root/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk104.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. read_vco
  2. read_pll
  3. read_div
  4. read_mem
  5. read_clk
  6. gk104_clk_read
  7. calc_div
  8. calc_src
  9. calc_pll
  10. calc_clk
  11. gk104_clk_calc
  12. gk104_clk_prog_0
  13. gk104_clk_prog_1_0
  14. gk104_clk_prog_1_1
  15. gk104_clk_prog_2
  16. gk104_clk_prog_3
  17. gk104_clk_prog_4_0
  18. gk104_clk_prog_4_1
  19. gk104_clk_prog
  20. gk104_clk_tidy
  21. gk104_clk_new

   1 /*
   2  * Copyright 2013 Red Hat Inc.
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice shall be included in
  12  * all copies or substantial portions of the Software.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20  * OTHER DEALINGS IN THE SOFTWARE.
  21  *
  22  * Authors: Ben Skeggs
  23  */
  24 #define gk104_clk(p) container_of((p), struct gk104_clk, base)
  25 #include "priv.h"
  26 #include "pll.h"
  27 
  28 #include <subdev/timer.h>
  29 #include <subdev/bios.h>
  30 #include <subdev/bios/pll.h>
  31 
  32 struct gk104_clk_info {
  33         u32 freq;
  34         u32 ssel;
  35         u32 mdiv;
  36         u32 dsrc;
  37         u32 ddiv;
  38         u32 coef;
  39 };
  40 
  41 struct gk104_clk {
  42         struct nvkm_clk base;
  43         struct gk104_clk_info eng[16];
  44 };
  45 
  46 static u32 read_div(struct gk104_clk *, int, u32, u32);
  47 static u32 read_pll(struct gk104_clk *, u32);
  48 
  49 static u32
  50 read_vco(struct gk104_clk *clk, u32 dsrc)
  51 {
  52         struct nvkm_device *device = clk->base.subdev.device;
  53         u32 ssrc = nvkm_rd32(device, dsrc);
  54         if (!(ssrc & 0x00000100))
  55                 return read_pll(clk, 0x00e800);
  56         return read_pll(clk, 0x00e820);
  57 }
  58 
  59 static u32
  60 read_pll(struct gk104_clk *clk, u32 pll)
  61 {
  62         struct nvkm_device *device = clk->base.subdev.device;
  63         u32 ctrl = nvkm_rd32(device, pll + 0x00);
  64         u32 coef = nvkm_rd32(device, pll + 0x04);
  65         u32 P = (coef & 0x003f0000) >> 16;
  66         u32 N = (coef & 0x0000ff00) >> 8;
  67         u32 M = (coef & 0x000000ff) >> 0;
  68         u32 sclk;
  69         u16 fN = 0xf000;
  70 
  71         if (!(ctrl & 0x00000001))
  72                 return 0;
  73 
  74         switch (pll) {
  75         case 0x00e800:
  76         case 0x00e820:
  77                 sclk = device->crystal;
  78                 P = 1;
  79                 break;
  80         case 0x132000:
  81                 sclk = read_pll(clk, 0x132020);
  82                 P = (coef & 0x10000000) ? 2 : 1;
  83                 break;
  84         case 0x132020:
  85                 sclk = read_div(clk, 0, 0x137320, 0x137330);
  86                 fN   = nvkm_rd32(device, pll + 0x10) >> 16;
  87                 break;
  88         case 0x137000:
  89         case 0x137020:
  90         case 0x137040:
  91         case 0x1370e0:
  92                 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
  93                 break;
  94         default:
  95                 return 0;
  96         }
  97 
  98         if (P == 0)
  99                 P = 1;
 100 
 101         sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13);
 102         return sclk / (M * P);
 103 }
 104 
 105 static u32
 106 read_div(struct gk104_clk *clk, int doff, u32 dsrc, u32 dctl)
 107 {
 108         struct nvkm_device *device = clk->base.subdev.device;
 109         u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
 110         u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
 111 
 112         switch (ssrc & 0x00000003) {
 113         case 0:
 114                 if ((ssrc & 0x00030000) != 0x00030000)
 115                         return device->crystal;
 116                 return 108000;
 117         case 2:
 118                 return 100000;
 119         case 3:
 120                 if (sctl & 0x80000000) {
 121                         u32 sclk = read_vco(clk, dsrc + (doff * 4));
 122                         u32 sdiv = (sctl & 0x0000003f) + 2;
 123                         return (sclk * 2) / sdiv;
 124                 }
 125 
 126                 return read_vco(clk, dsrc + (doff * 4));
 127         default:
 128                 return 0;
 129         }
 130 }
 131 
 132 static u32
 133 read_mem(struct gk104_clk *clk)
 134 {
 135         struct nvkm_device *device = clk->base.subdev.device;
 136         switch (nvkm_rd32(device, 0x1373f4) & 0x0000000f) {
 137         case 1: return read_pll(clk, 0x132020);
 138         case 2: return read_pll(clk, 0x132000);
 139         default:
 140                 return 0;
 141         }
 142 }
 143 
 144 static u32
 145 read_clk(struct gk104_clk *clk, int idx)
 146 {
 147         struct nvkm_device *device = clk->base.subdev.device;
 148         u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
 149         u32 sclk, sdiv;
 150 
 151         if (idx < 7) {
 152                 u32 ssel = nvkm_rd32(device, 0x137100);
 153                 if (ssel & (1 << idx)) {
 154                         sclk = read_pll(clk, 0x137000 + (idx * 0x20));
 155                         sdiv = 1;
 156                 } else {
 157                         sclk = read_div(clk, idx, 0x137160, 0x1371d0);
 158                         sdiv = 0;
 159                 }
 160         } else {
 161                 u32 ssrc = nvkm_rd32(device, 0x137160 + (idx * 0x04));
 162                 if ((ssrc & 0x00000003) == 0x00000003) {
 163                         sclk = read_div(clk, idx, 0x137160, 0x1371d0);
 164                         if (ssrc & 0x00000100) {
 165                                 if (ssrc & 0x40000000)
 166                                         sclk = read_pll(clk, 0x1370e0);
 167                                 sdiv = 1;
 168                         } else {
 169                                 sdiv = 0;
 170                         }
 171                 } else {
 172                         sclk = read_div(clk, idx, 0x137160, 0x1371d0);
 173                         sdiv = 0;
 174                 }
 175         }
 176 
 177         if (sctl & 0x80000000) {
 178                 if (sdiv)
 179                         sdiv = ((sctl & 0x00003f00) >> 8) + 2;
 180                 else
 181                         sdiv = ((sctl & 0x0000003f) >> 0) + 2;
 182                 return (sclk * 2) / sdiv;
 183         }
 184 
 185         return sclk;
 186 }
 187 
 188 static int
 189 gk104_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
 190 {
 191         struct gk104_clk *clk = gk104_clk(base);
 192         struct nvkm_subdev *subdev = &clk->base.subdev;
 193         struct nvkm_device *device = subdev->device;
 194 
 195         switch (src) {
 196         case nv_clk_src_crystal:
 197                 return device->crystal;
 198         case nv_clk_src_href:
 199                 return 100000;
 200         case nv_clk_src_mem:
 201                 return read_mem(clk);
 202         case nv_clk_src_gpc:
 203                 return read_clk(clk, 0x00);
 204         case nv_clk_src_rop:
 205                 return read_clk(clk, 0x01);
 206         case nv_clk_src_hubk07:
 207                 return read_clk(clk, 0x02);
 208         case nv_clk_src_hubk06:
 209                 return read_clk(clk, 0x07);
 210         case nv_clk_src_hubk01:
 211                 return read_clk(clk, 0x08);
 212         case nv_clk_src_pmu:
 213                 return read_clk(clk, 0x0c);
 214         case nv_clk_src_vdec:
 215                 return read_clk(clk, 0x0e);
 216         default:
 217                 nvkm_error(subdev, "invalid clock source %d\n", src);
 218                 return -EINVAL;
 219         }
 220 }
 221 
 222 static u32
 223 calc_div(struct gk104_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
 224 {
 225         u32 div = min((ref * 2) / freq, (u32)65);
 226         if (div < 2)
 227                 div = 2;
 228 
 229         *ddiv = div - 2;
 230         return (ref * 2) / div;
 231 }
 232 
 233 static u32
 234 calc_src(struct gk104_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
 235 {
 236         u32 sclk;
 237 
 238         /* use one of the fixed frequencies if possible */
 239         *ddiv = 0x00000000;
 240         switch (freq) {
 241         case  27000:
 242         case 108000:
 243                 *dsrc = 0x00000000;
 244                 if (freq == 108000)
 245                         *dsrc |= 0x00030000;
 246                 return freq;
 247         case 100000:
 248                 *dsrc = 0x00000002;
 249                 return freq;
 250         default:
 251                 *dsrc = 0x00000003;
 252                 break;
 253         }
 254 
 255         /* otherwise, calculate the closest divider */
 256         sclk = read_vco(clk, 0x137160 + (idx * 4));
 257         if (idx < 7)
 258                 sclk = calc_div(clk, idx, sclk, freq, ddiv);
 259         return sclk;
 260 }
 261 
 262 static u32
 263 calc_pll(struct gk104_clk *clk, int idx, u32 freq, u32 *coef)
 264 {
 265         struct nvkm_subdev *subdev = &clk->base.subdev;
 266         struct nvkm_bios *bios = subdev->device->bios;
 267         struct nvbios_pll limits;
 268         int N, M, P, ret;
 269 
 270         ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
 271         if (ret)
 272                 return 0;
 273 
 274         limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
 275         if (!limits.refclk)
 276                 return 0;
 277 
 278         ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
 279         if (ret <= 0)
 280                 return 0;
 281 
 282         *coef = (P << 16) | (N << 8) | M;
 283         return ret;
 284 }
 285 
 286 static int
 287 calc_clk(struct gk104_clk *clk,
 288          struct nvkm_cstate *cstate, int idx, int dom)
 289 {
 290         struct gk104_clk_info *info = &clk->eng[idx];
 291         u32 freq = cstate->domain[dom];
 292         u32 src0, div0, div1D, div1P = 0;
 293         u32 clk0, clk1 = 0;
 294 
 295         /* invalid clock domain */
 296         if (!freq)
 297                 return 0;
 298 
 299         /* first possible path, using only dividers */
 300         clk0 = calc_src(clk, idx, freq, &src0, &div0);
 301         clk0 = calc_div(clk, idx, clk0, freq, &div1D);
 302 
 303         /* see if we can get any closer using PLLs */
 304         if (clk0 != freq && (0x0000ff87 & (1 << idx))) {
 305                 if (idx <= 7)
 306                         clk1 = calc_pll(clk, idx, freq, &info->coef);
 307                 else
 308                         clk1 = cstate->domain[nv_clk_src_hubk06];
 309                 clk1 = calc_div(clk, idx, clk1, freq, &div1P);
 310         }
 311 
 312         /* select the method which gets closest to target freq */
 313         if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
 314                 info->dsrc = src0;
 315                 if (div0) {
 316                         info->ddiv |= 0x80000000;
 317                         info->ddiv |= div0;
 318                 }
 319                 if (div1D) {
 320                         info->mdiv |= 0x80000000;
 321                         info->mdiv |= div1D;
 322                 }
 323                 info->ssel = 0;
 324                 info->freq = clk0;
 325         } else {
 326                 if (div1P) {
 327                         info->mdiv |= 0x80000000;
 328                         info->mdiv |= div1P << 8;
 329                 }
 330                 info->ssel = (1 << idx);
 331                 info->dsrc = 0x40000100;
 332                 info->freq = clk1;
 333         }
 334 
 335         return 0;
 336 }
 337 
 338 static int
 339 gk104_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
 340 {
 341         struct gk104_clk *clk = gk104_clk(base);
 342         int ret;
 343 
 344         if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
 345             (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
 346             (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
 347             (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
 348             (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
 349             (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
 350             (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
 351                 return ret;
 352 
 353         return 0;
 354 }
 355 
 356 static void
 357 gk104_clk_prog_0(struct gk104_clk *clk, int idx)
 358 {
 359         struct gk104_clk_info *info = &clk->eng[idx];
 360         struct nvkm_device *device = clk->base.subdev.device;
 361         if (!info->ssel) {
 362                 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x8000003f, info->ddiv);
 363                 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
 364         }
 365 }
 366 
 367 static void
 368 gk104_clk_prog_1_0(struct gk104_clk *clk, int idx)
 369 {
 370         struct nvkm_device *device = clk->base.subdev.device;
 371         nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
 372         nvkm_msec(device, 2000,
 373                 if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
 374                         break;
 375         );
 376 }
 377 
 378 static void
 379 gk104_clk_prog_1_1(struct gk104_clk *clk, int idx)
 380 {
 381         struct nvkm_device *device = clk->base.subdev.device;
 382         nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000000);
 383 }
 384 
 385 static void
 386 gk104_clk_prog_2(struct gk104_clk *clk, int idx)
 387 {
 388         struct gk104_clk_info *info = &clk->eng[idx];
 389         struct nvkm_device *device = clk->base.subdev.device;
 390         const u32 addr = 0x137000 + (idx * 0x20);
 391         nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
 392         nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
 393         if (info->coef) {
 394                 nvkm_wr32(device, addr + 0x04, info->coef);
 395                 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
 396 
 397                 /* Test PLL lock */
 398                 nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
 399                 nvkm_msec(device, 2000,
 400                         if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
 401                                 break;
 402                 );
 403                 nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
 404 
 405                 /* Enable sync mode */
 406                 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
 407         }
 408 }
 409 
 410 static void
 411 gk104_clk_prog_3(struct gk104_clk *clk, int idx)
 412 {
 413         struct gk104_clk_info *info = &clk->eng[idx];
 414         struct nvkm_device *device = clk->base.subdev.device;
 415         if (info->ssel)
 416                 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f00, info->mdiv);
 417         else
 418                 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x0000003f, info->mdiv);
 419 }
 420 
 421 static void
 422 gk104_clk_prog_4_0(struct gk104_clk *clk, int idx)
 423 {
 424         struct gk104_clk_info *info = &clk->eng[idx];
 425         struct nvkm_device *device = clk->base.subdev.device;
 426         if (info->ssel) {
 427                 nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
 428                 nvkm_msec(device, 2000,
 429                         u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
 430                         if (tmp == info->ssel)
 431                                 break;
 432                 );
 433         }
 434 }
 435 
 436 static void
 437 gk104_clk_prog_4_1(struct gk104_clk *clk, int idx)
 438 {
 439         struct gk104_clk_info *info = &clk->eng[idx];
 440         struct nvkm_device *device = clk->base.subdev.device;
 441         if (info->ssel) {
 442                 nvkm_mask(device, 0x137160 + (idx * 0x04), 0x40000000, 0x40000000);
 443                 nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000100);
 444         }
 445 }
 446 
 447 static int
 448 gk104_clk_prog(struct nvkm_clk *base)
 449 {
 450         struct gk104_clk *clk = gk104_clk(base);
 451         struct {
 452                 u32 mask;
 453                 void (*exec)(struct gk104_clk *, int);
 454         } stage[] = {
 455                 { 0x007f, gk104_clk_prog_0   }, /* div programming */
 456                 { 0x007f, gk104_clk_prog_1_0 }, /* select div mode */
 457                 { 0xff80, gk104_clk_prog_1_1 },
 458                 { 0x00ff, gk104_clk_prog_2   }, /* (maybe) program pll */
 459                 { 0xff80, gk104_clk_prog_3   }, /* final divider */
 460                 { 0x007f, gk104_clk_prog_4_0 }, /* (maybe) select pll mode */
 461                 { 0xff80, gk104_clk_prog_4_1 },
 462         };
 463         int i, j;
 464 
 465         for (i = 0; i < ARRAY_SIZE(stage); i++) {
 466                 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
 467                         if (!(stage[i].mask & (1 << j)))
 468                                 continue;
 469                         if (!clk->eng[j].freq)
 470                                 continue;
 471                         stage[i].exec(clk, j);
 472                 }
 473         }
 474 
 475         return 0;
 476 }
 477 
 478 static void
 479 gk104_clk_tidy(struct nvkm_clk *base)
 480 {
 481         struct gk104_clk *clk = gk104_clk(base);
 482         memset(clk->eng, 0x00, sizeof(clk->eng));
 483 }
 484 
 485 static const struct nvkm_clk_func
 486 gk104_clk = {
 487         .read = gk104_clk_read,
 488         .calc = gk104_clk_calc,
 489         .prog = gk104_clk_prog,
 490         .tidy = gk104_clk_tidy,
 491         .domains = {
 492                 { nv_clk_src_crystal, 0xff },
 493                 { nv_clk_src_href   , 0xff },
 494                 { nv_clk_src_gpc    , 0x00, NVKM_CLK_DOM_FLAG_CORE | NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
 495                 { nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE },
 496                 { nv_clk_src_rop    , 0x02, NVKM_CLK_DOM_FLAG_CORE },
 497                 { nv_clk_src_mem    , 0x03, 0, "memory", 500 },
 498                 { nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE },
 499                 { nv_clk_src_hubk01 , 0x05 },
 500                 { nv_clk_src_vdec   , 0x06 },
 501                 { nv_clk_src_pmu    , 0x07 },
 502                 { nv_clk_src_max }
 503         }
 504 };
 505 
 506 int
 507 gk104_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
 508 {
 509         struct gk104_clk *clk;
 510 
 511         if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
 512                 return -ENOMEM;
 513         *pclk = &clk->base;
 514 
 515         return nvkm_clk_ctor(&gk104_clk, device, index, true, &clk->base);
 516 }

/* [<][>][^][v][top][bottom][index][help] */