root/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. atomctrl_retrieve_ac_timing
  2. atomctrl_set_mc_reg_address_table
  3. atomctrl_initialize_mc_reg_table
  4. atomctrl_set_engine_dram_timings_rv770
  5. get_voltage_info_table
  6. atomctrl_lookup_voltage_type_v3
  7. atomctrl_get_memory_pll_dividers_si
  8. atomctrl_get_memory_pll_dividers_vi
  9. atomctrl_get_memory_pll_dividers_ai
  10. atomctrl_get_engine_pll_dividers_kong
  11. atomctrl_get_engine_pll_dividers_vi
  12. atomctrl_get_engine_pll_dividers_ai
  13. atomctrl_get_dfs_pll_dividers_vi
  14. atomctrl_get_reference_clock
  15. atomctrl_is_voltage_controlled_by_gpio_v3
  16. atomctrl_get_voltage_table_v3
  17. atomctrl_lookup_gpio_pin
  18. get_gpio_lookup_table
  19. atomctrl_get_pp_assign_pin
  20. atomctrl_calculate_voltage_evv_on_sclk
  21. atomctrl_get_voltage_evv_on_sclk
  22. atomctrl_get_voltage_evv
  23. atomctrl_get_mpll_reference_clock
  24. asic_internal_ss_get_ss_table
  25. asic_internal_ss_get_ss_asignment
  26. atomctrl_get_memory_clock_spread_spectrum
  27. atomctrl_get_engine_clock_spread_spectrum
  28. atomctrl_read_efuse
  29. atomctrl_set_ac_timing_ai
  30. atomctrl_get_voltage_evv_on_sclk_ai
  31. atomctrl_get_smc_sclk_range_table
  32. atomctrl_get_avfs_information
  33. atomctrl_get_svi2_info
  34. atomctrl_get_leakage_id_from_efuse
  35. atomctrl_get_leakage_vddc_base_on_leakage
  36. atomctrl_get_voltage_range

   1 /*
   2  * Copyright 2015 Advanced Micro Devices, Inc.
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice shall be included in
  12  * all copies or substantial portions of the Software.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20  * OTHER DEALINGS IN THE SOFTWARE.
  21  *
  22  */
  23 #include "pp_debug.h"
  24 #include <linux/module.h>
  25 #include <linux/slab.h>
  26 #include <linux/delay.h>
  27 #include "atom.h"
  28 #include "ppatomctrl.h"
  29 #include "atombios.h"
  30 #include "cgs_common.h"
  31 #include "ppevvmath.h"
  32 
  33 #define MEM_ID_MASK           0xff000000
  34 #define MEM_ID_SHIFT          24
  35 #define CLOCK_RANGE_MASK      0x00ffffff
  36 #define CLOCK_RANGE_SHIFT     0
  37 #define LOW_NIBBLE_MASK       0xf
  38 #define DATA_EQU_PREV         0
  39 #define DATA_FROM_TABLE       4
  40 
  41 union voltage_object_info {
  42         struct _ATOM_VOLTAGE_OBJECT_INFO v1;
  43         struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
  44         struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
  45 };
  46 
  47 static int atomctrl_retrieve_ac_timing(
  48                 uint8_t index,
  49                 ATOM_INIT_REG_BLOCK *reg_block,
  50                 pp_atomctrl_mc_reg_table *table)
  51 {
  52         uint32_t i, j;
  53         uint8_t tmem_id;
  54         ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  55                 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
  56 
  57         uint8_t num_ranges = 0;
  58 
  59         while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
  60                         num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
  61                 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
  62 
  63                 if (index == tmem_id) {
  64                         table->mc_reg_table_entry[num_ranges].mclk_max =
  65                                 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
  66                                                 CLOCK_RANGE_SHIFT);
  67 
  68                         for (i = 0, j = 1; i < table->last; i++) {
  69                                 if ((table->mc_reg_address[i].uc_pre_reg_data &
  70                                                         LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
  71                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
  72                                                 (uint32_t)*((uint32_t *)reg_data + j);
  73                                         j++;
  74                                 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
  75                                                         LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
  76                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
  77                                                 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
  78                                 }
  79                         }
  80                         num_ranges++;
  81                 }
  82 
  83                 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  84                         ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
  85         }
  86 
  87         PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
  88                         "Invalid VramInfo table.", return -1);
  89         table->num_entries = num_ranges;
  90 
  91         return 0;
  92 }
  93 
  94 /**
  95  * Get memory clock AC timing registers index from VBIOS table
  96  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
  97  * @param    reg_block the address ATOM_INIT_REG_BLOCK
  98  * @param    table the address of MCRegTable
  99  * @return   0
 100  */
 101 static int atomctrl_set_mc_reg_address_table(
 102                 ATOM_INIT_REG_BLOCK *reg_block,
 103                 pp_atomctrl_mc_reg_table *table)
 104 {
 105         uint8_t i = 0;
 106         uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
 107                         / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
 108         ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
 109 
 110         num_entries--;        /* subtract 1 data end mark entry */
 111 
 112         PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
 113                         "Invalid VramInfo table.", return -1);
 114 
 115         /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
 116         while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
 117                         (i < num_entries)) {
 118                 table->mc_reg_address[i].s1 =
 119                         (uint16_t)(le16_to_cpu(format->usRegIndex));
 120                 table->mc_reg_address[i].uc_pre_reg_data =
 121                         format->ucPreRegDataLength;
 122 
 123                 i++;
 124                 format = (ATOM_INIT_REG_INDEX_FORMAT *)
 125                         ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
 126         }
 127 
 128         table->last = i;
 129         return 0;
 130 }
 131 
 132 int atomctrl_initialize_mc_reg_table(
 133                 struct pp_hwmgr *hwmgr,
 134                 uint8_t module_index,
 135                 pp_atomctrl_mc_reg_table *table)
 136 {
 137         ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
 138         ATOM_INIT_REG_BLOCK *reg_block;
 139         int result = 0;
 140         u8 frev, crev;
 141         u16 size;
 142 
 143         vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
 144                 smu_atom_get_data_table(hwmgr->adev,
 145                                 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
 146 
 147         if (module_index >= vram_info->ucNumOfVRAMModule) {
 148                 pr_err("Invalid VramInfo table.");
 149                 result = -1;
 150         } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
 151                 pr_err("Invalid VramInfo table.");
 152                 result = -1;
 153         }
 154 
 155         if (0 == result) {
 156                 reg_block = (ATOM_INIT_REG_BLOCK *)
 157                         ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
 158                 result = atomctrl_set_mc_reg_address_table(reg_block, table);
 159         }
 160 
 161         if (0 == result) {
 162                 result = atomctrl_retrieve_ac_timing(module_index,
 163                                         reg_block, table);
 164         }
 165 
 166         return result;
 167 }
 168 
 169 /**
 170  * Set DRAM timings based on engine clock and memory clock.
 171  */
 172 int atomctrl_set_engine_dram_timings_rv770(
 173                 struct pp_hwmgr *hwmgr,
 174                 uint32_t engine_clock,
 175                 uint32_t memory_clock)
 176 {
 177         struct amdgpu_device *adev = hwmgr->adev;
 178 
 179         SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
 180 
 181         /* They are both in 10KHz Units. */
 182         engine_clock_parameters.ulTargetEngineClock =
 183                 cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
 184                             ((COMPUTE_ENGINE_PLL_PARAM << 24)));
 185 
 186         /* in 10 khz units.*/
 187         engine_clock_parameters.sReserved.ulClock =
 188                 cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
 189 
 190         return amdgpu_atom_execute_table(adev->mode_info.atom_context,
 191                         GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
 192                         (uint32_t *)&engine_clock_parameters);
 193 }
 194 
 195 /**
 196  * Private Function to get the PowerPlay Table Address.
 197  * WARNING: The tabled returned by this function is in
 198  * dynamically allocated memory.
 199  * The caller has to release if by calling kfree.
 200  */
 201 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
 202 {
 203         int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
 204         u8 frev, crev;
 205         u16 size;
 206         union voltage_object_info *voltage_info;
 207 
 208         voltage_info = (union voltage_object_info *)
 209                 smu_atom_get_data_table(device, index,
 210                         &size, &frev, &crev);
 211 
 212         if (voltage_info != NULL)
 213                 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
 214         else
 215                 return NULL;
 216 }
 217 
 218 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
 219                 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
 220                 uint8_t voltage_type, uint8_t voltage_mode)
 221 {
 222         unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
 223         unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
 224         uint8_t *start = (uint8_t *)voltage_object_info_table;
 225 
 226         while (offset < size) {
 227                 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
 228                         (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
 229 
 230                 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
 231                         voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
 232                         return voltage_object;
 233 
 234                 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
 235         }
 236 
 237         return NULL;
 238 }
 239 
 240 /** atomctrl_get_memory_pll_dividers_si().
 241  *
 242  * @param hwmgr                 input parameter: pointer to HwMgr
 243  * @param clock_value             input parameter: memory clock
 244  * @param dividers                 output parameter: memory PLL dividers
 245  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
 246  */
 247 int atomctrl_get_memory_pll_dividers_si(
 248                 struct pp_hwmgr *hwmgr,
 249                 uint32_t clock_value,
 250                 pp_atomctrl_memory_clock_param *mpll_param,
 251                 bool strobe_mode)
 252 {
 253         struct amdgpu_device *adev = hwmgr->adev;
 254         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
 255         int result;
 256 
 257         mpll_parameters.ulClock = cpu_to_le32(clock_value);
 258         mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
 259 
 260         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 261                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
 262                 (uint32_t *)&mpll_parameters);
 263 
 264         if (0 == result) {
 265                 mpll_param->mpll_fb_divider.clk_frac =
 266                         le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
 267                 mpll_param->mpll_fb_divider.cl_kf =
 268                         le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
 269                 mpll_param->mpll_post_divider =
 270                         (uint32_t)mpll_parameters.ucPostDiv;
 271                 mpll_param->vco_mode =
 272                         (uint32_t)(mpll_parameters.ucPllCntlFlag &
 273                                         MPLL_CNTL_FLAG_VCO_MODE_MASK);
 274                 mpll_param->yclk_sel =
 275                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
 276                                                 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
 277                 mpll_param->qdr =
 278                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
 279                                                 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
 280                 mpll_param->half_rate =
 281                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
 282                                                 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
 283                 mpll_param->dll_speed =
 284                         (uint32_t)(mpll_parameters.ucDllSpeed);
 285                 mpll_param->bw_ctrl =
 286                         (uint32_t)(mpll_parameters.ucBWCntl);
 287         }
 288 
 289         return result;
 290 }
 291 
 292 /** atomctrl_get_memory_pll_dividers_vi().
 293  *
 294  * @param hwmgr                 input parameter: pointer to HwMgr
 295  * @param clock_value             input parameter: memory clock
 296  * @param dividers               output parameter: memory PLL dividers
 297  */
 298 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
 299                 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
 300 {
 301         struct amdgpu_device *adev = hwmgr->adev;
 302         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
 303         int result;
 304 
 305         mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
 306 
 307         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 308                         GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
 309                         (uint32_t *)&mpll_parameters);
 310 
 311         if (!result)
 312                 mpll_param->mpll_post_divider =
 313                                 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
 314 
 315         return result;
 316 }
 317 
 318 int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
 319                                         uint32_t clock_value,
 320                                         pp_atomctrl_memory_clock_param_ai *mpll_param)
 321 {
 322         struct amdgpu_device *adev = hwmgr->adev;
 323         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
 324         int result;
 325 
 326         mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
 327 
 328         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 329                         GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
 330                         (uint32_t *)&mpll_parameters);
 331 
 332         /* VEGAM's mpll takes sometime to finish computing */
 333         udelay(10);
 334 
 335         if (!result) {
 336                 mpll_param->ulMclk_fcw_int =
 337                         le16_to_cpu(mpll_parameters.usMclk_fcw_int);
 338                 mpll_param->ulMclk_fcw_frac =
 339                         le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
 340                 mpll_param->ulClock =
 341                         le32_to_cpu(mpll_parameters.ulClock.ulClock);
 342                 mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
 343         }
 344 
 345         return result;
 346 }
 347 
 348 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
 349                                           uint32_t clock_value,
 350                                           pp_atomctrl_clock_dividers_kong *dividers)
 351 {
 352         struct amdgpu_device *adev = hwmgr->adev;
 353         COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
 354         int result;
 355 
 356         pll_parameters.ulClock = cpu_to_le32(clock_value);
 357 
 358         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 359                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 360                 (uint32_t *)&pll_parameters);
 361 
 362         if (0 == result) {
 363                 dividers->pll_post_divider = pll_parameters.ucPostDiv;
 364                 dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
 365         }
 366 
 367         return result;
 368 }
 369 
 370 int atomctrl_get_engine_pll_dividers_vi(
 371                 struct pp_hwmgr *hwmgr,
 372                 uint32_t clock_value,
 373                 pp_atomctrl_clock_dividers_vi *dividers)
 374 {
 375         struct amdgpu_device *adev = hwmgr->adev;
 376         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
 377         int result;
 378 
 379         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
 380         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
 381 
 382         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 383                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 384                 (uint32_t *)&pll_patameters);
 385 
 386         if (0 == result) {
 387                 dividers->pll_post_divider =
 388                         pll_patameters.ulClock.ucPostDiv;
 389                 dividers->real_clock =
 390                         le32_to_cpu(pll_patameters.ulClock.ulClock);
 391 
 392                 dividers->ul_fb_div.ul_fb_div_frac =
 393                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
 394                 dividers->ul_fb_div.ul_fb_div =
 395                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
 396 
 397                 dividers->uc_pll_ref_div =
 398                         pll_patameters.ucPllRefDiv;
 399                 dividers->uc_pll_post_div =
 400                         pll_patameters.ucPllPostDiv;
 401                 dividers->uc_pll_cntl_flag =
 402                         pll_patameters.ucPllCntlFlag;
 403         }
 404 
 405         return result;
 406 }
 407 
 408 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
 409                 uint32_t clock_value,
 410                 pp_atomctrl_clock_dividers_ai *dividers)
 411 {
 412         struct amdgpu_device *adev = hwmgr->adev;
 413         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
 414         int result;
 415 
 416         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
 417         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
 418 
 419         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 420                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 421                 (uint32_t *)&pll_patameters);
 422 
 423         if (0 == result) {
 424                 dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
 425                 dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
 426                 dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
 427                 dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
 428                 dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
 429                 dividers->ucSscEnable         = pll_patameters.ucSscEnable;
 430                 dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
 431                 dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
 432                 dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
 433                 dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
 434                 dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
 435         }
 436         return result;
 437 }
 438 
 439 int atomctrl_get_dfs_pll_dividers_vi(
 440                 struct pp_hwmgr *hwmgr,
 441                 uint32_t clock_value,
 442                 pp_atomctrl_clock_dividers_vi *dividers)
 443 {
 444         struct amdgpu_device *adev = hwmgr->adev;
 445         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
 446         int result;
 447 
 448         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
 449         pll_patameters.ulClock.ucPostDiv =
 450                 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
 451 
 452         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 453                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 454                 (uint32_t *)&pll_patameters);
 455 
 456         if (0 == result) {
 457                 dividers->pll_post_divider =
 458                         pll_patameters.ulClock.ucPostDiv;
 459                 dividers->real_clock =
 460                         le32_to_cpu(pll_patameters.ulClock.ulClock);
 461 
 462                 dividers->ul_fb_div.ul_fb_div_frac =
 463                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
 464                 dividers->ul_fb_div.ul_fb_div =
 465                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
 466 
 467                 dividers->uc_pll_ref_div =
 468                         pll_patameters.ucPllRefDiv;
 469                 dividers->uc_pll_post_div =
 470                         pll_patameters.ucPllPostDiv;
 471                 dividers->uc_pll_cntl_flag =
 472                         pll_patameters.ucPllCntlFlag;
 473         }
 474 
 475         return result;
 476 }
 477 
 478 /**
 479  * Get the reference clock in 10KHz
 480  */
 481 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
 482 {
 483         ATOM_FIRMWARE_INFO *fw_info;
 484         u8 frev, crev;
 485         u16 size;
 486         uint32_t clock;
 487 
 488         fw_info = (ATOM_FIRMWARE_INFO *)
 489                 smu_atom_get_data_table(hwmgr->adev,
 490                         GetIndexIntoMasterTable(DATA, FirmwareInfo),
 491                         &size, &frev, &crev);
 492 
 493         if (fw_info == NULL)
 494                 clock = 2700;
 495         else
 496                 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
 497 
 498         return clock;
 499 }
 500 
 501 /**
 502  * Returns true if the given voltage type is controlled by GPIO pins.
 503  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
 504  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
 505  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
 506  */
 507 bool atomctrl_is_voltage_controlled_by_gpio_v3(
 508                 struct pp_hwmgr *hwmgr,
 509                 uint8_t voltage_type,
 510                 uint8_t voltage_mode)
 511 {
 512         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
 513                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
 514         bool ret;
 515 
 516         PP_ASSERT_WITH_CODE((NULL != voltage_info),
 517                         "Could not find Voltage Table in BIOS.", return false;);
 518 
 519         ret = (NULL != atomctrl_lookup_voltage_type_v3
 520                         (voltage_info, voltage_type, voltage_mode)) ? true : false;
 521 
 522         return ret;
 523 }
 524 
 525 int atomctrl_get_voltage_table_v3(
 526                 struct pp_hwmgr *hwmgr,
 527                 uint8_t voltage_type,
 528                 uint8_t voltage_mode,
 529                 pp_atomctrl_voltage_table *voltage_table)
 530 {
 531         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
 532                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
 533         const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
 534         unsigned int i;
 535 
 536         PP_ASSERT_WITH_CODE((NULL != voltage_info),
 537                         "Could not find Voltage Table in BIOS.", return -1;);
 538 
 539         voltage_object = atomctrl_lookup_voltage_type_v3
 540                 (voltage_info, voltage_type, voltage_mode);
 541 
 542         if (voltage_object == NULL)
 543                 return -1;
 544 
 545         PP_ASSERT_WITH_CODE(
 546                         (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
 547                         PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
 548                         "Too many voltage entries!",
 549                         return -1;
 550                         );
 551 
 552         for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
 553                 voltage_table->entries[i].value =
 554                         le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
 555                 voltage_table->entries[i].smio_low =
 556                         le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
 557         }
 558 
 559         voltage_table->mask_low    =
 560                 le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
 561         voltage_table->count      =
 562                 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
 563         voltage_table->phase_delay =
 564                 voltage_object->asGpioVoltageObj.ucPhaseDelay;
 565 
 566         return 0;
 567 }
 568 
 569 static bool atomctrl_lookup_gpio_pin(
 570                 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
 571                 const uint32_t pinId,
 572                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
 573 {
 574         unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
 575         unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
 576         uint8_t *start = (uint8_t *)gpio_lookup_table;
 577 
 578         while (offset < size) {
 579                 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
 580                         (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
 581 
 582                 if (pinId == pin_assignment->ucGPIO_ID) {
 583                         gpio_pin_assignment->uc_gpio_pin_bit_shift =
 584                                 pin_assignment->ucGpioPinBitShift;
 585                         gpio_pin_assignment->us_gpio_pin_aindex =
 586                                 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
 587                         return true;
 588                 }
 589 
 590                 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
 591         }
 592 
 593         return false;
 594 }
 595 
 596 /**
 597  * Private Function to get the PowerPlay Table Address.
 598  * WARNING: The tabled returned by this function is in
 599  * dynamically allocated memory.
 600  * The caller has to release if by calling kfree.
 601  */
 602 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
 603 {
 604         u8 frev, crev;
 605         u16 size;
 606         void *table_address;
 607 
 608         table_address = (ATOM_GPIO_PIN_LUT *)
 609                 smu_atom_get_data_table(device,
 610                                 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
 611                                 &size, &frev, &crev);
 612 
 613         PP_ASSERT_WITH_CODE((NULL != table_address),
 614                         "Error retrieving BIOS Table Address!", return NULL;);
 615 
 616         return (ATOM_GPIO_PIN_LUT *)table_address;
 617 }
 618 
 619 /**
 620  * Returns 1 if the given pin id find in lookup table.
 621  */
 622 bool atomctrl_get_pp_assign_pin(
 623                 struct pp_hwmgr *hwmgr,
 624                 const uint32_t pinId,
 625                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
 626 {
 627         bool bRet = false;
 628         ATOM_GPIO_PIN_LUT *gpio_lookup_table =
 629                 get_gpio_lookup_table(hwmgr->adev);
 630 
 631         PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
 632                         "Could not find GPIO lookup Table in BIOS.", return false);
 633 
 634         bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
 635                 gpio_pin_assignment);
 636 
 637         return bRet;
 638 }
 639 
 640 int atomctrl_calculate_voltage_evv_on_sclk(
 641                 struct pp_hwmgr *hwmgr,
 642                 uint8_t voltage_type,
 643                 uint32_t sclk,
 644                 uint16_t virtual_voltage_Id,
 645                 uint16_t *voltage,
 646                 uint16_t dpm_level,
 647                 bool debug)
 648 {
 649         ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
 650         struct amdgpu_device *adev = hwmgr->adev;
 651         EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
 652         EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
 653         EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
 654         EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
 655         EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
 656         EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
 657         EFUSE_INPUT_PARAMETER sInput_FuseValues;
 658         READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
 659 
 660         uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
 661         fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
 662         fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
 663         fInt fLkg_FT, repeat;
 664         fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
 665         fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
 666         fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
 667         fInt fSclk_margin, fSclk, fEVV_V;
 668         fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
 669         uint32_t ul_FT_Lkg_V0NORM;
 670         fInt fLn_MaxDivMin, fMin, fAverage, fRange;
 671         fInt fRoots[2];
 672         fInt fStepSize = GetScaledFraction(625, 100000);
 673 
 674         int result;
 675 
 676         getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
 677                         smu_atom_get_data_table(hwmgr->adev,
 678                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
 679                                         NULL, NULL, NULL);
 680 
 681         if (!getASICProfilingInfo)
 682                 return -1;
 683 
 684         if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
 685             (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
 686              getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
 687                 return -1;
 688 
 689         /*-----------------------------------------------------------
 690          *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
 691          *-----------------------------------------------------------
 692          */
 693         fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
 694 
 695         switch (dpm_level) {
 696         case 1:
 697                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
 698                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
 699                 break;
 700         case 2:
 701                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
 702                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
 703                 break;
 704         case 3:
 705                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
 706                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
 707                 break;
 708         case 4:
 709                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
 710                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
 711                 break;
 712         case 5:
 713                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
 714                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
 715                 break;
 716         case 6:
 717                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
 718                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
 719                 break;
 720         case 7:
 721                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
 722                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
 723                 break;
 724         default:
 725                 pr_err("DPM Level not supported\n");
 726                 fPowerDPMx = Convert_ULONG_ToFraction(1);
 727                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
 728         }
 729 
 730         /*-------------------------
 731          * DECODING FUSE VALUES
 732          * ------------------------
 733          */
 734         /*Decode RO_Fused*/
 735         sRO_fuse = getASICProfilingInfo->sRoFuse;
 736 
 737         sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
 738         sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
 739         sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
 740 
 741         sOutput_FuseValues.sEfuse = sInput_FuseValues;
 742 
 743         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 744                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 745                         (uint32_t *)&sOutput_FuseValues);
 746 
 747         if (result)
 748                 return result;
 749 
 750         /* Finally, the actual fuse value */
 751         ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 752         fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
 753         fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
 754         fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
 755 
 756         sCACm_fuse = getASICProfilingInfo->sCACm;
 757 
 758         sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
 759         sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
 760         sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
 761 
 762         sOutput_FuseValues.sEfuse = sInput_FuseValues;
 763 
 764         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 765                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 766                         (uint32_t *)&sOutput_FuseValues);
 767 
 768         if (result)
 769                 return result;
 770 
 771         ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 772         fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
 773         fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
 774 
 775         fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
 776 
 777         sCACb_fuse = getASICProfilingInfo->sCACb;
 778 
 779         sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
 780         sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
 781         sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
 782         sOutput_FuseValues.sEfuse = sInput_FuseValues;
 783 
 784         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 785                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 786                         (uint32_t *)&sOutput_FuseValues);
 787 
 788         if (result)
 789                 return result;
 790 
 791         ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 792         fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
 793         fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
 794 
 795         fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
 796 
 797         sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
 798 
 799         sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
 800         sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
 801         sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
 802 
 803         sOutput_FuseValues.sEfuse = sInput_FuseValues;
 804 
 805         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 806                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 807                         (uint32_t *)&sOutput_FuseValues);
 808 
 809         if (result)
 810                 return result;
 811 
 812         ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 813         fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
 814         fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
 815 
 816         fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
 817                         fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
 818 
 819         sKv_m_fuse = getASICProfilingInfo->sKv_m;
 820 
 821         sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
 822         sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
 823         sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
 824 
 825         sOutput_FuseValues.sEfuse = sInput_FuseValues;
 826 
 827         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 828                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 829                         (uint32_t *)&sOutput_FuseValues);
 830         if (result)
 831                 return result;
 832 
 833         ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 834         fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
 835         fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
 836         fRange = fMultiply(fRange, ConvertToFraction(-1));
 837 
 838         fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
 839                         fAverage, fRange, sKv_m_fuse.ucEfuseLength);
 840 
 841         sKv_b_fuse = getASICProfilingInfo->sKv_b;
 842 
 843         sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
 844         sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
 845         sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
 846         sOutput_FuseValues.sEfuse = sInput_FuseValues;
 847 
 848         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 849                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 850                         (uint32_t *)&sOutput_FuseValues);
 851 
 852         if (result)
 853                 return result;
 854 
 855         ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 856         fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
 857         fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
 858 
 859         fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
 860                         fAverage, fRange, sKv_b_fuse.ucEfuseLength);
 861 
 862         /* Decoding the Leakage - No special struct container */
 863         /*
 864          * usLkgEuseIndex=56
 865          * ucLkgEfuseBitLSB=6
 866          * ucLkgEfuseLength=10
 867          * ulLkgEncodeLn_MaxDivMin=69077
 868          * ulLkgEncodeMax=1000000
 869          * ulLkgEncodeMin=1000
 870          * ulEfuseLogisticAlpha=13
 871          */
 872 
 873         sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
 874         sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
 875         sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
 876 
 877         sOutput_FuseValues.sEfuse = sInput_FuseValues;
 878 
 879         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
 880                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 881                         (uint32_t *)&sOutput_FuseValues);
 882 
 883         if (result)
 884                 return result;
 885 
 886         ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 887         fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
 888         fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
 889 
 890         fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
 891                         fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
 892         fLkg_FT = fFT_Lkg_V0NORM;
 893 
 894         /*-------------------------------------------
 895          * PART 2 - Grabbing all required values
 896          *-------------------------------------------
 897          */
 898         fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
 899                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
 900         fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
 901                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
 902         fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
 903                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
 904         fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
 905                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
 906         fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
 907                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
 908         fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
 909                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
 910         fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
 911                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
 912         fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
 913                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
 914 
 915         fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
 916         fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
 917         fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
 918 
 919         fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
 920 
 921         fMargin_FMAX_mean = GetScaledFraction(
 922                 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
 923         fMargin_Plat_mean = GetScaledFraction(
 924                 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
 925         fMargin_FMAX_sigma = GetScaledFraction(
 926                 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
 927         fMargin_Plat_sigma = GetScaledFraction(
 928                 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
 929 
 930         fMargin_DC_sigma = GetScaledFraction(
 931                 le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
 932         fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
 933 
 934         fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
 935         fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
 936         fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
 937         fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
 938         fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
 939 
 940         fSclk = GetScaledFraction(sclk, 100);
 941 
 942         fV_max = fDivide(GetScaledFraction(
 943                                  le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
 944         fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
 945         fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
 946         fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
 947         fV_FT = fDivide(GetScaledFraction(
 948                                 le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
 949         fV_min = fDivide(GetScaledFraction(
 950                                  le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
 951 
 952         /*-----------------------
 953          * PART 3
 954          *-----------------------
 955          */
 956 
 957         fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
 958         fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
 959         fC_Term = fAdd(fMargin_RO_c,
 960                         fAdd(fMultiply(fSM_A0, fLkg_FT),
 961                         fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
 962                         fAdd(fMultiply(fSM_A3, fSclk),
 963                         fSubtract(fSM_A7, fRO_fused)))));
 964 
 965         fVDDC_base = fSubtract(fRO_fused,
 966                         fSubtract(fMargin_RO_c,
 967                                         fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
 968         fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
 969 
 970         repeat = fSubtract(fVDDC_base,
 971                         fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
 972 
 973         fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
 974                         fGetSquare(repeat)),
 975                         fAdd(fMultiply(fMargin_RO_b, repeat),
 976                         fMargin_RO_c));
 977 
 978         fDC_SCLK = fSubtract(fRO_fused,
 979                         fSubtract(fRO_DC_margin,
 980                         fSubtract(fSM_A3,
 981                         fMultiply(fSM_A2, repeat))));
 982         fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
 983 
 984         fSigma_DC = fSubtract(fSclk, fDC_SCLK);
 985 
 986         fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
 987         fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
 988         fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
 989         fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
 990 
 991         fSquared_Sigma_DC = fGetSquare(fSigma_DC);
 992         fSquared_Sigma_CR = fGetSquare(fSigma_CR);
 993         fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
 994 
 995         fSclk_margin = fAdd(fMicro_FMAX,
 996                         fAdd(fMicro_CR,
 997                         fAdd(fMargin_fixed,
 998                         fSqrt(fAdd(fSquared_Sigma_FMAX,
 999                         fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
1000         /*
1001          fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
1002          fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
1003          fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
1004          */
1005 
1006         fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
1007         fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
1008         fC_Term = fAdd(fRO_DC_margin,
1009                         fAdd(fMultiply(fSM_A0, fLkg_FT),
1010                         fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
1011                         fAdd(fSclk, fSclk_margin)),
1012                         fAdd(fMultiply(fSM_A3,
1013                         fAdd(fSclk, fSclk_margin)),
1014                         fSubtract(fSM_A7, fRO_fused)))));
1015 
1016         SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
1017 
1018         if (GreaterThan(fRoots[0], fRoots[1]))
1019                 fEVV_V = fRoots[1];
1020         else
1021                 fEVV_V = fRoots[0];
1022 
1023         if (GreaterThan(fV_min, fEVV_V))
1024                 fEVV_V = fV_min;
1025         else if (GreaterThan(fEVV_V, fV_max))
1026                 fEVV_V = fSubtract(fV_max, fStepSize);
1027 
1028         fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
1029 
1030         /*-----------------
1031          * PART 4
1032          *-----------------
1033          */
1034 
1035         fV_x = fV_min;
1036 
1037         while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1038                 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1039                                 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1040                                 fGetSquare(fV_x)), fDerateTDP);
1041 
1042                 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1043                                 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1044                                 fT_prod), fKv_b_fused), fV_x)), fV_x)));
1045                 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1046                                 fKt_Beta_fused, fT_prod)));
1047                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1048                                 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1049                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1050                                 fKt_Beta_fused, fT_FT)));
1051 
1052                 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1053 
1054                 fTDP_Current = fDivide(fTDP_Power, fV_x);
1055 
1056                 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1057                                 ConvertToFraction(10)));
1058 
1059                 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1060 
1061                 if (GreaterThan(fV_max, fV_NL) &&
1062                         (GreaterThan(fV_NL, fEVV_V) ||
1063                         Equal(fV_NL, fEVV_V))) {
1064                         fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1065 
1066                         *voltage = (uint16_t)fV_NL.partial.real;
1067                         break;
1068                 } else
1069                         fV_x = fAdd(fV_x, fStepSize);
1070         }
1071 
1072         return result;
1073 }
1074 
1075 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1076  * @param hwmgr input: pointer to hwManager
1077  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1078  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1079  *              which is define in PPTable SCLK/VDDC dependence
1080  *                              table associated with this virtual_voltage_Id
1081  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1082  * @param voltage                      output: real voltage level in unit of mv
1083  */
1084 int atomctrl_get_voltage_evv_on_sclk(
1085                 struct pp_hwmgr *hwmgr,
1086                 uint8_t voltage_type,
1087                 uint32_t sclk, uint16_t virtual_voltage_Id,
1088                 uint16_t *voltage)
1089 {
1090         struct amdgpu_device *adev = hwmgr->adev;
1091         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1092         int result;
1093 
1094         get_voltage_info_param_space.ucVoltageType   =
1095                 voltage_type;
1096         get_voltage_info_param_space.ucVoltageMode   =
1097                 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1098         get_voltage_info_param_space.usVoltageLevel  =
1099                 cpu_to_le16(virtual_voltage_Id);
1100         get_voltage_info_param_space.ulSCLKFreq      =
1101                 cpu_to_le32(sclk);
1102 
1103         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1104                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1105                         (uint32_t *)&get_voltage_info_param_space);
1106 
1107         *voltage = result ? 0 :
1108                         le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1109                                 (&get_voltage_info_param_space))->usVoltageLevel);
1110 
1111         return result;
1112 }
1113 
1114 /**
1115  * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1116  * @param hwmgr input: pointer to hwManager
1117  * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1118  * @param voltage                      output: real voltage level in unit of mv
1119  */
1120 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1121                              uint16_t virtual_voltage_id,
1122                              uint16_t *voltage)
1123 {
1124         struct amdgpu_device *adev = hwmgr->adev;
1125         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1126         int result;
1127         int entry_id;
1128 
1129         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1130         for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1131                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1132                         /* found */
1133                         break;
1134                 }
1135         }
1136 
1137         if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1138                 pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1139                 return -EINVAL;
1140         }
1141 
1142         get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1143         get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1144         get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1145         get_voltage_info_param_space.ulSCLKFreq =
1146                 cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1147 
1148         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1149                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1150                         (uint32_t *)&get_voltage_info_param_space);
1151 
1152         if (0 != result)
1153                 return result;
1154 
1155         *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1156                                 (&get_voltage_info_param_space))->usVoltageLevel);
1157 
1158         return result;
1159 }
1160 
1161 /**
1162  * Get the mpll reference clock in 10KHz
1163  */
1164 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1165 {
1166         ATOM_COMMON_TABLE_HEADER *fw_info;
1167         uint32_t clock;
1168         u8 frev, crev;
1169         u16 size;
1170 
1171         fw_info = (ATOM_COMMON_TABLE_HEADER *)
1172                 smu_atom_get_data_table(hwmgr->adev,
1173                                 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1174                                 &size, &frev, &crev);
1175 
1176         if (fw_info == NULL)
1177                 clock = 2700;
1178         else {
1179                 if ((fw_info->ucTableFormatRevision == 2) &&
1180                         (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1181                         ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1182                                 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1183                         clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1184                 } else {
1185                         ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1186                                 (ATOM_FIRMWARE_INFO *)fw_info;
1187                         clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1188                 }
1189         }
1190 
1191         return clock;
1192 }
1193 
1194 /**
1195  * Get the asic internal spread spectrum table
1196  */
1197 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1198 {
1199         ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1200         u8 frev, crev;
1201         u16 size;
1202 
1203         table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1204                 smu_atom_get_data_table(device,
1205                         GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1206                         &size, &frev, &crev);
1207 
1208         return table;
1209 }
1210 
1211 /**
1212  * Get the asic internal spread spectrum assignment
1213  */
1214 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1215                 const uint8_t clockSource,
1216                 const uint32_t clockSpeed,
1217                 pp_atomctrl_internal_ss_info *ssEntry)
1218 {
1219         ATOM_ASIC_INTERNAL_SS_INFO *table;
1220         ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1221         int entry_found = 0;
1222 
1223         memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1224 
1225         table = asic_internal_ss_get_ss_table(hwmgr->adev);
1226 
1227         if (NULL == table)
1228                 return -1;
1229 
1230         ssInfo = &table->asSpreadSpectrum[0];
1231 
1232         while (((uint8_t *)ssInfo - (uint8_t *)table) <
1233                 le16_to_cpu(table->sHeader.usStructureSize)) {
1234                 if ((clockSource == ssInfo->ucClockIndication) &&
1235                         ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1236                         entry_found = 1;
1237                         break;
1238                 }
1239 
1240                 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1241                                 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1242         }
1243 
1244         if (entry_found) {
1245                 ssEntry->speed_spectrum_percentage =
1246                         le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1247                 ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1248 
1249                 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1250                         (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1251                         (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1252                         ssEntry->speed_spectrum_rate /= 100;
1253                 }
1254 
1255                 switch (ssInfo->ucSpreadSpectrumMode) {
1256                 case 0:
1257                         ssEntry->speed_spectrum_mode =
1258                                 pp_atomctrl_spread_spectrum_mode_down;
1259                         break;
1260                 case 1:
1261                         ssEntry->speed_spectrum_mode =
1262                                 pp_atomctrl_spread_spectrum_mode_center;
1263                         break;
1264                 default:
1265                         ssEntry->speed_spectrum_mode =
1266                                 pp_atomctrl_spread_spectrum_mode_down;
1267                         break;
1268                 }
1269         }
1270 
1271         return entry_found ? 0 : 1;
1272 }
1273 
1274 /**
1275  * Get the memory clock spread spectrum info
1276  */
1277 int atomctrl_get_memory_clock_spread_spectrum(
1278                 struct pp_hwmgr *hwmgr,
1279                 const uint32_t memory_clock,
1280                 pp_atomctrl_internal_ss_info *ssInfo)
1281 {
1282         return asic_internal_ss_get_ss_asignment(hwmgr,
1283                         ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1284 }
1285 /**
1286  * Get the engine clock spread spectrum info
1287  */
1288 int atomctrl_get_engine_clock_spread_spectrum(
1289                 struct pp_hwmgr *hwmgr,
1290                 const uint32_t engine_clock,
1291                 pp_atomctrl_internal_ss_info *ssInfo)
1292 {
1293         return asic_internal_ss_get_ss_asignment(hwmgr,
1294                         ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1295 }
1296 
1297 int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
1298                 uint16_t end_index, uint32_t mask, uint32_t *efuse)
1299 {
1300         struct amdgpu_device *adev = hwmgr->adev;
1301         int result;
1302         READ_EFUSE_VALUE_PARAMETER efuse_param;
1303 
1304         efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1305         efuse_param.sEfuse.ucBitShift = (uint8_t)
1306                         (start_index - ((start_index / 32) * 32));
1307         efuse_param.sEfuse.ucBitLength  = (uint8_t)
1308                         ((end_index - start_index) + 1);
1309 
1310         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1311                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1312                         (uint32_t *)&efuse_param);
1313         *efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1314 
1315         return result;
1316 }
1317 
1318 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1319                               uint8_t level)
1320 {
1321         struct amdgpu_device *adev = hwmgr->adev;
1322         DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1323         int result;
1324 
1325         memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1326                 memory_clock & SET_CLOCK_FREQ_MASK;
1327         memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1328                 ADJUST_MC_SETTING_PARAM;
1329         memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1330 
1331         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1332                  GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1333                 (uint32_t *)&memory_clock_parameters);
1334 
1335         return result;
1336 }
1337 
1338 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1339                                 uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1340 {
1341         struct amdgpu_device *adev = hwmgr->adev;
1342         int result;
1343         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1344 
1345         get_voltage_info_param_space.ucVoltageType = voltage_type;
1346         get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1347         get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1348         get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1349 
1350         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1351                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1352                         (uint32_t *)&get_voltage_info_param_space);
1353 
1354         *voltage = result ? 0 :
1355                 le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1356 
1357         return result;
1358 }
1359 
1360 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1361 {
1362 
1363         int i;
1364         u8 frev, crev;
1365         u16 size;
1366 
1367         ATOM_SMU_INFO_V2_1 *psmu_info =
1368                 (ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1369                         GetIndexIntoMasterTable(DATA, SMU_Info),
1370                         &size, &frev, &crev);
1371 
1372 
1373         for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1374                 table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1375                 table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1376                 table->entry[i].usFcw_pcc =
1377                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1378                 table->entry[i].usFcw_trans_upper =
1379                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1380                 table->entry[i].usRcw_trans_lower =
1381                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1382         }
1383 
1384         return 0;
1385 }
1386 
1387 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1388                                   struct pp_atom_ctrl__avfs_parameters *param)
1389 {
1390         ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1391 
1392         if (param == NULL)
1393                 return -EINVAL;
1394 
1395         profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1396                         smu_atom_get_data_table(hwmgr->adev,
1397                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1398                                         NULL, NULL, NULL);
1399         if (!profile)
1400                 return -1;
1401 
1402         param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1403         param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1404         param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1405         param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1406         param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1407         param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1408         param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1409         param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1410         param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1411         param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1412         param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1413         param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1414         param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1415         param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1416         param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1417         param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1418         param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1419         param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1420         param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1421         param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1422         param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1423         param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1424         param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1425         param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1426         param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1427 
1428         return 0;
1429 }
1430 
1431 int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1432                                 uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1433                                 uint16_t *load_line)
1434 {
1435         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1436                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1437 
1438         const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1439 
1440         PP_ASSERT_WITH_CODE((NULL != voltage_info),
1441                         "Could not find Voltage Table in BIOS.", return -EINVAL);
1442 
1443         voltage_object = atomctrl_lookup_voltage_type_v3
1444                 (voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1445 
1446         *svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1447         *svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1448         *load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1449 
1450         return 0;
1451 }
1452 
1453 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1454 {
1455         struct amdgpu_device *adev = hwmgr->adev;
1456         SET_VOLTAGE_PS_ALLOCATION allocation;
1457         SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1458                         (SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1459         int result;
1460 
1461         voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1462 
1463         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1464                         GetIndexIntoMasterTable(COMMAND, SetVoltage),
1465                         (uint32_t *)voltage_parameters);
1466 
1467         *virtual_voltage_id = voltage_parameters->usVoltageLevel;
1468 
1469         return result;
1470 }
1471 
1472 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1473                                         uint16_t *vddc, uint16_t *vddci,
1474                                         uint16_t virtual_voltage_id,
1475                                         uint16_t efuse_voltage_id)
1476 {
1477         int i, j;
1478         int ix;
1479         u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1480         ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1481 
1482         *vddc = 0;
1483         *vddci = 0;
1484 
1485         ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1486 
1487         profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1488                         smu_atom_get_data_table(hwmgr->adev,
1489                                         ix,
1490                                         NULL, NULL, NULL);
1491         if (!profile)
1492                 return -EINVAL;
1493 
1494         if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1495                 (profile->asHeader.ucTableContentRevision >= 1) &&
1496                 (profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1497                 leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1498                 vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1499                 vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1500                 if (profile->ucElbVDDC_Num > 0) {
1501                         for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1502                                 if (vddc_id_buf[i] == virtual_voltage_id) {
1503                                         for (j = 0; j < profile->ucLeakageBinNum; j++) {
1504                                                 if (efuse_voltage_id <= leakage_bin[j]) {
1505                                                         *vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1506                                                         break;
1507                                                 }
1508                                         }
1509                                         break;
1510                                 }
1511                         }
1512                 }
1513 
1514                 vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1515                 vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1516                 if (profile->ucElbVDDCI_Num > 0) {
1517                         for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1518                                 if (vddci_id_buf[i] == virtual_voltage_id) {
1519                                         for (j = 0; j < profile->ucLeakageBinNum; j++) {
1520                                                 if (efuse_voltage_id <= leakage_bin[j]) {
1521                                                         *vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1522                                                         break;
1523                                                 }
1524                                         }
1525                                         break;
1526                                 }
1527                         }
1528                 }
1529         }
1530 
1531         return 0;
1532 }
1533 
1534 void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1535                                                         uint32_t *min_vddc)
1536 {
1537         void *profile;
1538 
1539         profile = smu_atom_get_data_table(hwmgr->adev,
1540                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1541                                         NULL, NULL, NULL);
1542 
1543         if (profile) {
1544                 switch (hwmgr->chip_id) {
1545                 case CHIP_TONGA:
1546                 case CHIP_FIJI:
1547                         *max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1548                         *min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1549                         return;
1550                 case CHIP_POLARIS11:
1551                 case CHIP_POLARIS10:
1552                 case CHIP_POLARIS12:
1553                         *max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1554                         *min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1555                         return;
1556                 default:
1557                         break;
1558                 }
1559         }
1560         *max_vddc = 0;
1561         *min_vddc = 0;
1562 }

/* [<][>][^][v][top][bottom][index][help] */