root/drivers/gpu/drm/nouveau/nvkm/engine/gr/gf100.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. gf100_gr_zbc_clear_color
  2. gf100_gr_zbc_color_get
  3. gf100_gr_zbc_clear_depth
  4. gf100_gr_zbc_depth_get
  5. gf100_fermi_mthd_zbc_color
  6. gf100_fermi_mthd_zbc_depth
  7. gf100_fermi_mthd
  8. gf100_gr_mthd_set_shader_exceptions
  9. gf100_gr_mthd_sw
  10. gf100_gr_object_new
  11. gf100_gr_object_get
  12. gf100_gr_chan_bind
  13. gf100_gr_chan_dtor
  14. gf100_gr_chan_new
  15. gf100_gr_ctxsw_inst
  16. gf100_gr_fecs_ctrl_ctxsw
  17. gf100_gr_fecs_start_ctxsw
  18. gf100_gr_fecs_stop_ctxsw
  19. gf100_gr_fecs_bind_pointer
  20. gf100_gr_fecs_set_reglist_virtual_address
  21. gf100_gr_fecs_set_reglist_bind_instance
  22. gf100_gr_fecs_discover_reglist_image_size
  23. gf100_gr_fecs_elpg_bind
  24. gf100_gr_fecs_discover_pm_image_size
  25. gf100_gr_fecs_discover_zcull_image_size
  26. gf100_gr_fecs_discover_image_size
  27. gf100_gr_fecs_set_watchdog_timeout
  28. gf100_gr_chsw_load
  29. gf100_gr_rops
  30. gf100_gr_zbc_init
  31. gf100_gr_wait_idle
  32. gf100_gr_mmio
  33. gf100_gr_icmd
  34. gf100_gr_mthd
  35. gf100_gr_units
  36. gf100_gr_trap_gpc_rop
  37. gf100_gr_trap_mp
  38. gf100_gr_trap_tpc
  39. gf100_gr_trap_gpc
  40. gf100_gr_trap_intr
  41. gf100_gr_ctxctl_debug_unit
  42. gf100_gr_ctxctl_debug
  43. gf100_gr_ctxctl_isr
  44. gf100_gr_intr
  45. gf100_gr_init_fw
  46. gf100_gr_init_csdata
  47. gf100_gr_init_ctxctl_ext
  48. gf100_gr_init_ctxctl_int
  49. gf100_gr_init_ctxctl
  50. gf100_gr_oneinit_sm_id
  51. gf100_gr_oneinit_tiles
  52. gf100_gr_oneinit
  53. gf100_gr_init_
  54. gf100_gr_fini_
  55. gf100_gr_dtor_fw
  56. gf100_gr_dtor_init
  57. gf100_gr_dtor
  58. gf100_gr_ctor_fw_legacy
  59. gf100_gr_ctor_fw
  60. gf100_gr_ctor
  61. gf100_gr_new_
  62. gf100_gr_init_400054
  63. gf100_gr_init_shader_exceptions
  64. gf100_gr_init_tex_hww_esr
  65. gf100_gr_init_419eb4
  66. gf100_gr_init_419cc0
  67. gf100_gr_init_40601c
  68. gf100_gr_init_fecs_exceptions
  69. gf100_gr_init_gpc_mmu
  70. gf100_gr_init_num_active_ltcs
  71. gf100_gr_init_zcull
  72. gf100_gr_init_vsc_stream_master
  73. gf100_gr_init
  74. gf100_gr_new

   1 /*
   2  * Copyright 2012 Red Hat Inc.
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice shall be included in
  12  * all copies or substantial portions of the Software.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20  * OTHER DEALINGS IN THE SOFTWARE.
  21  *
  22  * Authors: Ben Skeggs
  23  */
  24 #include "gf100.h"
  25 #include "ctxgf100.h"
  26 #include "fuc/os.h"
  27 
  28 #include <core/client.h>
  29 #include <core/option.h>
  30 #include <core/firmware.h>
  31 #include <subdev/secboot.h>
  32 #include <subdev/fb.h>
  33 #include <subdev/mc.h>
  34 #include <subdev/pmu.h>
  35 #include <subdev/therm.h>
  36 #include <subdev/timer.h>
  37 #include <engine/fifo.h>
  38 
  39 #include <nvif/class.h>
  40 #include <nvif/cl9097.h>
  41 #include <nvif/if900d.h>
  42 #include <nvif/unpack.h>
  43 
  44 /*******************************************************************************
  45  * Zero Bandwidth Clear
  46  ******************************************************************************/
  47 
  48 static void
  49 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
  50 {
  51         struct nvkm_device *device = gr->base.engine.subdev.device;
  52         if (gr->zbc_color[zbc].format) {
  53                 nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
  54                 nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
  55                 nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
  56                 nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
  57         }
  58         nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
  59         nvkm_wr32(device, 0x405820, zbc);
  60         nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
  61 }
  62 
  63 static int
  64 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
  65                        const u32 ds[4], const u32 l2[4])
  66 {
  67         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
  68         int zbc = -ENOSPC, i;
  69 
  70         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
  71                 if (gr->zbc_color[i].format) {
  72                         if (gr->zbc_color[i].format != format)
  73                                 continue;
  74                         if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
  75                                    gr->zbc_color[i].ds)))
  76                                 continue;
  77                         if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
  78                                    gr->zbc_color[i].l2))) {
  79                                 WARN_ON(1);
  80                                 return -EINVAL;
  81                         }
  82                         return i;
  83                 } else {
  84                         zbc = (zbc < 0) ? i : zbc;
  85                 }
  86         }
  87 
  88         if (zbc < 0)
  89                 return zbc;
  90 
  91         memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
  92         memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
  93         gr->zbc_color[zbc].format = format;
  94         nvkm_ltc_zbc_color_get(ltc, zbc, l2);
  95         gr->func->zbc->clear_color(gr, zbc);
  96         return zbc;
  97 }
  98 
  99 static void
 100 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
 101 {
 102         struct nvkm_device *device = gr->base.engine.subdev.device;
 103         if (gr->zbc_depth[zbc].format)
 104                 nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
 105         nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
 106         nvkm_wr32(device, 0x405820, zbc);
 107         nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
 108 }
 109 
 110 static int
 111 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
 112                        const u32 ds, const u32 l2)
 113 {
 114         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
 115         int zbc = -ENOSPC, i;
 116 
 117         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
 118                 if (gr->zbc_depth[i].format) {
 119                         if (gr->zbc_depth[i].format != format)
 120                                 continue;
 121                         if (gr->zbc_depth[i].ds != ds)
 122                                 continue;
 123                         if (gr->zbc_depth[i].l2 != l2) {
 124                                 WARN_ON(1);
 125                                 return -EINVAL;
 126                         }
 127                         return i;
 128                 } else {
 129                         zbc = (zbc < 0) ? i : zbc;
 130                 }
 131         }
 132 
 133         if (zbc < 0)
 134                 return zbc;
 135 
 136         gr->zbc_depth[zbc].format = format;
 137         gr->zbc_depth[zbc].ds = ds;
 138         gr->zbc_depth[zbc].l2 = l2;
 139         nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
 140         gr->func->zbc->clear_depth(gr, zbc);
 141         return zbc;
 142 }
 143 
 144 const struct gf100_gr_func_zbc
 145 gf100_gr_zbc = {
 146         .clear_color = gf100_gr_zbc_clear_color,
 147         .clear_depth = gf100_gr_zbc_clear_depth,
 148 };
 149 
 150 /*******************************************************************************
 151  * Graphics object classes
 152  ******************************************************************************/
 153 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
 154 
 155 struct gf100_gr_object {
 156         struct nvkm_object object;
 157         struct gf100_gr_chan *chan;
 158 };
 159 
 160 static int
 161 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
 162 {
 163         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
 164         union {
 165                 struct fermi_a_zbc_color_v0 v0;
 166         } *args = data;
 167         int ret = -ENOSYS;
 168 
 169         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
 170                 switch (args->v0.format) {
 171                 case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
 172                 case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
 173                 case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
 174                 case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
 175                 case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
 176                 case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
 177                 case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
 178                 case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
 179                 case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
 180                 case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
 181                 case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
 182                 case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
 183                 case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
 184                 case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
 185                 case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
 186                 case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
 187                 case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
 188                 case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
 189                 case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
 190                         ret = gf100_gr_zbc_color_get(gr, args->v0.format,
 191                                                            args->v0.ds,
 192                                                            args->v0.l2);
 193                         if (ret >= 0) {
 194                                 args->v0.index = ret;
 195                                 return 0;
 196                         }
 197                         break;
 198                 default:
 199                         return -EINVAL;
 200                 }
 201         }
 202 
 203         return ret;
 204 }
 205 
 206 static int
 207 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
 208 {
 209         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
 210         union {
 211                 struct fermi_a_zbc_depth_v0 v0;
 212         } *args = data;
 213         int ret = -ENOSYS;
 214 
 215         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
 216                 switch (args->v0.format) {
 217                 case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
 218                         ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
 219                                                            args->v0.ds,
 220                                                            args->v0.l2);
 221                         return (ret >= 0) ? 0 : -ENOSPC;
 222                 default:
 223                         return -EINVAL;
 224                 }
 225         }
 226 
 227         return ret;
 228 }
 229 
 230 static int
 231 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
 232 {
 233         nvif_ioctl(object, "fermi mthd %08x\n", mthd);
 234         switch (mthd) {
 235         case FERMI_A_ZBC_COLOR:
 236                 return gf100_fermi_mthd_zbc_color(object, data, size);
 237         case FERMI_A_ZBC_DEPTH:
 238                 return gf100_fermi_mthd_zbc_depth(object, data, size);
 239         default:
 240                 break;
 241         }
 242         return -EINVAL;
 243 }
 244 
 245 const struct nvkm_object_func
 246 gf100_fermi = {
 247         .mthd = gf100_fermi_mthd,
 248 };
 249 
 250 static void
 251 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
 252 {
 253         nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
 254         nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
 255 }
 256 
 257 static bool
 258 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
 259 {
 260         switch (class & 0x00ff) {
 261         case 0x97:
 262         case 0xc0:
 263                 switch (mthd) {
 264                 case 0x1528:
 265                         gf100_gr_mthd_set_shader_exceptions(device, data);
 266                         return true;
 267                 default:
 268                         break;
 269                 }
 270                 break;
 271         default:
 272                 break;
 273         }
 274         return false;
 275 }
 276 
 277 static const struct nvkm_object_func
 278 gf100_gr_object_func = {
 279 };
 280 
 281 static int
 282 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
 283                     struct nvkm_object **pobject)
 284 {
 285         struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
 286         struct gf100_gr_object *object;
 287 
 288         if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
 289                 return -ENOMEM;
 290         *pobject = &object->object;
 291 
 292         nvkm_object_ctor(oclass->base.func ? oclass->base.func :
 293                          &gf100_gr_object_func, oclass, &object->object);
 294         object->chan = chan;
 295         return 0;
 296 }
 297 
 298 static int
 299 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
 300 {
 301         struct gf100_gr *gr = gf100_gr(base);
 302         int c = 0;
 303 
 304         while (gr->func->sclass[c].oclass) {
 305                 if (c++ == index) {
 306                         *sclass = gr->func->sclass[index];
 307                         sclass->ctor = gf100_gr_object_new;
 308                         return index;
 309                 }
 310         }
 311 
 312         return c;
 313 }
 314 
 315 /*******************************************************************************
 316  * PGRAPH context
 317  ******************************************************************************/
 318 
 319 static int
 320 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
 321                    int align, struct nvkm_gpuobj **pgpuobj)
 322 {
 323         struct gf100_gr_chan *chan = gf100_gr_chan(object);
 324         struct gf100_gr *gr = chan->gr;
 325         int ret, i;
 326 
 327         ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
 328                               align, false, parent, pgpuobj);
 329         if (ret)
 330                 return ret;
 331 
 332         nvkm_kmap(*pgpuobj);
 333         for (i = 0; i < gr->size; i += 4)
 334                 nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
 335 
 336         if (!gr->firmware) {
 337                 nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
 338                 nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
 339         } else {
 340                 nvkm_wo32(*pgpuobj, 0xf4, 0);
 341                 nvkm_wo32(*pgpuobj, 0xf8, 0);
 342                 nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
 343                 nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
 344                 nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
 345                 nvkm_wo32(*pgpuobj, 0x1c, 1);
 346                 nvkm_wo32(*pgpuobj, 0x20, 0);
 347                 nvkm_wo32(*pgpuobj, 0x28, 0);
 348                 nvkm_wo32(*pgpuobj, 0x2c, 0);
 349         }
 350         nvkm_done(*pgpuobj);
 351         return 0;
 352 }
 353 
 354 static void *
 355 gf100_gr_chan_dtor(struct nvkm_object *object)
 356 {
 357         struct gf100_gr_chan *chan = gf100_gr_chan(object);
 358         int i;
 359 
 360         for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
 361                 nvkm_vmm_put(chan->vmm, &chan->data[i].vma);
 362                 nvkm_memory_unref(&chan->data[i].mem);
 363         }
 364 
 365         nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
 366         nvkm_memory_unref(&chan->mmio);
 367         nvkm_vmm_unref(&chan->vmm);
 368         return chan;
 369 }
 370 
 371 static const struct nvkm_object_func
 372 gf100_gr_chan = {
 373         .dtor = gf100_gr_chan_dtor,
 374         .bind = gf100_gr_chan_bind,
 375 };
 376 
 377 static int
 378 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
 379                   const struct nvkm_oclass *oclass,
 380                   struct nvkm_object **pobject)
 381 {
 382         struct gf100_gr *gr = gf100_gr(base);
 383         struct gf100_gr_data *data = gr->mmio_data;
 384         struct gf100_gr_mmio *mmio = gr->mmio_list;
 385         struct gf100_gr_chan *chan;
 386         struct gf100_vmm_map_v0 args = { .priv = 1 };
 387         struct nvkm_device *device = gr->base.engine.subdev.device;
 388         int ret, i;
 389 
 390         if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
 391                 return -ENOMEM;
 392         nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
 393         chan->gr = gr;
 394         chan->vmm = nvkm_vmm_ref(fifoch->vmm);
 395         *pobject = &chan->object;
 396 
 397         /* allocate memory for a "mmio list" buffer that's used by the HUB
 398          * fuc to modify some per-context register settings on first load
 399          * of the context.
 400          */
 401         ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
 402                               false, &chan->mmio);
 403         if (ret)
 404                 return ret;
 405 
 406         ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
 407         if (ret)
 408                 return ret;
 409 
 410         ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
 411                               chan->mmio_vma, &args, sizeof(args));
 412         if (ret)
 413                 return ret;
 414 
 415         /* allocate buffers referenced by mmio list */
 416         for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
 417                 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
 418                                       data->size, data->align, false,
 419                                       &chan->data[i].mem);
 420                 if (ret)
 421                         return ret;
 422 
 423                 ret = nvkm_vmm_get(fifoch->vmm, 12,
 424                                    nvkm_memory_size(chan->data[i].mem),
 425                                    &chan->data[i].vma);
 426                 if (ret)
 427                         return ret;
 428 
 429                 args.priv = data->priv;
 430 
 431                 ret = nvkm_memory_map(chan->data[i].mem, 0, chan->vmm,
 432                                       chan->data[i].vma, &args, sizeof(args));
 433                 if (ret)
 434                         return ret;
 435 
 436                 data++;
 437         }
 438 
 439         /* finally, fill in the mmio list and point the context at it */
 440         nvkm_kmap(chan->mmio);
 441         for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
 442                 u32 addr = mmio->addr;
 443                 u32 data = mmio->data;
 444 
 445                 if (mmio->buffer >= 0) {
 446                         u64 info = chan->data[mmio->buffer].vma->addr;
 447                         data |= info >> mmio->shift;
 448                 }
 449 
 450                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
 451                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
 452                 mmio++;
 453         }
 454         nvkm_done(chan->mmio);
 455         return 0;
 456 }
 457 
 458 /*******************************************************************************
 459  * PGRAPH register lists
 460  ******************************************************************************/
 461 
 462 const struct gf100_gr_init
 463 gf100_gr_init_main_0[] = {
 464         { 0x400080,   1, 0x04, 0x003083c2 },
 465         { 0x400088,   1, 0x04, 0x00006fe7 },
 466         { 0x40008c,   1, 0x04, 0x00000000 },
 467         { 0x400090,   1, 0x04, 0x00000030 },
 468         { 0x40013c,   1, 0x04, 0x013901f7 },
 469         { 0x400140,   1, 0x04, 0x00000100 },
 470         { 0x400144,   1, 0x04, 0x00000000 },
 471         { 0x400148,   1, 0x04, 0x00000110 },
 472         { 0x400138,   1, 0x04, 0x00000000 },
 473         { 0x400130,   2, 0x04, 0x00000000 },
 474         { 0x400124,   1, 0x04, 0x00000002 },
 475         {}
 476 };
 477 
 478 const struct gf100_gr_init
 479 gf100_gr_init_fe_0[] = {
 480         { 0x40415c,   1, 0x04, 0x00000000 },
 481         { 0x404170,   1, 0x04, 0x00000000 },
 482         {}
 483 };
 484 
 485 const struct gf100_gr_init
 486 gf100_gr_init_pri_0[] = {
 487         { 0x404488,   2, 0x04, 0x00000000 },
 488         {}
 489 };
 490 
 491 const struct gf100_gr_init
 492 gf100_gr_init_rstr2d_0[] = {
 493         { 0x407808,   1, 0x04, 0x00000000 },
 494         {}
 495 };
 496 
 497 const struct gf100_gr_init
 498 gf100_gr_init_pd_0[] = {
 499         { 0x406024,   1, 0x04, 0x00000000 },
 500         {}
 501 };
 502 
 503 const struct gf100_gr_init
 504 gf100_gr_init_ds_0[] = {
 505         { 0x405844,   1, 0x04, 0x00ffffff },
 506         { 0x405850,   1, 0x04, 0x00000000 },
 507         { 0x405908,   1, 0x04, 0x00000000 },
 508         {}
 509 };
 510 
 511 const struct gf100_gr_init
 512 gf100_gr_init_scc_0[] = {
 513         { 0x40803c,   1, 0x04, 0x00000000 },
 514         {}
 515 };
 516 
 517 const struct gf100_gr_init
 518 gf100_gr_init_prop_0[] = {
 519         { 0x4184a0,   1, 0x04, 0x00000000 },
 520         {}
 521 };
 522 
 523 const struct gf100_gr_init
 524 gf100_gr_init_gpc_unk_0[] = {
 525         { 0x418604,   1, 0x04, 0x00000000 },
 526         { 0x418680,   1, 0x04, 0x00000000 },
 527         { 0x418714,   1, 0x04, 0x80000000 },
 528         { 0x418384,   1, 0x04, 0x00000000 },
 529         {}
 530 };
 531 
 532 const struct gf100_gr_init
 533 gf100_gr_init_setup_0[] = {
 534         { 0x418814,   3, 0x04, 0x00000000 },
 535         {}
 536 };
 537 
 538 const struct gf100_gr_init
 539 gf100_gr_init_crstr_0[] = {
 540         { 0x418b04,   1, 0x04, 0x00000000 },
 541         {}
 542 };
 543 
 544 const struct gf100_gr_init
 545 gf100_gr_init_setup_1[] = {
 546         { 0x4188c8,   1, 0x04, 0x80000000 },
 547         { 0x4188cc,   1, 0x04, 0x00000000 },
 548         { 0x4188d0,   1, 0x04, 0x00010000 },
 549         { 0x4188d4,   1, 0x04, 0x00000001 },
 550         {}
 551 };
 552 
 553 const struct gf100_gr_init
 554 gf100_gr_init_zcull_0[] = {
 555         { 0x418910,   1, 0x04, 0x00010001 },
 556         { 0x418914,   1, 0x04, 0x00000301 },
 557         { 0x418918,   1, 0x04, 0x00800000 },
 558         { 0x418980,   1, 0x04, 0x77777770 },
 559         { 0x418984,   3, 0x04, 0x77777777 },
 560         {}
 561 };
 562 
 563 const struct gf100_gr_init
 564 gf100_gr_init_gpm_0[] = {
 565         { 0x418c04,   1, 0x04, 0x00000000 },
 566         { 0x418c88,   1, 0x04, 0x00000000 },
 567         {}
 568 };
 569 
 570 const struct gf100_gr_init
 571 gf100_gr_init_gpc_unk_1[] = {
 572         { 0x418d00,   1, 0x04, 0x00000000 },
 573         { 0x418f08,   1, 0x04, 0x00000000 },
 574         { 0x418e00,   1, 0x04, 0x00000050 },
 575         { 0x418e08,   1, 0x04, 0x00000000 },
 576         {}
 577 };
 578 
 579 const struct gf100_gr_init
 580 gf100_gr_init_gcc_0[] = {
 581         { 0x41900c,   1, 0x04, 0x00000000 },
 582         { 0x419018,   1, 0x04, 0x00000000 },
 583         {}
 584 };
 585 
 586 const struct gf100_gr_init
 587 gf100_gr_init_tpccs_0[] = {
 588         { 0x419d08,   2, 0x04, 0x00000000 },
 589         { 0x419d10,   1, 0x04, 0x00000014 },
 590         {}
 591 };
 592 
 593 const struct gf100_gr_init
 594 gf100_gr_init_tex_0[] = {
 595         { 0x419ab0,   1, 0x04, 0x00000000 },
 596         { 0x419ab8,   1, 0x04, 0x000000e7 },
 597         { 0x419abc,   2, 0x04, 0x00000000 },
 598         {}
 599 };
 600 
 601 const struct gf100_gr_init
 602 gf100_gr_init_pe_0[] = {
 603         { 0x41980c,   3, 0x04, 0x00000000 },
 604         { 0x419844,   1, 0x04, 0x00000000 },
 605         { 0x41984c,   1, 0x04, 0x00005bc5 },
 606         { 0x419850,   4, 0x04, 0x00000000 },
 607         {}
 608 };
 609 
 610 const struct gf100_gr_init
 611 gf100_gr_init_l1c_0[] = {
 612         { 0x419c98,   1, 0x04, 0x00000000 },
 613         { 0x419ca8,   1, 0x04, 0x80000000 },
 614         { 0x419cb4,   1, 0x04, 0x00000000 },
 615         { 0x419cb8,   1, 0x04, 0x00008bf4 },
 616         { 0x419cbc,   1, 0x04, 0x28137606 },
 617         { 0x419cc0,   2, 0x04, 0x00000000 },
 618         {}
 619 };
 620 
 621 const struct gf100_gr_init
 622 gf100_gr_init_wwdx_0[] = {
 623         { 0x419bd4,   1, 0x04, 0x00800000 },
 624         { 0x419bdc,   1, 0x04, 0x00000000 },
 625         {}
 626 };
 627 
 628 const struct gf100_gr_init
 629 gf100_gr_init_tpccs_1[] = {
 630         { 0x419d2c,   1, 0x04, 0x00000000 },
 631         {}
 632 };
 633 
 634 const struct gf100_gr_init
 635 gf100_gr_init_mpc_0[] = {
 636         { 0x419c0c,   1, 0x04, 0x00000000 },
 637         {}
 638 };
 639 
 640 static const struct gf100_gr_init
 641 gf100_gr_init_sm_0[] = {
 642         { 0x419e00,   1, 0x04, 0x00000000 },
 643         { 0x419ea0,   1, 0x04, 0x00000000 },
 644         { 0x419ea4,   1, 0x04, 0x00000100 },
 645         { 0x419ea8,   1, 0x04, 0x00001100 },
 646         { 0x419eac,   1, 0x04, 0x11100702 },
 647         { 0x419eb0,   1, 0x04, 0x00000003 },
 648         { 0x419eb4,   4, 0x04, 0x00000000 },
 649         { 0x419ec8,   1, 0x04, 0x06060618 },
 650         { 0x419ed0,   1, 0x04, 0x0eff0e38 },
 651         { 0x419ed4,   1, 0x04, 0x011104f1 },
 652         { 0x419edc,   1, 0x04, 0x00000000 },
 653         { 0x419f00,   1, 0x04, 0x00000000 },
 654         { 0x419f2c,   1, 0x04, 0x00000000 },
 655         {}
 656 };
 657 
 658 const struct gf100_gr_init
 659 gf100_gr_init_be_0[] = {
 660         { 0x40880c,   1, 0x04, 0x00000000 },
 661         { 0x408910,   9, 0x04, 0x00000000 },
 662         { 0x408950,   1, 0x04, 0x00000000 },
 663         { 0x408954,   1, 0x04, 0x0000ffff },
 664         { 0x408984,   1, 0x04, 0x00000000 },
 665         { 0x408988,   1, 0x04, 0x08040201 },
 666         { 0x40898c,   1, 0x04, 0x80402010 },
 667         {}
 668 };
 669 
 670 const struct gf100_gr_init
 671 gf100_gr_init_fe_1[] = {
 672         { 0x4040f0,   1, 0x04, 0x00000000 },
 673         {}
 674 };
 675 
 676 const struct gf100_gr_init
 677 gf100_gr_init_pe_1[] = {
 678         { 0x419880,   1, 0x04, 0x00000002 },
 679         {}
 680 };
 681 
 682 static const struct gf100_gr_pack
 683 gf100_gr_pack_mmio[] = {
 684         { gf100_gr_init_main_0 },
 685         { gf100_gr_init_fe_0 },
 686         { gf100_gr_init_pri_0 },
 687         { gf100_gr_init_rstr2d_0 },
 688         { gf100_gr_init_pd_0 },
 689         { gf100_gr_init_ds_0 },
 690         { gf100_gr_init_scc_0 },
 691         { gf100_gr_init_prop_0 },
 692         { gf100_gr_init_gpc_unk_0 },
 693         { gf100_gr_init_setup_0 },
 694         { gf100_gr_init_crstr_0 },
 695         { gf100_gr_init_setup_1 },
 696         { gf100_gr_init_zcull_0 },
 697         { gf100_gr_init_gpm_0 },
 698         { gf100_gr_init_gpc_unk_1 },
 699         { gf100_gr_init_gcc_0 },
 700         { gf100_gr_init_tpccs_0 },
 701         { gf100_gr_init_tex_0 },
 702         { gf100_gr_init_pe_0 },
 703         { gf100_gr_init_l1c_0 },
 704         { gf100_gr_init_wwdx_0 },
 705         { gf100_gr_init_tpccs_1 },
 706         { gf100_gr_init_mpc_0 },
 707         { gf100_gr_init_sm_0 },
 708         { gf100_gr_init_be_0 },
 709         { gf100_gr_init_fe_1 },
 710         { gf100_gr_init_pe_1 },
 711         {}
 712 };
 713 
 714 /*******************************************************************************
 715  * PGRAPH engine/subdev functions
 716  ******************************************************************************/
 717 
 718 static u32
 719 gf100_gr_ctxsw_inst(struct nvkm_gr *gr)
 720 {
 721         return nvkm_rd32(gr->engine.subdev.device, 0x409b00);
 722 }
 723 
 724 static int
 725 gf100_gr_fecs_ctrl_ctxsw(struct gf100_gr *gr, u32 mthd)
 726 {
 727         struct nvkm_device *device = gr->base.engine.subdev.device;
 728 
 729         nvkm_wr32(device, 0x409804, 0xffffffff);
 730         nvkm_wr32(device, 0x409840, 0xffffffff);
 731         nvkm_wr32(device, 0x409500, 0xffffffff);
 732         nvkm_wr32(device, 0x409504, mthd);
 733         nvkm_msec(device, 2000,
 734                 u32 stat = nvkm_rd32(device, 0x409804);
 735                 if (stat == 0x00000002)
 736                         return -EIO;
 737                 if (stat == 0x00000001)
 738                         return 0;
 739         );
 740 
 741         return -ETIMEDOUT;
 742 }
 743 
 744 int
 745 gf100_gr_fecs_start_ctxsw(struct nvkm_gr *base)
 746 {
 747         struct gf100_gr *gr = gf100_gr(base);
 748         int ret = 0;
 749 
 750         mutex_lock(&gr->fecs.mutex);
 751         if (!--gr->fecs.disable) {
 752                 if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x39)))
 753                         gr->fecs.disable++;
 754         }
 755         mutex_unlock(&gr->fecs.mutex);
 756         return ret;
 757 }
 758 
 759 int
 760 gf100_gr_fecs_stop_ctxsw(struct nvkm_gr *base)
 761 {
 762         struct gf100_gr *gr = gf100_gr(base);
 763         int ret = 0;
 764 
 765         mutex_lock(&gr->fecs.mutex);
 766         if (!gr->fecs.disable++) {
 767                 if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x38)))
 768                         gr->fecs.disable--;
 769         }
 770         mutex_unlock(&gr->fecs.mutex);
 771         return ret;
 772 }
 773 
 774 int
 775 gf100_gr_fecs_bind_pointer(struct gf100_gr *gr, u32 inst)
 776 {
 777         struct nvkm_device *device = gr->base.engine.subdev.device;
 778 
 779         nvkm_wr32(device, 0x409840, 0x00000030);
 780         nvkm_wr32(device, 0x409500, inst);
 781         nvkm_wr32(device, 0x409504, 0x00000003);
 782         nvkm_msec(device, 2000,
 783                 u32 stat = nvkm_rd32(device, 0x409800);
 784                 if (stat & 0x00000020)
 785                         return -EIO;
 786                 if (stat & 0x00000010)
 787                         return 0;
 788         );
 789 
 790         return -ETIMEDOUT;
 791 }
 792 
 793 static int
 794 gf100_gr_fecs_set_reglist_virtual_address(struct gf100_gr *gr, u64 addr)
 795 {
 796         struct nvkm_device *device = gr->base.engine.subdev.device;
 797 
 798         nvkm_wr32(device, 0x409810, addr >> 8);
 799         nvkm_wr32(device, 0x409800, 0x00000000);
 800         nvkm_wr32(device, 0x409500, 0x00000001);
 801         nvkm_wr32(device, 0x409504, 0x00000032);
 802         nvkm_msec(device, 2000,
 803                 if (nvkm_rd32(device, 0x409800) == 0x00000001)
 804                         return 0;
 805         );
 806 
 807         return -ETIMEDOUT;
 808 }
 809 
 810 static int
 811 gf100_gr_fecs_set_reglist_bind_instance(struct gf100_gr *gr, u32 inst)
 812 {
 813         struct nvkm_device *device = gr->base.engine.subdev.device;
 814 
 815         nvkm_wr32(device, 0x409810, inst);
 816         nvkm_wr32(device, 0x409800, 0x00000000);
 817         nvkm_wr32(device, 0x409500, 0x00000001);
 818         nvkm_wr32(device, 0x409504, 0x00000031);
 819         nvkm_msec(device, 2000,
 820                 if (nvkm_rd32(device, 0x409800) == 0x00000001)
 821                         return 0;
 822         );
 823 
 824         return -ETIMEDOUT;
 825 }
 826 
 827 static int
 828 gf100_gr_fecs_discover_reglist_image_size(struct gf100_gr *gr, u32 *psize)
 829 {
 830         struct nvkm_device *device = gr->base.engine.subdev.device;
 831 
 832         nvkm_wr32(device, 0x409800, 0x00000000);
 833         nvkm_wr32(device, 0x409500, 0x00000001);
 834         nvkm_wr32(device, 0x409504, 0x00000030);
 835         nvkm_msec(device, 2000,
 836                 if ((*psize = nvkm_rd32(device, 0x409800)))
 837                         return 0;
 838         );
 839 
 840         return -ETIMEDOUT;
 841 }
 842 
 843 static int
 844 gf100_gr_fecs_elpg_bind(struct gf100_gr *gr)
 845 {
 846         u32 size;
 847         int ret;
 848 
 849         ret = gf100_gr_fecs_discover_reglist_image_size(gr, &size);
 850         if (ret)
 851                 return ret;
 852 
 853         /*XXX: We need to allocate + map the above into PMU's inst block,
 854          *     which which means we probably need a proper PMU before we
 855          *     even bother.
 856          */
 857 
 858         ret = gf100_gr_fecs_set_reglist_bind_instance(gr, 0);
 859         if (ret)
 860                 return ret;
 861 
 862         return gf100_gr_fecs_set_reglist_virtual_address(gr, 0);
 863 }
 864 
 865 static int
 866 gf100_gr_fecs_discover_pm_image_size(struct gf100_gr *gr, u32 *psize)
 867 {
 868         struct nvkm_device *device = gr->base.engine.subdev.device;
 869 
 870         nvkm_wr32(device, 0x409840, 0xffffffff);
 871         nvkm_wr32(device, 0x409500, 0x00000000);
 872         nvkm_wr32(device, 0x409504, 0x00000025);
 873         nvkm_msec(device, 2000,
 874                 if ((*psize = nvkm_rd32(device, 0x409800)))
 875                         return 0;
 876         );
 877 
 878         return -ETIMEDOUT;
 879 }
 880 
 881 static int
 882 gf100_gr_fecs_discover_zcull_image_size(struct gf100_gr *gr, u32 *psize)
 883 {
 884         struct nvkm_device *device = gr->base.engine.subdev.device;
 885 
 886         nvkm_wr32(device, 0x409840, 0xffffffff);
 887         nvkm_wr32(device, 0x409500, 0x00000000);
 888         nvkm_wr32(device, 0x409504, 0x00000016);
 889         nvkm_msec(device, 2000,
 890                 if ((*psize = nvkm_rd32(device, 0x409800)))
 891                         return 0;
 892         );
 893 
 894         return -ETIMEDOUT;
 895 }
 896 
 897 static int
 898 gf100_gr_fecs_discover_image_size(struct gf100_gr *gr, u32 *psize)
 899 {
 900         struct nvkm_device *device = gr->base.engine.subdev.device;
 901 
 902         nvkm_wr32(device, 0x409840, 0xffffffff);
 903         nvkm_wr32(device, 0x409500, 0x00000000);
 904         nvkm_wr32(device, 0x409504, 0x00000010);
 905         nvkm_msec(device, 2000,
 906                 if ((*psize = nvkm_rd32(device, 0x409800)))
 907                         return 0;
 908         );
 909 
 910         return -ETIMEDOUT;
 911 }
 912 
 913 static void
 914 gf100_gr_fecs_set_watchdog_timeout(struct gf100_gr *gr, u32 timeout)
 915 {
 916         struct nvkm_device *device = gr->base.engine.subdev.device;
 917 
 918         nvkm_wr32(device, 0x409840, 0xffffffff);
 919         nvkm_wr32(device, 0x409500, timeout);
 920         nvkm_wr32(device, 0x409504, 0x00000021);
 921 }
 922 
 923 static bool
 924 gf100_gr_chsw_load(struct nvkm_gr *base)
 925 {
 926         struct gf100_gr *gr = gf100_gr(base);
 927         if (!gr->firmware) {
 928                 u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
 929                 if (trace & 0x00000040)
 930                         return true;
 931         } else {
 932                 u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
 933                 if (mthd & 0x00080000)
 934                         return true;
 935         }
 936         return false;
 937 }
 938 
 939 int
 940 gf100_gr_rops(struct gf100_gr *gr)
 941 {
 942         struct nvkm_device *device = gr->base.engine.subdev.device;
 943         return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
 944 }
 945 
 946 void
 947 gf100_gr_zbc_init(struct gf100_gr *gr)
 948 {
 949         const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
 950                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
 951         const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
 952                               0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
 953         const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
 954                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
 955         const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
 956                               0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
 957         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
 958         int index, c = ltc->zbc_min, d = ltc->zbc_min, s = ltc->zbc_min;
 959 
 960         if (!gr->zbc_color[0].format) {
 961                 gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]); c++;
 962                 gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]); c++;
 963                 gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]); c++;
 964                 gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]); c++;
 965                 gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); d++;
 966                 gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); d++;
 967                 if (gr->func->zbc->stencil_get) {
 968                         gr->func->zbc->stencil_get(gr, 1, 0x00, 0x00); s++;
 969                         gr->func->zbc->stencil_get(gr, 1, 0x01, 0x01); s++;
 970                         gr->func->zbc->stencil_get(gr, 1, 0xff, 0xff); s++;
 971                 }
 972         }
 973 
 974         for (index = c; index <= ltc->zbc_max; index++)
 975                 gr->func->zbc->clear_color(gr, index);
 976         for (index = d; index <= ltc->zbc_max; index++)
 977                 gr->func->zbc->clear_depth(gr, index);
 978 
 979         if (gr->func->zbc->clear_stencil) {
 980                 for (index = s; index <= ltc->zbc_max; index++)
 981                         gr->func->zbc->clear_stencil(gr, index);
 982         }
 983 }
 984 
 985 /**
 986  * Wait until GR goes idle. GR is considered idle if it is disabled by the
 987  * MC (0x200) register, or GR is not busy and a context switch is not in
 988  * progress.
 989  */
 990 int
 991 gf100_gr_wait_idle(struct gf100_gr *gr)
 992 {
 993         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
 994         struct nvkm_device *device = subdev->device;
 995         unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
 996         bool gr_enabled, ctxsw_active, gr_busy;
 997 
 998         do {
 999                 /*
1000                  * required to make sure FIFO_ENGINE_STATUS (0x2640) is
1001                  * up-to-date
1002                  */
1003                 nvkm_rd32(device, 0x400700);
1004 
1005                 gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
1006                 ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
1007                 gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
1008 
1009                 if (!gr_enabled || (!gr_busy && !ctxsw_active))
1010                         return 0;
1011         } while (time_before(jiffies, end_jiffies));
1012 
1013         nvkm_error(subdev,
1014                    "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
1015                    gr_enabled, ctxsw_active, gr_busy);
1016         return -EAGAIN;
1017 }
1018 
1019 void
1020 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1021 {
1022         struct nvkm_device *device = gr->base.engine.subdev.device;
1023         const struct gf100_gr_pack *pack;
1024         const struct gf100_gr_init *init;
1025 
1026         pack_for_each_init(init, pack, p) {
1027                 u32 next = init->addr + init->count * init->pitch;
1028                 u32 addr = init->addr;
1029                 while (addr < next) {
1030                         nvkm_wr32(device, addr, init->data);
1031                         addr += init->pitch;
1032                 }
1033         }
1034 }
1035 
1036 void
1037 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1038 {
1039         struct nvkm_device *device = gr->base.engine.subdev.device;
1040         const struct gf100_gr_pack *pack;
1041         const struct gf100_gr_init *init;
1042         u32 data = 0;
1043 
1044         nvkm_wr32(device, 0x400208, 0x80000000);
1045 
1046         pack_for_each_init(init, pack, p) {
1047                 u32 next = init->addr + init->count * init->pitch;
1048                 u32 addr = init->addr;
1049 
1050                 if ((pack == p && init == p->init) || data != init->data) {
1051                         nvkm_wr32(device, 0x400204, init->data);
1052                         data = init->data;
1053                 }
1054 
1055                 while (addr < next) {
1056                         nvkm_wr32(device, 0x400200, addr);
1057                         /**
1058                          * Wait for GR to go idle after submitting a
1059                          * GO_IDLE bundle
1060                          */
1061                         if ((addr & 0xffff) == 0xe100)
1062                                 gf100_gr_wait_idle(gr);
1063                         nvkm_msec(device, 2000,
1064                                 if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
1065                                         break;
1066                         );
1067                         addr += init->pitch;
1068                 }
1069         }
1070 
1071         nvkm_wr32(device, 0x400208, 0x00000000);
1072 }
1073 
1074 void
1075 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1076 {
1077         struct nvkm_device *device = gr->base.engine.subdev.device;
1078         const struct gf100_gr_pack *pack;
1079         const struct gf100_gr_init *init;
1080         u32 data = 0;
1081 
1082         pack_for_each_init(init, pack, p) {
1083                 u32 ctrl = 0x80000000 | pack->type;
1084                 u32 next = init->addr + init->count * init->pitch;
1085                 u32 addr = init->addr;
1086 
1087                 if ((pack == p && init == p->init) || data != init->data) {
1088                         nvkm_wr32(device, 0x40448c, init->data);
1089                         data = init->data;
1090                 }
1091 
1092                 while (addr < next) {
1093                         nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
1094                         addr += init->pitch;
1095                 }
1096         }
1097 }
1098 
1099 u64
1100 gf100_gr_units(struct nvkm_gr *base)
1101 {
1102         struct gf100_gr *gr = gf100_gr(base);
1103         u64 cfg;
1104 
1105         cfg  = (u32)gr->gpc_nr;
1106         cfg |= (u32)gr->tpc_total << 8;
1107         cfg |= (u64)gr->rop_nr << 32;
1108 
1109         return cfg;
1110 }
1111 
1112 static const struct nvkm_bitfield gf100_dispatch_error[] = {
1113         { 0x00000001, "INJECTED_BUNDLE_ERROR" },
1114         { 0x00000002, "CLASS_SUBCH_MISMATCH" },
1115         { 0x00000004, "SUBCHSW_DURING_NOTIFY" },
1116         {}
1117 };
1118 
1119 static const struct nvkm_bitfield gf100_m2mf_error[] = {
1120         { 0x00000001, "PUSH_TOO_MUCH_DATA" },
1121         { 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
1122         {}
1123 };
1124 
1125 static const struct nvkm_bitfield gf100_unk6_error[] = {
1126         { 0x00000001, "TEMP_TOO_SMALL" },
1127         {}
1128 };
1129 
1130 static const struct nvkm_bitfield gf100_ccache_error[] = {
1131         { 0x00000001, "INTR" },
1132         { 0x00000002, "LDCONST_OOB" },
1133         {}
1134 };
1135 
1136 static const struct nvkm_bitfield gf100_macro_error[] = {
1137         { 0x00000001, "TOO_FEW_PARAMS" },
1138         { 0x00000002, "TOO_MANY_PARAMS" },
1139         { 0x00000004, "ILLEGAL_OPCODE" },
1140         { 0x00000008, "DOUBLE_BRANCH" },
1141         { 0x00000010, "WATCHDOG" },
1142         {}
1143 };
1144 
1145 static const struct nvkm_bitfield gk104_sked_error[] = {
1146         { 0x00000040, "CTA_RESUME" },
1147         { 0x00000080, "CONSTANT_BUFFER_SIZE" },
1148         { 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
1149         { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
1150         { 0x00000800, "WARP_CSTACK_SIZE" },
1151         { 0x00001000, "TOTAL_TEMP_SIZE" },
1152         { 0x00002000, "REGISTER_COUNT" },
1153         { 0x00040000, "TOTAL_THREADS" },
1154         { 0x00100000, "PROGRAM_OFFSET" },
1155         { 0x00200000, "SHARED_MEMORY_SIZE" },
1156         { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
1157         { 0x01000000, "MEMORY_WINDOW_OVERLAP" },
1158         { 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
1159         { 0x04000000, "TOTAL_REGISTER_COUNT" },
1160         {}
1161 };
1162 
1163 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
1164         { 0x00000002, "RT_PITCH_OVERRUN" },
1165         { 0x00000010, "RT_WIDTH_OVERRUN" },
1166         { 0x00000020, "RT_HEIGHT_OVERRUN" },
1167         { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
1168         { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
1169         { 0x00000400, "RT_LINEAR_MISMATCH" },
1170         {}
1171 };
1172 
1173 static void
1174 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
1175 {
1176         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1177         struct nvkm_device *device = subdev->device;
1178         char error[128];
1179         u32 trap[4];
1180 
1181         trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
1182         trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
1183         trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
1184         trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
1185 
1186         nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
1187 
1188         nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
1189                            "format = %x, storage type = %x\n",
1190                    gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
1191                    (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
1192         nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1193 }
1194 
1195 const struct nvkm_enum gf100_mp_warp_error[] = {
1196         { 0x01, "STACK_ERROR" },
1197         { 0x02, "API_STACK_ERROR" },
1198         { 0x03, "RET_EMPTY_STACK_ERROR" },
1199         { 0x04, "PC_WRAP" },
1200         { 0x05, "MISALIGNED_PC" },
1201         { 0x06, "PC_OVERFLOW" },
1202         { 0x07, "MISALIGNED_IMMC_ADDR" },
1203         { 0x08, "MISALIGNED_REG" },
1204         { 0x09, "ILLEGAL_INSTR_ENCODING" },
1205         { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
1206         { 0x0b, "ILLEGAL_INSTR_PARAM" },
1207         { 0x0c, "INVALID_CONST_ADDR" },
1208         { 0x0d, "OOR_REG" },
1209         { 0x0e, "OOR_ADDR" },
1210         { 0x0f, "MISALIGNED_ADDR" },
1211         { 0x10, "INVALID_ADDR_SPACE" },
1212         { 0x11, "ILLEGAL_INSTR_PARAM2" },
1213         { 0x12, "INVALID_CONST_ADDR_LDC" },
1214         { 0x13, "GEOMETRY_SM_ERROR" },
1215         { 0x14, "DIVERGENT" },
1216         { 0x15, "WARP_EXIT" },
1217         {}
1218 };
1219 
1220 const struct nvkm_bitfield gf100_mp_global_error[] = {
1221         { 0x00000001, "SM_TO_SM_FAULT" },
1222         { 0x00000002, "L1_ERROR" },
1223         { 0x00000004, "MULTIPLE_WARP_ERRORS" },
1224         { 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
1225         { 0x00000010, "BPT_INT" },
1226         { 0x00000020, "BPT_PAUSE" },
1227         { 0x00000040, "SINGLE_STEP_COMPLETE" },
1228         { 0x20000000, "ECC_SEC_ERROR" },
1229         { 0x40000000, "ECC_DED_ERROR" },
1230         { 0x80000000, "TIMEOUT" },
1231         {}
1232 };
1233 
1234 void
1235 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
1236 {
1237         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1238         struct nvkm_device *device = subdev->device;
1239         u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
1240         u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
1241         const struct nvkm_enum *warp;
1242         char glob[128];
1243 
1244         nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1245         warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1246 
1247         nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1248                            "global %08x [%s] warp %04x [%s]\n",
1249                    gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1250 
1251         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1252         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1253 }
1254 
1255 static void
1256 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1257 {
1258         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1259         struct nvkm_device *device = subdev->device;
1260         u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1261 
1262         if (stat & 0x00000001) {
1263                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1264                 nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1265                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1266                 stat &= ~0x00000001;
1267         }
1268 
1269         if (stat & 0x00000002) {
1270                 gr->func->trap_mp(gr, gpc, tpc);
1271                 stat &= ~0x00000002;
1272         }
1273 
1274         if (stat & 0x00000004) {
1275                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1276                 nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1277                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1278                 stat &= ~0x00000004;
1279         }
1280 
1281         if (stat & 0x00000008) {
1282                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1283                 nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1284                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1285                 stat &= ~0x00000008;
1286         }
1287 
1288         if (stat & 0x00000010) {
1289                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1290                 nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1291                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1292                 stat &= ~0x00000010;
1293         }
1294 
1295         if (stat) {
1296                 nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1297         }
1298 }
1299 
1300 static void
1301 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1302 {
1303         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1304         struct nvkm_device *device = subdev->device;
1305         u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1306         int tpc;
1307 
1308         if (stat & 0x00000001) {
1309                 gf100_gr_trap_gpc_rop(gr, gpc);
1310                 stat &= ~0x00000001;
1311         }
1312 
1313         if (stat & 0x00000002) {
1314                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1315                 nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1316                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1317                 stat &= ~0x00000002;
1318         }
1319 
1320         if (stat & 0x00000004) {
1321                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1322                 nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1323                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1324                 stat &= ~0x00000004;
1325         }
1326 
1327         if (stat & 0x00000008) {
1328                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1329                 nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1330                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1331                 stat &= ~0x00000009;
1332         }
1333 
1334         for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1335                 u32 mask = 0x00010000 << tpc;
1336                 if (stat & mask) {
1337                         gf100_gr_trap_tpc(gr, gpc, tpc);
1338                         nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1339                         stat &= ~mask;
1340                 }
1341         }
1342 
1343         if (stat) {
1344                 nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1345         }
1346 }
1347 
1348 static void
1349 gf100_gr_trap_intr(struct gf100_gr *gr)
1350 {
1351         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1352         struct nvkm_device *device = subdev->device;
1353         char error[128];
1354         u32 trap = nvkm_rd32(device, 0x400108);
1355         int rop, gpc;
1356 
1357         if (trap & 0x00000001) {
1358                 u32 stat = nvkm_rd32(device, 0x404000);
1359 
1360                 nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1361                                stat & 0x3fffffff);
1362                 nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1363                 nvkm_wr32(device, 0x404000, 0xc0000000);
1364                 nvkm_wr32(device, 0x400108, 0x00000001);
1365                 trap &= ~0x00000001;
1366         }
1367 
1368         if (trap & 0x00000002) {
1369                 u32 stat = nvkm_rd32(device, 0x404600);
1370 
1371                 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1372                                stat & 0x3fffffff);
1373                 nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1374 
1375                 nvkm_wr32(device, 0x404600, 0xc0000000);
1376                 nvkm_wr32(device, 0x400108, 0x00000002);
1377                 trap &= ~0x00000002;
1378         }
1379 
1380         if (trap & 0x00000008) {
1381                 u32 stat = nvkm_rd32(device, 0x408030);
1382 
1383                 nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1384                                stat & 0x3fffffff);
1385                 nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1386                 nvkm_wr32(device, 0x408030, 0xc0000000);
1387                 nvkm_wr32(device, 0x400108, 0x00000008);
1388                 trap &= ~0x00000008;
1389         }
1390 
1391         if (trap & 0x00000010) {
1392                 u32 stat = nvkm_rd32(device, 0x405840);
1393                 nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1394                            stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1395                 nvkm_wr32(device, 0x405840, 0xc0000000);
1396                 nvkm_wr32(device, 0x400108, 0x00000010);
1397                 trap &= ~0x00000010;
1398         }
1399 
1400         if (trap & 0x00000040) {
1401                 u32 stat = nvkm_rd32(device, 0x40601c);
1402 
1403                 nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1404                                stat & 0x3fffffff);
1405                 nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1406 
1407                 nvkm_wr32(device, 0x40601c, 0xc0000000);
1408                 nvkm_wr32(device, 0x400108, 0x00000040);
1409                 trap &= ~0x00000040;
1410         }
1411 
1412         if (trap & 0x00000080) {
1413                 u32 stat = nvkm_rd32(device, 0x404490);
1414                 u32 pc = nvkm_rd32(device, 0x404494);
1415                 u32 op = nvkm_rd32(device, 0x40449c);
1416 
1417                 nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1418                                stat & 0x1fffffff);
1419                 nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1420                            stat, error, pc & 0x7ff,
1421                            (pc & 0x10000000) ? "" : " (invalid)",
1422                            op);
1423 
1424                 nvkm_wr32(device, 0x404490, 0xc0000000);
1425                 nvkm_wr32(device, 0x400108, 0x00000080);
1426                 trap &= ~0x00000080;
1427         }
1428 
1429         if (trap & 0x00000100) {
1430                 u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1431 
1432                 nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1433                 nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1434 
1435                 if (stat)
1436                         nvkm_wr32(device, 0x407020, 0x40000000);
1437                 nvkm_wr32(device, 0x400108, 0x00000100);
1438                 trap &= ~0x00000100;
1439         }
1440 
1441         if (trap & 0x01000000) {
1442                 u32 stat = nvkm_rd32(device, 0x400118);
1443                 for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1444                         u32 mask = 0x00000001 << gpc;
1445                         if (stat & mask) {
1446                                 gf100_gr_trap_gpc(gr, gpc);
1447                                 nvkm_wr32(device, 0x400118, mask);
1448                                 stat &= ~mask;
1449                         }
1450                 }
1451                 nvkm_wr32(device, 0x400108, 0x01000000);
1452                 trap &= ~0x01000000;
1453         }
1454 
1455         if (trap & 0x02000000) {
1456                 for (rop = 0; rop < gr->rop_nr; rop++) {
1457                         u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1458                         u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1459                         nvkm_error(subdev, "ROP%d %08x %08x\n",
1460                                  rop, statz, statc);
1461                         nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1462                         nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1463                 }
1464                 nvkm_wr32(device, 0x400108, 0x02000000);
1465                 trap &= ~0x02000000;
1466         }
1467 
1468         if (trap) {
1469                 nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1470                 nvkm_wr32(device, 0x400108, trap);
1471         }
1472 }
1473 
1474 static void
1475 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1476 {
1477         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1478         struct nvkm_device *device = subdev->device;
1479         nvkm_error(subdev, "%06x - done %08x\n", base,
1480                    nvkm_rd32(device, base + 0x400));
1481         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1482                    nvkm_rd32(device, base + 0x800),
1483                    nvkm_rd32(device, base + 0x804),
1484                    nvkm_rd32(device, base + 0x808),
1485                    nvkm_rd32(device, base + 0x80c));
1486         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1487                    nvkm_rd32(device, base + 0x810),
1488                    nvkm_rd32(device, base + 0x814),
1489                    nvkm_rd32(device, base + 0x818),
1490                    nvkm_rd32(device, base + 0x81c));
1491 }
1492 
1493 void
1494 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1495 {
1496         struct nvkm_device *device = gr->base.engine.subdev.device;
1497         u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1498         u32 gpc;
1499 
1500         gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1501         for (gpc = 0; gpc < gpcnr; gpc++)
1502                 gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1503 }
1504 
1505 static void
1506 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1507 {
1508         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1509         struct nvkm_device *device = subdev->device;
1510         u32 stat = nvkm_rd32(device, 0x409c18);
1511 
1512         if (!gr->firmware && (stat & 0x00000001)) {
1513                 u32 code = nvkm_rd32(device, 0x409814);
1514                 if (code == E_BAD_FWMTHD) {
1515                         u32 class = nvkm_rd32(device, 0x409808);
1516                         u32  addr = nvkm_rd32(device, 0x40980c);
1517                         u32  subc = (addr & 0x00070000) >> 16;
1518                         u32  mthd = (addr & 0x00003ffc);
1519                         u32  data = nvkm_rd32(device, 0x409810);
1520 
1521                         nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1522                                            "mthd %04x data %08x\n",
1523                                    subc, class, mthd, data);
1524                 } else {
1525                         nvkm_error(subdev, "FECS ucode error %d\n", code);
1526                 }
1527                 nvkm_wr32(device, 0x409c20, 0x00000001);
1528                 stat &= ~0x00000001;
1529         }
1530 
1531         if (!gr->firmware && (stat & 0x00080000)) {
1532                 nvkm_error(subdev, "FECS watchdog timeout\n");
1533                 gf100_gr_ctxctl_debug(gr);
1534                 nvkm_wr32(device, 0x409c20, 0x00080000);
1535                 stat &= ~0x00080000;
1536         }
1537 
1538         if (stat) {
1539                 nvkm_error(subdev, "FECS %08x\n", stat);
1540                 gf100_gr_ctxctl_debug(gr);
1541                 nvkm_wr32(device, 0x409c20, stat);
1542         }
1543 }
1544 
1545 static void
1546 gf100_gr_intr(struct nvkm_gr *base)
1547 {
1548         struct gf100_gr *gr = gf100_gr(base);
1549         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1550         struct nvkm_device *device = subdev->device;
1551         struct nvkm_fifo_chan *chan;
1552         unsigned long flags;
1553         u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1554         u32 stat = nvkm_rd32(device, 0x400100);
1555         u32 addr = nvkm_rd32(device, 0x400704);
1556         u32 mthd = (addr & 0x00003ffc);
1557         u32 subc = (addr & 0x00070000) >> 16;
1558         u32 data = nvkm_rd32(device, 0x400708);
1559         u32 code = nvkm_rd32(device, 0x400110);
1560         u32 class;
1561         const char *name = "unknown";
1562         int chid = -1;
1563 
1564         chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1565         if (chan) {
1566                 name = chan->object.client->name;
1567                 chid = chan->chid;
1568         }
1569 
1570         if (device->card_type < NV_E0 || subc < 4)
1571                 class = nvkm_rd32(device, 0x404200 + (subc * 4));
1572         else
1573                 class = 0x0000;
1574 
1575         if (stat & 0x00000001) {
1576                 /*
1577                  * notifier interrupt, only needed for cyclestats
1578                  * can be safely ignored
1579                  */
1580                 nvkm_wr32(device, 0x400100, 0x00000001);
1581                 stat &= ~0x00000001;
1582         }
1583 
1584         if (stat & 0x00000010) {
1585                 if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1586                         nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1587                                    "subc %d class %04x mthd %04x data %08x\n",
1588                                    chid, inst << 12, name, subc,
1589                                    class, mthd, data);
1590                 }
1591                 nvkm_wr32(device, 0x400100, 0x00000010);
1592                 stat &= ~0x00000010;
1593         }
1594 
1595         if (stat & 0x00000020) {
1596                 nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1597                            "subc %d class %04x mthd %04x data %08x\n",
1598                            chid, inst << 12, name, subc, class, mthd, data);
1599                 nvkm_wr32(device, 0x400100, 0x00000020);
1600                 stat &= ~0x00000020;
1601         }
1602 
1603         if (stat & 0x00100000) {
1604                 const struct nvkm_enum *en =
1605                         nvkm_enum_find(nv50_data_error_names, code);
1606                 nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1607                                    "subc %d class %04x mthd %04x data %08x\n",
1608                            code, en ? en->name : "", chid, inst << 12,
1609                            name, subc, class, mthd, data);
1610                 nvkm_wr32(device, 0x400100, 0x00100000);
1611                 stat &= ~0x00100000;
1612         }
1613 
1614         if (stat & 0x00200000) {
1615                 nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1616                            chid, inst << 12, name);
1617                 gf100_gr_trap_intr(gr);
1618                 nvkm_wr32(device, 0x400100, 0x00200000);
1619                 stat &= ~0x00200000;
1620         }
1621 
1622         if (stat & 0x00080000) {
1623                 gf100_gr_ctxctl_isr(gr);
1624                 nvkm_wr32(device, 0x400100, 0x00080000);
1625                 stat &= ~0x00080000;
1626         }
1627 
1628         if (stat) {
1629                 nvkm_error(subdev, "intr %08x\n", stat);
1630                 nvkm_wr32(device, 0x400100, stat);
1631         }
1632 
1633         nvkm_wr32(device, 0x400500, 0x00010001);
1634         nvkm_fifo_chan_put(device->fifo, flags, &chan);
1635 }
1636 
1637 static void
1638 gf100_gr_init_fw(struct nvkm_falcon *falcon,
1639                  struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1640 {
1641         nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
1642         nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
1643 }
1644 
1645 static void
1646 gf100_gr_init_csdata(struct gf100_gr *gr,
1647                      const struct gf100_gr_pack *pack,
1648                      u32 falcon, u32 starstar, u32 base)
1649 {
1650         struct nvkm_device *device = gr->base.engine.subdev.device;
1651         const struct gf100_gr_pack *iter;
1652         const struct gf100_gr_init *init;
1653         u32 addr = ~0, prev = ~0, xfer = 0;
1654         u32 star, temp;
1655 
1656         nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1657         star = nvkm_rd32(device, falcon + 0x01c4);
1658         temp = nvkm_rd32(device, falcon + 0x01c4);
1659         if (temp > star)
1660                 star = temp;
1661         nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1662 
1663         pack_for_each_init(init, iter, pack) {
1664                 u32 head = init->addr - base;
1665                 u32 tail = head + init->count * init->pitch;
1666                 while (head < tail) {
1667                         if (head != prev + 4 || xfer >= 32) {
1668                                 if (xfer) {
1669                                         u32 data = ((--xfer << 26) | addr);
1670                                         nvkm_wr32(device, falcon + 0x01c4, data);
1671                                         star += 4;
1672                                 }
1673                                 addr = head;
1674                                 xfer = 0;
1675                         }
1676                         prev = head;
1677                         xfer = xfer + 1;
1678                         head = head + init->pitch;
1679                 }
1680         }
1681 
1682         nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1683         nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1684         nvkm_wr32(device, falcon + 0x01c4, star + 4);
1685 }
1686 
1687 /* Initialize context from an external (secure or not) firmware */
1688 static int
1689 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
1690 {
1691         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1692         struct nvkm_device *device = subdev->device;
1693         struct nvkm_secboot *sb = device->secboot;
1694         u32 secboot_mask = 0;
1695         int ret;
1696 
1697         /* load fuc microcode */
1698         nvkm_mc_unk260(device, 0);
1699 
1700         /* securely-managed falcons must be reset using secure boot */
1701         if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1702                 secboot_mask |= BIT(NVKM_SECBOOT_FALCON_FECS);
1703         else
1704                 gf100_gr_init_fw(gr->fecs.falcon, &gr->fuc409c, &gr->fuc409d);
1705 
1706         if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1707                 secboot_mask |= BIT(NVKM_SECBOOT_FALCON_GPCCS);
1708         else
1709                 gf100_gr_init_fw(gr->gpccs.falcon, &gr->fuc41ac, &gr->fuc41ad);
1710 
1711         if (secboot_mask != 0) {
1712                 int ret = nvkm_secboot_reset(sb, secboot_mask);
1713                 if (ret)
1714                         return ret;
1715         }
1716 
1717         nvkm_mc_unk260(device, 1);
1718 
1719         /* start both of them running */
1720         nvkm_wr32(device, 0x409840, 0xffffffff);
1721         nvkm_wr32(device, 0x41a10c, 0x00000000);
1722         nvkm_wr32(device, 0x40910c, 0x00000000);
1723 
1724         nvkm_falcon_start(gr->gpccs.falcon);
1725         nvkm_falcon_start(gr->fecs.falcon);
1726 
1727         if (nvkm_msec(device, 2000,
1728                 if (nvkm_rd32(device, 0x409800) & 0x00000001)
1729                         break;
1730         ) < 0)
1731                 return -EBUSY;
1732 
1733         gf100_gr_fecs_set_watchdog_timeout(gr, 0x7fffffff);
1734 
1735         /* Determine how much memory is required to store main context image. */
1736         ret = gf100_gr_fecs_discover_image_size(gr, &gr->size);
1737         if (ret)
1738                 return ret;
1739 
1740         /* Determine how much memory is required to store ZCULL image. */
1741         ret = gf100_gr_fecs_discover_zcull_image_size(gr, &gr->size_zcull);
1742         if (ret)
1743                 return ret;
1744 
1745         /* Determine how much memory is required to store PerfMon image. */
1746         ret = gf100_gr_fecs_discover_pm_image_size(gr, &gr->size_pm);
1747         if (ret)
1748                 return ret;
1749 
1750         /*XXX: We (likely) require PMU support to even bother with this.
1751          *
1752          *     Also, it seems like not all GPUs support ELPG.  Traces I
1753          *     have here show RM enabling it on Kepler/Turing, but none
1754          *     of the GPUs between those.  NVGPU decides this by PCIID.
1755          */
1756         if (0) {
1757                 ret = gf100_gr_fecs_elpg_bind(gr);
1758                 if (ret)
1759                         return ret;
1760         }
1761 
1762         /* Generate golden context image. */
1763         if (gr->data == NULL) {
1764                 int ret = gf100_grctx_generate(gr);
1765                 if (ret) {
1766                         nvkm_error(subdev, "failed to construct context\n");
1767                         return ret;
1768                 }
1769         }
1770 
1771         return 0;
1772 }
1773 
1774 static int
1775 gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
1776 {
1777         const struct gf100_grctx_func *grctx = gr->func->grctx;
1778         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1779         struct nvkm_device *device = subdev->device;
1780 
1781         if (!gr->func->fecs.ucode) {
1782                 return -ENOSYS;
1783         }
1784 
1785         /* load HUB microcode */
1786         nvkm_mc_unk260(device, 0);
1787         nvkm_falcon_load_dmem(gr->fecs.falcon,
1788                               gr->func->fecs.ucode->data.data, 0x0,
1789                               gr->func->fecs.ucode->data.size, 0);
1790         nvkm_falcon_load_imem(gr->fecs.falcon,
1791                               gr->func->fecs.ucode->code.data, 0x0,
1792                               gr->func->fecs.ucode->code.size, 0, 0, false);
1793 
1794         /* load GPC microcode */
1795         nvkm_falcon_load_dmem(gr->gpccs.falcon,
1796                               gr->func->gpccs.ucode->data.data, 0x0,
1797                               gr->func->gpccs.ucode->data.size, 0);
1798         nvkm_falcon_load_imem(gr->gpccs.falcon,
1799                               gr->func->gpccs.ucode->code.data, 0x0,
1800                               gr->func->gpccs.ucode->code.size, 0, 0, false);
1801         nvkm_mc_unk260(device, 1);
1802 
1803         /* load register lists */
1804         gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1805         gf100_gr_init_csdata(gr, grctx->gpc_0, 0x41a000, 0x000, 0x418000);
1806         gf100_gr_init_csdata(gr, grctx->gpc_1, 0x41a000, 0x000, 0x418000);
1807         gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1808         gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1809 
1810         /* start HUB ucode running, it'll init the GPCs */
1811         nvkm_wr32(device, 0x40910c, 0x00000000);
1812         nvkm_wr32(device, 0x409100, 0x00000002);
1813         if (nvkm_msec(device, 2000,
1814                 if (nvkm_rd32(device, 0x409800) & 0x80000000)
1815                         break;
1816         ) < 0) {
1817                 gf100_gr_ctxctl_debug(gr);
1818                 return -EBUSY;
1819         }
1820 
1821         gr->size = nvkm_rd32(device, 0x409804);
1822         if (gr->data == NULL) {
1823                 int ret = gf100_grctx_generate(gr);
1824                 if (ret) {
1825                         nvkm_error(subdev, "failed to construct context\n");
1826                         return ret;
1827                 }
1828         }
1829 
1830         return 0;
1831 }
1832 
1833 int
1834 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1835 {
1836         int ret;
1837 
1838         if (gr->firmware)
1839                 ret = gf100_gr_init_ctxctl_ext(gr);
1840         else
1841                 ret = gf100_gr_init_ctxctl_int(gr);
1842 
1843         return ret;
1844 }
1845 
1846 void
1847 gf100_gr_oneinit_sm_id(struct gf100_gr *gr)
1848 {
1849         int tpc, gpc;
1850         for (tpc = 0; tpc < gr->tpc_max; tpc++) {
1851                 for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1852                         if (tpc < gr->tpc_nr[gpc]) {
1853                                 gr->sm[gr->sm_nr].gpc = gpc;
1854                                 gr->sm[gr->sm_nr].tpc = tpc;
1855                                 gr->sm_nr++;
1856                         }
1857                 }
1858         }
1859 }
1860 
1861 void
1862 gf100_gr_oneinit_tiles(struct gf100_gr *gr)
1863 {
1864         static const u8 primes[] = {
1865                 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
1866         };
1867         int init_frac[GPC_MAX], init_err[GPC_MAX], run_err[GPC_MAX], i, j;
1868         u32 mul_factor, comm_denom;
1869         u8  gpc_map[GPC_MAX];
1870         bool sorted;
1871 
1872         switch (gr->tpc_total) {
1873         case 15: gr->screen_tile_row_offset = 0x06; break;
1874         case 14: gr->screen_tile_row_offset = 0x05; break;
1875         case 13: gr->screen_tile_row_offset = 0x02; break;
1876         case 11: gr->screen_tile_row_offset = 0x07; break;
1877         case 10: gr->screen_tile_row_offset = 0x06; break;
1878         case  7:
1879         case  5: gr->screen_tile_row_offset = 0x01; break;
1880         case  3: gr->screen_tile_row_offset = 0x02; break;
1881         case  2:
1882         case  1: gr->screen_tile_row_offset = 0x01; break;
1883         default: gr->screen_tile_row_offset = 0x03;
1884                 for (i = 0; i < ARRAY_SIZE(primes); i++) {
1885                         if (gr->tpc_total % primes[i]) {
1886                                 gr->screen_tile_row_offset = primes[i];
1887                                 break;
1888                         }
1889                 }
1890                 break;
1891         }
1892 
1893         /* Sort GPCs by TPC count, highest-to-lowest. */
1894         for (i = 0; i < gr->gpc_nr; i++)
1895                 gpc_map[i] = i;
1896         sorted = false;
1897 
1898         while (!sorted) {
1899                 for (sorted = true, i = 0; i < gr->gpc_nr - 1; i++) {
1900                         if (gr->tpc_nr[gpc_map[i + 1]] >
1901                             gr->tpc_nr[gpc_map[i + 0]]) {
1902                                 u8 swap = gpc_map[i];
1903                                 gpc_map[i + 0] = gpc_map[i + 1];
1904                                 gpc_map[i + 1] = swap;
1905                                 sorted = false;
1906                         }
1907                 }
1908         }
1909 
1910         /* Determine tile->GPC mapping */
1911         mul_factor = gr->gpc_nr * gr->tpc_max;
1912         if (mul_factor & 1)
1913                 mul_factor = 2;
1914         else
1915                 mul_factor = 1;
1916 
1917         comm_denom = gr->gpc_nr * gr->tpc_max * mul_factor;
1918 
1919         for (i = 0; i < gr->gpc_nr; i++) {
1920                 init_frac[i] = gr->tpc_nr[gpc_map[i]] * gr->gpc_nr * mul_factor;
1921                  init_err[i] = i * gr->tpc_max * mul_factor - comm_denom/2;
1922                   run_err[i] = init_frac[i] + init_err[i];
1923         }
1924 
1925         for (i = 0; i < gr->tpc_total;) {
1926                 for (j = 0; j < gr->gpc_nr; j++) {
1927                         if ((run_err[j] * 2) >= comm_denom) {
1928                                 gr->tile[i++] = gpc_map[j];
1929                                 run_err[j] += init_frac[j] - comm_denom;
1930                         } else {
1931                                 run_err[j] += init_frac[j];
1932                         }
1933                 }
1934         }
1935 }
1936 
1937 static int
1938 gf100_gr_oneinit(struct nvkm_gr *base)
1939 {
1940         struct gf100_gr *gr = gf100_gr(base);
1941         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1942         struct nvkm_device *device = subdev->device;
1943         int i, j;
1944         int ret;
1945 
1946         ret = nvkm_falcon_v1_new(subdev, "FECS", 0x409000, &gr->fecs.falcon);
1947         if (ret)
1948                 return ret;
1949 
1950         mutex_init(&gr->fecs.mutex);
1951 
1952         ret = nvkm_falcon_v1_new(subdev, "GPCCS", 0x41a000, &gr->gpccs.falcon);
1953         if (ret)
1954                 return ret;
1955 
1956         nvkm_pmu_pgob(device->pmu, false);
1957 
1958         gr->rop_nr = gr->func->rops(gr);
1959         gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1960         for (i = 0; i < gr->gpc_nr; i++) {
1961                 gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1962                 gr->tpc_max = max(gr->tpc_max, gr->tpc_nr[i]);
1963                 gr->tpc_total += gr->tpc_nr[i];
1964                 gr->ppc_nr[i]  = gr->func->ppc_nr;
1965                 for (j = 0; j < gr->ppc_nr[i]; j++) {
1966                         gr->ppc_tpc_mask[i][j] =
1967                                 nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1968                         if (gr->ppc_tpc_mask[i][j] == 0)
1969                                 continue;
1970                         gr->ppc_mask[i] |= (1 << j);
1971                         gr->ppc_tpc_nr[i][j] = hweight8(gr->ppc_tpc_mask[i][j]);
1972                         if (gr->ppc_tpc_min == 0 ||
1973                             gr->ppc_tpc_min > gr->ppc_tpc_nr[i][j])
1974                                 gr->ppc_tpc_min = gr->ppc_tpc_nr[i][j];
1975                         if (gr->ppc_tpc_max < gr->ppc_tpc_nr[i][j])
1976                                 gr->ppc_tpc_max = gr->ppc_tpc_nr[i][j];
1977                 }
1978         }
1979 
1980         memset(gr->tile, 0xff, sizeof(gr->tile));
1981         gr->func->oneinit_tiles(gr);
1982         gr->func->oneinit_sm_id(gr);
1983         return 0;
1984 }
1985 
1986 static int
1987 gf100_gr_init_(struct nvkm_gr *base)
1988 {
1989         struct gf100_gr *gr = gf100_gr(base);
1990         struct nvkm_subdev *subdev = &base->engine.subdev;
1991         struct nvkm_device *device = subdev->device;
1992         bool reset = device->chipset == 0x137 || device->chipset == 0x138;
1993         u32 ret;
1994 
1995         /* On certain GP107/GP108 boards, we trigger a weird issue where
1996          * GR will stop responding to PRI accesses after we've asked the
1997          * SEC2 RTOS to boot the GR falcons.  This happens with far more
1998          * frequency when cold-booting a board (ie. returning from D3).
1999          *
2000          * The root cause for this is not known and has proven difficult
2001          * to isolate, with many avenues being dead-ends.
2002          *
2003          * A workaround was discovered by Karol, whereby putting GR into
2004          * reset for an extended period right before initialisation
2005          * prevents the problem from occuring.
2006          *
2007          * XXX: As RM does not require any such workaround, this is more
2008          *      of a hack than a true fix.
2009          */
2010         reset = nvkm_boolopt(device->cfgopt, "NvGrResetWar", reset);
2011         if (reset) {
2012                 nvkm_mask(device, 0x000200, 0x00001000, 0x00000000);
2013                 nvkm_rd32(device, 0x000200);
2014                 msleep(50);
2015                 nvkm_mask(device, 0x000200, 0x00001000, 0x00001000);
2016                 nvkm_rd32(device, 0x000200);
2017         }
2018 
2019         nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
2020 
2021         ret = nvkm_falcon_get(gr->fecs.falcon, subdev);
2022         if (ret)
2023                 return ret;
2024 
2025         ret = nvkm_falcon_get(gr->gpccs.falcon, subdev);
2026         if (ret)
2027                 return ret;
2028 
2029         return gr->func->init(gr);
2030 }
2031 
2032 static int
2033 gf100_gr_fini_(struct nvkm_gr *base, bool suspend)
2034 {
2035         struct gf100_gr *gr = gf100_gr(base);
2036         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
2037         nvkm_falcon_put(gr->gpccs.falcon, subdev);
2038         nvkm_falcon_put(gr->fecs.falcon, subdev);
2039         return 0;
2040 }
2041 
2042 void
2043 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
2044 {
2045         kfree(fuc->data);
2046         fuc->data = NULL;
2047 }
2048 
2049 static void
2050 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
2051 {
2052         vfree(pack);
2053 }
2054 
2055 void *
2056 gf100_gr_dtor(struct nvkm_gr *base)
2057 {
2058         struct gf100_gr *gr = gf100_gr(base);
2059 
2060         if (gr->func->dtor)
2061                 gr->func->dtor(gr);
2062         kfree(gr->data);
2063 
2064         nvkm_falcon_del(&gr->gpccs.falcon);
2065         nvkm_falcon_del(&gr->fecs.falcon);
2066 
2067         gf100_gr_dtor_fw(&gr->fuc409c);
2068         gf100_gr_dtor_fw(&gr->fuc409d);
2069         gf100_gr_dtor_fw(&gr->fuc41ac);
2070         gf100_gr_dtor_fw(&gr->fuc41ad);
2071 
2072         gf100_gr_dtor_init(gr->fuc_bundle);
2073         gf100_gr_dtor_init(gr->fuc_method);
2074         gf100_gr_dtor_init(gr->fuc_sw_ctx);
2075         gf100_gr_dtor_init(gr->fuc_sw_nonctx);
2076 
2077         return gr;
2078 }
2079 
2080 static const struct nvkm_gr_func
2081 gf100_gr_ = {
2082         .dtor = gf100_gr_dtor,
2083         .oneinit = gf100_gr_oneinit,
2084         .init = gf100_gr_init_,
2085         .fini = gf100_gr_fini_,
2086         .intr = gf100_gr_intr,
2087         .units = gf100_gr_units,
2088         .chan_new = gf100_gr_chan_new,
2089         .object_get = gf100_gr_object_get,
2090         .chsw_load = gf100_gr_chsw_load,
2091         .ctxsw.pause = gf100_gr_fecs_stop_ctxsw,
2092         .ctxsw.resume = gf100_gr_fecs_start_ctxsw,
2093         .ctxsw.inst = gf100_gr_ctxsw_inst,
2094 };
2095 
2096 int
2097 gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname,
2098                         struct gf100_gr_fuc *fuc, int ret)
2099 {
2100         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
2101         struct nvkm_device *device = subdev->device;
2102         const struct firmware *fw;
2103         char f[32];
2104 
2105         /* see if this firmware has a legacy path */
2106         if (!strcmp(fwname, "fecs_inst"))
2107                 fwname = "fuc409c";
2108         else if (!strcmp(fwname, "fecs_data"))
2109                 fwname = "fuc409d";
2110         else if (!strcmp(fwname, "gpccs_inst"))
2111                 fwname = "fuc41ac";
2112         else if (!strcmp(fwname, "gpccs_data"))
2113                 fwname = "fuc41ad";
2114         else {
2115                 /* nope, let's just return the error we got */
2116                 nvkm_error(subdev, "failed to load %s\n", fwname);
2117                 return ret;
2118         }
2119 
2120         /* yes, try to load from the legacy path */
2121         nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname);
2122 
2123         snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
2124         ret = request_firmware(&fw, f, device->dev);
2125         if (ret) {
2126                 snprintf(f, sizeof(f), "nouveau/%s", fwname);
2127                 ret = request_firmware(&fw, f, device->dev);
2128                 if (ret) {
2129                         nvkm_error(subdev, "failed to load %s\n", fwname);
2130                         return ret;
2131                 }
2132         }
2133 
2134         fuc->size = fw->size;
2135         fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
2136         release_firmware(fw);
2137         return (fuc->data != NULL) ? 0 : -ENOMEM;
2138 }
2139 
2140 int
2141 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
2142                  struct gf100_gr_fuc *fuc)
2143 {
2144         const struct firmware *fw;
2145         int ret;
2146 
2147         ret = nvkm_firmware_get(&gr->base.engine.subdev, fwname, &fw);
2148         if (ret) {
2149                 ret = gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret);
2150                 if (ret)
2151                         return -ENODEV;
2152                 return 0;
2153         }
2154 
2155         fuc->size = fw->size;
2156         fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
2157         nvkm_firmware_put(fw);
2158         return (fuc->data != NULL) ? 0 : -ENOMEM;
2159 }
2160 
2161 int
2162 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
2163               int index, struct gf100_gr *gr)
2164 {
2165         gr->func = func;
2166         gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
2167                                     func->fecs.ucode == NULL);
2168 
2169         return nvkm_gr_ctor(&gf100_gr_, device, index,
2170                             gr->firmware || func->fecs.ucode != NULL,
2171                             &gr->base);
2172 }
2173 
2174 int
2175 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
2176               int index, struct nvkm_gr **pgr)
2177 {
2178         struct gf100_gr *gr;
2179         int ret;
2180 
2181         if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
2182                 return -ENOMEM;
2183         *pgr = &gr->base;
2184 
2185         ret = gf100_gr_ctor(func, device, index, gr);
2186         if (ret)
2187                 return ret;
2188 
2189         if (gr->firmware) {
2190                 if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
2191                     gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
2192                     gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
2193                     gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
2194                         return -ENODEV;
2195         }
2196 
2197         return 0;
2198 }
2199 
2200 void
2201 gf100_gr_init_400054(struct gf100_gr *gr)
2202 {
2203         nvkm_wr32(gr->base.engine.subdev.device, 0x400054, 0x34ce3464);
2204 }
2205 
2206 void
2207 gf100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
2208 {
2209         struct nvkm_device *device = gr->base.engine.subdev.device;
2210         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
2211         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
2212 }
2213 
2214 void
2215 gf100_gr_init_tex_hww_esr(struct gf100_gr *gr, int gpc, int tpc)
2216 {
2217         struct nvkm_device *device = gr->base.engine.subdev.device;
2218         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
2219 }
2220 
2221 void
2222 gf100_gr_init_419eb4(struct gf100_gr *gr)
2223 {
2224         struct nvkm_device *device = gr->base.engine.subdev.device;
2225         nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
2226 }
2227 
2228 void
2229 gf100_gr_init_419cc0(struct gf100_gr *gr)
2230 {
2231         struct nvkm_device *device = gr->base.engine.subdev.device;
2232         int gpc, tpc;
2233 
2234         nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
2235 
2236         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2237                 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++)
2238                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
2239         }
2240 }
2241 
2242 void
2243 gf100_gr_init_40601c(struct gf100_gr *gr)
2244 {
2245         nvkm_wr32(gr->base.engine.subdev.device, 0x40601c, 0xc0000000);
2246 }
2247 
2248 void
2249 gf100_gr_init_fecs_exceptions(struct gf100_gr *gr)
2250 {
2251         const u32 data = gr->firmware ? 0x000e0000 : 0x000e0001;
2252         nvkm_wr32(gr->base.engine.subdev.device, 0x409c24, data);
2253 }
2254 
2255 void
2256 gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
2257 {
2258         struct nvkm_device *device = gr->base.engine.subdev.device;
2259         struct nvkm_fb *fb = device->fb;
2260 
2261         nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
2262         nvkm_wr32(device, 0x4188a4, 0x03000000);
2263         nvkm_wr32(device, 0x418888, 0x00000000);
2264         nvkm_wr32(device, 0x41888c, 0x00000000);
2265         nvkm_wr32(device, 0x418890, 0x00000000);
2266         nvkm_wr32(device, 0x418894, 0x00000000);
2267         nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
2268         nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
2269 }
2270 
2271 void
2272 gf100_gr_init_num_active_ltcs(struct gf100_gr *gr)
2273 {
2274         struct nvkm_device *device = gr->base.engine.subdev.device;
2275         nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
2276 }
2277 
2278 void
2279 gf100_gr_init_zcull(struct gf100_gr *gr)
2280 {
2281         struct nvkm_device *device = gr->base.engine.subdev.device;
2282         const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
2283         const u8 tile_nr = ALIGN(gr->tpc_total, 32);
2284         u8 bank[GPC_MAX] = {}, gpc, i, j;
2285         u32 data;
2286 
2287         for (i = 0; i < tile_nr; i += 8) {
2288                 for (data = 0, j = 0; j < 8 && i + j < gr->tpc_total; j++) {
2289                         data |= bank[gr->tile[i + j]] << (j * 4);
2290                         bank[gr->tile[i + j]]++;
2291                 }
2292                 nvkm_wr32(device, GPC_BCAST(0x0980 + ((i / 8) * 4)), data);
2293         }
2294 
2295         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2296                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
2297                           gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
2298                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
2299                                                          gr->tpc_total);
2300                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
2301         }
2302 
2303         nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
2304 }
2305 
2306 void
2307 gf100_gr_init_vsc_stream_master(struct gf100_gr *gr)
2308 {
2309         struct nvkm_device *device = gr->base.engine.subdev.device;
2310         nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
2311 }
2312 
2313 int
2314 gf100_gr_init(struct gf100_gr *gr)
2315 {
2316         struct nvkm_device *device = gr->base.engine.subdev.device;
2317         int gpc, tpc, rop;
2318 
2319         if (gr->func->init_419bd8)
2320                 gr->func->init_419bd8(gr);
2321 
2322         gr->func->init_gpc_mmu(gr);
2323 
2324         if (gr->fuc_sw_nonctx)
2325                 gf100_gr_mmio(gr, gr->fuc_sw_nonctx);
2326         else
2327                 gf100_gr_mmio(gr, gr->func->mmio);
2328 
2329         gf100_gr_wait_idle(gr);
2330 
2331         if (gr->func->init_r405a14)
2332                 gr->func->init_r405a14(gr);
2333 
2334         if (gr->func->clkgate_pack)
2335                 nvkm_therm_clkgate_init(device->therm, gr->func->clkgate_pack);
2336 
2337         if (gr->func->init_bios)
2338                 gr->func->init_bios(gr);
2339 
2340         gr->func->init_vsc_stream_master(gr);
2341         gr->func->init_zcull(gr);
2342         gr->func->init_num_active_ltcs(gr);
2343         if (gr->func->init_rop_active_fbps)
2344                 gr->func->init_rop_active_fbps(gr);
2345         if (gr->func->init_bios_2)
2346                 gr->func->init_bios_2(gr);
2347         if (gr->func->init_swdx_pes_mask)
2348                 gr->func->init_swdx_pes_mask(gr);
2349 
2350         nvkm_wr32(device, 0x400500, 0x00010001);
2351 
2352         nvkm_wr32(device, 0x400100, 0xffffffff);
2353         nvkm_wr32(device, 0x40013c, 0xffffffff);
2354         nvkm_wr32(device, 0x400124, 0x00000002);
2355 
2356         gr->func->init_fecs_exceptions(gr);
2357         if (gr->func->init_ds_hww_esr_2)
2358                 gr->func->init_ds_hww_esr_2(gr);
2359 
2360         nvkm_wr32(device, 0x404000, 0xc0000000);
2361         nvkm_wr32(device, 0x404600, 0xc0000000);
2362         nvkm_wr32(device, 0x408030, 0xc0000000);
2363 
2364         if (gr->func->init_40601c)
2365                 gr->func->init_40601c(gr);
2366 
2367         nvkm_wr32(device, 0x404490, 0xc0000000);
2368         nvkm_wr32(device, 0x406018, 0xc0000000);
2369 
2370         if (gr->func->init_sked_hww_esr)
2371                 gr->func->init_sked_hww_esr(gr);
2372 
2373         nvkm_wr32(device, 0x405840, 0xc0000000);
2374         nvkm_wr32(device, 0x405844, 0x00ffffff);
2375 
2376         if (gr->func->init_419cc0)
2377                 gr->func->init_419cc0(gr);
2378         if (gr->func->init_419eb4)
2379                 gr->func->init_419eb4(gr);
2380         if (gr->func->init_419c9c)
2381                 gr->func->init_419c9c(gr);
2382 
2383         if (gr->func->init_ppc_exceptions)
2384                 gr->func->init_ppc_exceptions(gr);
2385 
2386         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2387                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
2388                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
2389                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
2390                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
2391                 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
2392                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
2393                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
2394                         if (gr->func->init_tex_hww_esr)
2395                                 gr->func->init_tex_hww_esr(gr, gpc, tpc);
2396                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
2397                         if (gr->func->init_504430)
2398                                 gr->func->init_504430(gr, gpc, tpc);
2399                         gr->func->init_shader_exceptions(gr, gpc, tpc);
2400                 }
2401                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
2402                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
2403         }
2404 
2405         for (rop = 0; rop < gr->rop_nr; rop++) {
2406                 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0x40000000);
2407                 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0x40000000);
2408                 nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
2409                 nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
2410         }
2411 
2412         nvkm_wr32(device, 0x400108, 0xffffffff);
2413         nvkm_wr32(device, 0x400138, 0xffffffff);
2414         nvkm_wr32(device, 0x400118, 0xffffffff);
2415         nvkm_wr32(device, 0x400130, 0xffffffff);
2416         nvkm_wr32(device, 0x40011c, 0xffffffff);
2417         nvkm_wr32(device, 0x400134, 0xffffffff);
2418 
2419         if (gr->func->init_400054)
2420                 gr->func->init_400054(gr);
2421 
2422         gf100_gr_zbc_init(gr);
2423 
2424         if (gr->func->init_4188a4)
2425                 gr->func->init_4188a4(gr);
2426 
2427         return gf100_gr_init_ctxctl(gr);
2428 }
2429 
2430 #include "fuc/hubgf100.fuc3.h"
2431 
2432 struct gf100_gr_ucode
2433 gf100_gr_fecs_ucode = {
2434         .code.data = gf100_grhub_code,
2435         .code.size = sizeof(gf100_grhub_code),
2436         .data.data = gf100_grhub_data,
2437         .data.size = sizeof(gf100_grhub_data),
2438 };
2439 
2440 #include "fuc/gpcgf100.fuc3.h"
2441 
2442 struct gf100_gr_ucode
2443 gf100_gr_gpccs_ucode = {
2444         .code.data = gf100_grgpc_code,
2445         .code.size = sizeof(gf100_grgpc_code),
2446         .data.data = gf100_grgpc_data,
2447         .data.size = sizeof(gf100_grgpc_data),
2448 };
2449 
2450 static const struct gf100_gr_func
2451 gf100_gr = {
2452         .oneinit_tiles = gf100_gr_oneinit_tiles,
2453         .oneinit_sm_id = gf100_gr_oneinit_sm_id,
2454         .init = gf100_gr_init,
2455         .init_gpc_mmu = gf100_gr_init_gpc_mmu,
2456         .init_vsc_stream_master = gf100_gr_init_vsc_stream_master,
2457         .init_zcull = gf100_gr_init_zcull,
2458         .init_num_active_ltcs = gf100_gr_init_num_active_ltcs,
2459         .init_fecs_exceptions = gf100_gr_init_fecs_exceptions,
2460         .init_40601c = gf100_gr_init_40601c,
2461         .init_419cc0 = gf100_gr_init_419cc0,
2462         .init_419eb4 = gf100_gr_init_419eb4,
2463         .init_tex_hww_esr = gf100_gr_init_tex_hww_esr,
2464         .init_shader_exceptions = gf100_gr_init_shader_exceptions,
2465         .init_400054 = gf100_gr_init_400054,
2466         .trap_mp = gf100_gr_trap_mp,
2467         .mmio = gf100_gr_pack_mmio,
2468         .fecs.ucode = &gf100_gr_fecs_ucode,
2469         .gpccs.ucode = &gf100_gr_gpccs_ucode,
2470         .rops = gf100_gr_rops,
2471         .grctx = &gf100_grctx,
2472         .zbc = &gf100_gr_zbc,
2473         .sclass = {
2474                 { -1, -1, FERMI_TWOD_A },
2475                 { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2476                 { -1, -1, FERMI_A, &gf100_fermi },
2477                 { -1, -1, FERMI_COMPUTE_A },
2478                 {}
2479         }
2480 };
2481 
2482 int
2483 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2484 {
2485         return gf100_gr_new_(&gf100_gr, device, index, pgr);
2486 }

/* [<][>][^][v][top][bottom][index][help] */