root/drivers/gpu/drm/amd/powerplay/smumgr/iceland_smumgr.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. iceland_start_smc
  2. iceland_reset_smc
  3. iceland_stop_smc_clock
  4. iceland_start_smc_clock
  5. iceland_smu_start_smc
  6. iceland_upload_smc_firmware_data
  7. iceland_smu_upload_firmware_image
  8. iceland_request_smu_load_specific_fw
  9. iceland_start_smu
  10. iceland_smu_init
  11. iceland_initialize_power_tune_defaults
  12. iceland_populate_svi_load_line
  13. iceland_populate_tdc_limit
  14. iceland_populate_dw8
  15. iceland_populate_temperature_scaler
  16. iceland_populate_gnb_lpml
  17. iceland_populate_bapm_vddc_base_leakage_sidd
  18. iceland_populate_bapm_vddc_vid_sidd
  19. iceland_populate_vddc_vid
  20. iceland_populate_pm_fuses
  21. iceland_get_dependency_volt_by_clk
  22. iceland_get_std_voltage_value_sidd
  23. iceland_populate_smc_voltage_table
  24. iceland_populate_smc_vddc_table
  25. iceland_populate_smc_vdd_ci_table
  26. iceland_populate_smc_mvdd_table
  27. iceland_populate_smc_voltage_tables
  28. iceland_populate_ulv_level
  29. iceland_populate_ulv_state
  30. iceland_populate_smc_link_level
  31. iceland_calculate_sclk_params
  32. iceland_populate_phase_value_based_on_sclk
  33. iceland_populate_single_graphic_level
  34. iceland_populate_all_graphic_levels
  35. iceland_calculate_mclk_params
  36. iceland_get_mclk_frequency_ratio
  37. iceland_get_ddr3_mclk_frequency_ratio
  38. iceland_populate_phase_value_based_on_mclk
  39. iceland_populate_single_memory_level
  40. iceland_populate_all_memory_levels
  41. iceland_populate_mvdd_value
  42. iceland_populate_smc_acpi_level
  43. iceland_populate_smc_uvd_level
  44. iceland_populate_smc_vce_level
  45. iceland_populate_smc_acp_level
  46. iceland_populate_memory_timing_parameters
  47. iceland_program_memory_timing_parameters
  48. iceland_populate_smc_boot_level
  49. iceland_populate_mc_reg_address
  50. iceland_convert_mc_registers
  51. iceland_convert_mc_reg_table_entry_to_smc
  52. iceland_convert_mc_reg_table_to_smc
  53. iceland_update_and_upload_mc_reg_table
  54. iceland_populate_initial_mc_reg_table
  55. iceland_populate_smc_initial_state
  56. iceland_populate_bapm_parameters_in_dpm_table
  57. iceland_populate_smc_svi2_config
  58. iceland_init_smc_table
  59. iceland_thermal_setup_fan_table
  60. iceland_program_mem_timing_parameters
  61. iceland_update_sclk_threshold
  62. iceland_get_offsetof
  63. iceland_get_mac_definition
  64. iceland_process_firmware_header
  65. iceland_get_memory_modile_index
  66. iceland_check_s0_mc_reg_index
  67. iceland_set_s0_mc_reg_index
  68. iceland_copy_vbios_smc_reg_table
  69. iceland_set_mc_special_registers
  70. iceland_set_valid_flag
  71. iceland_initialize_mc_reg_table
  72. iceland_is_dpm_running

   1 /*
   2  * Copyright 2016 Advanced Micro Devices, Inc.
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice shall be included in
  12  * all copies or substantial portions of the Software.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20  * OTHER DEALINGS IN THE SOFTWARE.
  21  *
  22  * Author: Huang Rui <ray.huang@amd.com>
  23  *
  24  */
  25 #include "pp_debug.h"
  26 #include <linux/types.h>
  27 #include <linux/kernel.h>
  28 #include <linux/pci.h>
  29 #include <linux/slab.h>
  30 #include <linux/gfp.h>
  31 
  32 #include "smumgr.h"
  33 #include "iceland_smumgr.h"
  34 
  35 #include "ppsmc.h"
  36 
  37 #include "cgs_common.h"
  38 
  39 #include "smu7_dyn_defaults.h"
  40 #include "smu7_hwmgr.h"
  41 #include "hardwaremanager.h"
  42 #include "ppatomctrl.h"
  43 #include "atombios.h"
  44 #include "pppcielanes.h"
  45 #include "pp_endian.h"
  46 #include "processpptables.h"
  47 
  48 
  49 #include "smu/smu_7_1_1_d.h"
  50 #include "smu/smu_7_1_1_sh_mask.h"
  51 #include "smu71_discrete.h"
  52 
  53 #include "smu_ucode_xfer_vi.h"
  54 #include "gmc/gmc_8_1_d.h"
  55 #include "gmc/gmc_8_1_sh_mask.h"
  56 #include "bif/bif_5_0_d.h"
  57 #include "bif/bif_5_0_sh_mask.h"
  58 #include "dce/dce_10_0_d.h"
  59 #include "dce/dce_10_0_sh_mask.h"
  60 
  61 
  62 #define ICELAND_SMC_SIZE               0x20000
  63 
  64 #define POWERTUNE_DEFAULT_SET_MAX    1
  65 #define MC_CG_ARB_FREQ_F1           0x0b
  66 #define VDDC_VDDCI_DELTA            200
  67 
  68 #define DEVICE_ID_VI_ICELAND_M_6900     0x6900
  69 #define DEVICE_ID_VI_ICELAND_M_6901     0x6901
  70 #define DEVICE_ID_VI_ICELAND_M_6902     0x6902
  71 #define DEVICE_ID_VI_ICELAND_M_6903     0x6903
  72 
  73 static const struct iceland_pt_defaults defaults_iceland = {
  74         /*
  75          * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
  76          * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
  77          */
  78         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
  79         { 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
  80         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
  81 };
  82 
  83 /* 35W - XT, XTL */
  84 static const struct iceland_pt_defaults defaults_icelandxt = {
  85         /*
  86          * sviLoadLIneEn, SviLoadLineVddC,
  87          * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
  88          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
  89          * BAPM_TEMP_GRADIENT
  90          */
  91         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
  92         { 0xA7,  0x0, 0x0, 0xB5,  0x0, 0x0, 0x9F,  0x0, 0x0, 0xD6,  0x0, 0x0, 0xD7,  0x0, 0x0},
  93         { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
  94 };
  95 
  96 /* 25W - PRO, LE */
  97 static const struct iceland_pt_defaults defaults_icelandpro = {
  98         /*
  99          * sviLoadLIneEn, SviLoadLineVddC,
 100          * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
 101          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
 102          * BAPM_TEMP_GRADIENT
 103          */
 104         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
 105         { 0xB7,  0x0, 0x0, 0xC3,  0x0, 0x0, 0xB5,  0x0, 0x0, 0xEA,  0x0, 0x0, 0xE6,  0x0, 0x0},
 106         { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
 107 };
 108 
 109 static int iceland_start_smc(struct pp_hwmgr *hwmgr)
 110 {
 111         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 112                                   SMC_SYSCON_RESET_CNTL, rst_reg, 0);
 113 
 114         return 0;
 115 }
 116 
 117 static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
 118 {
 119         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 120                                   SMC_SYSCON_RESET_CNTL,
 121                                   rst_reg, 1);
 122 }
 123 
 124 
 125 static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
 126 {
 127         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 128                                   SMC_SYSCON_CLOCK_CNTL_0,
 129                                   ck_disable, 1);
 130 }
 131 
 132 static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
 133 {
 134         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 135                                   SMC_SYSCON_CLOCK_CNTL_0,
 136                                   ck_disable, 0);
 137 }
 138 
 139 static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
 140 {
 141         /* set smc instruct start point at 0x0 */
 142         smu7_program_jump_on_start(hwmgr);
 143 
 144         /* enable smc clock */
 145         iceland_start_smc_clock(hwmgr);
 146 
 147         /* de-assert reset */
 148         iceland_start_smc(hwmgr);
 149 
 150         PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
 151                                  INTERRUPTS_ENABLED, 1);
 152 
 153         return 0;
 154 }
 155 
 156 
 157 static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
 158                                         uint32_t length, const uint8_t *src,
 159                                         uint32_t limit, uint32_t start_addr)
 160 {
 161         uint32_t byte_count = length;
 162         uint32_t data;
 163 
 164         PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
 165 
 166         cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
 167         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
 168 
 169         while (byte_count >= 4) {
 170                 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
 171                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
 172                 src += 4;
 173                 byte_count -= 4;
 174         }
 175 
 176         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
 177 
 178         PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
 179 
 180         return 0;
 181 }
 182 
 183 
 184 static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
 185 {
 186         uint32_t val;
 187         struct cgs_firmware_info info = {0};
 188 
 189         if (hwmgr == NULL || hwmgr->device == NULL)
 190                 return -EINVAL;
 191 
 192         /* load SMC firmware */
 193         cgs_get_firmware_info(hwmgr->device,
 194                 smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
 195 
 196         if (info.image_size & 3) {
 197                 pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
 198                 return -EINVAL;
 199         }
 200 
 201         if (info.image_size > ICELAND_SMC_SIZE) {
 202                 pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
 203                 return -EINVAL;
 204         }
 205         hwmgr->smu_version = info.version;
 206         /* wait for smc boot up */
 207         PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
 208                                          RCU_UC_EVENTS, boot_seq_done, 0);
 209 
 210         /* clear firmware interrupt enable flag */
 211         val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
 212                                     ixSMC_SYSCON_MISC_CNTL);
 213         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
 214                                ixSMC_SYSCON_MISC_CNTL, val | 1);
 215 
 216         /* stop smc clock */
 217         iceland_stop_smc_clock(hwmgr);
 218 
 219         /* reset smc */
 220         iceland_reset_smc(hwmgr);
 221         iceland_upload_smc_firmware_data(hwmgr, info.image_size,
 222                                 (uint8_t *)info.kptr, ICELAND_SMC_SIZE,
 223                                 info.ucode_start_address);
 224 
 225         return 0;
 226 }
 227 
 228 static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
 229                                                 uint32_t firmwareType)
 230 {
 231         return 0;
 232 }
 233 
 234 static int iceland_start_smu(struct pp_hwmgr *hwmgr)
 235 {
 236         struct iceland_smumgr *priv = hwmgr->smu_backend;
 237         int result;
 238 
 239         if (!smu7_is_smc_ram_running(hwmgr)) {
 240                 result = iceland_smu_upload_firmware_image(hwmgr);
 241                 if (result)
 242                         return result;
 243 
 244                 iceland_smu_start_smc(hwmgr);
 245         }
 246 
 247         /* Setup SoftRegsStart here to visit the register UcodeLoadStatus
 248          * to check fw loading state
 249          */
 250         smu7_read_smc_sram_dword(hwmgr,
 251                         SMU71_FIRMWARE_HEADER_LOCATION +
 252                         offsetof(SMU71_Firmware_Header, SoftRegisters),
 253                         &(priv->smu7_data.soft_regs_start), 0x40000);
 254 
 255         result = smu7_request_smu_load_fw(hwmgr);
 256 
 257         return result;
 258 }
 259 
 260 static int iceland_smu_init(struct pp_hwmgr *hwmgr)
 261 {
 262         struct iceland_smumgr *iceland_priv = NULL;
 263 
 264         iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
 265 
 266         if (iceland_priv == NULL)
 267                 return -ENOMEM;
 268 
 269         hwmgr->smu_backend = iceland_priv;
 270 
 271         if (smu7_init(hwmgr)) {
 272                 kfree(iceland_priv);
 273                 return -EINVAL;
 274         }
 275 
 276         return 0;
 277 }
 278 
 279 
 280 static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
 281 {
 282         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 283         struct amdgpu_device *adev = hwmgr->adev;
 284         uint32_t dev_id;
 285 
 286         dev_id = adev->pdev->device;
 287 
 288         switch (dev_id) {
 289         case DEVICE_ID_VI_ICELAND_M_6900:
 290         case DEVICE_ID_VI_ICELAND_M_6903:
 291                 smu_data->power_tune_defaults = &defaults_icelandxt;
 292                 break;
 293 
 294         case DEVICE_ID_VI_ICELAND_M_6901:
 295         case DEVICE_ID_VI_ICELAND_M_6902:
 296                 smu_data->power_tune_defaults = &defaults_icelandpro;
 297                 break;
 298         default:
 299                 smu_data->power_tune_defaults = &defaults_iceland;
 300                 pr_warn("Unknown V.I. Device ID.\n");
 301                 break;
 302         }
 303         return;
 304 }
 305 
 306 static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
 307 {
 308         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 309         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
 310 
 311         smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
 312         smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
 313         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
 314         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
 315 
 316         return 0;
 317 }
 318 
 319 static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
 320 {
 321         uint16_t tdc_limit;
 322         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 323         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
 324 
 325         tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
 326         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
 327                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
 328         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
 329                         defaults->tdc_vddc_throttle_release_limit_perc;
 330         smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
 331 
 332         return 0;
 333 }
 334 
 335 static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
 336 {
 337         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 338         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
 339         uint32_t temp;
 340 
 341         if (smu7_read_smc_sram_dword(hwmgr,
 342                         fuse_table_offset +
 343                         offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
 344                         (uint32_t *)&temp, SMC_RAM_END))
 345                 PP_ASSERT_WITH_CODE(false,
 346                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
 347                                 return -EINVAL);
 348         else
 349                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
 350 
 351         return 0;
 352 }
 353 
 354 static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
 355 {
 356         return 0;
 357 }
 358 
 359 static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
 360 {
 361         int i;
 362         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 363 
 364         /* Currently not used. Set all to zero. */
 365         for (i = 0; i < 8; i++)
 366                 smu_data->power_tune_table.GnbLPML[i] = 0;
 367 
 368         return 0;
 369 }
 370 
 371 static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
 372 {
 373         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 374         uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
 375         uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
 376         struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
 377 
 378         HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
 379         LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
 380 
 381         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
 382                         CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
 383         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
 384                         CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
 385 
 386         return 0;
 387 }
 388 
 389 static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
 390 {
 391         int i;
 392         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 393         uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
 394         uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
 395 
 396         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
 397                             "The CAC Leakage table does not exist!", return -EINVAL);
 398         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
 399                             "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
 400         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
 401                             "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
 402 
 403         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
 404                 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
 405                         lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
 406                         hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
 407                 }
 408         } else {
 409                 PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
 410         }
 411 
 412         return 0;
 413 }
 414 
 415 static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
 416 {
 417         int i;
 418         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 419         uint8_t *vid = smu_data->power_tune_table.VddCVid;
 420         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 421 
 422         PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
 423                 "There should never be more than 8 entries for VddcVid!!!",
 424                 return -EINVAL);
 425 
 426         for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
 427                 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
 428         }
 429 
 430         return 0;
 431 }
 432 
 433 
 434 
 435 static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
 436 {
 437         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 438         uint32_t pm_fuse_table_offset;
 439 
 440         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 441                         PHM_PlatformCaps_PowerContainment)) {
 442                 if (smu7_read_smc_sram_dword(hwmgr,
 443                                 SMU71_FIRMWARE_HEADER_LOCATION +
 444                                 offsetof(SMU71_Firmware_Header, PmFuseTable),
 445                                 &pm_fuse_table_offset, SMC_RAM_END))
 446                         PP_ASSERT_WITH_CODE(false,
 447                                         "Attempt to get pm_fuse_table_offset Failed!",
 448                                         return -EINVAL);
 449 
 450                 /* DW0 - DW3 */
 451                 if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
 452                         PP_ASSERT_WITH_CODE(false,
 453                                         "Attempt to populate bapm vddc vid Failed!",
 454                                         return -EINVAL);
 455 
 456                 /* DW4 - DW5 */
 457                 if (iceland_populate_vddc_vid(hwmgr))
 458                         PP_ASSERT_WITH_CODE(false,
 459                                         "Attempt to populate vddc vid Failed!",
 460                                         return -EINVAL);
 461 
 462                 /* DW6 */
 463                 if (iceland_populate_svi_load_line(hwmgr))
 464                         PP_ASSERT_WITH_CODE(false,
 465                                         "Attempt to populate SviLoadLine Failed!",
 466                                         return -EINVAL);
 467                 /* DW7 */
 468                 if (iceland_populate_tdc_limit(hwmgr))
 469                         PP_ASSERT_WITH_CODE(false,
 470                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
 471                 /* DW8 */
 472                 if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
 473                         PP_ASSERT_WITH_CODE(false,
 474                                         "Attempt to populate TdcWaterfallCtl, "
 475                                         "LPMLTemperature Min and Max Failed!",
 476                                         return -EINVAL);
 477 
 478                 /* DW9-DW12 */
 479                 if (0 != iceland_populate_temperature_scaler(hwmgr))
 480                         PP_ASSERT_WITH_CODE(false,
 481                                         "Attempt to populate LPMLTemperatureScaler Failed!",
 482                                         return -EINVAL);
 483 
 484                 /* DW13-DW16 */
 485                 if (iceland_populate_gnb_lpml(hwmgr))
 486                         PP_ASSERT_WITH_CODE(false,
 487                                         "Attempt to populate GnbLPML Failed!",
 488                                         return -EINVAL);
 489 
 490                 /* DW18 */
 491                 if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
 492                         PP_ASSERT_WITH_CODE(false,
 493                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
 494                                         return -EINVAL);
 495 
 496                 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
 497                                 (uint8_t *)&smu_data->power_tune_table,
 498                                 sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
 499                         PP_ASSERT_WITH_CODE(false,
 500                                         "Attempt to download PmFuseTable Failed!",
 501                                         return -EINVAL);
 502         }
 503         return 0;
 504 }
 505 
 506 static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
 507         struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
 508         uint32_t clock, uint32_t *vol)
 509 {
 510         uint32_t i = 0;
 511 
 512         /* clock - voltage dependency table is empty table */
 513         if (allowed_clock_voltage_table->count == 0)
 514                 return -EINVAL;
 515 
 516         for (i = 0; i < allowed_clock_voltage_table->count; i++) {
 517                 /* find first sclk bigger than request */
 518                 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
 519                         *vol = allowed_clock_voltage_table->entries[i].v;
 520                         return 0;
 521                 }
 522         }
 523 
 524         /* sclk is bigger than max sclk in the dependence table */
 525         *vol = allowed_clock_voltage_table->entries[i - 1].v;
 526 
 527         return 0;
 528 }
 529 
 530 static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
 531                 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
 532                 uint16_t *lo)
 533 {
 534         uint16_t v_index;
 535         bool vol_found = false;
 536         *hi = tab->value * VOLTAGE_SCALE;
 537         *lo = tab->value * VOLTAGE_SCALE;
 538 
 539         /* SCLK/VDDC Dependency Table has to exist. */
 540         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
 541                         "The SCLK/VDDC Dependency Table does not exist.",
 542                         return -EINVAL);
 543 
 544         if (NULL == hwmgr->dyn_state.cac_leakage_table) {
 545                 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
 546                 return 0;
 547         }
 548 
 549         /*
 550          * Since voltage in the sclk/vddc dependency table is not
 551          * necessarily in ascending order because of ELB voltage
 552          * patching, loop through entire list to find exact voltage.
 553          */
 554         for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
 555                 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
 556                         vol_found = true;
 557                         if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
 558                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
 559                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
 560                         } else {
 561                                 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
 562                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
 563                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
 564                         }
 565                         break;
 566                 }
 567         }
 568 
 569         /*
 570          * If voltage is not found in the first pass, loop again to
 571          * find the best match, equal or higher value.
 572          */
 573         if (!vol_found) {
 574                 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
 575                         if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
 576                                 vol_found = true;
 577                                 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
 578                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
 579                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
 580                                 } else {
 581                                         pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
 582                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
 583                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
 584                                 }
 585                                 break;
 586                         }
 587                 }
 588 
 589                 if (!vol_found)
 590                         pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
 591         }
 592 
 593         return 0;
 594 }
 595 
 596 static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
 597                 pp_atomctrl_voltage_table_entry *tab,
 598                 SMU71_Discrete_VoltageLevel *smc_voltage_tab)
 599 {
 600         int result;
 601 
 602         result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
 603                         &smc_voltage_tab->StdVoltageHiSidd,
 604                         &smc_voltage_tab->StdVoltageLoSidd);
 605         if (0 != result) {
 606                 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
 607                 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
 608         }
 609 
 610         smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
 611         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
 612         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
 613 
 614         return 0;
 615 }
 616 
 617 static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
 618                         SMU71_Discrete_DpmTable *table)
 619 {
 620         unsigned int count;
 621         int result;
 622         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 623 
 624         table->VddcLevelCount = data->vddc_voltage_table.count;
 625         for (count = 0; count < table->VddcLevelCount; count++) {
 626                 result = iceland_populate_smc_voltage_table(hwmgr,
 627                                 &(data->vddc_voltage_table.entries[count]),
 628                                 &(table->VddcLevel[count]));
 629                 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
 630 
 631                 /* GPIO voltage control */
 632                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
 633                         table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
 634                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
 635                         table->VddcLevel[count].Smio = 0;
 636         }
 637 
 638         CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
 639 
 640         return 0;
 641 }
 642 
 643 static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
 644                         SMU71_Discrete_DpmTable *table)
 645 {
 646         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 647         uint32_t count;
 648         int result;
 649 
 650         table->VddciLevelCount = data->vddci_voltage_table.count;
 651 
 652         for (count = 0; count < table->VddciLevelCount; count++) {
 653                 result = iceland_populate_smc_voltage_table(hwmgr,
 654                                 &(data->vddci_voltage_table.entries[count]),
 655                                 &(table->VddciLevel[count]));
 656                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
 657                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
 658                         table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
 659                 else
 660                         table->VddciLevel[count].Smio |= 0;
 661         }
 662 
 663         CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
 664 
 665         return 0;
 666 }
 667 
 668 static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
 669                         SMU71_Discrete_DpmTable *table)
 670 {
 671         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 672         uint32_t count;
 673         int result;
 674 
 675         table->MvddLevelCount = data->mvdd_voltage_table.count;
 676 
 677         for (count = 0; count < table->VddciLevelCount; count++) {
 678                 result = iceland_populate_smc_voltage_table(hwmgr,
 679                                 &(data->mvdd_voltage_table.entries[count]),
 680                                 &table->MvddLevel[count]);
 681                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
 682                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
 683                         table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
 684                 else
 685                         table->MvddLevel[count].Smio |= 0;
 686         }
 687 
 688         CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
 689 
 690         return 0;
 691 }
 692 
 693 
 694 static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
 695         SMU71_Discrete_DpmTable *table)
 696 {
 697         int result;
 698 
 699         result = iceland_populate_smc_vddc_table(hwmgr, table);
 700         PP_ASSERT_WITH_CODE(0 == result,
 701                         "can not populate VDDC voltage table to SMC", return -EINVAL);
 702 
 703         result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
 704         PP_ASSERT_WITH_CODE(0 == result,
 705                         "can not populate VDDCI voltage table to SMC", return -EINVAL);
 706 
 707         result = iceland_populate_smc_mvdd_table(hwmgr, table);
 708         PP_ASSERT_WITH_CODE(0 == result,
 709                         "can not populate MVDD voltage table to SMC", return -EINVAL);
 710 
 711         return 0;
 712 }
 713 
 714 static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
 715                 struct SMU71_Discrete_Ulv *state)
 716 {
 717         uint32_t voltage_response_time, ulv_voltage;
 718         int result;
 719         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 720 
 721         state->CcPwrDynRm = 0;
 722         state->CcPwrDynRm1 = 0;
 723 
 724         result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
 725         PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
 726 
 727         if (ulv_voltage == 0) {
 728                 data->ulv_supported = false;
 729                 return 0;
 730         }
 731 
 732         if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
 733                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
 734                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
 735                         state->VddcOffset = 0;
 736                 else
 737                         /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
 738                         state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
 739         } else {
 740                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
 741                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
 742                         state->VddcOffsetVid = 0;
 743                 else  /* used in SVI2 Mode */
 744                         state->VddcOffsetVid = (uint8_t)(
 745                                         (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
 746                                                 * VOLTAGE_VID_OFFSET_SCALE2
 747                                                 / VOLTAGE_VID_OFFSET_SCALE1);
 748         }
 749         state->VddcPhase = 1;
 750 
 751         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
 752         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
 753         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
 754 
 755         return 0;
 756 }
 757 
 758 static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
 759                  SMU71_Discrete_Ulv *ulv_level)
 760 {
 761         return iceland_populate_ulv_level(hwmgr, ulv_level);
 762 }
 763 
 764 static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
 765 {
 766         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 767         struct smu7_dpm_table *dpm_table = &data->dpm_table;
 768         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 769         uint32_t i;
 770 
 771         /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
 772         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
 773                 table->LinkLevel[i].PcieGenSpeed  =
 774                         (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
 775                 table->LinkLevel[i].PcieLaneCount =
 776                         (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
 777                 table->LinkLevel[i].EnabledForActivity =
 778                         1;
 779                 table->LinkLevel[i].SPC =
 780                         (uint8_t)(data->pcie_spc_cap & 0xff);
 781                 table->LinkLevel[i].DownThreshold =
 782                         PP_HOST_TO_SMC_UL(5);
 783                 table->LinkLevel[i].UpThreshold =
 784                         PP_HOST_TO_SMC_UL(30);
 785         }
 786 
 787         smu_data->smc_state_table.LinkLevelCount =
 788                 (uint8_t)dpm_table->pcie_speed_table.count;
 789         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
 790                 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
 791 
 792         return 0;
 793 }
 794 
 795 static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
 796                 uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
 797 {
 798         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 799         pp_atomctrl_clock_dividers_vi dividers;
 800         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
 801         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
 802         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
 803         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
 804         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
 805         uint32_t    reference_clock;
 806         uint32_t reference_divider;
 807         uint32_t fbdiv;
 808         int result;
 809 
 810         /* get the engine clock dividers for this clock value*/
 811         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
 812 
 813         PP_ASSERT_WITH_CODE(result == 0,
 814                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
 815 
 816         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
 817         reference_clock = atomctrl_get_reference_clock(hwmgr);
 818 
 819         reference_divider = 1 + dividers.uc_pll_ref_div;
 820 
 821         /* low 14 bits is fraction and high 12 bits is divider*/
 822         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
 823 
 824         /* SPLL_FUNC_CNTL setup*/
 825         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
 826                 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
 827         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
 828                 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
 829 
 830         /* SPLL_FUNC_CNTL_3 setup*/
 831         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
 832                 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
 833 
 834         /* set to use fractional accumulation*/
 835         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
 836                 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
 837 
 838         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 839                         PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
 840                 pp_atomctrl_internal_ss_info ss_info;
 841 
 842                 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
 843                 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
 844                         /*
 845                         * ss_info.speed_spectrum_percentage -- in unit of 0.01%
 846                         * ss_info.speed_spectrum_rate -- in unit of khz
 847                         */
 848                         /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
 849                         uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
 850 
 851                         /* clkv = 2 * D * fbdiv / NS */
 852                         uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
 853 
 854                         cg_spll_spread_spectrum =
 855                                 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
 856                         cg_spll_spread_spectrum =
 857                                 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
 858                         cg_spll_spread_spectrum_2 =
 859                                 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
 860                 }
 861         }
 862 
 863         sclk->SclkFrequency        = engine_clock;
 864         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
 865         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
 866         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
 867         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
 868         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
 869 
 870         return 0;
 871 }
 872 
 873 static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
 874                                 const struct phm_phase_shedding_limits_table *pl,
 875                                         uint32_t sclk, uint32_t *p_shed)
 876 {
 877         unsigned int i;
 878 
 879         /* use the minimum phase shedding */
 880         *p_shed = 1;
 881 
 882         for (i = 0; i < pl->count; i++) {
 883                 if (sclk < pl->entries[i].Sclk) {
 884                         *p_shed = i;
 885                         break;
 886                 }
 887         }
 888         return 0;
 889 }
 890 
 891 static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
 892                                                 uint32_t engine_clock,
 893                                 SMU71_Discrete_GraphicsLevel *graphic_level)
 894 {
 895         int result;
 896         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 897 
 898         result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
 899 
 900         /* populate graphics levels*/
 901         result = iceland_get_dependency_volt_by_clk(hwmgr,
 902                 hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
 903                 &graphic_level->MinVddc);
 904         PP_ASSERT_WITH_CODE((0 == result),
 905                 "can not find VDDC voltage value for VDDC engine clock dependency table", return result);
 906 
 907         /* SCLK frequency in units of 10KHz*/
 908         graphic_level->SclkFrequency = engine_clock;
 909         graphic_level->MinVddcPhases = 1;
 910 
 911         if (data->vddc_phase_shed_control)
 912                 iceland_populate_phase_value_based_on_sclk(hwmgr,
 913                                 hwmgr->dyn_state.vddc_phase_shed_limits_table,
 914                                 engine_clock,
 915                                 &graphic_level->MinVddcPhases);
 916 
 917         /* Indicates maximum activity level for this performance level. 50% for now*/
 918         graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
 919 
 920         graphic_level->CcPwrDynRm = 0;
 921         graphic_level->CcPwrDynRm1 = 0;
 922         /* this level can be used if activity is high enough.*/
 923         graphic_level->EnabledForActivity = 0;
 924         /* this level can be used for throttling.*/
 925         graphic_level->EnabledForThrottle = 1;
 926         graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
 927         graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
 928         graphic_level->VoltageDownHyst = 0;
 929         graphic_level->PowerThrottle = 0;
 930 
 931         data->display_timing.min_clock_in_sr =
 932                         hwmgr->display_config->min_core_set_clock_in_sr;
 933 
 934         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 935                         PHM_PlatformCaps_SclkDeepSleep))
 936                 graphic_level->DeepSleepDivId =
 937                                 smu7_get_sleep_divider_id_from_clock(engine_clock,
 938                                                 data->display_timing.min_clock_in_sr);
 939 
 940         /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
 941         graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
 942 
 943         if (0 == result) {
 944                 graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
 945                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
 946                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
 947                 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
 948                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
 949                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
 950                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
 951                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
 952                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
 953                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
 954         }
 955 
 956         return result;
 957 }
 958 
 959 static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
 960 {
 961         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 962         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
 963         struct smu7_dpm_table *dpm_table = &data->dpm_table;
 964         uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
 965                                 offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
 966 
 967         uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
 968                                                 SMU71_MAX_LEVELS_GRAPHICS;
 969 
 970         SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
 971 
 972         uint32_t i;
 973         uint8_t highest_pcie_level_enabled = 0;
 974         uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
 975         uint8_t count = 0;
 976         int result = 0;
 977 
 978         memset(levels, 0x00, level_array_size);
 979 
 980         for (i = 0; i < dpm_table->sclk_table.count; i++) {
 981                 result = iceland_populate_single_graphic_level(hwmgr,
 982                                         dpm_table->sclk_table.dpm_levels[i].value,
 983                                         &(smu_data->smc_state_table.GraphicsLevel[i]));
 984                 if (result != 0)
 985                         return result;
 986 
 987                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
 988                 if (i > 1)
 989                         smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
 990         }
 991 
 992         /* Only enable level 0 for now. */
 993         smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
 994 
 995         /* set highest level watermark to high */
 996         if (dpm_table->sclk_table.count > 1)
 997                 smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
 998                         PPSMC_DISPLAY_WATERMARK_HIGH;
 999 
1000         smu_data->smc_state_table.GraphicsDpmLevelCount =
1001                 (uint8_t)dpm_table->sclk_table.count;
1002         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1003                 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1004 
1005         while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1006                                 (1 << (highest_pcie_level_enabled + 1))) != 0) {
1007                 highest_pcie_level_enabled++;
1008         }
1009 
1010         while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1011                 (1 << lowest_pcie_level_enabled)) == 0) {
1012                 lowest_pcie_level_enabled++;
1013         }
1014 
1015         while ((count < highest_pcie_level_enabled) &&
1016                         ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1017                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
1018                 count++;
1019         }
1020 
1021         mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
1022                 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
1023 
1024 
1025         /* set pcieDpmLevel to highest_pcie_level_enabled*/
1026         for (i = 2; i < dpm_table->sclk_table.count; i++) {
1027                 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
1028         }
1029 
1030         /* set pcieDpmLevel to lowest_pcie_level_enabled*/
1031         smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
1032 
1033         /* set pcieDpmLevel to mid_pcie_level_enabled*/
1034         smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
1035 
1036         /* level count will send to smc once at init smc table and never change*/
1037         result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
1038                                 (uint8_t *)levels, (uint32_t)level_array_size,
1039                                                                 SMC_RAM_END);
1040 
1041         return result;
1042 }
1043 
1044 static int iceland_calculate_mclk_params(
1045                 struct pp_hwmgr *hwmgr,
1046                 uint32_t memory_clock,
1047                 SMU71_Discrete_MemoryLevel *mclk,
1048                 bool strobe_mode,
1049                 bool dllStateOn
1050                 )
1051 {
1052         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1053 
1054         uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1055         uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1056         uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1057         uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1058         uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1059         uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1060         uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1061         uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1062         uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1063 
1064         pp_atomctrl_memory_clock_param mpll_param;
1065         int result;
1066 
1067         result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1068                                 memory_clock, &mpll_param, strobe_mode);
1069         PP_ASSERT_WITH_CODE(0 == result,
1070                 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1071 
1072         /* MPLL_FUNC_CNTL setup*/
1073         mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1074 
1075         /* MPLL_FUNC_CNTL_1 setup*/
1076         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1077                                                         MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1078         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1079                                                         MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1080         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1081                                                         MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1082 
1083         /* MPLL_AD_FUNC_CNTL setup*/
1084         mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1085                                                         MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1086 
1087         if (data->is_memory_gddr5) {
1088                 /* MPLL_DQ_FUNC_CNTL setup*/
1089                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1090                                                                 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1091                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1092                                                                 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1093         }
1094 
1095         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1096                         PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1097                 /*
1098                  ************************************
1099                  Fref = Reference Frequency
1100                  NF = Feedback divider ratio
1101                  NR = Reference divider ratio
1102                  Fnom = Nominal VCO output frequency = Fref * NF / NR
1103                  Fs = Spreading Rate
1104                  D = Percentage down-spread / 2
1105                  Fint = Reference input frequency to PFD = Fref / NR
1106                  NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1107                  CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1108                  NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1109                  CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1110                  *************************************
1111                  */
1112                 pp_atomctrl_internal_ss_info ss_info;
1113                 uint32_t freq_nom;
1114                 uint32_t tmp;
1115                 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1116 
1117                 /* for GDDR5 for all modes and DDR3 */
1118                 if (1 == mpll_param.qdr)
1119                         freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1120                 else
1121                         freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1122 
1123                 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1124                 tmp = (freq_nom / reference_clock);
1125                 tmp = tmp * tmp;
1126 
1127                 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1128                         /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1129                         /* ss.Info.speed_spectrum_rate -- in unit of khz */
1130                         /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1131                         /*     = reference_clock * 5 / speed_spectrum_rate */
1132                         uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1133 
1134                         /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1135                         /*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1136                         uint32_t clkv =
1137                                 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1138                                                         ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1139 
1140                         mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1141                         mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1142                 }
1143         }
1144 
1145         /* MCLK_PWRMGT_CNTL setup */
1146         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1147                 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1148         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1149                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1150         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1151                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1152 
1153 
1154         /* Save the result data to outpupt memory level structure */
1155         mclk->MclkFrequency   = memory_clock;
1156         mclk->MpllFuncCntl    = mpll_func_cntl;
1157         mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1158         mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1159         mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1160         mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1161         mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1162         mclk->DllCntl         = dll_cntl;
1163         mclk->MpllSs1         = mpll_ss1;
1164         mclk->MpllSs2         = mpll_ss2;
1165 
1166         return 0;
1167 }
1168 
1169 static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
1170                 bool strobe_mode)
1171 {
1172         uint8_t mc_para_index;
1173 
1174         if (strobe_mode) {
1175                 if (memory_clock < 12500) {
1176                         mc_para_index = 0x00;
1177                 } else if (memory_clock > 47500) {
1178                         mc_para_index = 0x0f;
1179                 } else {
1180                         mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1181                 }
1182         } else {
1183                 if (memory_clock < 65000) {
1184                         mc_para_index = 0x00;
1185                 } else if (memory_clock > 135000) {
1186                         mc_para_index = 0x0f;
1187                 } else {
1188                         mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1189                 }
1190         }
1191 
1192         return mc_para_index;
1193 }
1194 
1195 static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1196 {
1197         uint8_t mc_para_index;
1198 
1199         if (memory_clock < 10000) {
1200                 mc_para_index = 0;
1201         } else if (memory_clock >= 80000) {
1202                 mc_para_index = 0x0f;
1203         } else {
1204                 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1205         }
1206 
1207         return mc_para_index;
1208 }
1209 
1210 static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1211                                         uint32_t memory_clock, uint32_t *p_shed)
1212 {
1213         unsigned int i;
1214 
1215         *p_shed = 1;
1216 
1217         for (i = 0; i < pl->count; i++) {
1218                 if (memory_clock < pl->entries[i].Mclk) {
1219                         *p_shed = i;
1220                         break;
1221                 }
1222         }
1223 
1224         return 0;
1225 }
1226 
1227 static int iceland_populate_single_memory_level(
1228                 struct pp_hwmgr *hwmgr,
1229                 uint32_t memory_clock,
1230                 SMU71_Discrete_MemoryLevel *memory_level
1231                 )
1232 {
1233         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1234         int result = 0;
1235         bool dll_state_on;
1236         uint32_t mclk_edc_wr_enable_threshold = 40000;
1237         uint32_t mclk_edc_enable_threshold = 40000;
1238         uint32_t mclk_strobe_mode_threshold = 40000;
1239 
1240         if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1241                 result = iceland_get_dependency_volt_by_clk(hwmgr,
1242                         hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1243                 PP_ASSERT_WITH_CODE((0 == result),
1244                         "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1245         }
1246 
1247         if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
1248                 memory_level->MinVddci = memory_level->MinVddc;
1249         } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1250                 result = iceland_get_dependency_volt_by_clk(hwmgr,
1251                                 hwmgr->dyn_state.vddci_dependency_on_mclk,
1252                                 memory_clock,
1253                                 &memory_level->MinVddci);
1254                 PP_ASSERT_WITH_CODE((0 == result),
1255                         "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1256         }
1257 
1258         memory_level->MinVddcPhases = 1;
1259 
1260         if (data->vddc_phase_shed_control) {
1261                 iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1262                                 memory_clock, &memory_level->MinVddcPhases);
1263         }
1264 
1265         memory_level->EnabledForThrottle = 1;
1266         memory_level->EnabledForActivity = 0;
1267         memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1268         memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1269         memory_level->VoltageDownHyst = 0;
1270 
1271         /* Indicates maximum activity level for this performance level.*/
1272         memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1273         memory_level->StutterEnable = 0;
1274         memory_level->StrobeEnable = 0;
1275         memory_level->EdcReadEnable = 0;
1276         memory_level->EdcWriteEnable = 0;
1277         memory_level->RttEnable = 0;
1278 
1279         /* default set to low watermark. Highest level will be set to high later.*/
1280         memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1281 
1282         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1283         data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1284 
1285         /* stutter mode not support on iceland */
1286 
1287         /* decide strobe mode*/
1288         memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1289                 (memory_clock <= mclk_strobe_mode_threshold);
1290 
1291         /* decide EDC mode and memory clock ratio*/
1292         if (data->is_memory_gddr5) {
1293                 memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
1294                                         memory_level->StrobeEnable);
1295 
1296                 if ((mclk_edc_enable_threshold != 0) &&
1297                                 (memory_clock > mclk_edc_enable_threshold)) {
1298                         memory_level->EdcReadEnable = 1;
1299                 }
1300 
1301                 if ((mclk_edc_wr_enable_threshold != 0) &&
1302                                 (memory_clock > mclk_edc_wr_enable_threshold)) {
1303                         memory_level->EdcWriteEnable = 1;
1304                 }
1305 
1306                 if (memory_level->StrobeEnable) {
1307                         if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
1308                                         ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1309                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1310                         else
1311                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1312                 } else
1313                         dll_state_on = data->dll_default_on;
1314         } else {
1315                 memory_level->StrobeRatio =
1316                         iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
1317                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1318         }
1319 
1320         result = iceland_calculate_mclk_params(hwmgr,
1321                 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1322 
1323         if (0 == result) {
1324                 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1325                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1326                 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1327                 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1328                 /* MCLK frequency in units of 10KHz*/
1329                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1330                 /* Indicates maximum activity level for this performance level.*/
1331                 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1332                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1333                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1334                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1335                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1336                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1337                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1338                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1339                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1340                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1341         }
1342 
1343         return result;
1344 }
1345 
1346 static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1347 {
1348         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1349         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1350         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1351         int result;
1352 
1353         /* populate MCLK dpm table to SMU7 */
1354         uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
1355         uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
1356         SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1357         uint32_t i;
1358 
1359         memset(levels, 0x00, level_array_size);
1360 
1361         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1362                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1363                         "can not populate memory level as memory clock is zero", return -EINVAL);
1364                 result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1365                         &(smu_data->smc_state_table.MemoryLevel[i]));
1366                 if (0 != result) {
1367                         return result;
1368                 }
1369         }
1370 
1371         /* Only enable level 0 for now.*/
1372         smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1373 
1374         /*
1375         * in order to prevent MC activity from stutter mode to push DPM up.
1376         * the UVD change complements this by putting the MCLK in a higher state
1377         * by default such that we are not effected by up threshold or and MCLK DPM latency.
1378         */
1379         smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1380         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1381 
1382         smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1383         data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1384         /* set highest level watermark to high*/
1385         smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1386 
1387         /* level count will send to smc once at init smc table and never change*/
1388         result = smu7_copy_bytes_to_smc(hwmgr,
1389                 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
1390                 SMC_RAM_END);
1391 
1392         return result;
1393 }
1394 
1395 static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1396                                         SMU71_Discrete_VoltageLevel *voltage)
1397 {
1398         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1399 
1400         uint32_t i = 0;
1401 
1402         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1403                 /* find mvdd value which clock is more than request */
1404                 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1405                         if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1406                                 /* Always round to higher voltage. */
1407                                 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1408                                 break;
1409                         }
1410                 }
1411 
1412                 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1413                         "MVDD Voltage is outside the supported range.", return -EINVAL);
1414 
1415         } else {
1416                 return -EINVAL;
1417         }
1418 
1419         return 0;
1420 }
1421 
1422 static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1423         SMU71_Discrete_DpmTable *table)
1424 {
1425         int result = 0;
1426         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1427         struct pp_atomctrl_clock_dividers_vi dividers;
1428         uint32_t vddc_phase_shed_control = 0;
1429 
1430         SMU71_Discrete_VoltageLevel voltage_level;
1431         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1432         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1433         uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1434         uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1435 
1436 
1437         /* The ACPI state should not do DPM on DC (or ever).*/
1438         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1439 
1440         if (data->acpi_vddc)
1441                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1442         else
1443                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1444 
1445         table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
1446         /* assign zero for now*/
1447         table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1448 
1449         /* get the engine clock dividers for this clock value*/
1450         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1451                 table->ACPILevel.SclkFrequency,  &dividers);
1452 
1453         PP_ASSERT_WITH_CODE(result == 0,
1454                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1455 
1456         /* divider ID for required SCLK*/
1457         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1458         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1459         table->ACPILevel.DeepSleepDivId = 0;
1460 
1461         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1462                                                         CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1463         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1464                                                         CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1465         spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1466                                                         CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1467 
1468         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1469         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1470         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1471         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1472         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1473         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1474         table->ACPILevel.CcPwrDynRm = 0;
1475         table->ACPILevel.CcPwrDynRm1 = 0;
1476 
1477 
1478         /* For various features to be enabled/disabled while this level is active.*/
1479         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1480         /* SCLK frequency in units of 10KHz*/
1481         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1482         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1483         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1484         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1485         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1486         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1487         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1488         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1489         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1490 
1491         /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1492         table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1493         table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1494 
1495         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1496                 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1497         else {
1498                 if (data->acpi_vddci != 0)
1499                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1500                 else
1501                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1502         }
1503 
1504         if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
1505                 table->MemoryACPILevel.MinMvdd =
1506                         PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1507         else
1508                 table->MemoryACPILevel.MinMvdd = 0;
1509 
1510         /* Force reset on DLL*/
1511         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1512                 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1513         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1514                 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1515 
1516         /* Disable DLL in ACPIState*/
1517         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1518                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1519         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1520                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1521 
1522         /* Enable DLL bypass signal*/
1523         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1524                 DLL_CNTL, MRDCK0_BYPASS, 0);
1525         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1526                 DLL_CNTL, MRDCK1_BYPASS, 0);
1527 
1528         table->MemoryACPILevel.DllCntl            =
1529                 PP_HOST_TO_SMC_UL(dll_cntl);
1530         table->MemoryACPILevel.MclkPwrmgtCntl     =
1531                 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1532         table->MemoryACPILevel.MpllAdFuncCntl     =
1533                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1534         table->MemoryACPILevel.MpllDqFuncCntl     =
1535                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1536         table->MemoryACPILevel.MpllFuncCntl       =
1537                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1538         table->MemoryACPILevel.MpllFuncCntl_1     =
1539                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1540         table->MemoryACPILevel.MpllFuncCntl_2     =
1541                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1542         table->MemoryACPILevel.MpllSs1            =
1543                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1544         table->MemoryACPILevel.MpllSs2            =
1545                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1546 
1547         table->MemoryACPILevel.EnabledForThrottle = 0;
1548         table->MemoryACPILevel.EnabledForActivity = 0;
1549         table->MemoryACPILevel.UpHyst = 0;
1550         table->MemoryACPILevel.DownHyst = 100;
1551         table->MemoryACPILevel.VoltageDownHyst = 0;
1552         /* Indicates maximum activity level for this performance level.*/
1553         table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1554 
1555         table->MemoryACPILevel.StutterEnable = 0;
1556         table->MemoryACPILevel.StrobeEnable = 0;
1557         table->MemoryACPILevel.EdcReadEnable = 0;
1558         table->MemoryACPILevel.EdcWriteEnable = 0;
1559         table->MemoryACPILevel.RttEnable = 0;
1560 
1561         return result;
1562 }
1563 
1564 static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1565                                         SMU71_Discrete_DpmTable *table)
1566 {
1567         return 0;
1568 }
1569 
1570 static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1571                 SMU71_Discrete_DpmTable *table)
1572 {
1573         return 0;
1574 }
1575 
1576 static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1577                 SMU71_Discrete_DpmTable *table)
1578 {
1579         return 0;
1580 }
1581 
1582 static int iceland_populate_memory_timing_parameters(
1583                 struct pp_hwmgr *hwmgr,
1584                 uint32_t engine_clock,
1585                 uint32_t memory_clock,
1586                 struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
1587                 )
1588 {
1589         uint32_t dramTiming;
1590         uint32_t dramTiming2;
1591         uint32_t burstTime;
1592         int result;
1593 
1594         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1595                                 engine_clock, memory_clock);
1596 
1597         PP_ASSERT_WITH_CODE(result == 0,
1598                 "Error calling VBIOS to set DRAM_TIMING.", return result);
1599 
1600         dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1601         dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1602         burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1603 
1604         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1605         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1606         arb_regs->McArbBurstTime = (uint8_t)burstTime;
1607 
1608         return 0;
1609 }
1610 
1611 static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1612 {
1613         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1614         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1615         int result = 0;
1616         SMU71_Discrete_MCArbDramTimingTable  arb_regs;
1617         uint32_t i, j;
1618 
1619         memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
1620 
1621         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1622                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1623                         result = iceland_populate_memory_timing_parameters
1624                                 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1625                                  data->dpm_table.mclk_table.dpm_levels[j].value,
1626                                  &arb_regs.entries[i][j]);
1627 
1628                         if (0 != result) {
1629                                 break;
1630                         }
1631                 }
1632         }
1633 
1634         if (0 == result) {
1635                 result = smu7_copy_bytes_to_smc(
1636                                 hwmgr,
1637                                 smu_data->smu7_data.arb_table_start,
1638                                 (uint8_t *)&arb_regs,
1639                                 sizeof(SMU71_Discrete_MCArbDramTimingTable),
1640                                 SMC_RAM_END
1641                                 );
1642         }
1643 
1644         return result;
1645 }
1646 
1647 static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1648                         SMU71_Discrete_DpmTable *table)
1649 {
1650         int result = 0;
1651         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1652         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1653         table->GraphicsBootLevel = 0;
1654         table->MemoryBootLevel = 0;
1655 
1656         /* find boot level from dpm table*/
1657         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1658                         data->vbios_boot_state.sclk_bootup_value,
1659                         (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1660 
1661         if (0 != result) {
1662                 smu_data->smc_state_table.GraphicsBootLevel = 0;
1663                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1664                 result = 0;
1665         }
1666 
1667         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1668                 data->vbios_boot_state.mclk_bootup_value,
1669                 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1670 
1671         if (0 != result) {
1672                 smu_data->smc_state_table.MemoryBootLevel = 0;
1673                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1674                 result = 0;
1675         }
1676 
1677         table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1678         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1679                 table->BootVddci = table->BootVddc;
1680         else
1681                 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1682 
1683         table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1684 
1685         return result;
1686 }
1687 
1688 static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1689                                  SMU71_Discrete_MCRegisters *mc_reg_table)
1690 {
1691         const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
1692 
1693         uint32_t i, j;
1694 
1695         for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1696                 if (smu_data->mc_reg_table.validflag & 1<<j) {
1697                         PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1698                                 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1699                         mc_reg_table->address[i].s0 =
1700                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1701                         mc_reg_table->address[i].s1 =
1702                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1703                         i++;
1704                 }
1705         }
1706 
1707         mc_reg_table->last = (uint8_t)i;
1708 
1709         return 0;
1710 }
1711 
1712 /*convert register values from driver to SMC format */
1713 static void iceland_convert_mc_registers(
1714         const struct iceland_mc_reg_entry *entry,
1715         SMU71_Discrete_MCRegisterSet *data,
1716         uint32_t num_entries, uint32_t valid_flag)
1717 {
1718         uint32_t i, j;
1719 
1720         for (i = 0, j = 0; j < num_entries; j++) {
1721                 if (valid_flag & 1<<j) {
1722                         data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1723                         i++;
1724                 }
1725         }
1726 }
1727 
1728 static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
1729                 const uint32_t memory_clock,
1730                 SMU71_Discrete_MCRegisterSet *mc_reg_table_data
1731                 )
1732 {
1733         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1734         uint32_t i = 0;
1735 
1736         for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1737                 if (memory_clock <=
1738                         smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1739                         break;
1740                 }
1741         }
1742 
1743         if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1744                 --i;
1745 
1746         iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1747                                 mc_reg_table_data, smu_data->mc_reg_table.last,
1748                                 smu_data->mc_reg_table.validflag);
1749 
1750         return 0;
1751 }
1752 
1753 static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1754                 SMU71_Discrete_MCRegisters *mc_regs)
1755 {
1756         int result = 0;
1757         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1758         int res;
1759         uint32_t i;
1760 
1761         for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1762                 res = iceland_convert_mc_reg_table_entry_to_smc(
1763                                 hwmgr,
1764                                 data->dpm_table.mclk_table.dpm_levels[i].value,
1765                                 &mc_regs->data[i]
1766                                 );
1767 
1768                 if (0 != res)
1769                         result = res;
1770         }
1771 
1772         return result;
1773 }
1774 
1775 static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1776 {
1777         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1778         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1779         uint32_t address;
1780         int32_t result;
1781 
1782         if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1783                 return 0;
1784 
1785 
1786         memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
1787 
1788         result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1789 
1790         if (result != 0)
1791                 return result;
1792 
1793 
1794         address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
1795 
1796         return  smu7_copy_bytes_to_smc(hwmgr, address,
1797                                  (uint8_t *)&smu_data->mc_regs.data[0],
1798                                 sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1799                                 SMC_RAM_END);
1800 }
1801 
1802 static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1803 {
1804         int result;
1805         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1806 
1807         memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
1808         result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1809         PP_ASSERT_WITH_CODE(0 == result,
1810                 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1811 
1812         result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1813         PP_ASSERT_WITH_CODE(0 == result,
1814                 "Failed to initialize MCRegTable for driver state!", return result;);
1815 
1816         return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
1817                         (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
1818 }
1819 
1820 static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1821 {
1822         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1823         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1824         uint8_t count, level;
1825 
1826         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1827 
1828         for (level = 0; level < count; level++) {
1829                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1830                          >= data->vbios_boot_state.sclk_bootup_value) {
1831                         smu_data->smc_state_table.GraphicsBootLevel = level;
1832                         break;
1833                 }
1834         }
1835 
1836         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1837 
1838         for (level = 0; level < count; level++) {
1839                 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1840                         >= data->vbios_boot_state.mclk_bootup_value) {
1841                         smu_data->smc_state_table.MemoryBootLevel = level;
1842                         break;
1843                 }
1844         }
1845 
1846         return 0;
1847 }
1848 
1849 static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1850 {
1851         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1852         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1853         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
1854         SMU71_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
1855         struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
1856         struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
1857         const uint16_t *def1, *def2;
1858         int i, j, k;
1859 
1860 
1861         /*
1862          * TDP number of fraction bits are changed from 8 to 7 for Iceland
1863          * as requested by SMC team
1864          */
1865 
1866         dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
1867         dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1868 
1869 
1870         dpm_table->DTETjOffset = 0;
1871 
1872         dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
1873         dpm_table->GpuTjHyst = 8;
1874 
1875         dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1876 
1877         /* The following are for new Iceland Multi-input fan/thermal control */
1878         if (NULL != ppm) {
1879                 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
1880                 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
1881         } else {
1882                 dpm_table->PPM_PkgPwrLimit = 0;
1883                 dpm_table->PPM_TemperatureLimit = 0;
1884         }
1885 
1886         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
1887         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
1888 
1889         dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1890         def1 = defaults->bapmti_r;
1891         def2 = defaults->bapmti_rc;
1892 
1893         for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
1894                 for (j = 0; j < SMU71_DTE_SOURCES; j++) {
1895                         for (k = 0; k < SMU71_DTE_SINKS; k++) {
1896                                 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
1897                                 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
1898                                 def1++;
1899                                 def2++;
1900                         }
1901                 }
1902         }
1903 
1904         return 0;
1905 }
1906 
1907 static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1908                                             SMU71_Discrete_DpmTable *tab)
1909 {
1910         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1911 
1912         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1913                 tab->SVI2Enable |= VDDC_ON_SVI2;
1914 
1915         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1916                 tab->SVI2Enable |= VDDCI_ON_SVI2;
1917         else
1918                 tab->MergedVddci = 1;
1919 
1920         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
1921                 tab->SVI2Enable |= MVDD_ON_SVI2;
1922 
1923         PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
1924                 (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
1925 
1926         return 0;
1927 }
1928 
1929 static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
1930 {
1931         int result;
1932         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1933         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1934         SMU71_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1935 
1936 
1937         iceland_initialize_power_tune_defaults(hwmgr);
1938         memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1939 
1940         if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
1941                 iceland_populate_smc_voltage_tables(hwmgr, table);
1942         }
1943 
1944         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1945                         PHM_PlatformCaps_AutomaticDCTransition))
1946                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1947 
1948 
1949         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1950                         PHM_PlatformCaps_StepVddc))
1951                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1952 
1953         if (data->is_memory_gddr5)
1954                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1955 
1956 
1957         if (data->ulv_supported) {
1958                 result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
1959                 PP_ASSERT_WITH_CODE(0 == result,
1960                         "Failed to initialize ULV state!", return result;);
1961 
1962                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1963                         ixCG_ULV_PARAMETER, 0x40035);
1964         }
1965 
1966         result = iceland_populate_smc_link_level(hwmgr, table);
1967         PP_ASSERT_WITH_CODE(0 == result,
1968                 "Failed to initialize Link Level!", return result;);
1969 
1970         result = iceland_populate_all_graphic_levels(hwmgr);
1971         PP_ASSERT_WITH_CODE(0 == result,
1972                 "Failed to initialize Graphics Level!", return result;);
1973 
1974         result = iceland_populate_all_memory_levels(hwmgr);
1975         PP_ASSERT_WITH_CODE(0 == result,
1976                 "Failed to initialize Memory Level!", return result;);
1977 
1978         result = iceland_populate_smc_acpi_level(hwmgr, table);
1979         PP_ASSERT_WITH_CODE(0 == result,
1980                 "Failed to initialize ACPI Level!", return result;);
1981 
1982         result = iceland_populate_smc_vce_level(hwmgr, table);
1983         PP_ASSERT_WITH_CODE(0 == result,
1984                 "Failed to initialize VCE Level!", return result;);
1985 
1986         result = iceland_populate_smc_acp_level(hwmgr, table);
1987         PP_ASSERT_WITH_CODE(0 == result,
1988                 "Failed to initialize ACP Level!", return result;);
1989 
1990         /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
1991         /* need to populate the  ARB settings for the initial state. */
1992         result = iceland_program_memory_timing_parameters(hwmgr);
1993         PP_ASSERT_WITH_CODE(0 == result,
1994                 "Failed to Write ARB settings for the initial state.", return result;);
1995 
1996         result = iceland_populate_smc_uvd_level(hwmgr, table);
1997         PP_ASSERT_WITH_CODE(0 == result,
1998                 "Failed to initialize UVD Level!", return result;);
1999 
2000         table->GraphicsBootLevel = 0;
2001         table->MemoryBootLevel = 0;
2002 
2003         result = iceland_populate_smc_boot_level(hwmgr, table);
2004         PP_ASSERT_WITH_CODE(0 == result,
2005                 "Failed to initialize Boot Level!", return result;);
2006 
2007         result = iceland_populate_smc_initial_state(hwmgr);
2008         PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2009 
2010         result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
2011         PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2012 
2013         table->GraphicsVoltageChangeEnable  = 1;
2014         table->GraphicsThermThrottleEnable  = 1;
2015         table->GraphicsInterval = 1;
2016         table->VoltageInterval  = 1;
2017         table->ThermalInterval  = 1;
2018 
2019         table->TemperatureLimitHigh =
2020                 (data->thermal_temp_setting.temperature_high *
2021                  SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2022         table->TemperatureLimitLow =
2023                 (data->thermal_temp_setting.temperature_low *
2024                 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2025 
2026         table->MemoryVoltageChangeEnable  = 1;
2027         table->MemoryInterval  = 1;
2028         table->VoltageResponseTime  = 0;
2029         table->PhaseResponseTime  = 0;
2030         table->MemoryThermThrottleEnable  = 1;
2031         table->PCIeBootLinkLevel = 0;
2032         table->PCIeGenInterval = 1;
2033 
2034         result = iceland_populate_smc_svi2_config(hwmgr, table);
2035         PP_ASSERT_WITH_CODE(0 == result,
2036                 "Failed to populate SVI2 setting!", return result);
2037 
2038         table->ThermGpio  = 17;
2039         table->SclkStepSize = 0x4000;
2040 
2041         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2042         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2043         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2044         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2045         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2046         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2047         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2048         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2049         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2050         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2051 
2052         table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2053         table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2054         table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2055 
2056         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2057         result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
2058                                                                                 offsetof(SMU71_Discrete_DpmTable, SystemFlags),
2059                                                                                 (uint8_t *)&(table->SystemFlags),
2060                                                                                 sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
2061                                                                                 SMC_RAM_END);
2062 
2063         PP_ASSERT_WITH_CODE(0 == result,
2064                 "Failed to upload dpm data to SMC memory!", return result;);
2065 
2066         /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
2067         result = smu7_copy_bytes_to_smc(hwmgr,
2068                         smu_data->smu7_data.ulv_setting_starts,
2069                         (uint8_t *)&(smu_data->ulv_setting),
2070                         sizeof(SMU71_Discrete_Ulv),
2071                         SMC_RAM_END);
2072 
2073 
2074         result = iceland_populate_initial_mc_reg_table(hwmgr);
2075         PP_ASSERT_WITH_CODE((0 == result),
2076                 "Failed to populate initialize MC Reg table!", return result);
2077 
2078         result = iceland_populate_pm_fuses(hwmgr);
2079         PP_ASSERT_WITH_CODE(0 == result,
2080                         "Failed to  populate PM fuses to SMC memory!", return result);
2081 
2082         return 0;
2083 }
2084 
2085 int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2086 {
2087         struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2088         SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2089         uint32_t duty100;
2090         uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2091         uint16_t fdo_min, slope1, slope2;
2092         uint32_t reference_clock;
2093         int res;
2094         uint64_t tmp64;
2095 
2096         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2097                 return 0;
2098 
2099         if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2100                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2101                         PHM_PlatformCaps_MicrocodeFanControl);
2102                 return 0;
2103         }
2104 
2105         if (0 == smu7_data->fan_table_start) {
2106                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2107                 return 0;
2108         }
2109 
2110         duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2111 
2112         if (0 == duty100) {
2113                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2114                 return 0;
2115         }
2116 
2117         tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2118         do_div(tmp64, 10000);
2119         fdo_min = (uint16_t)tmp64;
2120 
2121         t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2122         t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2123 
2124         pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2125         pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2126 
2127         slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2128         slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2129 
2130         fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2131         fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2132         fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2133 
2134         fan_table.Slope1 = cpu_to_be16(slope1);
2135         fan_table.Slope2 = cpu_to_be16(slope2);
2136 
2137         fan_table.FdoMin = cpu_to_be16(fdo_min);
2138 
2139         fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2140 
2141         fan_table.HystUp = cpu_to_be16(1);
2142 
2143         fan_table.HystSlope = cpu_to_be16(1);
2144 
2145         fan_table.TempRespLim = cpu_to_be16(5);
2146 
2147         reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2148 
2149         fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2150 
2151         fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2152 
2153         fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2154 
2155         /* fan_table.FanControl_GL_Flag = 1; */
2156 
2157         res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2158 
2159         return 0;
2160 }
2161 
2162 
2163 static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2164 {
2165         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2166 
2167         if (data->need_update_smu7_dpm_table &
2168                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2169                 return iceland_program_memory_timing_parameters(hwmgr);
2170 
2171         return 0;
2172 }
2173 
2174 static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2175 {
2176         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2177         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2178 
2179         int result = 0;
2180         uint32_t low_sclk_interrupt_threshold = 0;
2181 
2182         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2183                         PHM_PlatformCaps_SclkThrottleLowNotification)
2184                 && (data->low_sclk_interrupt_threshold != 0)) {
2185                 low_sclk_interrupt_threshold =
2186                                 data->low_sclk_interrupt_threshold;
2187 
2188                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2189 
2190                 result = smu7_copy_bytes_to_smc(
2191                                 hwmgr,
2192                                 smu_data->smu7_data.dpm_table_start +
2193                                 offsetof(SMU71_Discrete_DpmTable,
2194                                         LowSclkInterruptThreshold),
2195                                 (uint8_t *)&low_sclk_interrupt_threshold,
2196                                 sizeof(uint32_t),
2197                                 SMC_RAM_END);
2198         }
2199 
2200         result = iceland_update_and_upload_mc_reg_table(hwmgr);
2201 
2202         PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2203 
2204         result = iceland_program_mem_timing_parameters(hwmgr);
2205         PP_ASSERT_WITH_CODE((result == 0),
2206                         "Failed to program memory timing parameters!",
2207                         );
2208 
2209         return result;
2210 }
2211 
2212 static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
2213 {
2214         switch (type) {
2215         case SMU_SoftRegisters:
2216                 switch (member) {
2217                 case HandshakeDisables:
2218                         return offsetof(SMU71_SoftRegisters, HandshakeDisables);
2219                 case VoltageChangeTimeout:
2220                         return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
2221                 case AverageGraphicsActivity:
2222                         return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
2223                 case AverageMemoryActivity:
2224                         return offsetof(SMU71_SoftRegisters, AverageMemoryActivity);
2225                 case PreVBlankGap:
2226                         return offsetof(SMU71_SoftRegisters, PreVBlankGap);
2227                 case VBlankTimeout:
2228                         return offsetof(SMU71_SoftRegisters, VBlankTimeout);
2229                 case UcodeLoadStatus:
2230                         return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
2231                 case DRAM_LOG_ADDR_H:
2232                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
2233                 case DRAM_LOG_ADDR_L:
2234                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
2235                 case DRAM_LOG_PHY_ADDR_H:
2236                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2237                 case DRAM_LOG_PHY_ADDR_L:
2238                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2239                 case DRAM_LOG_BUFF_SIZE:
2240                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2241                 }
2242                 break;
2243         case SMU_Discrete_DpmTable:
2244                 switch (member) {
2245                 case LowSclkInterruptThreshold:
2246                         return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
2247                 }
2248                 break;
2249         }
2250         pr_warn("can't get the offset of type %x member %x\n", type, member);
2251         return 0;
2252 }
2253 
2254 static uint32_t iceland_get_mac_definition(uint32_t value)
2255 {
2256         switch (value) {
2257         case SMU_MAX_LEVELS_GRAPHICS:
2258                 return SMU71_MAX_LEVELS_GRAPHICS;
2259         case SMU_MAX_LEVELS_MEMORY:
2260                 return SMU71_MAX_LEVELS_MEMORY;
2261         case SMU_MAX_LEVELS_LINK:
2262                 return SMU71_MAX_LEVELS_LINK;
2263         case SMU_MAX_ENTRIES_SMIO:
2264                 return SMU71_MAX_ENTRIES_SMIO;
2265         case SMU_MAX_LEVELS_VDDC:
2266                 return SMU71_MAX_LEVELS_VDDC;
2267         case SMU_MAX_LEVELS_VDDCI:
2268                 return SMU71_MAX_LEVELS_VDDCI;
2269         case SMU_MAX_LEVELS_MVDD:
2270                 return SMU71_MAX_LEVELS_MVDD;
2271         }
2272 
2273         pr_warn("can't get the mac of %x\n", value);
2274         return 0;
2275 }
2276 
2277 static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
2278 {
2279         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2280         struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2281 
2282         uint32_t tmp;
2283         int result;
2284         bool error = false;
2285 
2286         result = smu7_read_smc_sram_dword(hwmgr,
2287                                 SMU71_FIRMWARE_HEADER_LOCATION +
2288                                 offsetof(SMU71_Firmware_Header, DpmTable),
2289                                 &tmp, SMC_RAM_END);
2290 
2291         if (0 == result) {
2292                 smu7_data->dpm_table_start = tmp;
2293         }
2294 
2295         error |= (0 != result);
2296 
2297         result = smu7_read_smc_sram_dword(hwmgr,
2298                                 SMU71_FIRMWARE_HEADER_LOCATION +
2299                                 offsetof(SMU71_Firmware_Header, SoftRegisters),
2300                                 &tmp, SMC_RAM_END);
2301 
2302         if (0 == result) {
2303                 data->soft_regs_start = tmp;
2304                 smu7_data->soft_regs_start = tmp;
2305         }
2306 
2307         error |= (0 != result);
2308 
2309 
2310         result = smu7_read_smc_sram_dword(hwmgr,
2311                                 SMU71_FIRMWARE_HEADER_LOCATION +
2312                                 offsetof(SMU71_Firmware_Header, mcRegisterTable),
2313                                 &tmp, SMC_RAM_END);
2314 
2315         if (0 == result) {
2316                 smu7_data->mc_reg_table_start = tmp;
2317         }
2318 
2319         result = smu7_read_smc_sram_dword(hwmgr,
2320                                 SMU71_FIRMWARE_HEADER_LOCATION +
2321                                 offsetof(SMU71_Firmware_Header, FanTable),
2322                                 &tmp, SMC_RAM_END);
2323 
2324         if (0 == result) {
2325                 smu7_data->fan_table_start = tmp;
2326         }
2327 
2328         error |= (0 != result);
2329 
2330         result = smu7_read_smc_sram_dword(hwmgr,
2331                                 SMU71_FIRMWARE_HEADER_LOCATION +
2332                                 offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
2333                                 &tmp, SMC_RAM_END);
2334 
2335         if (0 == result) {
2336                 smu7_data->arb_table_start = tmp;
2337         }
2338 
2339         error |= (0 != result);
2340 
2341 
2342         result = smu7_read_smc_sram_dword(hwmgr,
2343                                 SMU71_FIRMWARE_HEADER_LOCATION +
2344                                 offsetof(SMU71_Firmware_Header, Version),
2345                                 &tmp, SMC_RAM_END);
2346 
2347         if (0 == result) {
2348                 hwmgr->microcode_version_info.SMC = tmp;
2349         }
2350 
2351         error |= (0 != result);
2352 
2353         result = smu7_read_smc_sram_dword(hwmgr,
2354                                 SMU71_FIRMWARE_HEADER_LOCATION +
2355                                 offsetof(SMU71_Firmware_Header, UlvSettings),
2356                                 &tmp, SMC_RAM_END);
2357 
2358         if (0 == result) {
2359                 smu7_data->ulv_setting_starts = tmp;
2360         }
2361 
2362         error |= (0 != result);
2363 
2364         return error ? 1 : 0;
2365 }
2366 
2367 /*---------------------------MC----------------------------*/
2368 
2369 static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2370 {
2371         return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2372 }
2373 
2374 static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2375 {
2376         bool result = true;
2377 
2378         switch (in_reg) {
2379         case  mmMC_SEQ_RAS_TIMING:
2380                 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2381                 break;
2382 
2383         case  mmMC_SEQ_DLL_STBY:
2384                 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2385                 break;
2386 
2387         case  mmMC_SEQ_G5PDX_CMD0:
2388                 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2389                 break;
2390 
2391         case  mmMC_SEQ_G5PDX_CMD1:
2392                 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2393                 break;
2394 
2395         case  mmMC_SEQ_G5PDX_CTRL:
2396                 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2397                 break;
2398 
2399         case mmMC_SEQ_CAS_TIMING:
2400                 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2401                 break;
2402 
2403         case mmMC_SEQ_MISC_TIMING:
2404                 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2405                 break;
2406 
2407         case mmMC_SEQ_MISC_TIMING2:
2408                 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2409                 break;
2410 
2411         case mmMC_SEQ_PMG_DVS_CMD:
2412                 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2413                 break;
2414 
2415         case mmMC_SEQ_PMG_DVS_CTL:
2416                 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2417                 break;
2418 
2419         case mmMC_SEQ_RD_CTL_D0:
2420                 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2421                 break;
2422 
2423         case mmMC_SEQ_RD_CTL_D1:
2424                 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2425                 break;
2426 
2427         case mmMC_SEQ_WR_CTL_D0:
2428                 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2429                 break;
2430 
2431         case mmMC_SEQ_WR_CTL_D1:
2432                 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2433                 break;
2434 
2435         case mmMC_PMG_CMD_EMRS:
2436                 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2437                 break;
2438 
2439         case mmMC_PMG_CMD_MRS:
2440                 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2441                 break;
2442 
2443         case mmMC_PMG_CMD_MRS1:
2444                 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2445                 break;
2446 
2447         case mmMC_SEQ_PMG_TIMING:
2448                 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2449                 break;
2450 
2451         case mmMC_PMG_CMD_MRS2:
2452                 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2453                 break;
2454 
2455         case mmMC_SEQ_WR_CTL_2:
2456                 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2457                 break;
2458 
2459         default:
2460                 result = false;
2461                 break;
2462         }
2463 
2464         return result;
2465 }
2466 
2467 static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
2468 {
2469         uint32_t i;
2470         uint16_t address;
2471 
2472         for (i = 0; i < table->last; i++) {
2473                 table->mc_reg_address[i].s0 =
2474                         iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2475                         ? address : table->mc_reg_address[i].s1;
2476         }
2477         return 0;
2478 }
2479 
2480 static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2481                                         struct iceland_mc_reg_table *ni_table)
2482 {
2483         uint8_t i, j;
2484 
2485         PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2486                 "Invalid VramInfo table.", return -EINVAL);
2487         PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2488                 "Invalid VramInfo table.", return -EINVAL);
2489 
2490         for (i = 0; i < table->last; i++) {
2491                 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2492         }
2493         ni_table->last = table->last;
2494 
2495         for (i = 0; i < table->num_entries; i++) {
2496                 ni_table->mc_reg_table_entry[i].mclk_max =
2497                         table->mc_reg_table_entry[i].mclk_max;
2498                 for (j = 0; j < table->last; j++) {
2499                         ni_table->mc_reg_table_entry[i].mc_data[j] =
2500                                 table->mc_reg_table_entry[i].mc_data[j];
2501                 }
2502         }
2503 
2504         ni_table->num_entries = table->num_entries;
2505 
2506         return 0;
2507 }
2508 
2509 static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2510                                         struct iceland_mc_reg_table *table)
2511 {
2512         uint8_t i, j, k;
2513         uint32_t temp_reg;
2514         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2515 
2516         for (i = 0, j = table->last; i < table->last; i++) {
2517                 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2518                         "Invalid VramInfo table.", return -EINVAL);
2519 
2520                 switch (table->mc_reg_address[i].s1) {
2521 
2522                 case mmMC_SEQ_MISC1:
2523                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2524                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2525                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2526                         for (k = 0; k < table->num_entries; k++) {
2527                                 table->mc_reg_table_entry[k].mc_data[j] =
2528                                         ((temp_reg & 0xffff0000)) |
2529                                         ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2530                         }
2531                         j++;
2532 
2533                         PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2534                                 "Invalid VramInfo table.", return -EINVAL);
2535                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2536                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2537                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2538                         for (k = 0; k < table->num_entries; k++) {
2539                                 table->mc_reg_table_entry[k].mc_data[j] =
2540                                         (temp_reg & 0xffff0000) |
2541                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2542 
2543                                 if (!data->is_memory_gddr5) {
2544                                         table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2545                                 }
2546                         }
2547                         j++;
2548 
2549                         if (!data->is_memory_gddr5) {
2550                                 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2551                                         "Invalid VramInfo table.", return -EINVAL);
2552                                 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2553                                 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2554                                 for (k = 0; k < table->num_entries; k++) {
2555                                         table->mc_reg_table_entry[k].mc_data[j] =
2556                                                 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2557                                 }
2558                                 j++;
2559                         }
2560 
2561                         break;
2562 
2563                 case mmMC_SEQ_RESERVE_M:
2564                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2565                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2566                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2567                         for (k = 0; k < table->num_entries; k++) {
2568                                 table->mc_reg_table_entry[k].mc_data[j] =
2569                                         (temp_reg & 0xffff0000) |
2570                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2571                         }
2572                         j++;
2573                         break;
2574 
2575                 default:
2576                         break;
2577                 }
2578 
2579         }
2580 
2581         table->last = j;
2582 
2583         return 0;
2584 }
2585 
2586 static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
2587 {
2588         uint8_t i, j;
2589         for (i = 0; i < table->last; i++) {
2590                 for (j = 1; j < table->num_entries; j++) {
2591                         if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2592                                 table->mc_reg_table_entry[j].mc_data[i]) {
2593                                 table->validflag |= (1<<i);
2594                                 break;
2595                         }
2596                 }
2597         }
2598 
2599         return 0;
2600 }
2601 
2602 static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2603 {
2604         int result;
2605         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2606         pp_atomctrl_mc_reg_table *table;
2607         struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2608         uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
2609 
2610         table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2611 
2612         if (NULL == table)
2613                 return -ENOMEM;
2614 
2615         /* Program additional LP registers that are no longer programmed by VBIOS */
2616         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2617         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2618         cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2619         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2620         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2621         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2622         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2623         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2624         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2625         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2626         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2627         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2628         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2629         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2630         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2631         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2632         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2633         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2634         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2635         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2636 
2637         result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2638 
2639         if (0 == result)
2640                 result = iceland_copy_vbios_smc_reg_table(table, ni_table);
2641 
2642         if (0 == result) {
2643                 iceland_set_s0_mc_reg_index(ni_table);
2644                 result = iceland_set_mc_special_registers(hwmgr, ni_table);
2645         }
2646 
2647         if (0 == result)
2648                 iceland_set_valid_flag(ni_table);
2649 
2650         kfree(table);
2651 
2652         return result;
2653 }
2654 
2655 static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
2656 {
2657         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2658                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2659                         ? true : false;
2660 }
2661 
2662 const struct pp_smumgr_func iceland_smu_funcs = {
2663         .name = "iceland_smu",
2664         .smu_init = &iceland_smu_init,
2665         .smu_fini = &smu7_smu_fini,
2666         .start_smu = &iceland_start_smu,
2667         .check_fw_load_finish = &smu7_check_fw_load_finish,
2668         .request_smu_load_fw = &smu7_request_smu_load_fw,
2669         .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
2670         .send_msg_to_smc = &smu7_send_msg_to_smc,
2671         .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2672         .download_pptable_settings = NULL,
2673         .upload_pptable_settings = NULL,
2674         .get_offsetof = iceland_get_offsetof,
2675         .process_firmware_header = iceland_process_firmware_header,
2676         .init_smc_table = iceland_init_smc_table,
2677         .update_sclk_threshold = iceland_update_sclk_threshold,
2678         .thermal_setup_fan_table = iceland_thermal_setup_fan_table,
2679         .populate_all_graphic_levels = iceland_populate_all_graphic_levels,
2680         .populate_all_memory_levels = iceland_populate_all_memory_levels,
2681         .get_mac_definition = iceland_get_mac_definition,
2682         .initialize_mc_reg_table = iceland_initialize_mc_reg_table,
2683         .is_dpm_running = iceland_is_dpm_running,
2684 };
2685 

/* [<][>][^][v][top][bottom][index][help] */