root/drivers/soc/qcom/smem.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. phdr_to_last_uncached_entry
  2. phdr_to_first_cached_entry
  3. phdr_to_last_cached_entry
  4. phdr_to_first_uncached_entry
  5. uncached_entry_next
  6. cached_entry_next
  7. uncached_entry_to_item
  8. cached_entry_to_item
  9. qcom_smem_alloc_private
  10. qcom_smem_alloc_global
  11. qcom_smem_alloc
  12. qcom_smem_get_global
  13. qcom_smem_get_private
  14. qcom_smem_get
  15. qcom_smem_get_free_space
  16. qcom_smem_virt_to_phys
  17. qcom_smem_get_sbl_version
  18. qcom_smem_get_ptable
  19. qcom_smem_get_item_count
  20. qcom_smem_partition_header
  21. qcom_smem_set_global_partition
  22. qcom_smem_enumerate_partitions
  23. qcom_smem_map_memory
  24. qcom_smem_probe
  25. qcom_smem_remove
  26. qcom_smem_init
  27. qcom_smem_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (c) 2015, Sony Mobile Communications AB.
   4  * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
   5  */
   6 
   7 #include <linux/hwspinlock.h>
   8 #include <linux/io.h>
   9 #include <linux/module.h>
  10 #include <linux/of.h>
  11 #include <linux/of_address.h>
  12 #include <linux/platform_device.h>
  13 #include <linux/sizes.h>
  14 #include <linux/slab.h>
  15 #include <linux/soc/qcom/smem.h>
  16 
  17 /*
  18  * The Qualcomm shared memory system is a allocate only heap structure that
  19  * consists of one of more memory areas that can be accessed by the processors
  20  * in the SoC.
  21  *
  22  * All systems contains a global heap, accessible by all processors in the SoC,
  23  * with a table of contents data structure (@smem_header) at the beginning of
  24  * the main shared memory block.
  25  *
  26  * The global header contains meta data for allocations as well as a fixed list
  27  * of 512 entries (@smem_global_entry) that can be initialized to reference
  28  * parts of the shared memory space.
  29  *
  30  *
  31  * In addition to this global heap a set of "private" heaps can be set up at
  32  * boot time with access restrictions so that only certain processor pairs can
  33  * access the data.
  34  *
  35  * These partitions are referenced from an optional partition table
  36  * (@smem_ptable), that is found 4kB from the end of the main smem region. The
  37  * partition table entries (@smem_ptable_entry) lists the involved processors
  38  * (or hosts) and their location in the main shared memory region.
  39  *
  40  * Each partition starts with a header (@smem_partition_header) that identifies
  41  * the partition and holds properties for the two internal memory regions. The
  42  * two regions are cached and non-cached memory respectively. Each region
  43  * contain a link list of allocation headers (@smem_private_entry) followed by
  44  * their data.
  45  *
  46  * Items in the non-cached region are allocated from the start of the partition
  47  * while items in the cached region are allocated from the end. The free area
  48  * is hence the region between the cached and non-cached offsets. The header of
  49  * cached items comes after the data.
  50  *
  51  * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
  52  * for the global heap. A new global partition is created from the global heap
  53  * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
  54  * set by the bootloader.
  55  *
  56  * To synchronize allocations in the shared memory heaps a remote spinlock must
  57  * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
  58  * platforms.
  59  *
  60  */
  61 
  62 /*
  63  * The version member of the smem header contains an array of versions for the
  64  * various software components in the SoC. We verify that the boot loader
  65  * version is a valid version as a sanity check.
  66  */
  67 #define SMEM_MASTER_SBL_VERSION_INDEX   7
  68 #define SMEM_GLOBAL_HEAP_VERSION        11
  69 #define SMEM_GLOBAL_PART_VERSION        12
  70 
  71 /*
  72  * The first 8 items are only to be allocated by the boot loader while
  73  * initializing the heap.
  74  */
  75 #define SMEM_ITEM_LAST_FIXED    8
  76 
  77 /* Highest accepted item number, for both global and private heaps */
  78 #define SMEM_ITEM_COUNT         512
  79 
  80 /* Processor/host identifier for the application processor */
  81 #define SMEM_HOST_APPS          0
  82 
  83 /* Processor/host identifier for the global partition */
  84 #define SMEM_GLOBAL_HOST        0xfffe
  85 
  86 /* Max number of processors/hosts in a system */
  87 #define SMEM_HOST_COUNT         11
  88 
  89 /**
  90   * struct smem_proc_comm - proc_comm communication struct (legacy)
  91   * @command:   current command to be executed
  92   * @status:    status of the currently requested command
  93   * @params:    parameters to the command
  94   */
  95 struct smem_proc_comm {
  96         __le32 command;
  97         __le32 status;
  98         __le32 params[2];
  99 };
 100 
 101 /**
 102  * struct smem_global_entry - entry to reference smem items on the heap
 103  * @allocated:  boolean to indicate if this entry is used
 104  * @offset:     offset to the allocated space
 105  * @size:       size of the allocated space, 8 byte aligned
 106  * @aux_base:   base address for the memory region used by this unit, or 0 for
 107  *              the default region. bits 0,1 are reserved
 108  */
 109 struct smem_global_entry {
 110         __le32 allocated;
 111         __le32 offset;
 112         __le32 size;
 113         __le32 aux_base; /* bits 1:0 reserved */
 114 };
 115 #define AUX_BASE_MASK           0xfffffffc
 116 
 117 /**
 118  * struct smem_header - header found in beginning of primary smem region
 119  * @proc_comm:          proc_comm communication interface (legacy)
 120  * @version:            array of versions for the various subsystems
 121  * @initialized:        boolean to indicate that smem is initialized
 122  * @free_offset:        index of the first unallocated byte in smem
 123  * @available:          number of bytes available for allocation
 124  * @reserved:           reserved field, must be 0
 125  * toc:                 array of references to items
 126  */
 127 struct smem_header {
 128         struct smem_proc_comm proc_comm[4];
 129         __le32 version[32];
 130         __le32 initialized;
 131         __le32 free_offset;
 132         __le32 available;
 133         __le32 reserved;
 134         struct smem_global_entry toc[SMEM_ITEM_COUNT];
 135 };
 136 
 137 /**
 138  * struct smem_ptable_entry - one entry in the @smem_ptable list
 139  * @offset:     offset, within the main shared memory region, of the partition
 140  * @size:       size of the partition
 141  * @flags:      flags for the partition (currently unused)
 142  * @host0:      first processor/host with access to this partition
 143  * @host1:      second processor/host with access to this partition
 144  * @cacheline:  alignment for "cached" entries
 145  * @reserved:   reserved entries for later use
 146  */
 147 struct smem_ptable_entry {
 148         __le32 offset;
 149         __le32 size;
 150         __le32 flags;
 151         __le16 host0;
 152         __le16 host1;
 153         __le32 cacheline;
 154         __le32 reserved[7];
 155 };
 156 
 157 /**
 158  * struct smem_ptable - partition table for the private partitions
 159  * @magic:      magic number, must be SMEM_PTABLE_MAGIC
 160  * @version:    version of the partition table
 161  * @num_entries: number of partitions in the table
 162  * @reserved:   for now reserved entries
 163  * @entry:      list of @smem_ptable_entry for the @num_entries partitions
 164  */
 165 struct smem_ptable {
 166         u8 magic[4];
 167         __le32 version;
 168         __le32 num_entries;
 169         __le32 reserved[5];
 170         struct smem_ptable_entry entry[];
 171 };
 172 
 173 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
 174 
 175 /**
 176  * struct smem_partition_header - header of the partitions
 177  * @magic:      magic number, must be SMEM_PART_MAGIC
 178  * @host0:      first processor/host with access to this partition
 179  * @host1:      second processor/host with access to this partition
 180  * @size:       size of the partition
 181  * @offset_free_uncached: offset to the first free byte of uncached memory in
 182  *              this partition
 183  * @offset_free_cached: offset to the first free byte of cached memory in this
 184  *              partition
 185  * @reserved:   for now reserved entries
 186  */
 187 struct smem_partition_header {
 188         u8 magic[4];
 189         __le16 host0;
 190         __le16 host1;
 191         __le32 size;
 192         __le32 offset_free_uncached;
 193         __le32 offset_free_cached;
 194         __le32 reserved[3];
 195 };
 196 
 197 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
 198 
 199 /**
 200  * struct smem_private_entry - header of each item in the private partition
 201  * @canary:     magic number, must be SMEM_PRIVATE_CANARY
 202  * @item:       identifying number of the smem item
 203  * @size:       size of the data, including padding bytes
 204  * @padding_data: number of bytes of padding of data
 205  * @padding_hdr: number of bytes of padding between the header and the data
 206  * @reserved:   for now reserved entry
 207  */
 208 struct smem_private_entry {
 209         u16 canary; /* bytes are the same so no swapping needed */
 210         __le16 item;
 211         __le32 size; /* includes padding bytes */
 212         __le16 padding_data;
 213         __le16 padding_hdr;
 214         __le32 reserved;
 215 };
 216 #define SMEM_PRIVATE_CANARY     0xa5a5
 217 
 218 /**
 219  * struct smem_info - smem region info located after the table of contents
 220  * @magic:      magic number, must be SMEM_INFO_MAGIC
 221  * @size:       size of the smem region
 222  * @base_addr:  base address of the smem region
 223  * @reserved:   for now reserved entry
 224  * @num_items:  highest accepted item number
 225  */
 226 struct smem_info {
 227         u8 magic[4];
 228         __le32 size;
 229         __le32 base_addr;
 230         __le32 reserved;
 231         __le16 num_items;
 232 };
 233 
 234 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
 235 
 236 /**
 237  * struct smem_region - representation of a chunk of memory used for smem
 238  * @aux_base:   identifier of aux_mem base
 239  * @virt_base:  virtual base address of memory with this aux_mem identifier
 240  * @size:       size of the memory region
 241  */
 242 struct smem_region {
 243         u32 aux_base;
 244         void __iomem *virt_base;
 245         size_t size;
 246 };
 247 
 248 /**
 249  * struct qcom_smem - device data for the smem device
 250  * @dev:        device pointer
 251  * @hwlock:     reference to a hwspinlock
 252  * @global_partition:   pointer to global partition when in use
 253  * @global_cacheline:   cacheline size for global partition
 254  * @partitions: list of pointers to partitions affecting the current
 255  *              processor/host
 256  * @cacheline:  list of cacheline sizes for each host
 257  * @item_count: max accepted item number
 258  * @num_regions: number of @regions
 259  * @regions:    list of the memory regions defining the shared memory
 260  */
 261 struct qcom_smem {
 262         struct device *dev;
 263 
 264         struct hwspinlock *hwlock;
 265 
 266         struct smem_partition_header *global_partition;
 267         size_t global_cacheline;
 268         struct smem_partition_header *partitions[SMEM_HOST_COUNT];
 269         size_t cacheline[SMEM_HOST_COUNT];
 270         u32 item_count;
 271         struct platform_device *socinfo;
 272 
 273         unsigned num_regions;
 274         struct smem_region regions[];
 275 };
 276 
 277 static void *
 278 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
 279 {
 280         void *p = phdr;
 281 
 282         return p + le32_to_cpu(phdr->offset_free_uncached);
 283 }
 284 
 285 static struct smem_private_entry *
 286 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
 287                                         size_t cacheline)
 288 {
 289         void *p = phdr;
 290         struct smem_private_entry *e;
 291 
 292         return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
 293 }
 294 
 295 static void *
 296 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
 297 {
 298         void *p = phdr;
 299 
 300         return p + le32_to_cpu(phdr->offset_free_cached);
 301 }
 302 
 303 static struct smem_private_entry *
 304 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
 305 {
 306         void *p = phdr;
 307 
 308         return p + sizeof(*phdr);
 309 }
 310 
 311 static struct smem_private_entry *
 312 uncached_entry_next(struct smem_private_entry *e)
 313 {
 314         void *p = e;
 315 
 316         return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
 317                le32_to_cpu(e->size);
 318 }
 319 
 320 static struct smem_private_entry *
 321 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
 322 {
 323         void *p = e;
 324 
 325         return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
 326 }
 327 
 328 static void *uncached_entry_to_item(struct smem_private_entry *e)
 329 {
 330         void *p = e;
 331 
 332         return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
 333 }
 334 
 335 static void *cached_entry_to_item(struct smem_private_entry *e)
 336 {
 337         void *p = e;
 338 
 339         return p - le32_to_cpu(e->size);
 340 }
 341 
 342 /* Pointer to the one and only smem handle */
 343 static struct qcom_smem *__smem;
 344 
 345 /* Timeout (ms) for the trylock of remote spinlocks */
 346 #define HWSPINLOCK_TIMEOUT      1000
 347 
 348 static int qcom_smem_alloc_private(struct qcom_smem *smem,
 349                                    struct smem_partition_header *phdr,
 350                                    unsigned item,
 351                                    size_t size)
 352 {
 353         struct smem_private_entry *hdr, *end;
 354         size_t alloc_size;
 355         void *cached;
 356 
 357         hdr = phdr_to_first_uncached_entry(phdr);
 358         end = phdr_to_last_uncached_entry(phdr);
 359         cached = phdr_to_last_cached_entry(phdr);
 360 
 361         while (hdr < end) {
 362                 if (hdr->canary != SMEM_PRIVATE_CANARY)
 363                         goto bad_canary;
 364                 if (le16_to_cpu(hdr->item) == item)
 365                         return -EEXIST;
 366 
 367                 hdr = uncached_entry_next(hdr);
 368         }
 369 
 370         /* Check that we don't grow into the cached region */
 371         alloc_size = sizeof(*hdr) + ALIGN(size, 8);
 372         if ((void *)hdr + alloc_size > cached) {
 373                 dev_err(smem->dev, "Out of memory\n");
 374                 return -ENOSPC;
 375         }
 376 
 377         hdr->canary = SMEM_PRIVATE_CANARY;
 378         hdr->item = cpu_to_le16(item);
 379         hdr->size = cpu_to_le32(ALIGN(size, 8));
 380         hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
 381         hdr->padding_hdr = 0;
 382 
 383         /*
 384          * Ensure the header is written before we advance the free offset, so
 385          * that remote processors that does not take the remote spinlock still
 386          * gets a consistent view of the linked list.
 387          */
 388         wmb();
 389         le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
 390 
 391         return 0;
 392 bad_canary:
 393         dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
 394                 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
 395 
 396         return -EINVAL;
 397 }
 398 
 399 static int qcom_smem_alloc_global(struct qcom_smem *smem,
 400                                   unsigned item,
 401                                   size_t size)
 402 {
 403         struct smem_global_entry *entry;
 404         struct smem_header *header;
 405 
 406         header = smem->regions[0].virt_base;
 407         entry = &header->toc[item];
 408         if (entry->allocated)
 409                 return -EEXIST;
 410 
 411         size = ALIGN(size, 8);
 412         if (WARN_ON(size > le32_to_cpu(header->available)))
 413                 return -ENOMEM;
 414 
 415         entry->offset = header->free_offset;
 416         entry->size = cpu_to_le32(size);
 417 
 418         /*
 419          * Ensure the header is consistent before we mark the item allocated,
 420          * so that remote processors will get a consistent view of the item
 421          * even though they do not take the spinlock on read.
 422          */
 423         wmb();
 424         entry->allocated = cpu_to_le32(1);
 425 
 426         le32_add_cpu(&header->free_offset, size);
 427         le32_add_cpu(&header->available, -size);
 428 
 429         return 0;
 430 }
 431 
 432 /**
 433  * qcom_smem_alloc() - allocate space for a smem item
 434  * @host:       remote processor id, or -1
 435  * @item:       smem item handle
 436  * @size:       number of bytes to be allocated
 437  *
 438  * Allocate space for a given smem item of size @size, given that the item is
 439  * not yet allocated.
 440  */
 441 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
 442 {
 443         struct smem_partition_header *phdr;
 444         unsigned long flags;
 445         int ret;
 446 
 447         if (!__smem)
 448                 return -EPROBE_DEFER;
 449 
 450         if (item < SMEM_ITEM_LAST_FIXED) {
 451                 dev_err(__smem->dev,
 452                         "Rejecting allocation of static entry %d\n", item);
 453                 return -EINVAL;
 454         }
 455 
 456         if (WARN_ON(item >= __smem->item_count))
 457                 return -EINVAL;
 458 
 459         ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
 460                                           HWSPINLOCK_TIMEOUT,
 461                                           &flags);
 462         if (ret)
 463                 return ret;
 464 
 465         if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
 466                 phdr = __smem->partitions[host];
 467                 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
 468         } else if (__smem->global_partition) {
 469                 phdr = __smem->global_partition;
 470                 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
 471         } else {
 472                 ret = qcom_smem_alloc_global(__smem, item, size);
 473         }
 474 
 475         hwspin_unlock_irqrestore(__smem->hwlock, &flags);
 476 
 477         return ret;
 478 }
 479 EXPORT_SYMBOL(qcom_smem_alloc);
 480 
 481 static void *qcom_smem_get_global(struct qcom_smem *smem,
 482                                   unsigned item,
 483                                   size_t *size)
 484 {
 485         struct smem_header *header;
 486         struct smem_region *region;
 487         struct smem_global_entry *entry;
 488         u32 aux_base;
 489         unsigned i;
 490 
 491         header = smem->regions[0].virt_base;
 492         entry = &header->toc[item];
 493         if (!entry->allocated)
 494                 return ERR_PTR(-ENXIO);
 495 
 496         aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
 497 
 498         for (i = 0; i < smem->num_regions; i++) {
 499                 region = &smem->regions[i];
 500 
 501                 if (region->aux_base == aux_base || !aux_base) {
 502                         if (size != NULL)
 503                                 *size = le32_to_cpu(entry->size);
 504                         return region->virt_base + le32_to_cpu(entry->offset);
 505                 }
 506         }
 507 
 508         return ERR_PTR(-ENOENT);
 509 }
 510 
 511 static void *qcom_smem_get_private(struct qcom_smem *smem,
 512                                    struct smem_partition_header *phdr,
 513                                    size_t cacheline,
 514                                    unsigned item,
 515                                    size_t *size)
 516 {
 517         struct smem_private_entry *e, *end;
 518 
 519         e = phdr_to_first_uncached_entry(phdr);
 520         end = phdr_to_last_uncached_entry(phdr);
 521 
 522         while (e < end) {
 523                 if (e->canary != SMEM_PRIVATE_CANARY)
 524                         goto invalid_canary;
 525 
 526                 if (le16_to_cpu(e->item) == item) {
 527                         if (size != NULL)
 528                                 *size = le32_to_cpu(e->size) -
 529                                         le16_to_cpu(e->padding_data);
 530 
 531                         return uncached_entry_to_item(e);
 532                 }
 533 
 534                 e = uncached_entry_next(e);
 535         }
 536 
 537         /* Item was not found in the uncached list, search the cached list */
 538 
 539         e = phdr_to_first_cached_entry(phdr, cacheline);
 540         end = phdr_to_last_cached_entry(phdr);
 541 
 542         while (e > end) {
 543                 if (e->canary != SMEM_PRIVATE_CANARY)
 544                         goto invalid_canary;
 545 
 546                 if (le16_to_cpu(e->item) == item) {
 547                         if (size != NULL)
 548                                 *size = le32_to_cpu(e->size) -
 549                                         le16_to_cpu(e->padding_data);
 550 
 551                         return cached_entry_to_item(e);
 552                 }
 553 
 554                 e = cached_entry_next(e, cacheline);
 555         }
 556 
 557         return ERR_PTR(-ENOENT);
 558 
 559 invalid_canary:
 560         dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
 561                         le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
 562 
 563         return ERR_PTR(-EINVAL);
 564 }
 565 
 566 /**
 567  * qcom_smem_get() - resolve ptr of size of a smem item
 568  * @host:       the remote processor, or -1
 569  * @item:       smem item handle
 570  * @size:       pointer to be filled out with size of the item
 571  *
 572  * Looks up smem item and returns pointer to it. Size of smem
 573  * item is returned in @size.
 574  */
 575 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
 576 {
 577         struct smem_partition_header *phdr;
 578         unsigned long flags;
 579         size_t cacheln;
 580         int ret;
 581         void *ptr = ERR_PTR(-EPROBE_DEFER);
 582 
 583         if (!__smem)
 584                 return ptr;
 585 
 586         if (WARN_ON(item >= __smem->item_count))
 587                 return ERR_PTR(-EINVAL);
 588 
 589         ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
 590                                           HWSPINLOCK_TIMEOUT,
 591                                           &flags);
 592         if (ret)
 593                 return ERR_PTR(ret);
 594 
 595         if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
 596                 phdr = __smem->partitions[host];
 597                 cacheln = __smem->cacheline[host];
 598                 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
 599         } else if (__smem->global_partition) {
 600                 phdr = __smem->global_partition;
 601                 cacheln = __smem->global_cacheline;
 602                 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
 603         } else {
 604                 ptr = qcom_smem_get_global(__smem, item, size);
 605         }
 606 
 607         hwspin_unlock_irqrestore(__smem->hwlock, &flags);
 608 
 609         return ptr;
 610 
 611 }
 612 EXPORT_SYMBOL(qcom_smem_get);
 613 
 614 /**
 615  * qcom_smem_get_free_space() - retrieve amount of free space in a partition
 616  * @host:       the remote processor identifying a partition, or -1
 617  *
 618  * To be used by smem clients as a quick way to determine if any new
 619  * allocations has been made.
 620  */
 621 int qcom_smem_get_free_space(unsigned host)
 622 {
 623         struct smem_partition_header *phdr;
 624         struct smem_header *header;
 625         unsigned ret;
 626 
 627         if (!__smem)
 628                 return -EPROBE_DEFER;
 629 
 630         if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
 631                 phdr = __smem->partitions[host];
 632                 ret = le32_to_cpu(phdr->offset_free_cached) -
 633                       le32_to_cpu(phdr->offset_free_uncached);
 634         } else if (__smem->global_partition) {
 635                 phdr = __smem->global_partition;
 636                 ret = le32_to_cpu(phdr->offset_free_cached) -
 637                       le32_to_cpu(phdr->offset_free_uncached);
 638         } else {
 639                 header = __smem->regions[0].virt_base;
 640                 ret = le32_to_cpu(header->available);
 641         }
 642 
 643         return ret;
 644 }
 645 EXPORT_SYMBOL(qcom_smem_get_free_space);
 646 
 647 /**
 648  * qcom_smem_virt_to_phys() - return the physical address associated
 649  * with an smem item pointer (previously returned by qcom_smem_get()
 650  * @p:  the virtual address to convert
 651  *
 652  * Returns 0 if the pointer provided is not within any smem region.
 653  */
 654 phys_addr_t qcom_smem_virt_to_phys(void *p)
 655 {
 656         unsigned i;
 657 
 658         for (i = 0; i < __smem->num_regions; i++) {
 659                 struct smem_region *region = &__smem->regions[i];
 660 
 661                 if (p < region->virt_base)
 662                         continue;
 663                 if (p < region->virt_base + region->size) {
 664                         u64 offset = p - region->virt_base;
 665 
 666                         return (phys_addr_t)region->aux_base + offset;
 667                 }
 668         }
 669 
 670         return 0;
 671 }
 672 EXPORT_SYMBOL(qcom_smem_virt_to_phys);
 673 
 674 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
 675 {
 676         struct smem_header *header;
 677         __le32 *versions;
 678 
 679         header = smem->regions[0].virt_base;
 680         versions = header->version;
 681 
 682         return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
 683 }
 684 
 685 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
 686 {
 687         struct smem_ptable *ptable;
 688         u32 version;
 689 
 690         ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
 691         if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
 692                 return ERR_PTR(-ENOENT);
 693 
 694         version = le32_to_cpu(ptable->version);
 695         if (version != 1) {
 696                 dev_err(smem->dev,
 697                         "Unsupported partition header version %d\n", version);
 698                 return ERR_PTR(-EINVAL);
 699         }
 700         return ptable;
 701 }
 702 
 703 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
 704 {
 705         struct smem_ptable *ptable;
 706         struct smem_info *info;
 707 
 708         ptable = qcom_smem_get_ptable(smem);
 709         if (IS_ERR_OR_NULL(ptable))
 710                 return SMEM_ITEM_COUNT;
 711 
 712         info = (struct smem_info *)&ptable->entry[ptable->num_entries];
 713         if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
 714                 return SMEM_ITEM_COUNT;
 715 
 716         return le16_to_cpu(info->num_items);
 717 }
 718 
 719 /*
 720  * Validate the partition header for a partition whose partition
 721  * table entry is supplied.  Returns a pointer to its header if
 722  * valid, or a null pointer otherwise.
 723  */
 724 static struct smem_partition_header *
 725 qcom_smem_partition_header(struct qcom_smem *smem,
 726                 struct smem_ptable_entry *entry, u16 host0, u16 host1)
 727 {
 728         struct smem_partition_header *header;
 729         u32 size;
 730 
 731         header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
 732 
 733         if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
 734                 dev_err(smem->dev, "bad partition magic %02x %02x %02x %02x\n",
 735                         header->magic[0], header->magic[1],
 736                         header->magic[2], header->magic[3]);
 737                 return NULL;
 738         }
 739 
 740         if (host0 != le16_to_cpu(header->host0)) {
 741                 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
 742                                 host0, le16_to_cpu(header->host0));
 743                 return NULL;
 744         }
 745         if (host1 != le16_to_cpu(header->host1)) {
 746                 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
 747                                 host1, le16_to_cpu(header->host1));
 748                 return NULL;
 749         }
 750 
 751         size = le32_to_cpu(header->size);
 752         if (size != le32_to_cpu(entry->size)) {
 753                 dev_err(smem->dev, "bad partition size (%u != %u)\n",
 754                         size, le32_to_cpu(entry->size));
 755                 return NULL;
 756         }
 757 
 758         if (le32_to_cpu(header->offset_free_uncached) > size) {
 759                 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
 760                         le32_to_cpu(header->offset_free_uncached), size);
 761                 return NULL;
 762         }
 763 
 764         return header;
 765 }
 766 
 767 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
 768 {
 769         struct smem_partition_header *header;
 770         struct smem_ptable_entry *entry;
 771         struct smem_ptable *ptable;
 772         bool found = false;
 773         int i;
 774 
 775         if (smem->global_partition) {
 776                 dev_err(smem->dev, "Already found the global partition\n");
 777                 return -EINVAL;
 778         }
 779 
 780         ptable = qcom_smem_get_ptable(smem);
 781         if (IS_ERR(ptable))
 782                 return PTR_ERR(ptable);
 783 
 784         for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
 785                 entry = &ptable->entry[i];
 786                 if (!le32_to_cpu(entry->offset))
 787                         continue;
 788                 if (!le32_to_cpu(entry->size))
 789                         continue;
 790 
 791                 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
 792                         continue;
 793 
 794                 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
 795                         found = true;
 796                         break;
 797                 }
 798         }
 799 
 800         if (!found) {
 801                 dev_err(smem->dev, "Missing entry for global partition\n");
 802                 return -EINVAL;
 803         }
 804 
 805         header = qcom_smem_partition_header(smem, entry,
 806                                 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
 807         if (!header)
 808                 return -EINVAL;
 809 
 810         smem->global_partition = header;
 811         smem->global_cacheline = le32_to_cpu(entry->cacheline);
 812 
 813         return 0;
 814 }
 815 
 816 static int
 817 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
 818 {
 819         struct smem_partition_header *header;
 820         struct smem_ptable_entry *entry;
 821         struct smem_ptable *ptable;
 822         unsigned int remote_host;
 823         u16 host0, host1;
 824         int i;
 825 
 826         ptable = qcom_smem_get_ptable(smem);
 827         if (IS_ERR(ptable))
 828                 return PTR_ERR(ptable);
 829 
 830         for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
 831                 entry = &ptable->entry[i];
 832                 if (!le32_to_cpu(entry->offset))
 833                         continue;
 834                 if (!le32_to_cpu(entry->size))
 835                         continue;
 836 
 837                 host0 = le16_to_cpu(entry->host0);
 838                 host1 = le16_to_cpu(entry->host1);
 839                 if (host0 == local_host)
 840                         remote_host = host1;
 841                 else if (host1 == local_host)
 842                         remote_host = host0;
 843                 else
 844                         continue;
 845 
 846                 if (remote_host >= SMEM_HOST_COUNT) {
 847                         dev_err(smem->dev, "bad host %hu\n", remote_host);
 848                         return -EINVAL;
 849                 }
 850 
 851                 if (smem->partitions[remote_host]) {
 852                         dev_err(smem->dev, "duplicate host %hu\n", remote_host);
 853                         return -EINVAL;
 854                 }
 855 
 856                 header = qcom_smem_partition_header(smem, entry, host0, host1);
 857                 if (!header)
 858                         return -EINVAL;
 859 
 860                 smem->partitions[remote_host] = header;
 861                 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
 862         }
 863 
 864         return 0;
 865 }
 866 
 867 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
 868                                 const char *name, int i)
 869 {
 870         struct device_node *np;
 871         struct resource r;
 872         resource_size_t size;
 873         int ret;
 874 
 875         np = of_parse_phandle(dev->of_node, name, 0);
 876         if (!np) {
 877                 dev_err(dev, "No %s specified\n", name);
 878                 return -EINVAL;
 879         }
 880 
 881         ret = of_address_to_resource(np, 0, &r);
 882         of_node_put(np);
 883         if (ret)
 884                 return ret;
 885         size = resource_size(&r);
 886 
 887         smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, size);
 888         if (!smem->regions[i].virt_base)
 889                 return -ENOMEM;
 890         smem->regions[i].aux_base = (u32)r.start;
 891         smem->regions[i].size = size;
 892 
 893         return 0;
 894 }
 895 
 896 static int qcom_smem_probe(struct platform_device *pdev)
 897 {
 898         struct smem_header *header;
 899         struct qcom_smem *smem;
 900         size_t array_size;
 901         int num_regions;
 902         int hwlock_id;
 903         u32 version;
 904         int ret;
 905 
 906         num_regions = 1;
 907         if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
 908                 num_regions++;
 909 
 910         array_size = num_regions * sizeof(struct smem_region);
 911         smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
 912         if (!smem)
 913                 return -ENOMEM;
 914 
 915         smem->dev = &pdev->dev;
 916         smem->num_regions = num_regions;
 917 
 918         ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
 919         if (ret)
 920                 return ret;
 921 
 922         if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
 923                                         "qcom,rpm-msg-ram", 1)))
 924                 return ret;
 925 
 926         header = smem->regions[0].virt_base;
 927         if (le32_to_cpu(header->initialized) != 1 ||
 928             le32_to_cpu(header->reserved)) {
 929                 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
 930                 return -EINVAL;
 931         }
 932 
 933         version = qcom_smem_get_sbl_version(smem);
 934         switch (version >> 16) {
 935         case SMEM_GLOBAL_PART_VERSION:
 936                 ret = qcom_smem_set_global_partition(smem);
 937                 if (ret < 0)
 938                         return ret;
 939                 smem->item_count = qcom_smem_get_item_count(smem);
 940                 break;
 941         case SMEM_GLOBAL_HEAP_VERSION:
 942                 smem->item_count = SMEM_ITEM_COUNT;
 943                 break;
 944         default:
 945                 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
 946                 return -EINVAL;
 947         }
 948 
 949         BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
 950         ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
 951         if (ret < 0 && ret != -ENOENT)
 952                 return ret;
 953 
 954         hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
 955         if (hwlock_id < 0) {
 956                 if (hwlock_id != -EPROBE_DEFER)
 957                         dev_err(&pdev->dev, "failed to retrieve hwlock\n");
 958                 return hwlock_id;
 959         }
 960 
 961         smem->hwlock = hwspin_lock_request_specific(hwlock_id);
 962         if (!smem->hwlock)
 963                 return -ENXIO;
 964 
 965         __smem = smem;
 966 
 967         smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
 968                                                       PLATFORM_DEVID_NONE, NULL,
 969                                                       0);
 970         if (IS_ERR(smem->socinfo))
 971                 dev_dbg(&pdev->dev, "failed to register socinfo device\n");
 972 
 973         return 0;
 974 }
 975 
 976 static int qcom_smem_remove(struct platform_device *pdev)
 977 {
 978         platform_device_unregister(__smem->socinfo);
 979 
 980         hwspin_lock_free(__smem->hwlock);
 981         __smem = NULL;
 982 
 983         return 0;
 984 }
 985 
 986 static const struct of_device_id qcom_smem_of_match[] = {
 987         { .compatible = "qcom,smem" },
 988         {}
 989 };
 990 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
 991 
 992 static struct platform_driver qcom_smem_driver = {
 993         .probe = qcom_smem_probe,
 994         .remove = qcom_smem_remove,
 995         .driver  = {
 996                 .name = "qcom-smem",
 997                 .of_match_table = qcom_smem_of_match,
 998                 .suppress_bind_attrs = true,
 999         },
1000 };
1001 
1002 static int __init qcom_smem_init(void)
1003 {
1004         return platform_driver_register(&qcom_smem_driver);
1005 }
1006 arch_initcall(qcom_smem_init);
1007 
1008 static void __exit qcom_smem_exit(void)
1009 {
1010         platform_driver_unregister(&qcom_smem_driver);
1011 }
1012 module_exit(qcom_smem_exit)
1013 
1014 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1015 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1016 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */