          * controller
1157          */
1158         if (bus->max_bus_speed < adapter_speed) {
1159                 if (bus->cur_bus_speed == bus->max_bus_speed)
1160                         return 0;
1161                 adapter_speed = bus->max_bus_speed;
1162         }
1163 
1164         writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1165         writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1166 
1167         set_SOGO(ctrl);
1168         wait_for_ctrl_irq(ctrl);
1169 
1170         if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1171                 reg = 0xF5;
1172         else
1173                 reg = 0xF4;
1174         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1175 
1176         reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1177         reg16 &= ~0x000F;
1178         switch (adapter_speed) {
1179                 case(PCI_SPEED_133MHz_PCIX):
1180                         reg = 0x75;
1181                         reg16 |= 0xB;
1182                         break;
1183                 case(PCI_SPEED_100MHz_PCIX):
1184                         reg = 0x74;
1185                         reg16 |= 0xA;
1186                         break;
1187                 case(PCI_SPEED_66MHz_PCIX):
1188                         reg = 0x73;
1189                         reg16 |= 0x9;
1190                         break;
1191                 case(PCI_SPEED_66MHz):
1192                         reg = 0x73;
1193                         reg16 |= 0x1;
1194                         break;
1195                 default: /* 33MHz PCI 2.2 */
1196                         reg = 0x71;
1197                         break;
1198 
1199         }
1200         reg16 |= 0xB << 12;
1201         writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1202 
1203         mdelay(5);
1204 
1205         /* Reenable interrupts */
1206         writel(0, ctrl->hpc_reg + INT_MASK);
1207 
1208         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1209 
1210         /* Restart state machine */
1211         reg = ~0xF;
1212         pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1213         pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1214 
1215         /* Only if mode change...*/
1216         if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1217                 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1218                         set_SOGO(ctrl);
1219 
1220         wait_for_ctrl_irq(ctrl);
1221         mdelay(1100);
1222 
1223         /* Restore LED/Slot state */
1224         writel(leds, ctrl->hpc_reg + LED_CONTROL);
1225         writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1226 
1227         set_SOGO(ctrl);
1228         wait_for_ctrl_irq(ctrl);
1229 
1230         bus->cur_bus_speed = adapter_speed;
1231         slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1232 
1233         info("Successfully changed frequency/mode for adapter in slot %d\n",
1234                         slot->number);
1235         return 0;
1236 }
1237 
1238 /* the following routines constitute the bulk of the
1239  * hotplug controller logic
1240  */
1241 
1242 
1243 /**
1244  * board_replaced - Called after a board has been replaced in the system.
1245  * @func: PCI device/function information
1246  * @ctrl: hotplug controller
1247  *
1248  * This is only used if we don't have resources for hot add.
1249  * Turns power on for the board.
1250  * Checks to see if board is the same.
1251  * If board is same, reconfigures it.
1252  * If board isn't same, turns it back off.
1253  */
1254 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1255 {
1256         struct pci_bus *bus = ctrl->pci_bus;
1257         u8 hp_slot;
1258         u8 temp_byte;
1259         u8 adapter_speed;
1260         u32 rc = 0;
1261 
1262         hp_slot = func->device - ctrl->slot_device_offset;
1263 
1264         /*
1265          * The switch is open.
1266          */
1267         if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1268                 rc = INTERLOCK_OPEN;
1269         /*
1270          * The board is already on
1271          */
1272         else if (is_slot_enabled(ctrl, hp_slot))
1273                 rc = CARD_FUNCTIONING;
1274         else {
1275                 mutex_lock(&ctrl->crit_sect);
1276 
1277                 /* turn on board without attaching to the bus */
1278                 enable_slot_power(ctrl, hp_slot);
1279 
1280                 set_SOGO(ctrl);
1281 
1282                 /* Wait for SOBS to be unset */
1283                 wait_for_ctrl_irq(ctrl);
1284 
1285                 /* Change bits in slot power register to force another shift out
1286                  * NOTE: this is to work around the timer bug */
1287                 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1288                 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1289                 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1290 
1291                 set_SOGO(ctrl);
1292 
1293                 /* Wait for SOBS to be unset */
1294                 wait_for_ctrl_irq(ctrl);
1295 
1296                 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1297                 if (bus->cur_bus_speed != adapter_speed)
1298                         if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1299                                 rc = WRONG_BUS_FREQUENCY;
1300 
1301                 /* turn off board without attaching to the bus */
1302                 disable_slot_power(ctrl, hp_slot);
1303 
1304                 set_SOGO(ctrl);
1305 
1306                 /* Wait for SOBS to be unset */
1307                 wait_for_ctrl_irq(ctrl);
1308 
1309                 mutex_unlock(&ctrl->crit_sect);
1310 
1311                 if (rc)
1312                         return rc;
1313 
1314                 mutex_lock(&ctrl->crit_sect);
1315 
1316                 slot_enable(ctrl, hp_slot);
1317                 green_LED_blink(ctrl, hp_slot);
1318 
1319                 amber_LED_off(ctrl, hp_slot);
1320 
1321                 set_SOGO(ctrl);
1322 
1323                 /* Wait for SOBS to be unset */
1324                 wait_for_ctrl_irq(ctrl);
1325 
1326                 mutex_unlock(&ctrl->crit_sect);
1327 
1328                 /* Wait for ~1 second because of hot plug spec */
1329                 long_delay(1*HZ);
1330 
1331                 /* Check for a power fault */
1332                 if (func->status == 0xFF) {
1333                         /* power fault occurred, but it was benign */
1334                         rc = POWER_FAILURE;
1335                         func->status = 0;
1336                 } else
1337                         rc = cpqhp_valid_replace(ctrl, func);
1338 
1339                 if (!rc) {
1340                         /* It must be the same board */
1341 
1342                         rc = cpqhp_configure_board(ctrl, func);
1343 
1344                         /* If configuration fails, turn it off
1345                          * Get slot won't work for devices behind
1346                          * bridges, but in this case it will always be
1347                          * called for the "base" bus/dev/func of an
1348                          * adapter.
1349                          */
1350 
1351                         mutex_lock(&ctrl->crit_sect);
1352 
1353                         amber_LED_on(ctrl, hp_slot);
1354                         green_LED_off(ctrl, hp_slot);
1355                         slot_disable(ctrl, hp_slot);
1356 
1357                         set_SOGO(ctrl);
1358 
1359                         /* Wait for SOBS to be unset */
1360                         wait_for_ctrl_irq(ctrl);
1361 
1362                         mutex_unlock(&ctrl->crit_sect);
1363 
1364                         if (rc)
1365                                 return rc;
1366                         else
1367                                 return 1;
1368 
1369                 } else {
1370                         /* Something is wrong
1371 
1372                          * Get slot won't work for devices behind bridges, but
1373                          * in this case it will always be called for the "base"
1374                          * bus/dev/func of an adapter.
1375                          */
1376 
1377                         mutex_lock(&ctrl->crit_sect);
1378 
1379                         amber_LED_on(ctrl, hp_slot);
1380                         green_LED_off(ctrl, hp_slot);
1381                         slot_disable(ctrl, hp_slot);
1382 
1383                         set_SOGO(ctrl);
1384 
1385                         /* Wait for SOBS to be unset */
1386                         wait_for_ctrl_irq(ctrl);
1387 
1388                         mutex_unlock(&ctrl->crit_sect);
1389                 }
1390 
1391         }
1392         return rc;
1393 
1394 }
1395 
1396 
1397 /**
1398  * board_added - Called after a board has been added to the system.
1399  * @func: PCI device/function info
1400  * @ctrl: hotplug controller
1401  *
1402  * Turns power on for the board.
1403  * Configures board.
1404  */
1405 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1406 {
1407         u8 hp_slot;
1408         u8 temp_byte;
1409         u8 adapter_speed;
1410         int index;
1411         u32 temp_register = 0xFFFFFFFF;
1412         u32 rc = 0;
1413         struct pci_func *new_slot = NULL;
1414         struct pci_bus *bus = ctrl->pci_bus;
1415         struct slot *p_slot;
1416         struct resource_lists res_lists;
1417 
1418         hp_slot = func->device - ctrl->slot_device_offset;
1419         dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1420             __func__, func->device, ctrl->slot_device_offset, hp_slot);
1421 
1422         mutex_lock(&ctrl->crit_sect);
1423 
1424         /* turn on board without attaching to the bus */
1425         enable_slot_power(ctrl, hp_slot);
1426 
1427         set_SOGO(ctrl);
1428 
1429         /* Wait for SOBS to be unset */
1430         wait_for_ctrl_irq(ctrl);
1431 
1432         /* Change bits in slot power register to force another shift out
1433          * NOTE: this is to work around the timer bug
1434          */
1435         temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1436         writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1437         writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1438 
1439         set_SOGO(ctrl);
1440 
1441         /* Wait for SOBS to be unset */
1442         wait_for_ctrl_irq(ctrl);
1443 
1444         adapter_speed = get_adapter_speed(ctrl, hp_slot);
1445         if (bus->cur_bus_speed != adapter_speed)
1446                 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1447                         rc = WRONG_BUS_FREQUENCY;
1448 
1449         /* turn off board without attaching to the bus */
1450         disable_slot_power(ctrl, hp_slot);
1451 
1452         set_SOGO(ctrl);
1453 
1454         /* Wait for SOBS to be unset */
1455         wait_for_ctrl_irq(ctrl);
1456 
1457         mutex_unlock(&ctrl->crit_sect);
1458 
1459         if (rc)
1460                 return rc;
1461 
1462         p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1463 
1464         /* turn on board and blink green LED */
1465 
1466         dbg("%s: before down\n", __func__);
1467         mutex_lock(&ctrl->crit_sect);
1468         dbg("%s: after down\n", __func__);
1469 
1470         dbg("%s: before slot_enable\n", __func__);
1471         slot_enable(ctrl, hp_slot);
1472 
1473         dbg("%s: before green_LED_blink\n", __func__);
1474         green_LED_blink(ctrl, hp_slot);
1475 
1476         dbg("%s: before amber_LED_blink\n", __func__);
1477         amber_LED_off(ctrl, hp_slot);
1478 
1479         dbg("%s: before set_SOGO\n", __func__);
1480         set_SOGO(ctrl);
1481 
1482         /* Wait for SOBS to be unset */
1483         dbg("%s: before wait_for_ctrl_irq\n", __func__);
1484         wait_for_ctrl_irq(ctrl);
1485         dbg("%s: after wait_for_ctrl_irq\n", __func__);
1486 
1487         dbg("%s: before up\n", __func__);
1488         mutex_unlock(&ctrl->crit_sect);
1489         dbg("%s: after up\n", __func__);
1490 
1491         /* Wait for ~1 second because of hot plug spec */
1492         dbg("%s: before long_delay\n", __func__);
1493         long_delay(1*HZ);
1494         dbg("%s: after long_delay\n", __func__);
1495 
1496         dbg("%s: func status = %x\n", __func__, func->status);
1497         /* Check for a power fault */
1498         if (func->status == 0xFF) {
1499                 /* power fault occurred, but it was benign */
1500                 temp_register = 0xFFFFFFFF;
1501                 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1502                 rc = POWER_FAILURE;
1503                 func->status = 0;
1504         } else {
1505                 /* Get vendor/device ID u32 */
1506                 ctrl->pci_bus->number = func->bus;
1507                 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1508                 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1509                 dbg("%s: temp_register is %x\n", __func__, temp_register);
1510 
1511                 if (rc != 0) {
1512                         /* Something's wrong here */
1513                         temp_register = 0xFFFFFFFF;
1514                         dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1515                 }
1516                 /* Preset return code.  It will be changed later if things go okay. */
1517                 rc = NO_ADAPTER_PRESENT;
1518         }
1519 
1520         /* All F's is an empty slot or an invalid board */
1521         if (temp_register != 0xFFFFFFFF) {
1522                 res_lists.io_head = ctrl->io_head;
1523                 res_lists.mem_head = ctrl->mem_head;
1524                 res_lists.p_mem_head = ctrl->p_mem_head;
1525                 res_lists.bus_head = ctrl->bus_head;
1526                 res_lists.irqs = NULL;
1527 
1528                 rc = configure_new_device(ctrl, func, 0, &res_lists);
1529 
1530                 dbg("%s: back from configure_new_device\n", __func__);
1531                 ctrl->io_head = res_lists.io_head;
1532                 ctrl->mem_head = res_lists.mem_head;
1533                 ctrl->p_mem_head = res_lists.p_mem_head;
1534                 ctrl->bus_head = res_lists.bus_head;
1535 
1536                 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1537                 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1538                 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1539                 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1540 
1541                 if (rc) {
1542                         mutex_lock(&ctrl->crit_sect);
1543 
1544                         amber_LED_on(ctrl, hp_slot);
1545                         green_LED_off(ctrl, hp_slot);
1546                         slot_disable(ctrl, hp_slot);
1547 
1548                         set_SOGO(ctrl);
1549 
1550                         /* Wait for SOBS to be unset */
1551                         wait_for_ctrl_irq(ctrl);
1552 
1553                         mutex_unlock(&ctrl->crit_sect);
1554                         return rc;
1555                 } else {
1556                         cpqhp_save_slot_config(ctrl, func);
1557                 }
1558 
1559 
1560                 func->status = 0;
1561                 func->switch_save = 0x10;
1562                 func->is_a_board = 0x01;
1563 
1564                 /* next, we will instantiate the linux pci_dev structures (with
1565                  * appropriate driver notification, if already present) */
1566                 dbg("%s: configure linux pci_dev structure\n", __func__);
1567                 index = 0;
1568                 do {
1569                         new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1570                         if (new_slot && !new_slot->pci_dev)
1571                                 cpqhp_configure_device(ctrl, new_slot);
1572                 } while (new_slot);
1573 
1574                 mutex_lock(&ctrl->crit_sect);
1575 
1576                 green_LED_on(ctrl, hp_slot);
1577 
1578                 set_SOGO(ctrl);
1579 
1580                 /* Wait for SOBS to be unset */
1581                 wait_for_ctrl_irq(ctrl);
1582 
1583                 mutex_unlock(&ctrl->crit_sect);
1584         } else {
1585                 mutex_lock(&ctrl->crit_sect);
1586 
1587                 amber_LED_on(ctrl, hp_slot);
1588                 green_LED_off(ctrl, hp_slot);
1589                 slot_disable(ctrl, hp_slot);
1590 
1591                 set_SOGO(ctrl);
1592 
1593                 /* Wait for SOBS to be unset */
1594                 wait_for_ctrl_irq(ctrl);
1595 
1596                 mutex_unlock(&ctrl->crit_sect);
1597 
1598                 return rc;
1599         }
1600         return 0;
1601 }
1602 
1603 
1604 /**
1605  * remove_board - Turns off slot and LEDs
1606  * @func: PCI device/function info
1607  * @replace_flag: whether replacing or adding a new device
1608  * @ctrl: target controller
1609  */
1610 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1611 {
1612         int index;
1613         u8 skip = 0;
1614         u8 device;
1615         u8 hp_slot;
1616         u8 temp_byte;
1617         u32 rc;
1618         struct resource_lists res_lists;
1619         struct pci_func *temp_func;
1620 
1621         if (cpqhp_unconfigure_device(func))
1622                 return 1;
1623 
1624         device = func->device;
1625 
1626         hp_slot = func->device - ctrl->slot_device_offset;
1627         dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1628 
1629         /* When we get here, it is safe to change base address registers.
1630          * We will attempt to save the base address register lengths */
1631         if (replace_flag || !ctrl->add_support)
1632                 rc = cpqhp_save_base_addr_length(ctrl, func);
1633         else if (!func->bus_head && !func->mem_head &&
1634                  !func->p_mem_head && !func->io_head) {
1635                 /* Here we check to see if we've saved any of the board's
1636                  * resources already.  If so, we'll skip the attempt to
1637                  * determine what's being used. */
1638                 index = 0;
1639                 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1640                 while (temp_func) {
1641                         if (temp_func->bus_head || temp_func->mem_head
1642                             || temp_func->p_mem_head || temp_func->io_head) {
1643                                 skip = 1;
1644                                 break;
1645                         }
1646                         temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1647                 }
1648 
1649                 if (!skip)
1650                         rc = cpqhp_save_used_resources(ctrl, func);
1651         }
1652         /* Change status to shutdown */
1653         if (func->is_a_board)
1654                 func->status = 0x01;
1655         func->configured = 0;
1656 
1657         mutex_lock(&ctrl->crit_sect);
1658 
1659         green_LED_off(ctrl, hp_slot);
1660         slot_disable(ctrl, hp_slot);
1661 
1662         set_SOGO(ctrl);
1663 
1664         /* turn off SERR for slot */
1665         temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1666         temp_byte &= ~(0x01 << hp_slot);
1667         writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1668 
1669         /* Wait for SOBS to be unset */
1670         wait_for_ctrl_irq(ctrl);
1671 
1672         mutex_unlock(&ctrl->crit_sect);
1673 
1674         if (!replace_flag && ctrl->add_support) {
1675                 while (func) {
1676                         res_lists.io_head = ctrl->io_head;
1677                         res_lists.mem_head = ctrl->mem_head;
1678                         res_lists.p_mem_head = ctrl->p_mem_head;
1679                         res_lists.bus_head = ctrl->bus_head;
1680 
1681                         cpqhp_return_board_resources(func, &res_lists);
1682 
1683                         ctrl->io_head = res_lists.io_head;
1684                         ctrl->mem_head = res_lists.mem_head;
1685                         ctrl->p_mem_head = res_lists.p_mem_head;
1686                         ctrl->bus_head = res_lists.bus_head;
1687 
1688                         cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1689                         cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1690                         cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1691                         cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1692 
1693                         if (is_bridge(func)) {
1694                                 bridge_slot_remove(func);
1695                         } else
1696                                 slot_remove(func);
1697 
1698                         func = cpqhp_slot_find(ctrl->bus, device, 0);
1699                 }
1700 
1701                 /* Setup slot structure with entry for empty slot */
1702                 func = cpqhp_slot_create(ctrl->bus);
1703 
1704                 if (func == NULL)
1705                         return 1;
1706 
1707                 func->bus = ctrl->bus;
1708                 func->device = device;
1709                 func->function = 0;
1710                 func->configured = 0;
1711                 func->switch_save = 0x10;
1712                 func->is_a_board = 0;
1713                 func->p_task_event = NULL;
1714         }
1715 
1716         return 0;
1717 }
1718 
1719 static void pushbutton_helper_thread(struct timer_list *t)
1720 {
1721         pushbutton_pending = t;
1722 
1723         wake_up_process(cpqhp_event_thread);
1724 }
1725 
1726 
1727 /* this is the main worker thread */
1728 static int event_thread(void *data)
1729 {
1730         struct controller *ctrl;
1731 
1732         while (1) {
1733                 dbg("!!!!event_thread sleeping\n");
1734                 set_current_state(TASK_INTERRUPTIBLE);
1735                 schedule();
1736 
1737                 if (kthread_should_stop())
1738                         break;
1739                 /* Do stuff here */
1740                 if (pushbutton_pending)
1741                         cpqhp_pushbutton_thread(pushbutton_pending);
1742                 else
1743                         for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1744                                 interrupt_event_handler(ctrl);
1745         }
1746         dbg("event_thread signals exit\n");
1747         return 0;
1748 }
1749 
1750 int cpqhp_event_start_thread(void)
1751 {
1752         cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1753         if (IS_ERR(cpqhp_event_thread)) {
1754                 err("Can't start up our event thread\n");
1755                 return PTR_ERR(cpqhp_event_thread);
1756         }
1757 
1758         return 0;
1759 }
1760 
1761 
1762 void cpqhp_event_stop_thread(void)
1763 {
1764         kthread_stop(cpqhp_event_thread);
1765 }
1766 
1767 
1768 static void interrupt_event_handler(struct controller *ctrl)
1769 {
1770         int loop = 0;
1771         int change = 1;
1772         struct pci_func *func;
1773         u8 hp_slot;
1774         struct slot *p_slot;
1775 
1776         while (change) {
1777                 change = 0;
1778 
1779                 for (loop = 0; loop < 10; loop++) {
1780                         /* dbg("loop %d\n", loop); */
1781                         if (ctrl->event_queue[loop].event_type != 0) {
1782                                 hp_slot = ctrl->event_queue[loop].hp_slot;
1783 
1784                                 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1785                                 if (!func)
1786                                         return;
1787 
1788                                 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1789                                 if (!p_slot)
1790                                         return;
1791 
1792                                 dbg("hp_slot %d, func %p, p_slot %p\n",
1793                                     hp_slot, func, p_slot);
1794 
1795                                 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1796                                         dbg("button pressed\n");
1797                                 } else if (ctrl->event_queue[loop].event_type ==
1798                                            INT_BUTTON_CANCEL) {
1799                                         dbg("button cancel\n");
1800                                         del_timer(&p_slot->task_event);
1801 
1802                                         mutex_lock(&ctrl->crit_sect);
1803 
1804                                         if (p_slot->state == BLINKINGOFF_STATE) {
1805                                                 /* slot is on */
1806                                                 dbg("turn on green LED\n");
1807                                                 green_LED_on(ctrl, hp_slot);
1808                                         } else if (p_slot->state == BLINKINGON_STATE) {
1809                                                 /* slot is off */
1810                                                 dbg("turn off green LED\n");
1811                                                 green_LED_off(ctrl, hp_slot);
1812                                         }
1813 
1814                                         info(msg_button_cancel, p_slot->number);
1815 
1816                                         p_slot->state = STATIC_STATE;
1817 
1818                                         amber_LED_off(ctrl, hp_slot);
1819 
1820                                         set_SOGO(ctrl);
1821 
1822                                         /* Wait for SOBS to be unset */
1823                                         wait_for_ctrl_irq(ctrl);
1824 
1825                                         mutex_unlock(&ctrl->crit_sect);
1826                                 }
1827                                 /*** button Released (No action on press...) */
1828                                 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1829                                         dbg("button release\n");
1830 
1831                                         if (is_slot_enabled(ctrl, hp_slot)) {
1832                                                 dbg("slot is on\n");
1833                                                 p_slot->state = BLINKINGOFF_STATE;
1834                                                 info(msg_button_off, p_slot->number);
1835                                         } else {
1836                                                 dbg("slot is off\n");
1837                                                 p_slot->state = BLINKINGON_STATE;
1838                                                 info(msg_button_on, p_slot->number);
1839                                         }
1840                                         mutex_lock(&ctrl->crit_sect);
1841 
1842                                         dbg("blink green LED and turn off amber\n");
1843 
1844                                         amber_LED_off(ctrl, hp_slot);
1845                                         green_LED_blink(ctrl, hp_slot);
1846 
1847                                         set_SOGO(ctrl);
1848 
1849                                         /* Wait for SOBS to be unset */
1850                                         wait_for_ctrl_irq(ctrl);
1851 
1852                                         mutex_unlock(&ctrl->crit_sect);
1853                                         timer_setup(&p_slot->task_event,
1854                                                     pushbutton_helper_thread,
1855                                                     0);
1856                                         p_slot->hp_slot = hp_slot;
1857                                         p_slot->ctrl = ctrl;
1858 /*                                      p_slot->physical_slot = physical_slot; */
1859                                         p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1860 
1861                                         dbg("add_timer p_slot = %p\n", p_slot);
1862                                         add_timer(&p_slot->task_event);
1863                                 }
1864                                 /***********POWER FAULT */
1865                                 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1866                                         dbg("power fault\n");
1867                                 }
1868 
1869                                 ctrl->event_queue[loop].event_type = 0;
1870 
1871                                 change = 1;
1872                         }
1873                 }               /* End of FOR loop */
1874         }
1875 }
1876 
1877 
1878 /**
1879  * cpqhp_pushbutton_thread - handle pushbutton events
1880  * @slot: target slot (struct)
1881  *
1882  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1883  * Handles all pending events and exits.
1884  */
1885 void cpqhp_pushbutton_thread(struct timer_list *t)
1886 {
1887         u8 hp_slot;
1888         u8 device;
1889         struct pci_func *func;
1890         struct slot *p_slot = from_timer(p_slot, t, task_event);
1891         struct controller *ctrl = (struct controller *) p_slot->ctrl;
1892 
1893         pushbutton_pending = NULL;
1894         hp_slot = p_slot->hp_slot;
1895 
1896         device = p_slot->device;
1897 
1898         if (is_slot_enabled(ctrl, hp_slot)) {
1899                 p_slot->state = POWEROFF_STATE;
1900                 /* power Down board */
1901                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1902                 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1903                 if (!func) {
1904                         dbg("Error! func NULL in %s\n", __func__);
1905                         return;
1906                 }
1907 
1908                 if (cpqhp_process_SS(ctrl, func) != 0) {
1909                         amber_LED_on(ctrl, hp_slot);
1910                         green_LED_on(ctrl, hp_slot);
1911 
1912                         set_SOGO(ctrl);
1913 
1914                         /* Wait for SOBS to be unset */
1915                         wait_for_ctrl_irq(ctrl);
1916                 }
1917 
1918                 p_slot->state = STATIC_STATE;
1919         } else {
1920                 p_slot->state = POWERON_STATE;
1921                 /* slot is off */
1922 
1923                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1924                 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1925                 if (!func) {
1926                         dbg("Error! func NULL in %s\n", __func__);
1927                         return;
1928                 }
1929 
1930                 if (ctrl != NULL) {
1931                         if (cpqhp_process_SI(ctrl, func) != 0) {
1932                                 amber_LED_on(ctrl, hp_slot);
1933                                 green_LED_off(ctrl, hp_slot);
1934 
1935                                 set_SOGO(ctrl);
1936 
1937                                 /* Wait for SOBS to be unset */
1938                                 wait_for_ctrl_irq(ctrl);
1939                         }
1940                 }
1941 
1942                 p_slot->state = STATIC_STATE;
1943         }
1944 }
1945 
1946 
1947 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1948 {
1949         u8 device, hp_slot;
1950         u16 temp_word;
1951         u32 tempdword;
1952         int rc;
1953         struct slot *p_slot;
1954         int physical_slot = 0;
1955 
1956         tempdword = 0;
1957 
1958         device = func->device;
1959         hp_slot = device - ctrl->slot_device_offset;
1960         p_slot = cpqhp_find_slot(ctrl, device);
1961         if (p_slot)
1962                 physical_slot = p_slot->number;
1963 
1964         /* Check to see if the interlock is closed */
1965         tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1966 
1967         if (tempdword & (0x01 << hp_slot))
1968                 return 1;
1969 
1970         if (func->is_a_board) {
1971                 rc = board_replaced(func, ctrl);
1972         } else {
1973                 /* add board */
1974                 slot_remove(func);
1975 
1976                 func = cpqhp_slot_create(ctrl->bus);
1977                 if (func == NULL)
1978                         return 1;
1979 
1980                 func->bus = ctrl->bus;
1981                 func->device = device;
1982                 func->function = 0;
1983                 func->configured = 0;
1984                 func->is_a_board = 1;
1985 
1986                 /* We have to save the presence info for these slots */
1987                 temp_word = ctrl->ctrl_int_comp >> 16;
1988                 func->presence_save = (temp_word >> hp_slot) & 0x01;
1989                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1990 
1991                 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1992                         func->switch_save = 0;
1993                 } else {
1994                         func->switch_save = 0x10;
1995                 }
1996 
1997                 rc = board_added(func, ctrl);
1998                 if (rc) {
1999                         if (is_bridge(func)) {
2000                                 bridge_slot_remove(func);
2001                         } else
2002                                 slot_remove(func);
2003 
2004                         /* Setup slot structure with entry for empty slot */
2005                         func = cpqhp_slot_create(ctrl->bus);
2006 
2007                         if (func == NULL)
2008                                 return 1;
2009 
2010                         func->bus = ctrl->bus;
2011                         func->device = device;
2012                         func->function = 0;
2013                         func->configured = 0;
2014                         func->is_a_board = 0;
2015 
2016                         /* We have to save the presence info for these slots */
2017                         temp_word = ctrl->ctrl_int_comp >> 16;
2018                         func->presence_save = (temp_word >> hp_slot) & 0x01;
2019                         func->presence_save |=
2020                         (temp_word >> (hp_slot + 7)) & 0x02;
2021 
2022                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2023                                 func->switch_save = 0;
2024                         } else {
2025                                 func->switch_save = 0x10;
2026                         }
2027                 }
2028         }
2029 
2030         if (rc)
2031                 dbg("%s: rc = %d\n", __func__, rc);
2032 
2033         return rc;
2034 }
2035 
2036 
2037 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2038 {
2039         u8 device, class_code, header_type, BCR;
2040         u8 index = 0;
2041         u8 replace_flag;
2042         u32 rc = 0;
2043         unsigned int devfn;
2044         struct slot *p_slot;
2045         struct pci_bus *pci_bus = ctrl->pci_bus;
2046         int physical_slot = 0;
2047 
2048         device = func->device;
2049         func = cpqhp_slot_find(ctrl->bus, device, index++);
2050         p_slot = cpqhp_find_slot(ctrl, device);
2051         if (p_slot)
2052                 physical_slot = p_slot->number;
2053 
2054         /* Make sure there are no video controllers here */
2055         while (func && !rc) {
2056                 pci_bus->number = func->bus;
2057                 devfn = PCI_DEVFN(func->device, func->function);
2058 
2059                 /* Check the Class Code */
2060                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2061                 if (rc)
2062                         return rc;
2063 
2064                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2065                         /* Display/Video adapter (not supported) */
2066                         rc = REMOVE_NOT_SUPPORTED;
2067                 } else {
2068                         /* See if it's a bridge */
2069                         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2070                         if (rc)
2071                                 return rc;
2072 
2073                         /* If it's a bridge, check the VGA Enable bit */
2074                         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2075                                 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2076                                 if (rc)
2077                                         return rc;
2078 
2079                                 /* If the VGA Enable bit is set, remove isn't
2080                                  * supported */
2081                                 if (BCR & PCI_BRIDGE_CTL_VGA)
2082                                         rc = REMOVE_NOT_SUPPORTED;
2083                         }
2084                 }
2085 
2086                 func = cpqhp_slot_find(ctrl->bus, device, index++);
2087         }
2088 
2089         func = cpqhp_slot_find(ctrl->bus, device, 0);
2090         if ((func != NULL) && !rc) {
2091                 /* FIXME: Replace flag should be passed into process_SS */
2092                 replace_flag = !(ctrl->add_support);
2093                 rc = remove_board(func, replace_flag, ctrl);
2094         } else if (!rc) {
2095                 rc = 1;
2096         }
2097 
2098         return rc;
2099 }
2100 
2101 /**
2102  * switch_leds - switch the leds, go from one site to the other.
2103  * @ctrl: controller to use
2104  * @num_of_slots: number of slots to use
2105  * @work_LED: LED control value
2106  * @direction: 1 to start from the left side, 0 to start right.
2107  */
2108 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2109                         u32 *work_LED, const int direction)
2110 {
2111         int loop;
2112 
2113         for (loop = 0; loop < num_of_slots; loop++) {
2114                 if (direction)
2115                         *work_LED = *work_LED >> 1;
2116                 else
2117                         *work_LED = *work_LED << 1;
2118                 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2119 
2120                 set_SOGO(ctrl);
2121 
2122                 /* Wait for SOGO interrupt */
2123                 wait_for_ctrl_irq(ctrl);
2124 
2125                 /* Get ready for next iteration */
2126                 long_delay((2*HZ)/10);
2127         }
2128 }
2129 
2130 /**
2131  * cpqhp_hardware_test - runs hardware tests
2132  * @ctrl: target controller
2133  * @test_num: the number written to the "test" file in sysfs.
2134  *
2135  * For hot plug ctrl folks to play with.
2136  */
2137 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2138 {
2139         u32 save_LED;
2140         u32 work_LED;
2141         int loop;
2142         int num_of_slots;
2143 
2144         num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2145 
2146         switch (test_num) {
2147         case 1:
2148                 /* Do stuff here! */
2149 
2150                 /* Do that funky LED thing */
2151                 /* so we can restore them later */
2152                 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2153                 work_LED = 0x01010101;
2154                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2155                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2156                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2157                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2158 
2159                 work_LED = 0x01010000;
2160                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2161                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2162                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2163                 work_LED = 0x00000101;
2164                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2165                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2166                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2167 
2168                 work_LED = 0x01010000;
2169                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2170                 for (loop = 0; loop < num_of_slots; loop++) {
2171                         set_SOGO(ctrl);
2172 
2173                         /* Wait for SOGO interrupt */
2174                         wait_for_ctrl_irq(ctrl);
2175 
2176                         /* Get ready for next iteration */
2177                         long_delay((3*HZ)/10);
2178                         work_LED = work_LED >> 16;
2179                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2180 
2181                         set_SOGO(ctrl);
2182 
2183                         /* Wait for SOGO interrupt */
2184                         wait_for_ctrl_irq(ctrl);
2185 
2186                         /* Get ready for next iteration */
2187                         long_delay((3*HZ)/10);
2188                         work_LED = work_LED << 16;
2189                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2190                         work_LED = work_LED << 1;
2191                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2192                 }
2193 
2194                 /* put it back the way it was */
2195                 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2196 
2197                 set_SOGO(ctrl);
2198 
2199                 /* Wait for SOBS to be unset */
2200                 wait_for_ctrl_irq(ctrl);
2201                 break;
2202         case 2:
2203                 /* Do other stuff here! */
2204                 break;
2205         case 3:
2206                 /* and more... */
2207                 break;
2208         }
2209         return 0;
2210 }
2211 
2212 
2213 /**
2214  * configure_new_device - Configures the PCI header information of one board.
2215  * @ctrl: pointer to controller structure
2216  * @func: pointer to function structure
2217  * @behind_bridge: 1 if this is a recursive call, 0 if not
2218  * @resources: pointer to set of resource lists
2219  *
2220  * Returns 0 if success.
2221  */
2222 static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2223                                  u8 behind_bridge, struct resource_lists  *resources)
2224 {
2225         u8 temp_byte, function, max_functions, stop_it;
2226         int rc;
2227         u32 ID;
2228         struct pci_func *new_slot;
2229         int index;
2230 
2231         new_slot = func;
2232 
2233         dbg("%s\n", __func__);
2234         /* Check for Multi-function device */
2235         ctrl->pci_bus->number = func->bus;
2236         rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2237         if (rc) {
2238                 dbg("%s: rc = %d\n", __func__, rc);
2239                 return rc;
2240         }
2241 
2242         if (temp_byte & 0x80)   /* Multi-function device */
2243                 max_functions = 8;
2244         else
2245                 max_functions = 1;
2246 
2247         function = 0;
2248 
2249         do {
2250                 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2251 
2252                 if (rc) {
2253                         dbg("configure_new_function failed %d\n", rc);
2254                         index = 0;
2255 
2256                         while (new_slot) {
2257                                 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2258 
2259                                 if (new_slot)
2260                                         cpqhp_return_board_resources(new_slot, resources);
2261                         }
2262 
2263                         return rc;
2264                 }
2265 
2266                 function++;
2267 
2268                 stop_it = 0;
2269 
2270                 /* The following loop skips to the next present function
2271                  * and creates a board structure */
2272 
2273                 while ((function < max_functions) && (!stop_it)) {
2274                         pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2275 
2276                         if (ID == 0xFFFFFFFF) {
2277                                 function++;
2278                         } else {
2279                                 /* Setup slot structure. */
2280                                 new_slot = cpqhp_slot_create(func->bus);
2281 
2282                                 if (new_slot == NULL)
2283                                         return 1;
2284 
2285                                 new_slot->bus = func->bus;
2286                                 new_slot->device = func->device;
2287                                 new_slot->function = function;
2288                                 new_slot->is_a_board = 1;
2289                                 new_slot->status = 0;
2290 
2291                                 stop_it++;
2292                         }
2293                 }
2294 
2295         } while (function < max_functions);
2296         dbg("returning from configure_new_device\n");
2297 
2298         return 0;
2299 }
2300 
2301 
2302 /*
2303  * Configuration logic that involves the hotplug data structures and
2304  * their bookkeeping
2305  */
2306 
2307 
2308 /**
2309  * configure_new_function - Configures the PCI header information of one device
2310  * @ctrl: pointer to controller structure
2311  * @func: pointer to function structure
2312  * @behind_bridge: 1 if this is a recursive call, 0 if not
2313  * @resources: pointer to set of resource lists
2314  *
2315  * Calls itself recursively for bridged devices.
2316  * Returns 0 if success.
2317  */
2318 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2319                                    u8 behind_bridge,
2320                                    struct resource_lists *resources)
2321 {
2322         int cloop;
2323         u8 IRQ = 0;
2324         u8 temp_byte;
2325         u8 device;
2326         u8 class_code;
2327         u16 command;
2328         u16 temp_word;
2329         u32 temp_dword;
2330         u32 rc;
2331         u32 temp_register;
2332         u32 base;
2333         u32 ID;
2334         unsigned int devfn;
2335         struct pci_resource *mem_node;
2336         struct pci_resource *p_mem_node;
2337         struct pci_resource *io_node;
2338         struct pci_resource *bus_node;
2339         struct pci_resource *hold_mem_node;
2340         struct pci_resource *hold_p_mem_node;
2341         struct pci_resource *hold_IO_node;
2342         struct pci_resource *hold_bus_node;
2343         struct irq_mapping irqs;
2344         struct pci_func *new_slot;
2345         struct pci_bus *pci_bus;
2346         struct resource_lists temp_resources;
2347 
2348         pci_bus = ctrl->pci_bus;
2349         pci_bus->number = func->bus;
2350         devfn = PCI_DEVFN(func->device, func->function);
2351 
2352         /* Check for Bridge */
2353         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2354         if (rc)
2355                 return rc;
2356 
2357         if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2358                 /* set Primary bus */
2359                 dbg("set Primary bus = %d\n", func->bus);
2360                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2361                 if (rc)
2362                         return rc;
2363 
2364                 /* find range of buses to use */
2365                 dbg("find ranges of buses to use\n");
2366                 bus_node = get_max_resource(&(resources->bus_head), 1);
2367 
2368                 /* If we don't have any buses to allocate, we can't continue */
2369                 if (!bus_node)
2370                         return -ENOMEM;
2371 
2372                 /* set Secondary bus */
2373                 temp_byte = bus_node->base;
2374                 dbg("set Secondary bus = %d\n", bus_node->base);
2375                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2376                 if (rc)
2377                         return rc;
2378 
2379                 /* set subordinate bus */
2380                 temp_byte = bus_node->base + bus_node->length - 1;
2381                 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2382                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2383                 if (rc)
2384                         return rc;
2385 
2386                 /* set subordinate Latency Timer and base Latency Timer */
2387                 temp_byte = 0x40;
2388                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2389                 if (rc)
2390                         return rc;
2391                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2392                 if (rc)
2393                         return rc;
2394 
2395                 /* set Cache Line size */
2396                 temp_byte = 0x08;
2397                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2398                 if (rc)
2399                         return rc;
2400 
2401                 /* Setup the IO, memory, and prefetchable windows */
2402                 io_node = get_max_resource(&(resources->io_head), 0x1000);
2403                 if (!io_node)
2404                         return -ENOMEM;
2405                 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2406                 if (!mem_node)
2407                         return -ENOMEM;
2408                 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2409                 if (!p_mem_node)
2410                         return -ENOMEM;
2411                 dbg("Setup the IO, memory, and prefetchable windows\n");
2412                 dbg("io_node\n");
2413                 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2414                                         io_node->length, io_node->next);
2415                 dbg("mem_node\n");
2416                 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2417                                         mem_node->length, mem_node->next);
2418                 dbg("p_mem_node\n");
2419                 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2420                                         p_mem_node->length, p_mem_node->next);
2421 
2422                 /* set up the IRQ info */
2423                 if (!resources->irqs) {
2424                         irqs.barber_pole = 0;
2425                         irqs.interrupt[0] = 0;
2426                         irqs.interrupt[1] = 0;
2427                         irqs.interrupt[2] = 0;
2428                         irqs.interrupt[3] = 0;
2429                         irqs.valid_INT = 0;
2430                 } else {
2431                         irqs.barber_pole = resources->irqs->barber_pole;
2432                         irqs.interrupt[0] = resources->irqs->interrupt[0];
2433                         irqs.interrupt[1] = resources->irqs->interrupt[1];
2434                         irqs.interrupt[2] = resources->irqs->interrupt[2];
2435                         irqs.interrupt[3] = resources->irqs->interrupt[3];
2436                         irqs.valid_INT = resources->irqs->valid_INT;
2437                 }
2438 
2439                 /* set up resource lists that are now aligned on top and bottom
2440                  * for anything behind the bridge. */
2441                 temp_resources.bus_head = bus_node;
2442                 temp_resources.io_head = io_node;
2443                 temp_resources.mem_head = mem_node;
2444                 temp_resources.p_mem_head = p_mem_node;
2445                 temp_resources.irqs = &irqs;
2446 
2447                 /* Make copies of the nodes we are going to pass down so that
2448                  * if there is a problem,we can just use these to free resources
2449                  */
2450                 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2451                 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2452                 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2453                 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2454 
2455                 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2456                         kfree(hold_bus_node);
2457                         kfree(hold_IO_node);
2458                         kfree(hold_mem_node);
2459                         kfree(hold_p_mem_node);
2460 
2461                         return 1;
2462                 }
2463 
2464                 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2465 
2466                 bus_node->base += 1;
2467                 bus_node->length -= 1;
2468                 bus_node->next = NULL;
2469 
2470                 /* If we have IO resources copy them and fill in the bridge's
2471                  * IO range registers */
2472                 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2473                 io_node->next = NULL;
2474 
2475                 /* set IO base and Limit registers */
2476                 temp_byte = io_node->base >> 8;
2477                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2478 
2479                 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2480                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2481 
2482                 /* Copy the memory resources and fill in the bridge's memory
2483                  * range registers.
2484                  */
2485                 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2486                 mem_node->next = NULL;
2487 
2488                 /* set Mem base and Limit registers */
2489                 temp_word = mem_node->base >> 16;
2490                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2491 
2492                 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2493                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2494 
2495                 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2496                 p_mem_node->next = NULL;
2497 
2498                 /* set Pre Mem base and Limit registers */
2499                 temp_word = p_mem_node->base >> 16;
2500                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2501 
2502                 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2503                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2504 
2505                 /* Adjust this to compensate for extra adjustment in first loop
2506                  */
2507                 irqs.barber_pole--;
2508 
2509                 rc = 0;
2510 
2511                 /* Here we actually find the devices and configure them */
2512                 for (device = 0; (device <= 0x1F) && !rc; device++) {
2513                         irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2514 
2515                         ID = 0xFFFFFFFF;
2516                         pci_bus->number = hold_bus_node->base;
2517                         pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2518                         pci_bus->number = func->bus;
2519 
2520                         if (ID != 0xFFFFFFFF) {   /*  device present */
2521                                 /* Setup slot structure. */
2522                                 new_slot = cpqhp_slot_create(hold_bus_node->base);
2523 
2524                                 if (new_slot == NULL) {
2525                                         rc = -ENOMEM;
2526                                         continue;
2527                                 }
2528 
2529                                 new_slot->bus = hold_bus_node->base;
2530                                 new_slot->device = device;
2531                                 new_slot->function = 0;
2532                                 new_slot->is_a_board = 1;
2533                                 new_slot->status = 0;
2534 
2535                                 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2536                                 dbg("configure_new_device rc=0x%x\n", rc);
2537                         }       /* End of IF (device in slot?) */
2538                 }               /* End of FOR loop */
2539 
2540                 if (rc)
2541                         goto free_and_out;
2542                 /* save the interrupt routing information */
2543                 if (resources->irqs) {
2544                         resources->irqs->interrupt[0] = irqs.interrupt[0];
2545                         resources->irqs->interrupt[1] = irqs.interrupt[1];
2546                         resources->irqs->interrupt[2] = irqs.interrupt[2];
2547                         resources->irqs->interrupt[3] = irqs.interrupt[3];
2548                         resources->irqs->valid_INT = irqs.valid_INT;
2549                 } else if (!behind_bridge) {
2550                         /* We need to hook up the interrupts here */
2551                         for (cloop = 0; cloop < 4; cloop++) {
2552                                 if (irqs.valid_INT & (0x01 << cloop)) {
2553                                         rc = cpqhp_set_irq(func->bus, func->device,
2554                                                            cloop + 1, irqs.interrupt[cloop]);
2555                                         if (rc)
2556                                                 goto free_and_out;
2557                                 }
2558                         }       /* end of for loop */
2559                 }
2560                 /* Return unused bus resources
2561                  * First use the temporary node to store information for
2562                  * the board */
2563                 if (bus_node && temp_resources.bus_head) {
2564                         hold_bus_node->length = bus_node->base - hold_bus_node->base;
2565 
2566                         hold_bus_node->next = func->bus_head;
2567                         func->bus_head = hold_bus_node;
2568 
2569                         temp_byte = temp_resources.bus_head->base - 1;
2570 
2571                         /* set subordinate bus */
2572                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2573 
2574                         if (temp_resources.bus_head->length == 0) {
2575                                 kfree(temp_resources.bus_head);
2576                                 temp_resources.bus_head = NULL;
2577                         } else {
2578                                 return_resource(&(resources->bus_head), temp_resources.bus_head);
2579                         }
2580                 }
2581 
2582                 /* If we have IO space available and there is some left,
2583                  * return the unused portion */
2584                 if (hold_IO_node && temp_resources.io_head) {
2585                         io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2586                                                                &hold_IO_node, 0x1000);
2587 
2588                         /* Check if we were able to split something off */
2589                         if (io_node) {
2590                                 hold_IO_node->base = io_node->base + io_node->length;
2591 
2592                                 temp_byte = (hold_IO_node->base) >> 8;
2593                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2594 
2595                                 return_resource(&(resources->io_head), io_node);
2596                         }
2597 
2598                         io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2599 
2600                         /* Check if we were able to split something off */
2601                         if (io_node) {
2602                                 /* First use the temporary node to store
2603                                  * information for the board */
2604                                 hold_IO_node->length = io_node->base - hold_IO_node->base;
2605 
2606                                 /* If we used any, add it to the board's list */
2607                                 if (hold_IO_node->length) {
2608                                         hold_IO_node->next = func->io_head;
2609                                         func->io_head = hold_IO_node;
2610 
2611                                         temp_byte = (io_node->base - 1) >> 8;
2612                                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2613 
2614                                         return_resource(&(resources->io_head), io_node);
2615                                 } else {
2616                                         /* it doesn't need any IO */
2617                                         temp_word = 0x0000;
2618                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2619 
2620                                         return_resource(&(resources->io_head), io_node);
2621                                         kfree(hold_IO_node);
2622                                 }
2623                         } else {
2624                                 /* it used most of the range */
2625                                 hold_IO_node->next = func->io_head;
2626                                 func->io_head = hold_IO_node;
2627                         }
2628                 } else if (hold_IO_node) {
2629                         /* it used the whole range */
2630                         hold_IO_node->next = func->io_head;
2631                         func->io_head = hold_IO_node;
2632                 }
2633                 /* If we have memory space available and there is some left,
2634                  * return the unused portion */
2635                 if (hold_mem_node && temp_resources.mem_head) {
2636                         mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2637                                                                 &hold_mem_node, 0x100000);
2638 
2639                         /* Check if we were able to split something off */
2640                         if (mem_node) {
2641                                 hold_mem_node->base = mem_node->base + mem_node->length;
2642 
2643                                 temp_word = (hold_mem_node->base) >> 16;
2644                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2645 
2646                                 return_resource(&(resources->mem_head), mem_node);
2647                         }
2648 
2649                         mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2650 
2651                         /* Check if we were able to split something off */
2652                         if (mem_node) {
2653                                 /* First use the temporary node to store
2654                                  * information for the board */
2655                                 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2656 
2657                                 if (hold_mem_node->length) {
2658                                         hold_mem_node->next = func->mem_head;
2659                                         func->mem_head = hold_mem_node;
2660 
2661                                         /* configure end address */
2662                                         temp_word = (mem_node->base - 1) >> 16;
2663                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2664 
2665                                         /* Return unused resources to the pool */
2666                                         return_resource(&(resources->mem_head), mem_node);
2667                                 } else {
2668                                         /* it doesn't need any Mem */
2669                                         temp_word = 0x0000;
2670                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2671 
2672                                         return_resource(&(resources->mem_head), mem_node);
2673                                         kfree(hold_mem_node);
2674                                 }
2675                         } else {
2676                                 /* it used most of the range */
2677                                 hold_mem_node->next = func->mem_head;
2678                                 func->mem_head = hold_mem_node;
2679                         }
2680                 } else if (hold_mem_node) {
2681                         /* it used the whole range */
2682                         hold_mem_node->next = func->mem_head;
2683                         func->mem_head = hold_mem_node;
2684                 }
2685                 /* If we have prefetchable memory space available and there
2686                  * is some left at the end, return the unused portion */
2687                 if (temp_resources.p_mem_head) {
2688                         p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2689                                                                   &hold_p_mem_node, 0x100000);
2690 
2691                         /* Check if we were able to split something off */
2692                         if (p_mem_node) {
2693                                 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2694 
2695                                 temp_word = (hold_p_mem_node->base) >> 16;
2696                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2697 
2698                                 return_resource(&(resources->p_mem_head), p_mem_node);
2699                         }
2700 
2701                         p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2702 
2703                         /* Check if we were able to split something off */
2704                         if (p_mem_node) {
2705                                 /* First use the temporary node to store
2706                                  * information for the board */
2707                                 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2708 
2709                                 /* If we used any, add it to the board's list */
2710                                 if (hold_p_mem_node->length) {
2711                                         hold_p_mem_node->next = func->p_mem_head;
2712                                         func->p_mem_head = hold_p_mem_node;
2713 
2714                                         temp_word = (p_mem_node->base - 1) >> 16;
2715                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2716 
2717                                         return_resource(&(resources->p_mem_head), p_mem_node);
2718                                 } else {
2719                                         /* it doesn't need any PMem */
2720                                         temp_word = 0x0000;
2721                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2722 
2723                                         return_resource(&(resources->p_mem_head), p_mem_node);
2724                                         kfree(hold_p_mem_node);
2725                                 }
2726                         } else {
2727                                 /* it used the most of the range */
2728                                 hold_p_mem_node->next = func->p_mem_head;
2729                                 func->p_mem_head = hold_p_mem_node;
2730                         }
2731                 } else if (hold_p_mem_node) {
2732                         /* it used the whole range */
2733                         hold_p_mem_node->next = func->p_mem_head;
2734                         func->p_mem_head = hold_p_mem_node;
2735                 }
2736                 /* We should be configuring an IRQ and the bridge's base address
2737                  * registers if it needs them.  Although we have never seen such
2738                  * a device */
2739 
2740                 /* enable card */
2741                 command = 0x0157;       /* = PCI_COMMAND_IO |
2742                                          *   PCI_COMMAND_MEMORY |
2743                                          *   PCI_COMMAND_MASTER |
2744                                          *   PCI_COMMAND_INVALIDATE |
2745                                          *   PCI_COMMAND_PARITY |
2746                                          *   PCI_COMMAND_SERR */
2747                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2748 
2749                 /* set Bridge Control Register */
2750                 command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2751                                          *   PCI_BRIDGE_CTL_SERR |
2752                                          *   PCI_BRIDGE_CTL_NO_ISA */
2753                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2754         } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2755                 /* Standard device */
2756                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2757 
2758                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2759                         /* Display (video) adapter (not supported) */
2760                         return DEVICE_TYPE_NOT_SUPPORTED;
2761                 }
2762                 /* Figure out IO and memory needs */
2763                 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2764                         temp_register = 0xFFFFFFFF;
2765 
2766                         dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2767                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2768 
2769                         rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2770                         dbg("CND: base = 0x%x\n", temp_register);
2771 
2772                         if (temp_register) {      /* If this register is implemented */
2773                                 if ((temp_register & 0x03L) == 0x01) {
2774                                         /* Map IO */
2775 
2776                                         /* set base = amount of IO space */
2777                                         base = temp_register & 0xFFFFFFFC;
2778                                         base = ~base + 1;
2779 
2780                                         dbg("CND:      length = 0x%x\n", base);
2781                                         io_node = get_io_resource(&(resources->io_head), base);
2782                                         if (!io_node)
2783                                                 return -ENOMEM;
2784                                         dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2785                                             io_node->base, io_node->length, io_node->next);
2786                                         dbg("func (%p) io_head (%p)\n", func, func->io_head);
2787 
2788                                         /* allocate the resource to the board */
2789                                         base = io_node->base;
2790                                         io_node->next = func->io_head;
2791                                         func->io_head = io_node;
2792                                 } else if ((temp_register & 0x0BL) == 0x08) {
2793                                         /* Map prefetchable memory */
2794                                         base = temp_register & 0xFFFFFFF0;
2795                                         base = ~base + 1;
2796 
2797                                         dbg("CND:      length = 0x%x\n", base);
2798                                         p_mem_node = get_resource(&(resources->p_mem_head), base);
2799 
2800                                         /* allocate the resource to the board */
2801                                         if (p_mem_node) {
2802                                                 base = p_mem_node->base;
2803 
2804                                                 p_mem_node->next = func->p_mem_head;
2805                                                 func->p_mem_head = p_mem_node;
2806                                         } else
2807                                                 return -ENOMEM;
2808                                 } else if ((temp_register & 0x0BL) == 0x00) {
2809                                         /* Map memory */
2810                                         base = temp_register & 0xFFFFFFF0;
2811                                         base = ~base + 1;
2812 
2813                                         dbg("CND:      length = 0x%x\n", base);
2814                                         mem_node = get_resource(&(resources->mem_head), base);
2815 
2816                                         /* allocate the resource to the board */
2817                                         if (mem_node) {
2818                                                 base = mem_node->base;
2819 
2820                                                 mem_node->next = func->mem_head;
2821                                                 func->mem_head = mem_node;
2822                                         } else
2823                                                 return -ENOMEM;
2824                                 } else {
2825                                         /* Reserved bits or requesting space below 1M */
2826                                         return NOT_ENOUGH_RESOURCES;
2827                                 }
2828 
2829                                 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2830 
2831                                 /* Check for 64-bit base */
2832                                 if ((temp_register & 0x07L) == 0x04) {
2833                                         cloop += 4;
2834 
2835                                         /* Upper 32 bits of address always zero
2836                                          * on today's systems */
2837                                         /* FIXME this is probably not true on
2838                                          * Alpha and ia64??? */
2839                                         base = 0;
2840                                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2841                                 }
2842                         }
2843                 }               /* End of base register loop */
2844                 if (cpqhp_legacy_mode) {
2845                         /* Figure out which interrupt pin this function uses */
2846                         rc = pci_bus_read_config_byte(pci_bus, devfn,
2847                                 PCI_INTERRUPT_PIN, &temp_byte);
2848 
2849                         /* If this function needs an interrupt and we are behind
2850                          * a bridge and the pin is tied to something that's
2851                          * already mapped, set this one the same */
2852                         if (temp_byte && resources->irqs &&
2853                             (resources->irqs->valid_INT &
2854                              (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2855                                 /* We have to share with something already set up */
2856                                 IRQ = resources->irqs->interrupt[(temp_byte +
2857                                         resources->irqs->barber_pole - 1) & 0x03];
2858                         } else {
2859                                 /* Program IRQ based on card type */
2860                                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2861 
2862                                 if (class_code == PCI_BASE_CLASS_STORAGE)
2863                                         IRQ = cpqhp_disk_irq;
2864                                 else
2865                                         IRQ = cpqhp_nic_irq;
2866                         }
2867 
2868                         /* IRQ Line */
2869                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2870                 }
2871 
2872                 if (!behind_bridge) {
2873                         rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2874                         if (rc)
2875                                 return 1;
2876                 } else {
2877                         /* TBD - this code may also belong in the other clause
2878                          * of this If statement */
2879                         resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2880                         resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2881                 }
2882 
2883                 /* Latency Timer */
2884                 temp_byte = 0x40;
2885                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2886                                         PCI_LATENCY_TIMER, temp_byte);
2887 
2888                 /* Cache Line size */
2889                 temp_byte = 0x08;
2890                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2891                                         PCI_CACHE_LINE_SIZE, temp_byte);
2892 
2893                 /* disable ROM base Address */
2894                 temp_dword = 0x00L;
2895                 rc = pci_bus_write_config_word(pci_bus, devfn,
2896                                         PCI_ROM_ADDRESS, temp_dword);
2897 
2898                 /* enable card */
2899                 temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2900                                          *   PCI_COMMAND_MEMORY |
2901                                          *   PCI_COMMAND_MASTER |
2902                                          *   PCI_COMMAND_INVALIDATE |
2903                                          *   PCI_COMMAND_PARITY |
2904                                          *   PCI_COMMAND_SERR */
2905                 rc = pci_bus_write_config_word(pci_bus, devfn,
2906                                         PCI_COMMAND, temp_word);
2907         } else {                /* End of Not-A-Bridge else */
2908                 /* It's some strange type of PCI adapter (Cardbus?) */
2909                 return DEVICE_TYPE_NOT_SUPPORTED;
2910         }
2911 
2912         func->configured = 1;
2913 
2914         return 0;
2915 free_and_out:
2916         cpqhp_destroy_resource_list(&temp_resources);
2917 
2918         return_resource(&(resources->bus_head), hold_bus_node);
2919         return_resource(&(resources->io_head), hold_IO_node);
2920         return_resource(&(resources->mem_head), hold_mem_node);
2921         return_resource(&(resources->p_mem_head), hold_p_mem_node);
2922         return rc;
2923 }

/* [<][>][^][v][top][bottom][index][help] */