root/drivers/gpu/drm/i915/intel_device_info.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. intel_platform_name
  2. intel_device_info_dump_flags
  3. sseu_dump
  4. intel_device_info_dump_runtime
  5. sseu_eu_idx
  6. sseu_get_eus
  7. sseu_set_eus
  8. intel_device_info_dump_topology
  9. compute_eu_total
  10. gen11_sseu_info_init
  11. gen10_sseu_info_init
  12. cherryview_sseu_info_init
  13. gen9_sseu_info_init
  14. broadwell_sseu_info_init
  15. haswell_sseu_info_init
  16. read_reference_ts_freq
  17. gen10_get_crystal_clock_freq
  18. gen11_get_crystal_clock_freq
  19. read_timestamp_frequency
  20. find_devid
  21. intel_device_info_subplatform_init
  22. intel_device_info_runtime_init
  23. intel_driver_caps_print
  24. intel_device_info_init_mmio

   1 /*
   2  * Copyright © 2016 Intel Corporation
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice (including the next
  12  * paragraph) shall be included in all copies or substantial portions of the
  13  * Software.
  14  *
  15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21  * IN THE SOFTWARE.
  22  *
  23  */
  24 
  25 #include <drm/drm_print.h>
  26 
  27 #include "intel_device_info.h"
  28 #include "i915_drv.h"
  29 
  30 #define PLATFORM_NAME(x) [INTEL_##x] = #x
  31 static const char * const platform_names[] = {
  32         PLATFORM_NAME(I830),
  33         PLATFORM_NAME(I845G),
  34         PLATFORM_NAME(I85X),
  35         PLATFORM_NAME(I865G),
  36         PLATFORM_NAME(I915G),
  37         PLATFORM_NAME(I915GM),
  38         PLATFORM_NAME(I945G),
  39         PLATFORM_NAME(I945GM),
  40         PLATFORM_NAME(G33),
  41         PLATFORM_NAME(PINEVIEW),
  42         PLATFORM_NAME(I965G),
  43         PLATFORM_NAME(I965GM),
  44         PLATFORM_NAME(G45),
  45         PLATFORM_NAME(GM45),
  46         PLATFORM_NAME(IRONLAKE),
  47         PLATFORM_NAME(SANDYBRIDGE),
  48         PLATFORM_NAME(IVYBRIDGE),
  49         PLATFORM_NAME(VALLEYVIEW),
  50         PLATFORM_NAME(HASWELL),
  51         PLATFORM_NAME(BROADWELL),
  52         PLATFORM_NAME(CHERRYVIEW),
  53         PLATFORM_NAME(SKYLAKE),
  54         PLATFORM_NAME(BROXTON),
  55         PLATFORM_NAME(KABYLAKE),
  56         PLATFORM_NAME(GEMINILAKE),
  57         PLATFORM_NAME(COFFEELAKE),
  58         PLATFORM_NAME(CANNONLAKE),
  59         PLATFORM_NAME(ICELAKE),
  60         PLATFORM_NAME(ELKHARTLAKE),
  61         PLATFORM_NAME(TIGERLAKE),
  62 };
  63 #undef PLATFORM_NAME
  64 
  65 const char *intel_platform_name(enum intel_platform platform)
  66 {
  67         BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
  68 
  69         if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
  70                          platform_names[platform] == NULL))
  71                 return "<unknown>";
  72 
  73         return platform_names[platform];
  74 }
  75 
  76 void intel_device_info_dump_flags(const struct intel_device_info *info,
  77                                   struct drm_printer *p)
  78 {
  79 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
  80         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  81 #undef PRINT_FLAG
  82 
  83 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
  84         DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
  85 #undef PRINT_FLAG
  86 }
  87 
  88 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
  89 {
  90         int s;
  91 
  92         drm_printf(p, "slice total: %u, mask=%04x\n",
  93                    hweight8(sseu->slice_mask), sseu->slice_mask);
  94         drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
  95         for (s = 0; s < sseu->max_slices; s++) {
  96                 drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
  97                            s, intel_sseu_subslices_per_slice(sseu, s),
  98                            sseu->subslice_mask[s]);
  99         }
 100         drm_printf(p, "EU total: %u\n", sseu->eu_total);
 101         drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
 102         drm_printf(p, "has slice power gating: %s\n",
 103                    yesno(sseu->has_slice_pg));
 104         drm_printf(p, "has subslice power gating: %s\n",
 105                    yesno(sseu->has_subslice_pg));
 106         drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
 107 }
 108 
 109 void intel_device_info_dump_runtime(const struct intel_runtime_info *info,
 110                                     struct drm_printer *p)
 111 {
 112         sseu_dump(&info->sseu, p);
 113 
 114         drm_printf(p, "CS timestamp frequency: %u kHz\n",
 115                    info->cs_timestamp_frequency_khz);
 116 }
 117 
 118 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
 119                        int subslice)
 120 {
 121         int subslice_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
 122         int slice_stride = sseu->max_subslices * subslice_stride;
 123 
 124         return slice * slice_stride + subslice * subslice_stride;
 125 }
 126 
 127 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
 128                         int subslice)
 129 {
 130         int i, offset = sseu_eu_idx(sseu, slice, subslice);
 131         u16 eu_mask = 0;
 132 
 133         for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) {
 134                 eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
 135                         (i * BITS_PER_BYTE);
 136         }
 137 
 138         return eu_mask;
 139 }
 140 
 141 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
 142                          u16 eu_mask)
 143 {
 144         int i, offset = sseu_eu_idx(sseu, slice, subslice);
 145 
 146         for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) {
 147                 sseu->eu_mask[offset + i] =
 148                         (eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
 149         }
 150 }
 151 
 152 void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
 153                                      struct drm_printer *p)
 154 {
 155         int s, ss;
 156 
 157         if (sseu->max_slices == 0) {
 158                 drm_printf(p, "Unavailable\n");
 159                 return;
 160         }
 161 
 162         for (s = 0; s < sseu->max_slices; s++) {
 163                 drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
 164                            s, intel_sseu_subslices_per_slice(sseu, s),
 165                            sseu->subslice_mask[s]);
 166 
 167                 for (ss = 0; ss < sseu->max_subslices; ss++) {
 168                         u16 enabled_eus = sseu_get_eus(sseu, s, ss);
 169 
 170                         drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
 171                                    ss, hweight16(enabled_eus), enabled_eus);
 172                 }
 173         }
 174 }
 175 
 176 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
 177 {
 178         u16 i, total = 0;
 179 
 180         for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
 181                 total += hweight8(sseu->eu_mask[i]);
 182 
 183         return total;
 184 }
 185 
 186 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
 187 {
 188         struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 189         u8 s_en;
 190         u32 ss_en, ss_en_mask;
 191         u8 eu_en;
 192         int s;
 193 
 194         if (IS_ELKHARTLAKE(dev_priv)) {
 195                 sseu->max_slices = 1;
 196                 sseu->max_subslices = 4;
 197                 sseu->max_eus_per_subslice = 8;
 198         } else {
 199                 sseu->max_slices = 1;
 200                 sseu->max_subslices = 8;
 201                 sseu->max_eus_per_subslice = 8;
 202         }
 203 
 204         s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
 205         ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
 206         ss_en_mask = BIT(sseu->max_subslices) - 1;
 207         eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
 208 
 209         for (s = 0; s < sseu->max_slices; s++) {
 210                 if (s_en & BIT(s)) {
 211                         int ss_idx = sseu->max_subslices * s;
 212                         int ss;
 213 
 214                         sseu->slice_mask |= BIT(s);
 215                         sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
 216                         for (ss = 0; ss < sseu->max_subslices; ss++) {
 217                                 if (sseu->subslice_mask[s] & BIT(ss))
 218                                         sseu_set_eus(sseu, s, ss, eu_en);
 219                         }
 220                 }
 221         }
 222         sseu->eu_per_subslice = hweight8(eu_en);
 223         sseu->eu_total = compute_eu_total(sseu);
 224 
 225         /* ICL has no power gating restrictions. */
 226         sseu->has_slice_pg = 1;
 227         sseu->has_subslice_pg = 1;
 228         sseu->has_eu_pg = 1;
 229 }
 230 
 231 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
 232 {
 233         struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 234         const u32 fuse2 = I915_READ(GEN8_FUSE2);
 235         int s, ss;
 236         const int eu_mask = 0xff;
 237         u32 subslice_mask, eu_en;
 238 
 239         sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
 240                             GEN10_F2_S_ENA_SHIFT;
 241         sseu->max_slices = 6;
 242         sseu->max_subslices = 4;
 243         sseu->max_eus_per_subslice = 8;
 244 
 245         subslice_mask = (1 << 4) - 1;
 246         subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
 247                            GEN10_F2_SS_DIS_SHIFT);
 248 
 249         /*
 250          * Slice0 can have up to 3 subslices, but there are only 2 in
 251          * slice1/2.
 252          */
 253         sseu->subslice_mask[0] = subslice_mask;
 254         for (s = 1; s < sseu->max_slices; s++)
 255                 sseu->subslice_mask[s] = subslice_mask & 0x3;
 256 
 257         /* Slice0 */
 258         eu_en = ~I915_READ(GEN8_EU_DISABLE0);
 259         for (ss = 0; ss < sseu->max_subslices; ss++)
 260                 sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
 261         /* Slice1 */
 262         sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
 263         eu_en = ~I915_READ(GEN8_EU_DISABLE1);
 264         sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
 265         /* Slice2 */
 266         sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
 267         sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
 268         /* Slice3 */
 269         sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
 270         eu_en = ~I915_READ(GEN8_EU_DISABLE2);
 271         sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
 272         /* Slice4 */
 273         sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
 274         sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
 275         /* Slice5 */
 276         sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
 277         eu_en = ~I915_READ(GEN10_EU_DISABLE3);
 278         sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
 279 
 280         /* Do a second pass where we mark the subslices disabled if all their
 281          * eus are off.
 282          */
 283         for (s = 0; s < sseu->max_slices; s++) {
 284                 for (ss = 0; ss < sseu->max_subslices; ss++) {
 285                         if (sseu_get_eus(sseu, s, ss) == 0)
 286                                 sseu->subslice_mask[s] &= ~BIT(ss);
 287                 }
 288         }
 289 
 290         sseu->eu_total = compute_eu_total(sseu);
 291 
 292         /*
 293          * CNL is expected to always have a uniform distribution
 294          * of EU across subslices with the exception that any one
 295          * EU in any one subslice may be fused off for die
 296          * recovery.
 297          */
 298         sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
 299                                 DIV_ROUND_UP(sseu->eu_total,
 300                                              intel_sseu_subslice_total(sseu)) :
 301                                 0;
 302 
 303         /* No restrictions on Power Gating */
 304         sseu->has_slice_pg = 1;
 305         sseu->has_subslice_pg = 1;
 306         sseu->has_eu_pg = 1;
 307 }
 308 
 309 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
 310 {
 311         struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 312         u32 fuse;
 313 
 314         fuse = I915_READ(CHV_FUSE_GT);
 315 
 316         sseu->slice_mask = BIT(0);
 317         sseu->max_slices = 1;
 318         sseu->max_subslices = 2;
 319         sseu->max_eus_per_subslice = 8;
 320 
 321         if (!(fuse & CHV_FGT_DISABLE_SS0)) {
 322                 u8 disabled_mask =
 323                         ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
 324                          CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
 325                         (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
 326                           CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
 327 
 328                 sseu->subslice_mask[0] |= BIT(0);
 329                 sseu_set_eus(sseu, 0, 0, ~disabled_mask);
 330         }
 331 
 332         if (!(fuse & CHV_FGT_DISABLE_SS1)) {
 333                 u8 disabled_mask =
 334                         ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
 335                          CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
 336                         (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
 337                           CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
 338 
 339                 sseu->subslice_mask[0] |= BIT(1);
 340                 sseu_set_eus(sseu, 0, 1, ~disabled_mask);
 341         }
 342 
 343         sseu->eu_total = compute_eu_total(sseu);
 344 
 345         /*
 346          * CHV expected to always have a uniform distribution of EU
 347          * across subslices.
 348         */
 349         sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
 350                                 sseu->eu_total /
 351                                         intel_sseu_subslice_total(sseu) :
 352                                 0;
 353         /*
 354          * CHV supports subslice power gating on devices with more than
 355          * one subslice, and supports EU power gating on devices with
 356          * more than one EU pair per subslice.
 357         */
 358         sseu->has_slice_pg = 0;
 359         sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
 360         sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
 361 }
 362 
 363 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
 364 {
 365         struct intel_device_info *info = mkwrite_device_info(dev_priv);
 366         struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 367         int s, ss;
 368         u32 fuse2, eu_disable, subslice_mask;
 369         const u8 eu_mask = 0xff;
 370 
 371         fuse2 = I915_READ(GEN8_FUSE2);
 372         sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
 373 
 374         /* BXT has a single slice and at most 3 subslices. */
 375         sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
 376         sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
 377         sseu->max_eus_per_subslice = 8;
 378 
 379         /*
 380          * The subslice disable field is global, i.e. it applies
 381          * to each of the enabled slices.
 382         */
 383         subslice_mask = (1 << sseu->max_subslices) - 1;
 384         subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
 385                            GEN9_F2_SS_DIS_SHIFT);
 386 
 387         /*
 388          * Iterate through enabled slices and subslices to
 389          * count the total enabled EU.
 390         */
 391         for (s = 0; s < sseu->max_slices; s++) {
 392                 if (!(sseu->slice_mask & BIT(s)))
 393                         /* skip disabled slice */
 394                         continue;
 395 
 396                 sseu->subslice_mask[s] = subslice_mask;
 397 
 398                 eu_disable = I915_READ(GEN9_EU_DISABLE(s));
 399                 for (ss = 0; ss < sseu->max_subslices; ss++) {
 400                         int eu_per_ss;
 401                         u8 eu_disabled_mask;
 402 
 403                         if (!(sseu->subslice_mask[s] & BIT(ss)))
 404                                 /* skip disabled subslice */
 405                                 continue;
 406 
 407                         eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
 408 
 409                         sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
 410 
 411                         eu_per_ss = sseu->max_eus_per_subslice -
 412                                 hweight8(eu_disabled_mask);
 413 
 414                         /*
 415                          * Record which subslice(s) has(have) 7 EUs. we
 416                          * can tune the hash used to spread work among
 417                          * subslices if they are unbalanced.
 418                          */
 419                         if (eu_per_ss == 7)
 420                                 sseu->subslice_7eu[s] |= BIT(ss);
 421                 }
 422         }
 423 
 424         sseu->eu_total = compute_eu_total(sseu);
 425 
 426         /*
 427          * SKL is expected to always have a uniform distribution
 428          * of EU across subslices with the exception that any one
 429          * EU in any one subslice may be fused off for die
 430          * recovery. BXT is expected to be perfectly uniform in EU
 431          * distribution.
 432         */
 433         sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
 434                                 DIV_ROUND_UP(sseu->eu_total,
 435                                              intel_sseu_subslice_total(sseu)) :
 436                                 0;
 437         /*
 438          * SKL+ supports slice power gating on devices with more than
 439          * one slice, and supports EU power gating on devices with
 440          * more than one EU pair per subslice. BXT+ supports subslice
 441          * power gating on devices with more than one subslice, and
 442          * supports EU power gating on devices with more than one EU
 443          * pair per subslice.
 444         */
 445         sseu->has_slice_pg =
 446                 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
 447         sseu->has_subslice_pg =
 448                 IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
 449         sseu->has_eu_pg = sseu->eu_per_subslice > 2;
 450 
 451         if (IS_GEN9_LP(dev_priv)) {
 452 #define IS_SS_DISABLED(ss)      (!(sseu->subslice_mask[0] & BIT(ss)))
 453                 info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
 454 
 455                 sseu->min_eu_in_pool = 0;
 456                 if (info->has_pooled_eu) {
 457                         if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
 458                                 sseu->min_eu_in_pool = 3;
 459                         else if (IS_SS_DISABLED(1))
 460                                 sseu->min_eu_in_pool = 6;
 461                         else
 462                                 sseu->min_eu_in_pool = 9;
 463                 }
 464 #undef IS_SS_DISABLED
 465         }
 466 }
 467 
 468 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
 469 {
 470         struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 471         int s, ss;
 472         u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
 473 
 474         fuse2 = I915_READ(GEN8_FUSE2);
 475         sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
 476         sseu->max_slices = 3;
 477         sseu->max_subslices = 3;
 478         sseu->max_eus_per_subslice = 8;
 479 
 480         /*
 481          * The subslice disable field is global, i.e. it applies
 482          * to each of the enabled slices.
 483          */
 484         subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
 485         subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
 486                            GEN8_F2_SS_DIS_SHIFT);
 487 
 488         eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
 489         eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
 490                         ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
 491                          (32 - GEN8_EU_DIS0_S1_SHIFT));
 492         eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
 493                         ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
 494                          (32 - GEN8_EU_DIS1_S2_SHIFT));
 495 
 496         /*
 497          * Iterate through enabled slices and subslices to
 498          * count the total enabled EU.
 499          */
 500         for (s = 0; s < sseu->max_slices; s++) {
 501                 if (!(sseu->slice_mask & BIT(s)))
 502                         /* skip disabled slice */
 503                         continue;
 504 
 505                 sseu->subslice_mask[s] = subslice_mask;
 506 
 507                 for (ss = 0; ss < sseu->max_subslices; ss++) {
 508                         u8 eu_disabled_mask;
 509                         u32 n_disabled;
 510 
 511                         if (!(sseu->subslice_mask[s] & BIT(ss)))
 512                                 /* skip disabled subslice */
 513                                 continue;
 514 
 515                         eu_disabled_mask =
 516                                 eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
 517 
 518                         sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
 519 
 520                         n_disabled = hweight8(eu_disabled_mask);
 521 
 522                         /*
 523                          * Record which subslices have 7 EUs.
 524                          */
 525                         if (sseu->max_eus_per_subslice - n_disabled == 7)
 526                                 sseu->subslice_7eu[s] |= 1 << ss;
 527                 }
 528         }
 529 
 530         sseu->eu_total = compute_eu_total(sseu);
 531 
 532         /*
 533          * BDW is expected to always have a uniform distribution of EU across
 534          * subslices with the exception that any one EU in any one subslice may
 535          * be fused off for die recovery.
 536          */
 537         sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
 538                                 DIV_ROUND_UP(sseu->eu_total,
 539                                              intel_sseu_subslice_total(sseu)) :
 540                                 0;
 541 
 542         /*
 543          * BDW supports slice power gating on devices with more than
 544          * one slice.
 545          */
 546         sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
 547         sseu->has_subslice_pg = 0;
 548         sseu->has_eu_pg = 0;
 549 }
 550 
 551 static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
 552 {
 553         struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 554         u32 fuse1;
 555         int s, ss;
 556 
 557         /*
 558          * There isn't a register to tell us how many slices/subslices. We
 559          * work off the PCI-ids here.
 560          */
 561         switch (INTEL_INFO(dev_priv)->gt) {
 562         default:
 563                 MISSING_CASE(INTEL_INFO(dev_priv)->gt);
 564                 /* fall through */
 565         case 1:
 566                 sseu->slice_mask = BIT(0);
 567                 sseu->subslice_mask[0] = BIT(0);
 568                 break;
 569         case 2:
 570                 sseu->slice_mask = BIT(0);
 571                 sseu->subslice_mask[0] = BIT(0) | BIT(1);
 572                 break;
 573         case 3:
 574                 sseu->slice_mask = BIT(0) | BIT(1);
 575                 sseu->subslice_mask[0] = BIT(0) | BIT(1);
 576                 sseu->subslice_mask[1] = BIT(0) | BIT(1);
 577                 break;
 578         }
 579 
 580         sseu->max_slices = hweight8(sseu->slice_mask);
 581         sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
 582 
 583         fuse1 = I915_READ(HSW_PAVP_FUSE1);
 584         switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
 585         default:
 586                 MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
 587                              HSW_F1_EU_DIS_SHIFT);
 588                 /* fall through */
 589         case HSW_F1_EU_DIS_10EUS:
 590                 sseu->eu_per_subslice = 10;
 591                 break;
 592         case HSW_F1_EU_DIS_8EUS:
 593                 sseu->eu_per_subslice = 8;
 594                 break;
 595         case HSW_F1_EU_DIS_6EUS:
 596                 sseu->eu_per_subslice = 6;
 597                 break;
 598         }
 599         sseu->max_eus_per_subslice = sseu->eu_per_subslice;
 600 
 601         for (s = 0; s < sseu->max_slices; s++) {
 602                 for (ss = 0; ss < sseu->max_subslices; ss++) {
 603                         sseu_set_eus(sseu, s, ss,
 604                                      (1UL << sseu->eu_per_subslice) - 1);
 605                 }
 606         }
 607 
 608         sseu->eu_total = compute_eu_total(sseu);
 609 
 610         /* No powergating for you. */
 611         sseu->has_slice_pg = 0;
 612         sseu->has_subslice_pg = 0;
 613         sseu->has_eu_pg = 0;
 614 }
 615 
 616 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
 617 {
 618         u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
 619         u32 base_freq, frac_freq;
 620 
 621         base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
 622                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
 623         base_freq *= 1000;
 624 
 625         frac_freq = ((ts_override &
 626                       GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
 627                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
 628         frac_freq = 1000 / (frac_freq + 1);
 629 
 630         return base_freq + frac_freq;
 631 }
 632 
 633 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
 634                                         u32 rpm_config_reg)
 635 {
 636         u32 f19_2_mhz = 19200;
 637         u32 f24_mhz = 24000;
 638         u32 crystal_clock = (rpm_config_reg &
 639                              GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 640                             GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 641 
 642         switch (crystal_clock) {
 643         case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 644                 return f19_2_mhz;
 645         case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 646                 return f24_mhz;
 647         default:
 648                 MISSING_CASE(crystal_clock);
 649                 return 0;
 650         }
 651 }
 652 
 653 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
 654                                         u32 rpm_config_reg)
 655 {
 656         u32 f19_2_mhz = 19200;
 657         u32 f24_mhz = 24000;
 658         u32 f25_mhz = 25000;
 659         u32 f38_4_mhz = 38400;
 660         u32 crystal_clock = (rpm_config_reg &
 661                              GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 662                             GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 663 
 664         switch (crystal_clock) {
 665         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 666                 return f24_mhz;
 667         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 668                 return f19_2_mhz;
 669         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
 670                 return f38_4_mhz;
 671         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
 672                 return f25_mhz;
 673         default:
 674                 MISSING_CASE(crystal_clock);
 675                 return 0;
 676         }
 677 }
 678 
 679 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
 680 {
 681         u32 f12_5_mhz = 12500;
 682         u32 f19_2_mhz = 19200;
 683         u32 f24_mhz = 24000;
 684 
 685         if (INTEL_GEN(dev_priv) <= 4) {
 686                 /* PRMs say:
 687                  *
 688                  *     "The value in this register increments once every 16
 689                  *      hclks." (through the “Clocking Configuration”
 690                  *      (“CLKCFG”) MCHBAR register)
 691                  */
 692                 return dev_priv->rawclk_freq / 16;
 693         } else if (INTEL_GEN(dev_priv) <= 8) {
 694                 /* PRMs say:
 695                  *
 696                  *     "The PCU TSC counts 10ns increments; this timestamp
 697                  *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
 698                  *      rolling over every 1.5 hours).
 699                  */
 700                 return f12_5_mhz;
 701         } else if (INTEL_GEN(dev_priv) <= 9) {
 702                 u32 ctc_reg = I915_READ(CTC_MODE);
 703                 u32 freq = 0;
 704 
 705                 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 706                         freq = read_reference_ts_freq(dev_priv);
 707                 } else {
 708                         freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
 709 
 710                         /* Now figure out how the command stream's timestamp
 711                          * register increments from this frequency (it might
 712                          * increment only every few clock cycle).
 713                          */
 714                         freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
 715                                       CTC_SHIFT_PARAMETER_SHIFT);
 716                 }
 717 
 718                 return freq;
 719         } else if (INTEL_GEN(dev_priv) <= 12) {
 720                 u32 ctc_reg = I915_READ(CTC_MODE);
 721                 u32 freq = 0;
 722 
 723                 /* First figure out the reference frequency. There are 2 ways
 724                  * we can compute the frequency, either through the
 725                  * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
 726                  * tells us which one we should use.
 727                  */
 728                 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 729                         freq = read_reference_ts_freq(dev_priv);
 730                 } else {
 731                         u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
 732 
 733                         if (INTEL_GEN(dev_priv) <= 10)
 734                                 freq = gen10_get_crystal_clock_freq(dev_priv,
 735                                                                 rpm_config_reg);
 736                         else
 737                                 freq = gen11_get_crystal_clock_freq(dev_priv,
 738                                                                 rpm_config_reg);
 739 
 740                         /* Now figure out how the command stream's timestamp
 741                          * register increments from this frequency (it might
 742                          * increment only every few clock cycle).
 743                          */
 744                         freq >>= 3 - ((rpm_config_reg &
 745                                        GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
 746                                       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
 747                 }
 748 
 749                 return freq;
 750         }
 751 
 752         MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
 753         return 0;
 754 }
 755 
 756 #undef INTEL_VGA_DEVICE
 757 #define INTEL_VGA_DEVICE(id, info) (id)
 758 
 759 static const u16 subplatform_ult_ids[] = {
 760         INTEL_HSW_ULT_GT1_IDS(0),
 761         INTEL_HSW_ULT_GT2_IDS(0),
 762         INTEL_HSW_ULT_GT3_IDS(0),
 763         INTEL_BDW_ULT_GT1_IDS(0),
 764         INTEL_BDW_ULT_GT2_IDS(0),
 765         INTEL_BDW_ULT_GT3_IDS(0),
 766         INTEL_BDW_ULT_RSVD_IDS(0),
 767         INTEL_SKL_ULT_GT1_IDS(0),
 768         INTEL_SKL_ULT_GT2_IDS(0),
 769         INTEL_SKL_ULT_GT3_IDS(0),
 770         INTEL_KBL_ULT_GT1_IDS(0),
 771         INTEL_KBL_ULT_GT2_IDS(0),
 772         INTEL_KBL_ULT_GT3_IDS(0),
 773         INTEL_CFL_U_GT2_IDS(0),
 774         INTEL_CFL_U_GT3_IDS(0),
 775         INTEL_WHL_U_GT1_IDS(0),
 776         INTEL_WHL_U_GT2_IDS(0),
 777         INTEL_WHL_U_GT3_IDS(0),
 778 };
 779 
 780 static const u16 subplatform_ulx_ids[] = {
 781         INTEL_HSW_ULX_GT1_IDS(0),
 782         INTEL_HSW_ULX_GT2_IDS(0),
 783         INTEL_BDW_ULX_GT1_IDS(0),
 784         INTEL_BDW_ULX_GT2_IDS(0),
 785         INTEL_BDW_ULX_GT3_IDS(0),
 786         INTEL_BDW_ULX_RSVD_IDS(0),
 787         INTEL_SKL_ULX_GT1_IDS(0),
 788         INTEL_SKL_ULX_GT2_IDS(0),
 789         INTEL_KBL_ULX_GT1_IDS(0),
 790         INTEL_KBL_ULX_GT2_IDS(0),
 791         INTEL_AML_KBL_GT2_IDS(0),
 792         INTEL_AML_CFL_GT2_IDS(0),
 793 };
 794 
 795 static const u16 subplatform_portf_ids[] = {
 796         INTEL_CNL_PORT_F_IDS(0),
 797         INTEL_ICL_PORT_F_IDS(0),
 798 };
 799 
 800 static bool find_devid(u16 id, const u16 *p, unsigned int num)
 801 {
 802         for (; num; num--, p++) {
 803                 if (*p == id)
 804                         return true;
 805         }
 806 
 807         return false;
 808 }
 809 
 810 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
 811 {
 812         const struct intel_device_info *info = INTEL_INFO(i915);
 813         const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
 814         const unsigned int pi = __platform_mask_index(rinfo, info->platform);
 815         const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
 816         u16 devid = INTEL_DEVID(i915);
 817         u32 mask = 0;
 818 
 819         /* Make sure IS_<platform> checks are working. */
 820         RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
 821 
 822         /* Find and mark subplatform bits based on the PCI device id. */
 823         if (find_devid(devid, subplatform_ult_ids,
 824                        ARRAY_SIZE(subplatform_ult_ids))) {
 825                 mask = BIT(INTEL_SUBPLATFORM_ULT);
 826         } else if (find_devid(devid, subplatform_ulx_ids,
 827                               ARRAY_SIZE(subplatform_ulx_ids))) {
 828                 mask = BIT(INTEL_SUBPLATFORM_ULX);
 829                 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
 830                         /* ULX machines are also considered ULT. */
 831                         mask |= BIT(INTEL_SUBPLATFORM_ULT);
 832                 }
 833         } else if (find_devid(devid, subplatform_portf_ids,
 834                               ARRAY_SIZE(subplatform_portf_ids))) {
 835                 mask = BIT(INTEL_SUBPLATFORM_PORTF);
 836         }
 837 
 838         GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
 839 
 840         RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
 841 }
 842 
 843 /**
 844  * intel_device_info_runtime_init - initialize runtime info
 845  * @dev_priv: the i915 device
 846  *
 847  * Determine various intel_device_info fields at runtime.
 848  *
 849  * Use it when either:
 850  *   - it's judged too laborious to fill n static structures with the limit
 851  *     when a simple if statement does the job,
 852  *   - run-time checks (eg read fuse/strap registers) are needed.
 853  *
 854  * This function needs to be called:
 855  *   - after the MMIO has been setup as we are reading registers,
 856  *   - after the PCH has been detected,
 857  *   - before the first usage of the fields it can tweak.
 858  */
 859 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
 860 {
 861         struct intel_device_info *info = mkwrite_device_info(dev_priv);
 862         struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
 863         enum pipe pipe;
 864 
 865         if (INTEL_GEN(dev_priv) >= 10) {
 866                 for_each_pipe(dev_priv, pipe)
 867                         runtime->num_scalers[pipe] = 2;
 868         } else if (IS_GEN(dev_priv, 9)) {
 869                 runtime->num_scalers[PIPE_A] = 2;
 870                 runtime->num_scalers[PIPE_B] = 2;
 871                 runtime->num_scalers[PIPE_C] = 1;
 872         }
 873 
 874         BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
 875 
 876         if (INTEL_GEN(dev_priv) >= 11)
 877                 for_each_pipe(dev_priv, pipe)
 878                         runtime->num_sprites[pipe] = 6;
 879         else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
 880                 for_each_pipe(dev_priv, pipe)
 881                         runtime->num_sprites[pipe] = 3;
 882         else if (IS_BROXTON(dev_priv)) {
 883                 /*
 884                  * Skylake and Broxton currently don't expose the topmost plane as its
 885                  * use is exclusive with the legacy cursor and we only want to expose
 886                  * one of those, not both. Until we can safely expose the topmost plane
 887                  * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
 888                  * we don't expose the topmost plane at all to prevent ABI breakage
 889                  * down the line.
 890                  */
 891 
 892                 runtime->num_sprites[PIPE_A] = 2;
 893                 runtime->num_sprites[PIPE_B] = 2;
 894                 runtime->num_sprites[PIPE_C] = 1;
 895         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 896                 for_each_pipe(dev_priv, pipe)
 897                         runtime->num_sprites[pipe] = 2;
 898         } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
 899                 for_each_pipe(dev_priv, pipe)
 900                         runtime->num_sprites[pipe] = 1;
 901         }
 902 
 903         if (i915_modparams.disable_display) {
 904                 DRM_INFO("Display disabled (module parameter)\n");
 905                 info->num_pipes = 0;
 906         } else if (HAS_DISPLAY(dev_priv) &&
 907                    (IS_GEN_RANGE(dev_priv, 7, 8)) &&
 908                    HAS_PCH_SPLIT(dev_priv)) {
 909                 u32 fuse_strap = I915_READ(FUSE_STRAP);
 910                 u32 sfuse_strap = I915_READ(SFUSE_STRAP);
 911 
 912                 /*
 913                  * SFUSE_STRAP is supposed to have a bit signalling the display
 914                  * is fused off. Unfortunately it seems that, at least in
 915                  * certain cases, fused off display means that PCH display
 916                  * reads don't land anywhere. In that case, we read 0s.
 917                  *
 918                  * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
 919                  * should be set when taking over after the firmware.
 920                  */
 921                 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
 922                     sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
 923                     (HAS_PCH_CPT(dev_priv) &&
 924                      !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
 925                         DRM_INFO("Display fused off, disabling\n");
 926                         info->num_pipes = 0;
 927                 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
 928                         DRM_INFO("PipeC fused off\n");
 929                         info->num_pipes -= 1;
 930                 }
 931         } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
 932                 u32 dfsm = I915_READ(SKL_DFSM);
 933                 u8 enabled_mask = BIT(info->num_pipes) - 1;
 934 
 935                 if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
 936                         enabled_mask &= ~BIT(PIPE_A);
 937                 if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
 938                         enabled_mask &= ~BIT(PIPE_B);
 939                 if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
 940                         enabled_mask &= ~BIT(PIPE_C);
 941                 if (INTEL_GEN(dev_priv) >= 12 &&
 942                     (dfsm & TGL_DFSM_PIPE_D_DISABLE))
 943                         enabled_mask &= ~BIT(PIPE_D);
 944 
 945                 /*
 946                  * At least one pipe should be enabled and if there are
 947                  * disabled pipes, they should be the last ones, with no holes
 948                  * in the mask.
 949                  */
 950                 if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
 951                         DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n",
 952                                   enabled_mask);
 953                 else
 954                         info->num_pipes = hweight8(enabled_mask);
 955         }
 956 
 957         /* Initialize slice/subslice/EU info */
 958         if (IS_HASWELL(dev_priv))
 959                 haswell_sseu_info_init(dev_priv);
 960         else if (IS_CHERRYVIEW(dev_priv))
 961                 cherryview_sseu_info_init(dev_priv);
 962         else if (IS_BROADWELL(dev_priv))
 963                 broadwell_sseu_info_init(dev_priv);
 964         else if (IS_GEN(dev_priv, 9))
 965                 gen9_sseu_info_init(dev_priv);
 966         else if (IS_GEN(dev_priv, 10))
 967                 gen10_sseu_info_init(dev_priv);
 968         else if (INTEL_GEN(dev_priv) >= 11)
 969                 gen11_sseu_info_init(dev_priv);
 970 
 971         if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
 972                 DRM_INFO("Disabling ppGTT for VT-d support\n");
 973                 info->ppgtt_type = INTEL_PPGTT_NONE;
 974         }
 975 
 976         /* Initialize command stream timestamp frequency */
 977         runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
 978 }
 979 
 980 void intel_driver_caps_print(const struct intel_driver_caps *caps,
 981                              struct drm_printer *p)
 982 {
 983         drm_printf(p, "Has logical contexts? %s\n",
 984                    yesno(caps->has_logical_contexts));
 985         drm_printf(p, "scheduler: %x\n", caps->scheduler);
 986 }
 987 
 988 /*
 989  * Determine which engines are fused off in our particular hardware. Since the
 990  * fuse register is in the blitter powerwell, we need forcewake to be ready at
 991  * this point (but later we need to prune the forcewake domains for engines that
 992  * are indeed fused off).
 993  */
 994 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
 995 {
 996         struct intel_device_info *info = mkwrite_device_info(dev_priv);
 997         unsigned int logical_vdbox = 0;
 998         unsigned int i;
 999         u32 media_fuse;
1000         u16 vdbox_mask;
1001         u16 vebox_mask;
1002 
1003         if (INTEL_GEN(dev_priv) < 11)
1004                 return;
1005 
1006         media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1007 
1008         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1009         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1010                       GEN11_GT_VEBOX_DISABLE_SHIFT;
1011 
1012         for (i = 0; i < I915_MAX_VCS; i++) {
1013                 if (!HAS_ENGINE(dev_priv, _VCS(i)))
1014                         continue;
1015 
1016                 if (!(BIT(i) & vdbox_mask)) {
1017                         info->engine_mask &= ~BIT(_VCS(i));
1018                         DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
1019                         continue;
1020                 }
1021 
1022                 /*
1023                  * In Gen11, only even numbered logical VDBOXes are
1024                  * hooked up to an SFC (Scaler & Format Converter) unit.
1025                  * In TGL each VDBOX has access to an SFC.
1026                  */
1027                 if (IS_TIGERLAKE(dev_priv) || logical_vdbox++ % 2 == 0)
1028                         RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1029         }
1030         DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
1031                          vdbox_mask, VDBOX_MASK(dev_priv));
1032         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1033 
1034         for (i = 0; i < I915_MAX_VECS; i++) {
1035                 if (!HAS_ENGINE(dev_priv, _VECS(i)))
1036                         continue;
1037 
1038                 if (!(BIT(i) & vebox_mask)) {
1039                         info->engine_mask &= ~BIT(_VECS(i));
1040                         DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
1041                 }
1042         }
1043         DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
1044                          vebox_mask, VEBOX_MASK(dev_priv));
1045         GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1046 }

/* [<][>][^][v][top][bottom][index][help] */