root/drivers/gpu/drm/i915/i915_gem.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. insert_mappable_node
  2. remove_mappable_node
  3. i915_gem_get_aperture_ioctl
  4. i915_gem_object_unbind
  5. i915_gem_phys_pwrite
  6. i915_gem_create
  7. i915_gem_dumb_create
  8. i915_gem_create_ioctl
  9. shmem_pread
  10. i915_gem_shmem_pread
  11. gtt_user_read
  12. i915_gem_gtt_pread
  13. i915_gem_pread_ioctl
  14. ggtt_write
  15. i915_gem_gtt_pwrite_fast
  16. shmem_pwrite
  17. i915_gem_shmem_pwrite
  18. i915_gem_pwrite_ioctl
  19. i915_gem_sw_finish_ioctl
  20. i915_gem_runtime_suspend
  21. wait_for_timelines
  22. i915_gem_wait_for_idle
  23. i915_gem_object_ggtt_pin
  24. i915_gem_object_pin
  25. i915_gem_madvise_ioctl
  26. i915_gem_sanitize
  27. init_unused_ring
  28. init_unused_rings
  29. i915_gem_init_hw
  30. __intel_engines_record_defaults
  31. i915_gem_init_scratch
  32. i915_gem_fini_scratch
  33. intel_engines_verify_workarounds
  34. i915_gem_init
  35. i915_gem_driver_register
  36. i915_gem_driver_unregister
  37. i915_gem_driver_remove
  38. i915_gem_driver_release
  39. i915_gem_init_mmio
  40. i915_gem_init__mm
  41. i915_gem_init_early
  42. i915_gem_cleanup_early
  43. i915_gem_freeze
  44. i915_gem_freeze_late
  45. i915_gem_release
  46. i915_gem_open

   1 /*
   2  * Copyright © 2008-2015 Intel Corporation
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice (including the next
  12  * paragraph) shall be included in all copies or substantial portions of the
  13  * Software.
  14  *
  15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21  * IN THE SOFTWARE.
  22  *
  23  * Authors:
  24  *    Eric Anholt <eric@anholt.net>
  25  *
  26  */
  27 
  28 #include <drm/drm_vma_manager.h>
  29 #include <drm/i915_drm.h>
  30 #include <linux/dma-fence-array.h>
  31 #include <linux/kthread.h>
  32 #include <linux/dma-resv.h>
  33 #include <linux/shmem_fs.h>
  34 #include <linux/slab.h>
  35 #include <linux/stop_machine.h>
  36 #include <linux/swap.h>
  37 #include <linux/pci.h>
  38 #include <linux/dma-buf.h>
  39 #include <linux/mman.h>
  40 
  41 #include "display/intel_display.h"
  42 #include "display/intel_frontbuffer.h"
  43 
  44 #include "gem/i915_gem_clflush.h"
  45 #include "gem/i915_gem_context.h"
  46 #include "gem/i915_gem_ioctls.h"
  47 #include "gem/i915_gem_pm.h"
  48 #include "gem/i915_gemfs.h"
  49 #include "gt/intel_engine_user.h"
  50 #include "gt/intel_gt.h"
  51 #include "gt/intel_gt_pm.h"
  52 #include "gt/intel_mocs.h"
  53 #include "gt/intel_reset.h"
  54 #include "gt/intel_renderstate.h"
  55 #include "gt/intel_workarounds.h"
  56 
  57 #include "i915_drv.h"
  58 #include "i915_scatterlist.h"
  59 #include "i915_trace.h"
  60 #include "i915_vgpu.h"
  61 
  62 #include "intel_pm.h"
  63 
  64 static int
  65 insert_mappable_node(struct i915_ggtt *ggtt,
  66                      struct drm_mm_node *node, u32 size)
  67 {
  68         memset(node, 0, sizeof(*node));
  69         return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  70                                            size, 0, I915_COLOR_UNEVICTABLE,
  71                                            0, ggtt->mappable_end,
  72                                            DRM_MM_INSERT_LOW);
  73 }
  74 
  75 static void
  76 remove_mappable_node(struct drm_mm_node *node)
  77 {
  78         drm_mm_remove_node(node);
  79 }
  80 
  81 int
  82 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  83                             struct drm_file *file)
  84 {
  85         struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
  86         struct drm_i915_gem_get_aperture *args = data;
  87         struct i915_vma *vma;
  88         u64 pinned;
  89 
  90         mutex_lock(&ggtt->vm.mutex);
  91 
  92         pinned = ggtt->vm.reserved;
  93         list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
  94                 if (i915_vma_is_pinned(vma))
  95                         pinned += vma->node.size;
  96 
  97         mutex_unlock(&ggtt->vm.mutex);
  98 
  99         args->aper_size = ggtt->vm.total;
 100         args->aper_available_size = args->aper_size - pinned;
 101 
 102         return 0;
 103 }
 104 
 105 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 106                            unsigned long flags)
 107 {
 108         struct i915_vma *vma;
 109         LIST_HEAD(still_in_list);
 110         int ret = 0;
 111 
 112         lockdep_assert_held(&obj->base.dev->struct_mutex);
 113 
 114         spin_lock(&obj->vma.lock);
 115         while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 116                                                        struct i915_vma,
 117                                                        obj_link))) {
 118                 list_move_tail(&vma->obj_link, &still_in_list);
 119                 spin_unlock(&obj->vma.lock);
 120 
 121                 ret = -EBUSY;
 122                 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 123                     !i915_vma_is_active(vma))
 124                         ret = i915_vma_unbind(vma);
 125 
 126                 spin_lock(&obj->vma.lock);
 127         }
 128         list_splice(&still_in_list, &obj->vma.list);
 129         spin_unlock(&obj->vma.lock);
 130 
 131         return ret;
 132 }
 133 
 134 static int
 135 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 136                      struct drm_i915_gem_pwrite *args,
 137                      struct drm_file *file)
 138 {
 139         void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
 140         char __user *user_data = u64_to_user_ptr(args->data_ptr);
 141 
 142         /*
 143          * We manually control the domain here and pretend that it
 144          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 145          */
 146         intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
 147 
 148         if (copy_from_user(vaddr, user_data, args->size))
 149                 return -EFAULT;
 150 
 151         drm_clflush_virt_range(vaddr, args->size);
 152         intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
 153 
 154         intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
 155         return 0;
 156 }
 157 
 158 static int
 159 i915_gem_create(struct drm_file *file,
 160                 struct drm_i915_private *dev_priv,
 161                 u64 *size_p,
 162                 u32 *handle_p)
 163 {
 164         struct drm_i915_gem_object *obj;
 165         u32 handle;
 166         u64 size;
 167         int ret;
 168 
 169         size = round_up(*size_p, PAGE_SIZE);
 170         if (size == 0)
 171                 return -EINVAL;
 172 
 173         /* Allocate the new object */
 174         obj = i915_gem_object_create_shmem(dev_priv, size);
 175         if (IS_ERR(obj))
 176                 return PTR_ERR(obj);
 177 
 178         ret = drm_gem_handle_create(file, &obj->base, &handle);
 179         /* drop reference from allocate - handle holds it now */
 180         i915_gem_object_put(obj);
 181         if (ret)
 182                 return ret;
 183 
 184         *handle_p = handle;
 185         *size_p = size;
 186         return 0;
 187 }
 188 
 189 int
 190 i915_gem_dumb_create(struct drm_file *file,
 191                      struct drm_device *dev,
 192                      struct drm_mode_create_dumb *args)
 193 {
 194         int cpp = DIV_ROUND_UP(args->bpp, 8);
 195         u32 format;
 196 
 197         switch (cpp) {
 198         case 1:
 199                 format = DRM_FORMAT_C8;
 200                 break;
 201         case 2:
 202                 format = DRM_FORMAT_RGB565;
 203                 break;
 204         case 4:
 205                 format = DRM_FORMAT_XRGB8888;
 206                 break;
 207         default:
 208                 return -EINVAL;
 209         }
 210 
 211         /* have to work out size/pitch and return them */
 212         args->pitch = ALIGN(args->width * cpp, 64);
 213 
 214         /* align stride to page size so that we can remap */
 215         if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
 216                                                     DRM_FORMAT_MOD_LINEAR))
 217                 args->pitch = ALIGN(args->pitch, 4096);
 218 
 219         args->size = args->pitch * args->height;
 220         return i915_gem_create(file, to_i915(dev),
 221                                &args->size, &args->handle);
 222 }
 223 
 224 /**
 225  * Creates a new mm object and returns a handle to it.
 226  * @dev: drm device pointer
 227  * @data: ioctl data blob
 228  * @file: drm file pointer
 229  */
 230 int
 231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
 232                       struct drm_file *file)
 233 {
 234         struct drm_i915_private *dev_priv = to_i915(dev);
 235         struct drm_i915_gem_create *args = data;
 236 
 237         i915_gem_flush_free_objects(dev_priv);
 238 
 239         return i915_gem_create(file, dev_priv,
 240                                &args->size, &args->handle);
 241 }
 242 
 243 static int
 244 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 245             bool needs_clflush)
 246 {
 247         char *vaddr;
 248         int ret;
 249 
 250         vaddr = kmap(page);
 251 
 252         if (needs_clflush)
 253                 drm_clflush_virt_range(vaddr + offset, len);
 254 
 255         ret = __copy_to_user(user_data, vaddr + offset, len);
 256 
 257         kunmap(page);
 258 
 259         return ret ? -EFAULT : 0;
 260 }
 261 
 262 static int
 263 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 264                      struct drm_i915_gem_pread *args)
 265 {
 266         unsigned int needs_clflush;
 267         unsigned int idx, offset;
 268         struct dma_fence *fence;
 269         char __user *user_data;
 270         u64 remain;
 271         int ret;
 272 
 273         ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 274         if (ret)
 275                 return ret;
 276 
 277         fence = i915_gem_object_lock_fence(obj);
 278         i915_gem_object_finish_access(obj);
 279         if (!fence)
 280                 return -ENOMEM;
 281 
 282         remain = args->size;
 283         user_data = u64_to_user_ptr(args->data_ptr);
 284         offset = offset_in_page(args->offset);
 285         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 286                 struct page *page = i915_gem_object_get_page(obj, idx);
 287                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 288 
 289                 ret = shmem_pread(page, offset, length, user_data,
 290                                   needs_clflush);
 291                 if (ret)
 292                         break;
 293 
 294                 remain -= length;
 295                 user_data += length;
 296                 offset = 0;
 297         }
 298 
 299         i915_gem_object_unlock_fence(obj, fence);
 300         return ret;
 301 }
 302 
 303 static inline bool
 304 gtt_user_read(struct io_mapping *mapping,
 305               loff_t base, int offset,
 306               char __user *user_data, int length)
 307 {
 308         void __iomem *vaddr;
 309         unsigned long unwritten;
 310 
 311         /* We can use the cpu mem copy function because this is X86. */
 312         vaddr = io_mapping_map_atomic_wc(mapping, base);
 313         unwritten = __copy_to_user_inatomic(user_data,
 314                                             (void __force *)vaddr + offset,
 315                                             length);
 316         io_mapping_unmap_atomic(vaddr);
 317         if (unwritten) {
 318                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 319                 unwritten = copy_to_user(user_data,
 320                                          (void __force *)vaddr + offset,
 321                                          length);
 322                 io_mapping_unmap(vaddr);
 323         }
 324         return unwritten;
 325 }
 326 
 327 static int
 328 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 329                    const struct drm_i915_gem_pread *args)
 330 {
 331         struct drm_i915_private *i915 = to_i915(obj->base.dev);
 332         struct i915_ggtt *ggtt = &i915->ggtt;
 333         intel_wakeref_t wakeref;
 334         struct drm_mm_node node;
 335         struct dma_fence *fence;
 336         void __user *user_data;
 337         struct i915_vma *vma;
 338         u64 remain, offset;
 339         int ret;
 340 
 341         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
 342         if (ret)
 343                 return ret;
 344 
 345         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 346         vma = ERR_PTR(-ENODEV);
 347         if (!i915_gem_object_is_tiled(obj))
 348                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
 349                                                PIN_MAPPABLE |
 350                                                PIN_NONBLOCK /* NOWARN */ |
 351                                                PIN_NOEVICT);
 352         if (!IS_ERR(vma)) {
 353                 node.start = i915_ggtt_offset(vma);
 354                 node.allocated = false;
 355         } else {
 356                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
 357                 if (ret)
 358                         goto out_unlock;
 359                 GEM_BUG_ON(!node.allocated);
 360         }
 361 
 362         mutex_unlock(&i915->drm.struct_mutex);
 363 
 364         ret = i915_gem_object_lock_interruptible(obj);
 365         if (ret)
 366                 goto out_unpin;
 367 
 368         ret = i915_gem_object_set_to_gtt_domain(obj, false);
 369         if (ret) {
 370                 i915_gem_object_unlock(obj);
 371                 goto out_unpin;
 372         }
 373 
 374         fence = i915_gem_object_lock_fence(obj);
 375         i915_gem_object_unlock(obj);
 376         if (!fence) {
 377                 ret = -ENOMEM;
 378                 goto out_unpin;
 379         }
 380 
 381         user_data = u64_to_user_ptr(args->data_ptr);
 382         remain = args->size;
 383         offset = args->offset;
 384 
 385         while (remain > 0) {
 386                 /* Operation in this page
 387                  *
 388                  * page_base = page offset within aperture
 389                  * page_offset = offset within page
 390                  * page_length = bytes to copy for this page
 391                  */
 392                 u32 page_base = node.start;
 393                 unsigned page_offset = offset_in_page(offset);
 394                 unsigned page_length = PAGE_SIZE - page_offset;
 395                 page_length = remain < page_length ? remain : page_length;
 396                 if (node.allocated) {
 397                         ggtt->vm.insert_page(&ggtt->vm,
 398                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 399                                              node.start, I915_CACHE_NONE, 0);
 400                 } else {
 401                         page_base += offset & PAGE_MASK;
 402                 }
 403 
 404                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 405                                   user_data, page_length)) {
 406                         ret = -EFAULT;
 407                         break;
 408                 }
 409 
 410                 remain -= page_length;
 411                 user_data += page_length;
 412                 offset += page_length;
 413         }
 414 
 415         i915_gem_object_unlock_fence(obj, fence);
 416 out_unpin:
 417         mutex_lock(&i915->drm.struct_mutex);
 418         if (node.allocated) {
 419                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
 420                 remove_mappable_node(&node);
 421         } else {
 422                 i915_vma_unpin(vma);
 423         }
 424 out_unlock:
 425         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 426         mutex_unlock(&i915->drm.struct_mutex);
 427 
 428         return ret;
 429 }
 430 
 431 /**
 432  * Reads data from the object referenced by handle.
 433  * @dev: drm device pointer
 434  * @data: ioctl data blob
 435  * @file: drm file pointer
 436  *
 437  * On error, the contents of *data are undefined.
 438  */
 439 int
 440 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 441                      struct drm_file *file)
 442 {
 443         struct drm_i915_gem_pread *args = data;
 444         struct drm_i915_gem_object *obj;
 445         int ret;
 446 
 447         if (args->size == 0)
 448                 return 0;
 449 
 450         if (!access_ok(u64_to_user_ptr(args->data_ptr),
 451                        args->size))
 452                 return -EFAULT;
 453 
 454         obj = i915_gem_object_lookup(file, args->handle);
 455         if (!obj)
 456                 return -ENOENT;
 457 
 458         /* Bounds check source.  */
 459         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 460                 ret = -EINVAL;
 461                 goto out;
 462         }
 463 
 464         trace_i915_gem_object_pread(obj, args->offset, args->size);
 465 
 466         ret = i915_gem_object_wait(obj,
 467                                    I915_WAIT_INTERRUPTIBLE,
 468                                    MAX_SCHEDULE_TIMEOUT);
 469         if (ret)
 470                 goto out;
 471 
 472         ret = i915_gem_object_pin_pages(obj);
 473         if (ret)
 474                 goto out;
 475 
 476         ret = i915_gem_shmem_pread(obj, args);
 477         if (ret == -EFAULT || ret == -ENODEV)
 478                 ret = i915_gem_gtt_pread(obj, args);
 479 
 480         i915_gem_object_unpin_pages(obj);
 481 out:
 482         i915_gem_object_put(obj);
 483         return ret;
 484 }
 485 
 486 /* This is the fast write path which cannot handle
 487  * page faults in the source data
 488  */
 489 
 490 static inline bool
 491 ggtt_write(struct io_mapping *mapping,
 492            loff_t base, int offset,
 493            char __user *user_data, int length)
 494 {
 495         void __iomem *vaddr;
 496         unsigned long unwritten;
 497 
 498         /* We can use the cpu mem copy function because this is X86. */
 499         vaddr = io_mapping_map_atomic_wc(mapping, base);
 500         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 501                                                       user_data, length);
 502         io_mapping_unmap_atomic(vaddr);
 503         if (unwritten) {
 504                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 505                 unwritten = copy_from_user((void __force *)vaddr + offset,
 506                                            user_data, length);
 507                 io_mapping_unmap(vaddr);
 508         }
 509 
 510         return unwritten;
 511 }
 512 
 513 /**
 514  * This is the fast pwrite path, where we copy the data directly from the
 515  * user into the GTT, uncached.
 516  * @obj: i915 GEM object
 517  * @args: pwrite arguments structure
 518  */
 519 static int
 520 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 521                          const struct drm_i915_gem_pwrite *args)
 522 {
 523         struct drm_i915_private *i915 = to_i915(obj->base.dev);
 524         struct i915_ggtt *ggtt = &i915->ggtt;
 525         struct intel_runtime_pm *rpm = &i915->runtime_pm;
 526         intel_wakeref_t wakeref;
 527         struct drm_mm_node node;
 528         struct dma_fence *fence;
 529         struct i915_vma *vma;
 530         u64 remain, offset;
 531         void __user *user_data;
 532         int ret;
 533 
 534         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
 535         if (ret)
 536                 return ret;
 537 
 538         if (i915_gem_object_has_struct_page(obj)) {
 539                 /*
 540                  * Avoid waking the device up if we can fallback, as
 541                  * waking/resuming is very slow (worst-case 10-100 ms
 542                  * depending on PCI sleeps and our own resume time).
 543                  * This easily dwarfs any performance advantage from
 544                  * using the cache bypass of indirect GGTT access.
 545                  */
 546                 wakeref = intel_runtime_pm_get_if_in_use(rpm);
 547                 if (!wakeref) {
 548                         ret = -EFAULT;
 549                         goto out_unlock;
 550                 }
 551         } else {
 552                 /* No backing pages, no fallback, we must force GGTT access */
 553                 wakeref = intel_runtime_pm_get(rpm);
 554         }
 555 
 556         vma = ERR_PTR(-ENODEV);
 557         if (!i915_gem_object_is_tiled(obj))
 558                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
 559                                                PIN_MAPPABLE |
 560                                                PIN_NONBLOCK /* NOWARN */ |
 561                                                PIN_NOEVICT);
 562         if (!IS_ERR(vma)) {
 563                 node.start = i915_ggtt_offset(vma);
 564                 node.allocated = false;
 565         } else {
 566                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
 567                 if (ret)
 568                         goto out_rpm;
 569                 GEM_BUG_ON(!node.allocated);
 570         }
 571 
 572         mutex_unlock(&i915->drm.struct_mutex);
 573 
 574         ret = i915_gem_object_lock_interruptible(obj);
 575         if (ret)
 576                 goto out_unpin;
 577 
 578         ret = i915_gem_object_set_to_gtt_domain(obj, true);
 579         if (ret) {
 580                 i915_gem_object_unlock(obj);
 581                 goto out_unpin;
 582         }
 583 
 584         fence = i915_gem_object_lock_fence(obj);
 585         i915_gem_object_unlock(obj);
 586         if (!fence) {
 587                 ret = -ENOMEM;
 588                 goto out_unpin;
 589         }
 590 
 591         intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
 592 
 593         user_data = u64_to_user_ptr(args->data_ptr);
 594         offset = args->offset;
 595         remain = args->size;
 596         while (remain) {
 597                 /* Operation in this page
 598                  *
 599                  * page_base = page offset within aperture
 600                  * page_offset = offset within page
 601                  * page_length = bytes to copy for this page
 602                  */
 603                 u32 page_base = node.start;
 604                 unsigned int page_offset = offset_in_page(offset);
 605                 unsigned int page_length = PAGE_SIZE - page_offset;
 606                 page_length = remain < page_length ? remain : page_length;
 607                 if (node.allocated) {
 608                         /* flush the write before we modify the GGTT */
 609                         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 610                         ggtt->vm.insert_page(&ggtt->vm,
 611                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 612                                              node.start, I915_CACHE_NONE, 0);
 613                         wmb(); /* flush modifications to the GGTT (insert_page) */
 614                 } else {
 615                         page_base += offset & PAGE_MASK;
 616                 }
 617                 /* If we get a fault while copying data, then (presumably) our
 618                  * source page isn't available.  Return the error and we'll
 619                  * retry in the slow path.
 620                  * If the object is non-shmem backed, we retry again with the
 621                  * path that handles page fault.
 622                  */
 623                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 624                                user_data, page_length)) {
 625                         ret = -EFAULT;
 626                         break;
 627                 }
 628 
 629                 remain -= page_length;
 630                 user_data += page_length;
 631                 offset += page_length;
 632         }
 633         intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
 634 
 635         i915_gem_object_unlock_fence(obj, fence);
 636 out_unpin:
 637         mutex_lock(&i915->drm.struct_mutex);
 638         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 639         if (node.allocated) {
 640                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
 641                 remove_mappable_node(&node);
 642         } else {
 643                 i915_vma_unpin(vma);
 644         }
 645 out_rpm:
 646         intel_runtime_pm_put(rpm, wakeref);
 647 out_unlock:
 648         mutex_unlock(&i915->drm.struct_mutex);
 649         return ret;
 650 }
 651 
 652 /* Per-page copy function for the shmem pwrite fastpath.
 653  * Flushes invalid cachelines before writing to the target if
 654  * needs_clflush_before is set and flushes out any written cachelines after
 655  * writing if needs_clflush is set.
 656  */
 657 static int
 658 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 659              bool needs_clflush_before,
 660              bool needs_clflush_after)
 661 {
 662         char *vaddr;
 663         int ret;
 664 
 665         vaddr = kmap(page);
 666 
 667         if (needs_clflush_before)
 668                 drm_clflush_virt_range(vaddr + offset, len);
 669 
 670         ret = __copy_from_user(vaddr + offset, user_data, len);
 671         if (!ret && needs_clflush_after)
 672                 drm_clflush_virt_range(vaddr + offset, len);
 673 
 674         kunmap(page);
 675 
 676         return ret ? -EFAULT : 0;
 677 }
 678 
 679 static int
 680 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 681                       const struct drm_i915_gem_pwrite *args)
 682 {
 683         unsigned int partial_cacheline_write;
 684         unsigned int needs_clflush;
 685         unsigned int offset, idx;
 686         struct dma_fence *fence;
 687         void __user *user_data;
 688         u64 remain;
 689         int ret;
 690 
 691         ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 692         if (ret)
 693                 return ret;
 694 
 695         fence = i915_gem_object_lock_fence(obj);
 696         i915_gem_object_finish_access(obj);
 697         if (!fence)
 698                 return -ENOMEM;
 699 
 700         /* If we don't overwrite a cacheline completely we need to be
 701          * careful to have up-to-date data by first clflushing. Don't
 702          * overcomplicate things and flush the entire patch.
 703          */
 704         partial_cacheline_write = 0;
 705         if (needs_clflush & CLFLUSH_BEFORE)
 706                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 707 
 708         user_data = u64_to_user_ptr(args->data_ptr);
 709         remain = args->size;
 710         offset = offset_in_page(args->offset);
 711         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 712                 struct page *page = i915_gem_object_get_page(obj, idx);
 713                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 714 
 715                 ret = shmem_pwrite(page, offset, length, user_data,
 716                                    (offset | length) & partial_cacheline_write,
 717                                    needs_clflush & CLFLUSH_AFTER);
 718                 if (ret)
 719                         break;
 720 
 721                 remain -= length;
 722                 user_data += length;
 723                 offset = 0;
 724         }
 725 
 726         intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
 727         i915_gem_object_unlock_fence(obj, fence);
 728 
 729         return ret;
 730 }
 731 
 732 /**
 733  * Writes data to the object referenced by handle.
 734  * @dev: drm device
 735  * @data: ioctl data blob
 736  * @file: drm file
 737  *
 738  * On error, the contents of the buffer that were to be modified are undefined.
 739  */
 740 int
 741 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 742                       struct drm_file *file)
 743 {
 744         struct drm_i915_gem_pwrite *args = data;
 745         struct drm_i915_gem_object *obj;
 746         int ret;
 747 
 748         if (args->size == 0)
 749                 return 0;
 750 
 751         if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 752                 return -EFAULT;
 753 
 754         obj = i915_gem_object_lookup(file, args->handle);
 755         if (!obj)
 756                 return -ENOENT;
 757 
 758         /* Bounds check destination. */
 759         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 760                 ret = -EINVAL;
 761                 goto err;
 762         }
 763 
 764         /* Writes not allowed into this read-only object */
 765         if (i915_gem_object_is_readonly(obj)) {
 766                 ret = -EINVAL;
 767                 goto err;
 768         }
 769 
 770         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 771 
 772         ret = -ENODEV;
 773         if (obj->ops->pwrite)
 774                 ret = obj->ops->pwrite(obj, args);
 775         if (ret != -ENODEV)
 776                 goto err;
 777 
 778         ret = i915_gem_object_wait(obj,
 779                                    I915_WAIT_INTERRUPTIBLE |
 780                                    I915_WAIT_ALL,
 781                                    MAX_SCHEDULE_TIMEOUT);
 782         if (ret)
 783                 goto err;
 784 
 785         ret = i915_gem_object_pin_pages(obj);
 786         if (ret)
 787                 goto err;
 788 
 789         ret = -EFAULT;
 790         /* We can only do the GTT pwrite on untiled buffers, as otherwise
 791          * it would end up going through the fenced access, and we'll get
 792          * different detiling behavior between reading and writing.
 793          * pread/pwrite currently are reading and writing from the CPU
 794          * perspective, requiring manual detiling by the client.
 795          */
 796         if (!i915_gem_object_has_struct_page(obj) ||
 797             cpu_write_needs_clflush(obj))
 798                 /* Note that the gtt paths might fail with non-page-backed user
 799                  * pointers (e.g. gtt mappings when moving data between
 800                  * textures). Fallback to the shmem path in that case.
 801                  */
 802                 ret = i915_gem_gtt_pwrite_fast(obj, args);
 803 
 804         if (ret == -EFAULT || ret == -ENOSPC) {
 805                 if (i915_gem_object_has_struct_page(obj))
 806                         ret = i915_gem_shmem_pwrite(obj, args);
 807                 else
 808                         ret = i915_gem_phys_pwrite(obj, args, file);
 809         }
 810 
 811         i915_gem_object_unpin_pages(obj);
 812 err:
 813         i915_gem_object_put(obj);
 814         return ret;
 815 }
 816 
 817 /**
 818  * Called when user space has done writes to this buffer
 819  * @dev: drm device
 820  * @data: ioctl data blob
 821  * @file: drm file
 822  */
 823 int
 824 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 825                          struct drm_file *file)
 826 {
 827         struct drm_i915_gem_sw_finish *args = data;
 828         struct drm_i915_gem_object *obj;
 829 
 830         obj = i915_gem_object_lookup(file, args->handle);
 831         if (!obj)
 832                 return -ENOENT;
 833 
 834         /*
 835          * Proxy objects are barred from CPU access, so there is no
 836          * need to ban sw_finish as it is a nop.
 837          */
 838 
 839         /* Pinned buffers may be scanout, so flush the cache */
 840         i915_gem_object_flush_if_display(obj);
 841         i915_gem_object_put(obj);
 842 
 843         return 0;
 844 }
 845 
 846 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 847 {
 848         struct drm_i915_gem_object *obj, *on;
 849         int i;
 850 
 851         /*
 852          * Only called during RPM suspend. All users of the userfault_list
 853          * must be holding an RPM wakeref to ensure that this can not
 854          * run concurrently with themselves (and use the struct_mutex for
 855          * protection between themselves).
 856          */
 857 
 858         list_for_each_entry_safe(obj, on,
 859                                  &i915->ggtt.userfault_list, userfault_link)
 860                 __i915_gem_object_release_mmap(obj);
 861 
 862         /*
 863          * The fence will be lost when the device powers down. If any were
 864          * in use by hardware (i.e. they are pinned), we should not be powering
 865          * down! All other fences will be reacquired by the user upon waking.
 866          */
 867         for (i = 0; i < i915->ggtt.num_fences; i++) {
 868                 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
 869 
 870                 /*
 871                  * Ideally we want to assert that the fence register is not
 872                  * live at this point (i.e. that no piece of code will be
 873                  * trying to write through fence + GTT, as that both violates
 874                  * our tracking of activity and associated locking/barriers,
 875                  * but also is illegal given that the hw is powered down).
 876                  *
 877                  * Previously we used reg->pin_count as a "liveness" indicator.
 878                  * That is not sufficient, and we need a more fine-grained
 879                  * tool if we want to have a sanity check here.
 880                  */
 881 
 882                 if (!reg->vma)
 883                         continue;
 884 
 885                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 886                 reg->dirty = true;
 887         }
 888 }
 889 
 890 static long
 891 wait_for_timelines(struct drm_i915_private *i915,
 892                    unsigned int wait, long timeout)
 893 {
 894         struct intel_gt_timelines *timelines = &i915->gt.timelines;
 895         struct intel_timeline *tl;
 896         unsigned long flags;
 897 
 898         spin_lock_irqsave(&timelines->lock, flags);
 899         list_for_each_entry(tl, &timelines->active_list, link) {
 900                 struct i915_request *rq;
 901 
 902                 rq = i915_active_request_get_unlocked(&tl->last_request);
 903                 if (!rq)
 904                         continue;
 905 
 906                 spin_unlock_irqrestore(&timelines->lock, flags);
 907 
 908                 /*
 909                  * "Race-to-idle".
 910                  *
 911                  * Switching to the kernel context is often used a synchronous
 912                  * step prior to idling, e.g. in suspend for flushing all
 913                  * current operations to memory before sleeping. These we
 914                  * want to complete as quickly as possible to avoid prolonged
 915                  * stalls, so allow the gpu to boost to maximum clocks.
 916                  */
 917                 if (wait & I915_WAIT_FOR_IDLE_BOOST)
 918                         gen6_rps_boost(rq);
 919 
 920                 timeout = i915_request_wait(rq, wait, timeout);
 921                 i915_request_put(rq);
 922                 if (timeout < 0)
 923                         return timeout;
 924 
 925                 /* restart after reacquiring the lock */
 926                 spin_lock_irqsave(&timelines->lock, flags);
 927                 tl = list_entry(&timelines->active_list, typeof(*tl), link);
 928         }
 929         spin_unlock_irqrestore(&timelines->lock, flags);
 930 
 931         return timeout;
 932 }
 933 
 934 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
 935                            unsigned int flags, long timeout)
 936 {
 937         /* If the device is asleep, we have no requests outstanding */
 938         if (!intel_gt_pm_is_awake(&i915->gt))
 939                 return 0;
 940 
 941         GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
 942                   flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
 943                   timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
 944 
 945         timeout = wait_for_timelines(i915, flags, timeout);
 946         if (timeout < 0)
 947                 return timeout;
 948 
 949         if (flags & I915_WAIT_LOCKED) {
 950                 lockdep_assert_held(&i915->drm.struct_mutex);
 951 
 952                 i915_retire_requests(i915);
 953         }
 954 
 955         return 0;
 956 }
 957 
 958 struct i915_vma *
 959 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
 960                          const struct i915_ggtt_view *view,
 961                          u64 size,
 962                          u64 alignment,
 963                          u64 flags)
 964 {
 965         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
 966         struct i915_address_space *vm = &dev_priv->ggtt.vm;
 967 
 968         return i915_gem_object_pin(obj, vm, view, size, alignment,
 969                                    flags | PIN_GLOBAL);
 970 }
 971 
 972 struct i915_vma *
 973 i915_gem_object_pin(struct drm_i915_gem_object *obj,
 974                     struct i915_address_space *vm,
 975                     const struct i915_ggtt_view *view,
 976                     u64 size,
 977                     u64 alignment,
 978                     u64 flags)
 979 {
 980         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
 981         struct i915_vma *vma;
 982         int ret;
 983 
 984         lockdep_assert_held(&obj->base.dev->struct_mutex);
 985 
 986         if (i915_gem_object_never_bind_ggtt(obj))
 987                 return ERR_PTR(-ENODEV);
 988 
 989         if (flags & PIN_MAPPABLE &&
 990             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
 991                 /* If the required space is larger than the available
 992                  * aperture, we will not able to find a slot for the
 993                  * object and unbinding the object now will be in
 994                  * vain. Worse, doing so may cause us to ping-pong
 995                  * the object in and out of the Global GTT and
 996                  * waste a lot of cycles under the mutex.
 997                  */
 998                 if (obj->base.size > dev_priv->ggtt.mappable_end)
 999                         return ERR_PTR(-E2BIG);
1000 
1001                 /* If NONBLOCK is set the caller is optimistically
1002                  * trying to cache the full object within the mappable
1003                  * aperture, and *must* have a fallback in place for
1004                  * situations where we cannot bind the object. We
1005                  * can be a little more lax here and use the fallback
1006                  * more often to avoid costly migrations of ourselves
1007                  * and other objects within the aperture.
1008                  *
1009                  * Half-the-aperture is used as a simple heuristic.
1010                  * More interesting would to do search for a free
1011                  * block prior to making the commitment to unbind.
1012                  * That caters for the self-harm case, and with a
1013                  * little more heuristics (e.g. NOFAULT, NOEVICT)
1014                  * we could try to minimise harm to others.
1015                  */
1016                 if (flags & PIN_NONBLOCK &&
1017                     obj->base.size > dev_priv->ggtt.mappable_end / 2)
1018                         return ERR_PTR(-ENOSPC);
1019         }
1020 
1021         vma = i915_vma_instance(obj, vm, view);
1022         if (IS_ERR(vma))
1023                 return vma;
1024 
1025         if (i915_vma_misplaced(vma, size, alignment, flags)) {
1026                 if (flags & PIN_NONBLOCK) {
1027                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
1028                                 return ERR_PTR(-ENOSPC);
1029 
1030                         if (flags & PIN_MAPPABLE &&
1031                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1032                                 return ERR_PTR(-ENOSPC);
1033                 }
1034 
1035                 WARN(i915_vma_is_pinned(vma),
1036                      "bo is already pinned in ggtt with incorrect alignment:"
1037                      " offset=%08x, req.alignment=%llx,"
1038                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
1039                      i915_ggtt_offset(vma), alignment,
1040                      !!(flags & PIN_MAPPABLE),
1041                      i915_vma_is_map_and_fenceable(vma));
1042                 ret = i915_vma_unbind(vma);
1043                 if (ret)
1044                         return ERR_PTR(ret);
1045         }
1046 
1047         if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1048                 mutex_lock(&vma->vm->mutex);
1049                 ret = i915_vma_revoke_fence(vma);
1050                 mutex_unlock(&vma->vm->mutex);
1051                 if (ret)
1052                         return ERR_PTR(ret);
1053         }
1054 
1055         ret = i915_vma_pin(vma, size, alignment, flags);
1056         if (ret)
1057                 return ERR_PTR(ret);
1058 
1059         return vma;
1060 }
1061 
1062 int
1063 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1064                        struct drm_file *file_priv)
1065 {
1066         struct drm_i915_private *i915 = to_i915(dev);
1067         struct drm_i915_gem_madvise *args = data;
1068         struct drm_i915_gem_object *obj;
1069         int err;
1070 
1071         switch (args->madv) {
1072         case I915_MADV_DONTNEED:
1073         case I915_MADV_WILLNEED:
1074             break;
1075         default:
1076             return -EINVAL;
1077         }
1078 
1079         obj = i915_gem_object_lookup(file_priv, args->handle);
1080         if (!obj)
1081                 return -ENOENT;
1082 
1083         err = mutex_lock_interruptible(&obj->mm.lock);
1084         if (err)
1085                 goto out;
1086 
1087         if (i915_gem_object_has_pages(obj) &&
1088             i915_gem_object_is_tiled(obj) &&
1089             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1090                 if (obj->mm.madv == I915_MADV_WILLNEED) {
1091                         GEM_BUG_ON(!obj->mm.quirked);
1092                         __i915_gem_object_unpin_pages(obj);
1093                         obj->mm.quirked = false;
1094                 }
1095                 if (args->madv == I915_MADV_WILLNEED) {
1096                         GEM_BUG_ON(obj->mm.quirked);
1097                         __i915_gem_object_pin_pages(obj);
1098                         obj->mm.quirked = true;
1099                 }
1100         }
1101 
1102         if (obj->mm.madv != __I915_MADV_PURGED)
1103                 obj->mm.madv = args->madv;
1104 
1105         if (i915_gem_object_has_pages(obj)) {
1106                 struct list_head *list;
1107 
1108                 if (i915_gem_object_is_shrinkable(obj)) {
1109                         unsigned long flags;
1110 
1111                         spin_lock_irqsave(&i915->mm.obj_lock, flags);
1112 
1113                         if (obj->mm.madv != I915_MADV_WILLNEED)
1114                                 list = &i915->mm.purge_list;
1115                         else
1116                                 list = &i915->mm.shrink_list;
1117                         list_move_tail(&obj->mm.link, list);
1118 
1119                         spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1120                 }
1121         }
1122 
1123         /* if the object is no longer attached, discard its backing storage */
1124         if (obj->mm.madv == I915_MADV_DONTNEED &&
1125             !i915_gem_object_has_pages(obj))
1126                 i915_gem_object_truncate(obj);
1127 
1128         args->retained = obj->mm.madv != __I915_MADV_PURGED;
1129         mutex_unlock(&obj->mm.lock);
1130 
1131 out:
1132         i915_gem_object_put(obj);
1133         return err;
1134 }
1135 
1136 void i915_gem_sanitize(struct drm_i915_private *i915)
1137 {
1138         intel_wakeref_t wakeref;
1139 
1140         GEM_TRACE("\n");
1141 
1142         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1143         intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1144 
1145         /*
1146          * As we have just resumed the machine and woken the device up from
1147          * deep PCI sleep (presumably D3_cold), assume the HW has been reset
1148          * back to defaults, recovering from whatever wedged state we left it
1149          * in and so worth trying to use the device once more.
1150          */
1151         if (intel_gt_is_wedged(&i915->gt))
1152                 intel_gt_unset_wedged(&i915->gt);
1153 
1154         /*
1155          * If we inherit context state from the BIOS or earlier occupants
1156          * of the GPU, the GPU may be in an inconsistent state when we
1157          * try to take over. The only way to remove the earlier state
1158          * is by resetting. However, resetting on earlier gen is tricky as
1159          * it may impact the display and we are uncertain about the stability
1160          * of the reset, so this could be applied to even earlier gen.
1161          */
1162         intel_gt_sanitize(&i915->gt, false);
1163 
1164         intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1165         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1166 }
1167 
1168 static void init_unused_ring(struct intel_gt *gt, u32 base)
1169 {
1170         struct intel_uncore *uncore = gt->uncore;
1171 
1172         intel_uncore_write(uncore, RING_CTL(base), 0);
1173         intel_uncore_write(uncore, RING_HEAD(base), 0);
1174         intel_uncore_write(uncore, RING_TAIL(base), 0);
1175         intel_uncore_write(uncore, RING_START(base), 0);
1176 }
1177 
1178 static void init_unused_rings(struct intel_gt *gt)
1179 {
1180         struct drm_i915_private *i915 = gt->i915;
1181 
1182         if (IS_I830(i915)) {
1183                 init_unused_ring(gt, PRB1_BASE);
1184                 init_unused_ring(gt, SRB0_BASE);
1185                 init_unused_ring(gt, SRB1_BASE);
1186                 init_unused_ring(gt, SRB2_BASE);
1187                 init_unused_ring(gt, SRB3_BASE);
1188         } else if (IS_GEN(i915, 2)) {
1189                 init_unused_ring(gt, SRB0_BASE);
1190                 init_unused_ring(gt, SRB1_BASE);
1191         } else if (IS_GEN(i915, 3)) {
1192                 init_unused_ring(gt, PRB1_BASE);
1193                 init_unused_ring(gt, PRB2_BASE);
1194         }
1195 }
1196 
1197 int i915_gem_init_hw(struct drm_i915_private *i915)
1198 {
1199         struct intel_uncore *uncore = &i915->uncore;
1200         struct intel_gt *gt = &i915->gt;
1201         int ret;
1202 
1203         BUG_ON(!i915->kernel_context);
1204         ret = intel_gt_terminally_wedged(gt);
1205         if (ret)
1206                 return ret;
1207 
1208         gt->last_init_time = ktime_get();
1209 
1210         /* Double layer security blanket, see i915_gem_init() */
1211         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1212 
1213         if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
1214                 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
1215 
1216         if (IS_HASWELL(i915))
1217                 intel_uncore_write(uncore,
1218                                    MI_PREDICATE_RESULT_2,
1219                                    IS_HSW_GT3(i915) ?
1220                                    LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1221 
1222         /* Apply the GT workarounds... */
1223         intel_gt_apply_workarounds(gt);
1224         /* ...and determine whether they are sticking. */
1225         intel_gt_verify_workarounds(gt, "init");
1226 
1227         intel_gt_init_swizzling(gt);
1228 
1229         /*
1230          * At least 830 can leave some of the unused rings
1231          * "active" (ie. head != tail) after resume which
1232          * will prevent c3 entry. Makes sure all unused rings
1233          * are totally idle.
1234          */
1235         init_unused_rings(gt);
1236 
1237         ret = i915_ppgtt_init_hw(gt);
1238         if (ret) {
1239                 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1240                 goto out;
1241         }
1242 
1243         /* We can't enable contexts until all firmware is loaded */
1244         ret = intel_uc_init_hw(&gt->uc);
1245         if (ret) {
1246                 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
1247                 goto out;
1248         }
1249 
1250         intel_mocs_init(gt);
1251 
1252 out:
1253         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1254         return ret;
1255 }
1256 
1257 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
1258 {
1259         struct i915_request *requests[I915_NUM_ENGINES] = {};
1260         struct intel_engine_cs *engine;
1261         enum intel_engine_id id;
1262         int err = 0;
1263 
1264         /*
1265          * As we reset the gpu during very early sanitisation, the current
1266          * register state on the GPU should reflect its defaults values.
1267          * We load a context onto the hw (with restore-inhibit), then switch
1268          * over to a second context to save that default register state. We
1269          * can then prime every new context with that state so they all start
1270          * from the same default HW values.
1271          */
1272 
1273         for_each_engine(engine, i915, id) {
1274                 struct intel_context *ce;
1275                 struct i915_request *rq;
1276 
1277                 /* We must be able to switch to something! */
1278                 GEM_BUG_ON(!engine->kernel_context);
1279                 engine->serial++; /* force the kernel context switch */
1280 
1281                 ce = intel_context_create(i915->kernel_context, engine);
1282                 if (IS_ERR(ce)) {
1283                         err = PTR_ERR(ce);
1284                         goto out;
1285                 }
1286 
1287                 rq = intel_context_create_request(ce);
1288                 if (IS_ERR(rq)) {
1289                         err = PTR_ERR(rq);
1290                         intel_context_put(ce);
1291                         goto out;
1292                 }
1293 
1294                 err = intel_engine_emit_ctx_wa(rq);
1295                 if (err)
1296                         goto err_rq;
1297 
1298                 /*
1299                  * Failing to program the MOCS is non-fatal.The system will not
1300                  * run at peak performance. So warn the user and carry on.
1301                  */
1302                 err = intel_mocs_emit(rq);
1303                 if (err)
1304                         dev_notice(i915->drm.dev,
1305                                    "Failed to program MOCS registers; expect performance issues.\n");
1306 
1307                 err = intel_renderstate_emit(rq);
1308                 if (err)
1309                         goto err_rq;
1310 
1311 err_rq:
1312                 requests[id] = i915_request_get(rq);
1313                 i915_request_add(rq);
1314                 if (err)
1315                         goto out;
1316         }
1317 
1318         /* Flush the default context image to memory, and enable powersaving. */
1319         if (!i915_gem_load_power_context(i915)) {
1320                 err = -EIO;
1321                 goto out;
1322         }
1323 
1324         for (id = 0; id < ARRAY_SIZE(requests); id++) {
1325                 struct i915_request *rq;
1326                 struct i915_vma *state;
1327                 void *vaddr;
1328 
1329                 rq = requests[id];
1330                 if (!rq)
1331                         continue;
1332 
1333                 /* We want to be able to unbind the state from the GGTT */
1334                 GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));
1335 
1336                 state = rq->hw_context->state;
1337                 if (!state)
1338                         continue;
1339 
1340                 /*
1341                  * As we will hold a reference to the logical state, it will
1342                  * not be torn down with the context, and importantly the
1343                  * object will hold onto its vma (making it possible for a
1344                  * stray GTT write to corrupt our defaults). Unmap the vma
1345                  * from the GTT to prevent such accidents and reclaim the
1346                  * space.
1347                  */
1348                 err = i915_vma_unbind(state);
1349                 if (err)
1350                         goto out;
1351 
1352                 i915_gem_object_lock(state->obj);
1353                 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1354                 i915_gem_object_unlock(state->obj);
1355                 if (err)
1356                         goto out;
1357 
1358                 i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
1359 
1360                 /* Check we can acquire the image of the context state */
1361                 vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
1362                 if (IS_ERR(vaddr)) {
1363                         err = PTR_ERR(vaddr);
1364                         goto out;
1365                 }
1366 
1367                 rq->engine->default_state = i915_gem_object_get(state->obj);
1368                 i915_gem_object_unpin_map(state->obj);
1369         }
1370 
1371 out:
1372         /*
1373          * If we have to abandon now, we expect the engines to be idle
1374          * and ready to be torn-down. The quickest way we can accomplish
1375          * this is by declaring ourselves wedged.
1376          */
1377         if (err)
1378                 intel_gt_set_wedged(&i915->gt);
1379 
1380         for (id = 0; id < ARRAY_SIZE(requests); id++) {
1381                 struct intel_context *ce;
1382                 struct i915_request *rq;
1383 
1384                 rq = requests[id];
1385                 if (!rq)
1386                         continue;
1387 
1388                 ce = rq->hw_context;
1389                 i915_request_put(rq);
1390                 intel_context_put(ce);
1391         }
1392         return err;
1393 }
1394 
1395 static int
1396 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
1397 {
1398         return intel_gt_init_scratch(&i915->gt, size);
1399 }
1400 
1401 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
1402 {
1403         intel_gt_fini_scratch(&i915->gt);
1404 }
1405 
1406 static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
1407 {
1408         struct intel_engine_cs *engine;
1409         enum intel_engine_id id;
1410         int err = 0;
1411 
1412         if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1413                 return 0;
1414 
1415         for_each_engine(engine, i915, id) {
1416                 if (intel_engine_verify_workarounds(engine, "load"))
1417                         err = -EIO;
1418         }
1419 
1420         return err;
1421 }
1422 
1423 int i915_gem_init(struct drm_i915_private *dev_priv)
1424 {
1425         int ret;
1426 
1427         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1428         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1429                 mkwrite_device_info(dev_priv)->page_sizes =
1430                         I915_GTT_PAGE_SIZE_4K;
1431 
1432         intel_timelines_init(dev_priv);
1433 
1434         ret = i915_gem_init_userptr(dev_priv);
1435         if (ret)
1436                 return ret;
1437 
1438         intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1439         intel_wopcm_init(&dev_priv->wopcm);
1440 
1441         /* This is just a security blanket to placate dragons.
1442          * On some systems, we very sporadically observe that the first TLBs
1443          * used by the CS may be stale, despite us poking the TLB reset. If
1444          * we hold the forcewake during initialisation these problems
1445          * just magically go away.
1446          */
1447         mutex_lock(&dev_priv->drm.struct_mutex);
1448         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1449 
1450         ret = i915_init_ggtt(dev_priv);
1451         if (ret) {
1452                 GEM_BUG_ON(ret == -EIO);
1453                 goto err_unlock;
1454         }
1455 
1456         ret = i915_gem_init_scratch(dev_priv,
1457                                     IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1458         if (ret) {
1459                 GEM_BUG_ON(ret == -EIO);
1460                 goto err_ggtt;
1461         }
1462 
1463         ret = intel_engines_setup(dev_priv);
1464         if (ret) {
1465                 GEM_BUG_ON(ret == -EIO);
1466                 goto err_unlock;
1467         }
1468 
1469         ret = i915_gem_contexts_init(dev_priv);
1470         if (ret) {
1471                 GEM_BUG_ON(ret == -EIO);
1472                 goto err_scratch;
1473         }
1474 
1475         ret = intel_engines_init(dev_priv);
1476         if (ret) {
1477                 GEM_BUG_ON(ret == -EIO);
1478                 goto err_context;
1479         }
1480 
1481         intel_init_gt_powersave(dev_priv);
1482 
1483         intel_uc_init(&dev_priv->gt.uc);
1484 
1485         ret = i915_gem_init_hw(dev_priv);
1486         if (ret)
1487                 goto err_uc_init;
1488 
1489         /* Only when the HW is re-initialised, can we replay the requests */
1490         ret = intel_gt_resume(&dev_priv->gt);
1491         if (ret)
1492                 goto err_init_hw;
1493 
1494         /*
1495          * Despite its name intel_init_clock_gating applies both display
1496          * clock gating workarounds; GT mmio workarounds and the occasional
1497          * GT power context workaround. Worse, sometimes it includes a context
1498          * register workaround which we need to apply before we record the
1499          * default HW state for all contexts.
1500          *
1501          * FIXME: break up the workarounds and apply them at the right time!
1502          */
1503         intel_init_clock_gating(dev_priv);
1504 
1505         ret = intel_engines_verify_workarounds(dev_priv);
1506         if (ret)
1507                 goto err_gt;
1508 
1509         ret = __intel_engines_record_defaults(dev_priv);
1510         if (ret)
1511                 goto err_gt;
1512 
1513         ret = i915_inject_load_error(dev_priv, -ENODEV);
1514         if (ret)
1515                 goto err_gt;
1516 
1517         ret = i915_inject_load_error(dev_priv, -EIO);
1518         if (ret)
1519                 goto err_gt;
1520 
1521         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1522         mutex_unlock(&dev_priv->drm.struct_mutex);
1523 
1524         return 0;
1525 
1526         /*
1527          * Unwinding is complicated by that we want to handle -EIO to mean
1528          * disable GPU submission but keep KMS alive. We want to mark the
1529          * HW as irrevisibly wedged, but keep enough state around that the
1530          * driver doesn't explode during runtime.
1531          */
1532 err_gt:
1533         mutex_unlock(&dev_priv->drm.struct_mutex);
1534 
1535         intel_gt_set_wedged(&dev_priv->gt);
1536         i915_gem_suspend(dev_priv);
1537         i915_gem_suspend_late(dev_priv);
1538 
1539         i915_gem_drain_workqueue(dev_priv);
1540 
1541         mutex_lock(&dev_priv->drm.struct_mutex);
1542 err_init_hw:
1543         intel_uc_fini_hw(&dev_priv->gt.uc);
1544 err_uc_init:
1545         if (ret != -EIO) {
1546                 intel_uc_fini(&dev_priv->gt.uc);
1547                 intel_cleanup_gt_powersave(dev_priv);
1548                 intel_engines_cleanup(dev_priv);
1549         }
1550 err_context:
1551         if (ret != -EIO)
1552                 i915_gem_contexts_fini(dev_priv);
1553 err_scratch:
1554         i915_gem_fini_scratch(dev_priv);
1555 err_ggtt:
1556 err_unlock:
1557         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1558         mutex_unlock(&dev_priv->drm.struct_mutex);
1559 
1560         if (ret != -EIO) {
1561                 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1562                 i915_gem_cleanup_userptr(dev_priv);
1563                 intel_timelines_fini(dev_priv);
1564         }
1565 
1566         if (ret == -EIO) {
1567                 mutex_lock(&dev_priv->drm.struct_mutex);
1568 
1569                 /*
1570                  * Allow engines or uC initialisation to fail by marking the GPU
1571                  * as wedged. But we only want to do this when the GPU is angry,
1572                  * for all other failure, such as an allocation failure, bail.
1573                  */
1574                 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1575                         i915_probe_error(dev_priv,
1576                                          "Failed to initialize GPU, declaring it wedged!\n");
1577                         intel_gt_set_wedged(&dev_priv->gt);
1578                 }
1579 
1580                 /* Minimal basic recovery for KMS */
1581                 ret = i915_ggtt_enable_hw(dev_priv);
1582                 i915_gem_restore_gtt_mappings(dev_priv);
1583                 i915_gem_restore_fences(dev_priv);
1584                 intel_init_clock_gating(dev_priv);
1585 
1586                 mutex_unlock(&dev_priv->drm.struct_mutex);
1587         }
1588 
1589         i915_gem_drain_freed_objects(dev_priv);
1590         return ret;
1591 }
1592 
1593 void i915_gem_driver_register(struct drm_i915_private *i915)
1594 {
1595         i915_gem_driver_register__shrinker(i915);
1596 
1597         intel_engines_driver_register(i915);
1598 }
1599 
1600 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1601 {
1602         i915_gem_driver_unregister__shrinker(i915);
1603 }
1604 
1605 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1606 {
1607         GEM_BUG_ON(dev_priv->gt.awake);
1608 
1609         intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1610 
1611         i915_gem_suspend_late(dev_priv);
1612         intel_disable_gt_powersave(dev_priv);
1613 
1614         /* Flush any outstanding unpin_work. */
1615         i915_gem_drain_workqueue(dev_priv);
1616 
1617         mutex_lock(&dev_priv->drm.struct_mutex);
1618         intel_uc_fini_hw(&dev_priv->gt.uc);
1619         intel_uc_fini(&dev_priv->gt.uc);
1620         mutex_unlock(&dev_priv->drm.struct_mutex);
1621 
1622         i915_gem_drain_freed_objects(dev_priv);
1623 }
1624 
1625 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1626 {
1627         mutex_lock(&dev_priv->drm.struct_mutex);
1628         intel_engines_cleanup(dev_priv);
1629         i915_gem_contexts_fini(dev_priv);
1630         i915_gem_fini_scratch(dev_priv);
1631         mutex_unlock(&dev_priv->drm.struct_mutex);
1632 
1633         intel_wa_list_free(&dev_priv->gt_wa_list);
1634 
1635         intel_cleanup_gt_powersave(dev_priv);
1636 
1637         intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1638         i915_gem_cleanup_userptr(dev_priv);
1639         intel_timelines_fini(dev_priv);
1640 
1641         i915_gem_drain_freed_objects(dev_priv);
1642 
1643         WARN_ON(!list_empty(&dev_priv->contexts.list));
1644 }
1645 
1646 void i915_gem_init_mmio(struct drm_i915_private *i915)
1647 {
1648         i915_gem_sanitize(i915);
1649 }
1650 
1651 static void i915_gem_init__mm(struct drm_i915_private *i915)
1652 {
1653         spin_lock_init(&i915->mm.obj_lock);
1654 
1655         init_llist_head(&i915->mm.free_list);
1656 
1657         INIT_LIST_HEAD(&i915->mm.purge_list);
1658         INIT_LIST_HEAD(&i915->mm.shrink_list);
1659 
1660         i915_gem_init__objects(i915);
1661 }
1662 
1663 int i915_gem_init_early(struct drm_i915_private *dev_priv)
1664 {
1665         int err;
1666 
1667         i915_gem_init__mm(dev_priv);
1668         i915_gem_init__pm(dev_priv);
1669 
1670         spin_lock_init(&dev_priv->fb_tracking.lock);
1671 
1672         err = i915_gemfs_init(dev_priv);
1673         if (err)
1674                 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
1675 
1676         return 0;
1677 }
1678 
1679 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1680 {
1681         i915_gem_drain_freed_objects(dev_priv);
1682         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1683         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1684         WARN_ON(dev_priv->mm.shrink_count);
1685 
1686         i915_gemfs_fini(dev_priv);
1687 }
1688 
1689 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1690 {
1691         /* Discard all purgeable objects, let userspace recover those as
1692          * required after resuming.
1693          */
1694         i915_gem_shrink_all(dev_priv);
1695 
1696         return 0;
1697 }
1698 
1699 int i915_gem_freeze_late(struct drm_i915_private *i915)
1700 {
1701         struct drm_i915_gem_object *obj;
1702         intel_wakeref_t wakeref;
1703 
1704         /*
1705          * Called just before we write the hibernation image.
1706          *
1707          * We need to update the domain tracking to reflect that the CPU
1708          * will be accessing all the pages to create and restore from the
1709          * hibernation, and so upon restoration those pages will be in the
1710          * CPU domain.
1711          *
1712          * To make sure the hibernation image contains the latest state,
1713          * we update that state just before writing out the image.
1714          *
1715          * To try and reduce the hibernation image, we manually shrink
1716          * the objects as well, see i915_gem_freeze()
1717          */
1718 
1719         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1720 
1721         i915_gem_shrink(i915, -1UL, NULL, ~0);
1722         i915_gem_drain_freed_objects(i915);
1723 
1724         list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1725                 i915_gem_object_lock(obj);
1726                 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
1727                 i915_gem_object_unlock(obj);
1728         }
1729 
1730         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1731 
1732         return 0;
1733 }
1734 
1735 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1736 {
1737         struct drm_i915_file_private *file_priv = file->driver_priv;
1738         struct i915_request *request;
1739 
1740         /* Clean up our request list when the client is going away, so that
1741          * later retire_requests won't dereference our soon-to-be-gone
1742          * file_priv.
1743          */
1744         spin_lock(&file_priv->mm.lock);
1745         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1746                 request->file_priv = NULL;
1747         spin_unlock(&file_priv->mm.lock);
1748 }
1749 
1750 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1751 {
1752         struct drm_i915_file_private *file_priv;
1753         int ret;
1754 
1755         DRM_DEBUG("\n");
1756 
1757         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1758         if (!file_priv)
1759                 return -ENOMEM;
1760 
1761         file->driver_priv = file_priv;
1762         file_priv->dev_priv = i915;
1763         file_priv->file = file;
1764 
1765         spin_lock_init(&file_priv->mm.lock);
1766         INIT_LIST_HEAD(&file_priv->mm.request_list);
1767 
1768         file_priv->bsd_engine = -1;
1769         file_priv->hang_timestamp = jiffies;
1770 
1771         ret = i915_gem_context_open(i915, file);
1772         if (ret)
1773                 kfree(file_priv);
1774 
1775         return ret;
1776 }
1777 
1778 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1779 #include "selftests/mock_gem_device.c"
1780 #include "selftests/i915_gem.c"
1781 #endif

/* [<][>][^][v][top][bottom][index][help] */