root/drivers/pci/controller/pcie-iproc-msi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. iproc_msi_read_reg
  2. iproc_msi_write_reg
  3. hwirq_to_group
  4. iproc_msi_addr_offset
  5. iproc_msi_eq_offset
  6. hwirq_to_cpu
  7. hwirq_to_canonical_hwirq
  8. iproc_msi_irq_set_affinity
  9. iproc_msi_irq_compose_msi_msg
  10. iproc_msi_irq_domain_alloc
  11. iproc_msi_irq_domain_free
  12. decode_msi_hwirq
  13. iproc_msi_handler
  14. iproc_msi_enable
  15. iproc_msi_disable
  16. iproc_msi_alloc_domains
  17. iproc_msi_free_domains
  18. iproc_msi_irq_free
  19. iproc_msi_irq_setup
  20. iproc_msi_init
  21. iproc_msi_exit

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (C) 2015 Broadcom Corporation
   4  */
   5 
   6 #include <linux/interrupt.h>
   7 #include <linux/irqchip/chained_irq.h>
   8 #include <linux/irqdomain.h>
   9 #include <linux/msi.h>
  10 #include <linux/of_irq.h>
  11 #include <linux/of_pci.h>
  12 #include <linux/pci.h>
  13 
  14 #include "pcie-iproc.h"
  15 
  16 #define IPROC_MSI_INTR_EN_SHIFT        11
  17 #define IPROC_MSI_INTR_EN              BIT(IPROC_MSI_INTR_EN_SHIFT)
  18 #define IPROC_MSI_INT_N_EVENT_SHIFT    1
  19 #define IPROC_MSI_INT_N_EVENT          BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
  20 #define IPROC_MSI_EQ_EN_SHIFT          0
  21 #define IPROC_MSI_EQ_EN                BIT(IPROC_MSI_EQ_EN_SHIFT)
  22 
  23 #define IPROC_MSI_EQ_MASK              0x3f
  24 
  25 /* Max number of GIC interrupts */
  26 #define NR_HW_IRQS                     6
  27 
  28 /* Number of entries in each event queue */
  29 #define EQ_LEN                         64
  30 
  31 /* Size of each event queue memory region */
  32 #define EQ_MEM_REGION_SIZE             SZ_4K
  33 
  34 /* Size of each MSI address region */
  35 #define MSI_MEM_REGION_SIZE            SZ_4K
  36 
  37 enum iproc_msi_reg {
  38         IPROC_MSI_EQ_PAGE = 0,
  39         IPROC_MSI_EQ_PAGE_UPPER,
  40         IPROC_MSI_PAGE,
  41         IPROC_MSI_PAGE_UPPER,
  42         IPROC_MSI_CTRL,
  43         IPROC_MSI_EQ_HEAD,
  44         IPROC_MSI_EQ_TAIL,
  45         IPROC_MSI_INTS_EN,
  46         IPROC_MSI_REG_SIZE,
  47 };
  48 
  49 struct iproc_msi;
  50 
  51 /**
  52  * iProc MSI group
  53  *
  54  * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
  55  * event queue.
  56  *
  57  * @msi: pointer to iProc MSI data
  58  * @gic_irq: GIC interrupt
  59  * @eq: Event queue number
  60  */
  61 struct iproc_msi_grp {
  62         struct iproc_msi *msi;
  63         int gic_irq;
  64         unsigned int eq;
  65 };
  66 
  67 /**
  68  * iProc event queue based MSI
  69  *
  70  * Only meant to be used on platforms without MSI support integrated into the
  71  * GIC.
  72  *
  73  * @pcie: pointer to iProc PCIe data
  74  * @reg_offsets: MSI register offsets
  75  * @grps: MSI groups
  76  * @nr_irqs: number of total interrupts connected to GIC
  77  * @nr_cpus: number of toal CPUs
  78  * @has_inten_reg: indicates the MSI interrupt enable register needs to be
  79  * set explicitly (required for some legacy platforms)
  80  * @bitmap: MSI vector bitmap
  81  * @bitmap_lock: lock to protect access to the MSI bitmap
  82  * @nr_msi_vecs: total number of MSI vectors
  83  * @inner_domain: inner IRQ domain
  84  * @msi_domain: MSI IRQ domain
  85  * @nr_eq_region: required number of 4K aligned memory region for MSI event
  86  * queues
  87  * @nr_msi_region: required number of 4K aligned address region for MSI posted
  88  * writes
  89  * @eq_cpu: pointer to allocated memory region for MSI event queues
  90  * @eq_dma: DMA address of MSI event queues
  91  * @msi_addr: MSI address
  92  */
  93 struct iproc_msi {
  94         struct iproc_pcie *pcie;
  95         const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
  96         struct iproc_msi_grp *grps;
  97         int nr_irqs;
  98         int nr_cpus;
  99         bool has_inten_reg;
 100         unsigned long *bitmap;
 101         struct mutex bitmap_lock;
 102         unsigned int nr_msi_vecs;
 103         struct irq_domain *inner_domain;
 104         struct irq_domain *msi_domain;
 105         unsigned int nr_eq_region;
 106         unsigned int nr_msi_region;
 107         void *eq_cpu;
 108         dma_addr_t eq_dma;
 109         phys_addr_t msi_addr;
 110 };
 111 
 112 static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
 113         { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
 114         { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
 115         { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
 116         { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
 117         { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
 118         { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
 119 };
 120 
 121 static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
 122         { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
 123         { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
 124         { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
 125         { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
 126 };
 127 
 128 static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
 129                                      enum iproc_msi_reg reg,
 130                                      unsigned int eq)
 131 {
 132         struct iproc_pcie *pcie = msi->pcie;
 133 
 134         return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
 135 }
 136 
 137 static inline void iproc_msi_write_reg(struct iproc_msi *msi,
 138                                        enum iproc_msi_reg reg,
 139                                        int eq, u32 val)
 140 {
 141         struct iproc_pcie *pcie = msi->pcie;
 142 
 143         writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
 144 }
 145 
 146 static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
 147 {
 148         return (hwirq % msi->nr_irqs);
 149 }
 150 
 151 static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
 152                                                  unsigned long hwirq)
 153 {
 154         if (msi->nr_msi_region > 1)
 155                 return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
 156         else
 157                 return hwirq_to_group(msi, hwirq) * sizeof(u32);
 158 }
 159 
 160 static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
 161 {
 162         if (msi->nr_eq_region > 1)
 163                 return eq * EQ_MEM_REGION_SIZE;
 164         else
 165                 return eq * EQ_LEN * sizeof(u32);
 166 }
 167 
 168 static struct irq_chip iproc_msi_irq_chip = {
 169         .name = "iProc-MSI",
 170 };
 171 
 172 static struct msi_domain_info iproc_msi_domain_info = {
 173         .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 174                 MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
 175         .chip = &iproc_msi_irq_chip,
 176 };
 177 
 178 /*
 179  * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
 180  * dedicated event queue.  Each MSI group can support up to 64 MSI vectors.
 181  *
 182  * The number of MSI groups varies between different iProc SoCs.  The total
 183  * number of CPU cores also varies.  To support MSI IRQ affinity, we
 184  * distribute GIC interrupts across all available CPUs.  MSI vector is moved
 185  * from one GIC interrupt to another to steer to the target CPU.
 186  *
 187  * Assuming:
 188  * - the number of MSI groups is M
 189  * - the number of CPU cores is N
 190  * - M is always a multiple of N
 191  *
 192  * Total number of raw MSI vectors = M * 64
 193  * Total number of supported MSI vectors = (M * 64) / N
 194  */
 195 static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
 196 {
 197         return (hwirq % msi->nr_cpus);
 198 }
 199 
 200 static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
 201                                                      unsigned long hwirq)
 202 {
 203         return (hwirq - hwirq_to_cpu(msi, hwirq));
 204 }
 205 
 206 static int iproc_msi_irq_set_affinity(struct irq_data *data,
 207                                       const struct cpumask *mask, bool force)
 208 {
 209         struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
 210         int target_cpu = cpumask_first(mask);
 211         int curr_cpu;
 212 
 213         curr_cpu = hwirq_to_cpu(msi, data->hwirq);
 214         if (curr_cpu == target_cpu)
 215                 return IRQ_SET_MASK_OK_DONE;
 216 
 217         /* steer MSI to the target CPU */
 218         data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
 219 
 220         return IRQ_SET_MASK_OK;
 221 }
 222 
 223 static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
 224                                           struct msi_msg *msg)
 225 {
 226         struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
 227         dma_addr_t addr;
 228 
 229         addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
 230         msg->address_lo = lower_32_bits(addr);
 231         msg->address_hi = upper_32_bits(addr);
 232         msg->data = data->hwirq << 5;
 233 }
 234 
 235 static struct irq_chip iproc_msi_bottom_irq_chip = {
 236         .name = "MSI",
 237         .irq_set_affinity = iproc_msi_irq_set_affinity,
 238         .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
 239 };
 240 
 241 static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
 242                                       unsigned int virq, unsigned int nr_irqs,
 243                                       void *args)
 244 {
 245         struct iproc_msi *msi = domain->host_data;
 246         int hwirq, i;
 247 
 248         mutex_lock(&msi->bitmap_lock);
 249 
 250         /* Allocate 'nr_cpus' number of MSI vectors each time */
 251         hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0,
 252                                            msi->nr_cpus, 0);
 253         if (hwirq < msi->nr_msi_vecs) {
 254                 bitmap_set(msi->bitmap, hwirq, msi->nr_cpus);
 255         } else {
 256                 mutex_unlock(&msi->bitmap_lock);
 257                 return -ENOSPC;
 258         }
 259 
 260         mutex_unlock(&msi->bitmap_lock);
 261 
 262         for (i = 0; i < nr_irqs; i++) {
 263                 irq_domain_set_info(domain, virq + i, hwirq + i,
 264                                     &iproc_msi_bottom_irq_chip,
 265                                     domain->host_data, handle_simple_irq,
 266                                     NULL, NULL);
 267         }
 268 
 269         return hwirq;
 270 }
 271 
 272 static void iproc_msi_irq_domain_free(struct irq_domain *domain,
 273                                       unsigned int virq, unsigned int nr_irqs)
 274 {
 275         struct irq_data *data = irq_domain_get_irq_data(domain, virq);
 276         struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
 277         unsigned int hwirq;
 278 
 279         mutex_lock(&msi->bitmap_lock);
 280 
 281         hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
 282         bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus);
 283 
 284         mutex_unlock(&msi->bitmap_lock);
 285 
 286         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
 287 }
 288 
 289 static const struct irq_domain_ops msi_domain_ops = {
 290         .alloc = iproc_msi_irq_domain_alloc,
 291         .free = iproc_msi_irq_domain_free,
 292 };
 293 
 294 static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
 295 {
 296         u32 *msg, hwirq;
 297         unsigned int offs;
 298 
 299         offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
 300         msg = (u32 *)(msi->eq_cpu + offs);
 301         hwirq = readl(msg);
 302         hwirq = (hwirq >> 5) + (hwirq & 0x1f);
 303 
 304         /*
 305          * Since we have multiple hwirq mapped to a single MSI vector,
 306          * now we need to derive the hwirq at CPU0.  It can then be used to
 307          * mapped back to virq.
 308          */
 309         return hwirq_to_canonical_hwirq(msi, hwirq);
 310 }
 311 
 312 static void iproc_msi_handler(struct irq_desc *desc)
 313 {
 314         struct irq_chip *chip = irq_desc_get_chip(desc);
 315         struct iproc_msi_grp *grp;
 316         struct iproc_msi *msi;
 317         u32 eq, head, tail, nr_events;
 318         unsigned long hwirq;
 319         int virq;
 320 
 321         chained_irq_enter(chip, desc);
 322 
 323         grp = irq_desc_get_handler_data(desc);
 324         msi = grp->msi;
 325         eq = grp->eq;
 326 
 327         /*
 328          * iProc MSI event queue is tracked by head and tail pointers.  Head
 329          * pointer indicates the next entry (MSI data) to be consumed by SW in
 330          * the queue and needs to be updated by SW.  iProc MSI core uses the
 331          * tail pointer as the next data insertion point.
 332          *
 333          * Entries between head and tail pointers contain valid MSI data.  MSI
 334          * data is guaranteed to be in the event queue memory before the tail
 335          * pointer is updated by the iProc MSI core.
 336          */
 337         head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
 338                                   eq) & IPROC_MSI_EQ_MASK;
 339         do {
 340                 tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
 341                                           eq) & IPROC_MSI_EQ_MASK;
 342 
 343                 /*
 344                  * Figure out total number of events (MSI data) to be
 345                  * processed.
 346                  */
 347                 nr_events = (tail < head) ?
 348                         (EQ_LEN - (head - tail)) : (tail - head);
 349                 if (!nr_events)
 350                         break;
 351 
 352                 /* process all outstanding events */
 353                 while (nr_events--) {
 354                         hwirq = decode_msi_hwirq(msi, eq, head);
 355                         virq = irq_find_mapping(msi->inner_domain, hwirq);
 356                         generic_handle_irq(virq);
 357 
 358                         head++;
 359                         head %= EQ_LEN;
 360                 }
 361 
 362                 /*
 363                  * Now all outstanding events have been processed.  Update the
 364                  * head pointer.
 365                  */
 366                 iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
 367 
 368                 /*
 369                  * Now go read the tail pointer again to see if there are new
 370                  * outstanding events that came in during the above window.
 371                  */
 372         } while (true);
 373 
 374         chained_irq_exit(chip, desc);
 375 }
 376 
 377 static void iproc_msi_enable(struct iproc_msi *msi)
 378 {
 379         int i, eq;
 380         u32 val;
 381 
 382         /* Program memory region for each event queue */
 383         for (i = 0; i < msi->nr_eq_region; i++) {
 384                 dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
 385 
 386                 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
 387                                     lower_32_bits(addr));
 388                 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
 389                                     upper_32_bits(addr));
 390         }
 391 
 392         /* Program address region for MSI posted writes */
 393         for (i = 0; i < msi->nr_msi_region; i++) {
 394                 phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
 395 
 396                 iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
 397                                     lower_32_bits(addr));
 398                 iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
 399                                     upper_32_bits(addr));
 400         }
 401 
 402         for (eq = 0; eq < msi->nr_irqs; eq++) {
 403                 /* Enable MSI event queue */
 404                 val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
 405                         IPROC_MSI_EQ_EN;
 406                 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
 407 
 408                 /*
 409                  * Some legacy platforms require the MSI interrupt enable
 410                  * register to be set explicitly.
 411                  */
 412                 if (msi->has_inten_reg) {
 413                         val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
 414                         val |= BIT(eq);
 415                         iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
 416                 }
 417         }
 418 }
 419 
 420 static void iproc_msi_disable(struct iproc_msi *msi)
 421 {
 422         u32 eq, val;
 423 
 424         for (eq = 0; eq < msi->nr_irqs; eq++) {
 425                 if (msi->has_inten_reg) {
 426                         val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
 427                         val &= ~BIT(eq);
 428                         iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
 429                 }
 430 
 431                 val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
 432                 val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
 433                          IPROC_MSI_EQ_EN);
 434                 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
 435         }
 436 }
 437 
 438 static int iproc_msi_alloc_domains(struct device_node *node,
 439                                    struct iproc_msi *msi)
 440 {
 441         msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
 442                                                   &msi_domain_ops, msi);
 443         if (!msi->inner_domain)
 444                 return -ENOMEM;
 445 
 446         msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
 447                                                     &iproc_msi_domain_info,
 448                                                     msi->inner_domain);
 449         if (!msi->msi_domain) {
 450                 irq_domain_remove(msi->inner_domain);
 451                 return -ENOMEM;
 452         }
 453 
 454         return 0;
 455 }
 456 
 457 static void iproc_msi_free_domains(struct iproc_msi *msi)
 458 {
 459         if (msi->msi_domain)
 460                 irq_domain_remove(msi->msi_domain);
 461 
 462         if (msi->inner_domain)
 463                 irq_domain_remove(msi->inner_domain);
 464 }
 465 
 466 static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
 467 {
 468         int i;
 469 
 470         for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
 471                 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
 472                                                  NULL, NULL);
 473         }
 474 }
 475 
 476 static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
 477 {
 478         int i, ret;
 479         cpumask_var_t mask;
 480         struct iproc_pcie *pcie = msi->pcie;
 481 
 482         for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
 483                 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
 484                                                  iproc_msi_handler,
 485                                                  &msi->grps[i]);
 486                 /* Dedicate GIC interrupt to each CPU core */
 487                 if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
 488                         cpumask_clear(mask);
 489                         cpumask_set_cpu(cpu, mask);
 490                         ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
 491                         if (ret)
 492                                 dev_err(pcie->dev,
 493                                         "failed to set affinity for IRQ%d\n",
 494                                         msi->grps[i].gic_irq);
 495                         free_cpumask_var(mask);
 496                 } else {
 497                         dev_err(pcie->dev, "failed to alloc CPU mask\n");
 498                         ret = -EINVAL;
 499                 }
 500 
 501                 if (ret) {
 502                         /* Free all configured/unconfigured IRQs */
 503                         iproc_msi_irq_free(msi, cpu);
 504                         return ret;
 505                 }
 506         }
 507 
 508         return 0;
 509 }
 510 
 511 int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
 512 {
 513         struct iproc_msi *msi;
 514         int i, ret;
 515         unsigned int cpu;
 516 
 517         if (!of_device_is_compatible(node, "brcm,iproc-msi"))
 518                 return -ENODEV;
 519 
 520         if (!of_find_property(node, "msi-controller", NULL))
 521                 return -ENODEV;
 522 
 523         if (pcie->msi)
 524                 return -EBUSY;
 525 
 526         msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
 527         if (!msi)
 528                 return -ENOMEM;
 529 
 530         msi->pcie = pcie;
 531         pcie->msi = msi;
 532         msi->msi_addr = pcie->base_addr;
 533         mutex_init(&msi->bitmap_lock);
 534         msi->nr_cpus = num_possible_cpus();
 535 
 536         msi->nr_irqs = of_irq_count(node);
 537         if (!msi->nr_irqs) {
 538                 dev_err(pcie->dev, "found no MSI GIC interrupt\n");
 539                 return -ENODEV;
 540         }
 541 
 542         if (msi->nr_irqs > NR_HW_IRQS) {
 543                 dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
 544                          msi->nr_irqs);
 545                 msi->nr_irqs = NR_HW_IRQS;
 546         }
 547 
 548         if (msi->nr_irqs < msi->nr_cpus) {
 549                 dev_err(pcie->dev,
 550                         "not enough GIC interrupts for MSI affinity\n");
 551                 return -EINVAL;
 552         }
 553 
 554         if (msi->nr_irqs % msi->nr_cpus != 0) {
 555                 msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
 556                 dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
 557                          msi->nr_irqs);
 558         }
 559 
 560         switch (pcie->type) {
 561         case IPROC_PCIE_PAXB_BCMA:
 562         case IPROC_PCIE_PAXB:
 563                 msi->reg_offsets = iproc_msi_reg_paxb;
 564                 msi->nr_eq_region = 1;
 565                 msi->nr_msi_region = 1;
 566                 break;
 567         case IPROC_PCIE_PAXC:
 568                 msi->reg_offsets = iproc_msi_reg_paxc;
 569                 msi->nr_eq_region = msi->nr_irqs;
 570                 msi->nr_msi_region = msi->nr_irqs;
 571                 break;
 572         default:
 573                 dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
 574                 return -EINVAL;
 575         }
 576 
 577         if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
 578                 msi->has_inten_reg = true;
 579 
 580         msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
 581         msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
 582                                    sizeof(*msi->bitmap), GFP_KERNEL);
 583         if (!msi->bitmap)
 584                 return -ENOMEM;
 585 
 586         msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
 587                                  GFP_KERNEL);
 588         if (!msi->grps)
 589                 return -ENOMEM;
 590 
 591         for (i = 0; i < msi->nr_irqs; i++) {
 592                 unsigned int irq = irq_of_parse_and_map(node, i);
 593 
 594                 if (!irq) {
 595                         dev_err(pcie->dev, "unable to parse/map interrupt\n");
 596                         ret = -ENODEV;
 597                         goto free_irqs;
 598                 }
 599                 msi->grps[i].gic_irq = irq;
 600                 msi->grps[i].msi = msi;
 601                 msi->grps[i].eq = i;
 602         }
 603 
 604         /* Reserve memory for event queue and make sure memories are zeroed */
 605         msi->eq_cpu = dma_alloc_coherent(pcie->dev,
 606                                          msi->nr_eq_region * EQ_MEM_REGION_SIZE,
 607                                          &msi->eq_dma, GFP_KERNEL);
 608         if (!msi->eq_cpu) {
 609                 ret = -ENOMEM;
 610                 goto free_irqs;
 611         }
 612 
 613         ret = iproc_msi_alloc_domains(node, msi);
 614         if (ret) {
 615                 dev_err(pcie->dev, "failed to create MSI domains\n");
 616                 goto free_eq_dma;
 617         }
 618 
 619         for_each_online_cpu(cpu) {
 620                 ret = iproc_msi_irq_setup(msi, cpu);
 621                 if (ret)
 622                         goto free_msi_irq;
 623         }
 624 
 625         iproc_msi_enable(msi);
 626 
 627         return 0;
 628 
 629 free_msi_irq:
 630         for_each_online_cpu(cpu)
 631                 iproc_msi_irq_free(msi, cpu);
 632         iproc_msi_free_domains(msi);
 633 
 634 free_eq_dma:
 635         dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
 636                           msi->eq_cpu, msi->eq_dma);
 637 
 638 free_irqs:
 639         for (i = 0; i < msi->nr_irqs; i++) {
 640                 if (msi->grps[i].gic_irq)
 641                         irq_dispose_mapping(msi->grps[i].gic_irq);
 642         }
 643         pcie->msi = NULL;
 644         return ret;
 645 }
 646 EXPORT_SYMBOL(iproc_msi_init);
 647 
 648 void iproc_msi_exit(struct iproc_pcie *pcie)
 649 {
 650         struct iproc_msi *msi = pcie->msi;
 651         unsigned int i, cpu;
 652 
 653         if (!msi)
 654                 return;
 655 
 656         iproc_msi_disable(msi);
 657 
 658         for_each_online_cpu(cpu)
 659                 iproc_msi_irq_free(msi, cpu);
 660 
 661         iproc_msi_free_domains(msi);
 662 
 663         dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
 664                           msi->eq_cpu, msi->eq_dma);
 665 
 666         for (i = 0; i < msi->nr_irqs; i++) {
 667                 if (msi->grps[i].gic_irq)
 668                         irq_dispose_mapping(msi->grps[i].gic_irq);
 669         }
 670 }
 671 EXPORT_SYMBOL(iproc_msi_exit);

/* [<][>][^][v][top][bottom][index][help] */