root/drivers/gpu/drm/amd/powerplay/smumgr/fiji_smumgr.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fiji_start_smu_in_protection_mode
  2. fiji_start_smu_in_non_protection_mode
  3. fiji_start_avfs_btc
  4. fiji_setup_graphics_level_structure
  5. fiji_avfs_event_mgr
  6. fiji_start_smu
  7. fiji_is_hw_avfs_present
  8. fiji_smu_init
  9. fiji_get_dependency_volt_by_clk
  10. scale_fan_gain_settings
  11. get_scl_sda_value
  12. fiji_initialize_power_tune_defaults
  13. fiji_populate_bapm_parameters_in_dpm_table
  14. fiji_populate_svi_load_line
  15. fiji_populate_tdc_limit
  16. fiji_populate_dw8
  17. fiji_populate_temperature_scaler
  18. fiji_populate_fuzzy_fan
  19. fiji_populate_gnb_lpml
  20. fiji_populate_bapm_vddc_base_leakage_sidd
  21. fiji_populate_pm_fuses
  22. fiji_populate_cac_table
  23. fiji_populate_smc_voltage_tables
  24. fiji_populate_ulv_level
  25. fiji_populate_ulv_state
  26. fiji_populate_smc_link_level
  27. fiji_calculate_sclk_params
  28. fiji_populate_single_graphic_level
  29. fiji_populate_all_graphic_levels
  30. fiji_get_mclk_frequency_ratio
  31. fiji_calculate_mclk_params
  32. fiji_populate_single_memory_level
  33. fiji_populate_all_memory_levels
  34. fiji_populate_mvdd_value
  35. fiji_populate_smc_acpi_level
  36. fiji_populate_smc_vce_level
  37. fiji_populate_smc_acp_level
  38. fiji_populate_memory_timing_parameters
  39. fiji_program_memory_timing_parameters
  40. fiji_populate_smc_uvd_level
  41. fiji_populate_smc_boot_level
  42. fiji_populate_smc_initailial_state
  43. fiji_populate_clock_stretcher_data_table
  44. fiji_populate_vr_config
  45. fiji_init_arb_table_index
  46. fiji_setup_dpm_led_config
  47. fiji_init_smc_table
  48. fiji_thermal_setup_fan_table
  49. fiji_thermal_avfs_enable
  50. fiji_program_mem_timing_parameters
  51. fiji_update_sclk_threshold
  52. fiji_get_offsetof
  53. fiji_get_mac_definition
  54. fiji_update_uvd_smc_table
  55. fiji_update_vce_smc_table
  56. fiji_update_smc_table
  57. fiji_process_firmware_header
  58. fiji_initialize_mc_reg_table
  59. fiji_is_dpm_running
  60. fiji_update_dpm_settings

   1 /*
   2  * Copyright 2015 Advanced Micro Devices, Inc.
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice shall be included in
  12  * all copies or substantial portions of the Software.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20  * OTHER DEALINGS IN THE SOFTWARE.
  21  *
  22  */
  23 
  24 #include "pp_debug.h"
  25 #include "smumgr.h"
  26 #include "smu7_dyn_defaults.h"
  27 #include "smu73.h"
  28 #include "smu_ucode_xfer_vi.h"
  29 #include "fiji_smumgr.h"
  30 #include "fiji_ppsmc.h"
  31 #include "smu73_discrete.h"
  32 #include "ppatomctrl.h"
  33 #include "smu/smu_7_1_3_d.h"
  34 #include "smu/smu_7_1_3_sh_mask.h"
  35 #include "gmc/gmc_8_1_d.h"
  36 #include "gmc/gmc_8_1_sh_mask.h"
  37 #include "oss/oss_3_0_d.h"
  38 #include "gca/gfx_8_0_d.h"
  39 #include "bif/bif_5_0_d.h"
  40 #include "bif/bif_5_0_sh_mask.h"
  41 #include "dce/dce_10_0_d.h"
  42 #include "dce/dce_10_0_sh_mask.h"
  43 #include "hardwaremanager.h"
  44 #include "cgs_common.h"
  45 #include "atombios.h"
  46 #include "pppcielanes.h"
  47 #include "hwmgr.h"
  48 #include "smu7_hwmgr.h"
  49 
  50 
  51 #define AVFS_EN_MSB                                        1568
  52 #define AVFS_EN_LSB                                        1568
  53 
  54 #define FIJI_SMC_SIZE 0x20000
  55 
  56 #define POWERTUNE_DEFAULT_SET_MAX    1
  57 #define VDDC_VDDCI_DELTA            300
  58 #define MC_CG_ARB_FREQ_F1           0x0b
  59 
  60 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
  61  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
  62  */
  63 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
  64                                 {600, 1050, 3, 0}, {600, 1050, 6, 1} };
  65 
  66 /* [FF, SS] type, [] 4 voltage ranges, and
  67  * [Floor Freq, Boundary Freq, VID min , VID max]
  68  */
  69 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
  70         { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
  71         { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
  72 
  73 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
  74  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
  75  */
  76 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
  77                                 {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
  78 
  79 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
  80                 /*sviLoadLIneEn,  SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
  81                 {1,               0xF,             0xFD,
  82                 /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
  83                 0x19,        5,               45}
  84 };
  85 
  86 static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
  87                 /*  Min        Sclk       pcie     DeepSleep Activity  CgSpll      CgSpll    spllSpread  SpllSpread   CcPwr  CcPwr  Sclk   Display     Enabled     Enabled                       Voltage    Power */
  88                 /* Voltage,  Frequency,  DpmLevel,  DivId,    Level,  FuncCntl3,  FuncCntl4,  Spectrum,   Spectrum2,  DynRm, DynRm1  Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
  89                 { 0x3c0fd047, 0x30750000,   0x00,     0x03,   0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
  90                 { 0xa00fd047, 0x409c0000,   0x01,     0x04,   0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
  91                 { 0x0410d047, 0x50c30000,   0x01,     0x00,   0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000,   0,      0,   0x0e,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
  92                 { 0x6810d047, 0x60ea0000,   0x01,     0x00,   0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
  93                 { 0xcc10d047, 0xe8fd0000,   0x01,     0x00,   0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
  94                 { 0x3011d047, 0x70110100,   0x01,     0x00,   0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
  95                 { 0x9411d047, 0xf8240100,   0x01,     0x00,   0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
  96                 { 0xf811d047, 0x80380100,   0x01,     0x00,   0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000,   0,      0,   0x0c,   0x01,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 }
  97 };
  98 
  99 static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
 100 {
 101         int result = 0;
 102 
 103         /* Wait for smc boot up */
 104         /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
 105                 RCU_UC_EVENTS, boot_seq_done, 0); */
 106 
 107         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 108                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
 109 
 110         result = smu7_upload_smu_firmware_image(hwmgr);
 111         if (result)
 112                 return result;
 113 
 114         /* Clear status */
 115         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
 116                         ixSMU_STATUS, 0);
 117 
 118         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 119                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
 120 
 121         /* De-assert reset */
 122         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 123                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
 124 
 125         /* Wait for ROM firmware to initialize interrupt hendler */
 126         /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
 127                         SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
 128 
 129         /* Set SMU Auto Start */
 130         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 131                         SMU_INPUT_DATA, AUTO_START, 1);
 132 
 133         /* Clear firmware interrupt enable flag */
 134         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
 135                         ixFIRMWARE_FLAGS, 0);
 136 
 137         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
 138                         INTERRUPTS_ENABLED, 1);
 139 
 140         cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, 0x20000);
 141         cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
 142         PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
 143 
 144         /* Wait for done bit to be set */
 145         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
 146                         SMU_STATUS, SMU_DONE, 0);
 147 
 148         /* Check pass/failed indicator */
 149         if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 150                         SMU_STATUS, SMU_PASS) != 1) {
 151                 PP_ASSERT_WITH_CODE(false,
 152                                 "SMU Firmware start failed!", return -1);
 153         }
 154 
 155         /* Wait for firmware to initialize */
 156         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
 157                         FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
 158 
 159         return result;
 160 }
 161 
 162 static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
 163 {
 164         int result = 0;
 165 
 166         /* wait for smc boot up */
 167         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
 168                         RCU_UC_EVENTS, boot_seq_done, 0);
 169 
 170         /* Clear firmware interrupt enable flag */
 171         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
 172                         ixFIRMWARE_FLAGS, 0);
 173 
 174         /* Assert reset */
 175         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 176                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
 177 
 178         result = smu7_upload_smu_firmware_image(hwmgr);
 179         if (result)
 180                 return result;
 181 
 182         /* Set smc instruct start point at 0x0 */
 183         smu7_program_jump_on_start(hwmgr);
 184 
 185         /* Enable clock */
 186         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 187                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
 188 
 189         /* De-assert reset */
 190         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 191                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
 192 
 193         /* Wait for firmware to initialize */
 194         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
 195                         FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
 196 
 197         return result;
 198 }
 199 
 200 static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
 201 {
 202         int result = 0;
 203         struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
 204 
 205         if (0 != smu_data->avfs_btc_param) {
 206                 if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr,
 207                                 PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param)) {
 208                         pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
 209                         result = -EINVAL;
 210                 }
 211         }
 212         /* Soft-Reset to reset the engine before loading uCode */
 213          /* halt */
 214         cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
 215         /* reset everything */
 216         cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
 217         /* clear reset */
 218         cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
 219 
 220         return result;
 221 }
 222 
 223 static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
 224 {
 225         int32_t vr_config;
 226         uint32_t table_start;
 227         uint32_t level_addr, vr_config_addr;
 228         uint32_t level_size = sizeof(avfs_graphics_level);
 229 
 230         PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
 231                         SMU7_FIRMWARE_HEADER_LOCATION +
 232                         offsetof(SMU73_Firmware_Header, DpmTable),
 233                         &table_start, 0x40000),
 234                         "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
 235                         "communicate starting address of DPM table",
 236                         return -1;);
 237 
 238         /* Default value for vr_config =
 239          * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
 240         vr_config = 0x01000500;   /* Real value:0x50001 */
 241 
 242         vr_config_addr = table_start +
 243                         offsetof(SMU73_Discrete_DpmTable, VRConfig);
 244 
 245         PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
 246                         (uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
 247                         "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
 248                         "vr_config value over to SMC",
 249                         return -1;);
 250 
 251         level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
 252 
 253         PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
 254                         (uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
 255                         "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
 256                         return -1;);
 257 
 258         return 0;
 259 }
 260 
 261 static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
 262 {
 263         if (!hwmgr->avfs_supported)
 264                 return 0;
 265 
 266         PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
 267                         "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
 268                         " table over to SMU",
 269                         return -EINVAL);
 270         PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
 271                         "[AVFS][fiji_avfs_event_mgr] Could not setup "
 272                         "Pwr Virus for AVFS ",
 273                         return -EINVAL);
 274         PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
 275                         "[AVFS][fiji_avfs_event_mgr] Failure at "
 276                         "fiji_start_avfs_btc. AVFS Disabled",
 277                         return -EINVAL);
 278 
 279         return 0;
 280 }
 281 
 282 static int fiji_start_smu(struct pp_hwmgr *hwmgr)
 283 {
 284         int result = 0;
 285         struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
 286 
 287         /* Only start SMC if SMC RAM is not running */
 288         if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
 289                 /* Check if SMU is running in protected mode */
 290                 if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
 291                                 CGS_IND_REG__SMC,
 292                                 SMU_FIRMWARE, SMU_MODE)) {
 293                         result = fiji_start_smu_in_non_protection_mode(hwmgr);
 294                         if (result)
 295                                 return result;
 296                 } else {
 297                         result = fiji_start_smu_in_protection_mode(hwmgr);
 298                         if (result)
 299                                 return result;
 300                 }
 301                 if (fiji_avfs_event_mgr(hwmgr))
 302                         hwmgr->avfs_supported = false;
 303         }
 304 
 305         /* Setup SoftRegsStart here for register lookup in case
 306          * DummyBackEnd is used and ProcessFirmwareHeader is not executed
 307          */
 308         smu7_read_smc_sram_dword(hwmgr,
 309                         SMU7_FIRMWARE_HEADER_LOCATION +
 310                         offsetof(SMU73_Firmware_Header, SoftRegisters),
 311                         &(priv->smu7_data.soft_regs_start), 0x40000);
 312 
 313         result = smu7_request_smu_load_fw(hwmgr);
 314 
 315         return result;
 316 }
 317 
 318 static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
 319 {
 320 
 321         uint32_t efuse = 0;
 322         uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1;
 323 
 324         if (!hwmgr->not_vf)
 325                 return false;
 326 
 327         if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
 328                         mask, &efuse)) {
 329                 if (efuse)
 330                         return true;
 331         }
 332         return false;
 333 }
 334 
 335 static int fiji_smu_init(struct pp_hwmgr *hwmgr)
 336 {
 337         struct fiji_smumgr *fiji_priv = NULL;
 338 
 339         fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
 340 
 341         if (fiji_priv == NULL)
 342                 return -ENOMEM;
 343 
 344         hwmgr->smu_backend = fiji_priv;
 345 
 346         if (smu7_init(hwmgr)) {
 347                 kfree(fiji_priv);
 348                 return -EINVAL;
 349         }
 350 
 351         return 0;
 352 }
 353 
 354 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
 355                 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
 356                 uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
 357 {
 358         uint32_t i;
 359         uint16_t vddci;
 360         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 361         *voltage = *mvdd = 0;
 362 
 363 
 364         /* clock - voltage dependency table is empty table */
 365         if (dep_table->count == 0)
 366                 return -EINVAL;
 367 
 368         for (i = 0; i < dep_table->count; i++) {
 369                 /* find first sclk bigger than request */
 370                 if (dep_table->entries[i].clk >= clock) {
 371                         *voltage |= (dep_table->entries[i].vddc *
 372                                         VOLTAGE_SCALE) << VDDC_SHIFT;
 373                         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
 374                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
 375                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
 376                         else if (dep_table->entries[i].vddci)
 377                                 *voltage |= (dep_table->entries[i].vddci *
 378                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
 379                         else {
 380                                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
 381                                                 (dep_table->entries[i].vddc -
 382                                                                 VDDC_VDDCI_DELTA));
 383                                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
 384                         }
 385 
 386                         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
 387                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
 388                                         VOLTAGE_SCALE;
 389                         else if (dep_table->entries[i].mvdd)
 390                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
 391                                         VOLTAGE_SCALE;
 392 
 393                         *voltage |= 1 << PHASES_SHIFT;
 394                         return 0;
 395                 }
 396         }
 397 
 398         /* sclk is bigger than max sclk in the dependence table */
 399         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
 400 
 401         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
 402                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
 403                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
 404         else if (dep_table->entries[i-1].vddci) {
 405                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
 406                                 (dep_table->entries[i].vddc -
 407                                                 VDDC_VDDCI_DELTA));
 408                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
 409         }
 410 
 411         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
 412                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
 413         else if (dep_table->entries[i].mvdd)
 414                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
 415 
 416         return 0;
 417 }
 418 
 419 
 420 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
 421 {
 422         uint32_t tmp;
 423         tmp = raw_setting * 4096 / 100;
 424         return (uint16_t)tmp;
 425 }
 426 
 427 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
 428 {
 429         switch (line) {
 430         case SMU7_I2CLineID_DDC1:
 431                 *scl = SMU7_I2C_DDC1CLK;
 432                 *sda = SMU7_I2C_DDC1DATA;
 433                 break;
 434         case SMU7_I2CLineID_DDC2:
 435                 *scl = SMU7_I2C_DDC2CLK;
 436                 *sda = SMU7_I2C_DDC2DATA;
 437                 break;
 438         case SMU7_I2CLineID_DDC3:
 439                 *scl = SMU7_I2C_DDC3CLK;
 440                 *sda = SMU7_I2C_DDC3DATA;
 441                 break;
 442         case SMU7_I2CLineID_DDC4:
 443                 *scl = SMU7_I2C_DDC4CLK;
 444                 *sda = SMU7_I2C_DDC4DATA;
 445                 break;
 446         case SMU7_I2CLineID_DDC5:
 447                 *scl = SMU7_I2C_DDC5CLK;
 448                 *sda = SMU7_I2C_DDC5DATA;
 449                 break;
 450         case SMU7_I2CLineID_DDC6:
 451                 *scl = SMU7_I2C_DDC6CLK;
 452                 *sda = SMU7_I2C_DDC6DATA;
 453                 break;
 454         case SMU7_I2CLineID_SCLSDA:
 455                 *scl = SMU7_I2C_SCL;
 456                 *sda = SMU7_I2C_SDA;
 457                 break;
 458         case SMU7_I2CLineID_DDCVGA:
 459                 *scl = SMU7_I2C_DDCVGACLK;
 460                 *sda = SMU7_I2C_DDCVGADATA;
 461                 break;
 462         default:
 463                 *scl = 0;
 464                 *sda = 0;
 465                 break;
 466         }
 467 }
 468 
 469 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
 470 {
 471         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 472         struct phm_ppt_v1_information *table_info =
 473                         (struct  phm_ppt_v1_information *)(hwmgr->pptable);
 474 
 475         if (table_info &&
 476                         table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
 477                         table_info->cac_dtp_table->usPowerTuneDataSetID)
 478                 smu_data->power_tune_defaults =
 479                                 &fiji_power_tune_data_set_array
 480                                 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
 481         else
 482                 smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
 483 
 484 }
 485 
 486 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
 487 {
 488 
 489         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 490         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
 491 
 492         SMU73_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
 493 
 494         struct phm_ppt_v1_information *table_info =
 495                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
 496         struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
 497         struct pp_advance_fan_control_parameters *fan_table =
 498                         &hwmgr->thermal_controller.advanceFanControlParameters;
 499         uint8_t uc_scl, uc_sda;
 500 
 501         /* TDP number of fraction bits are changed from 8 to 7 for Fiji
 502          * as requested by SMC team
 503          */
 504         dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
 505                         (uint16_t)(cac_dtp_table->usTDP * 128));
 506         dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
 507                         (uint16_t)(cac_dtp_table->usTDP * 128));
 508 
 509         PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
 510                         "Target Operating Temp is out of Range!",
 511                         );
 512 
 513         dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
 514         dpm_table->GpuTjHyst = 8;
 515 
 516         dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
 517 
 518         /* The following are for new Fiji Multi-input fan/thermal control */
 519         dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
 520                         cac_dtp_table->usTargetOperatingTemp * 256);
 521         dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
 522                         cac_dtp_table->usTemperatureLimitHotspot * 256);
 523         dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
 524                         cac_dtp_table->usTemperatureLimitLiquid1 * 256);
 525         dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
 526                         cac_dtp_table->usTemperatureLimitLiquid2 * 256);
 527         dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
 528                         cac_dtp_table->usTemperatureLimitVrVddc * 256);
 529         dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
 530                         cac_dtp_table->usTemperatureLimitVrMvdd * 256);
 531         dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
 532                         cac_dtp_table->usTemperatureLimitPlx * 256);
 533 
 534         dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
 535                         scale_fan_gain_settings(fan_table->usFanGainEdge));
 536         dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
 537                         scale_fan_gain_settings(fan_table->usFanGainHotspot));
 538         dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
 539                         scale_fan_gain_settings(fan_table->usFanGainLiquid));
 540         dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
 541                         scale_fan_gain_settings(fan_table->usFanGainVrVddc));
 542         dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
 543                         scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
 544         dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
 545                         scale_fan_gain_settings(fan_table->usFanGainPlx));
 546         dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
 547                         scale_fan_gain_settings(fan_table->usFanGainHbm));
 548 
 549         dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
 550         dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
 551         dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
 552         dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
 553 
 554         get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
 555         dpm_table->Liquid_I2C_LineSCL = uc_scl;
 556         dpm_table->Liquid_I2C_LineSDA = uc_sda;
 557 
 558         get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
 559         dpm_table->Vr_I2C_LineSCL = uc_scl;
 560         dpm_table->Vr_I2C_LineSDA = uc_sda;
 561 
 562         get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
 563         dpm_table->Plx_I2C_LineSCL = uc_scl;
 564         dpm_table->Plx_I2C_LineSDA = uc_sda;
 565 
 566         return 0;
 567 }
 568 
 569 
 570 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
 571 {
 572         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 573         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
 574 
 575         smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
 576         smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
 577         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
 578         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
 579 
 580         return 0;
 581 }
 582 
 583 
 584 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
 585 {
 586         uint16_t tdc_limit;
 587         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 588         struct phm_ppt_v1_information *table_info =
 589                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
 590         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
 591 
 592         /* TDC number of fraction bits are changed from 8 to 7
 593          * for Fiji as requested by SMC team
 594          */
 595         tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
 596         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
 597                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
 598         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
 599                         defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
 600         smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
 601 
 602         return 0;
 603 }
 604 
 605 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
 606 {
 607         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 608         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
 609         uint32_t temp;
 610 
 611         if (smu7_read_smc_sram_dword(hwmgr,
 612                         fuse_table_offset +
 613                         offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
 614                         (uint32_t *)&temp, SMC_RAM_END))
 615                 PP_ASSERT_WITH_CODE(false,
 616                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
 617                                 return -EINVAL);
 618         else {
 619                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
 620                 smu_data->power_tune_table.LPMLTemperatureMin =
 621                                 (uint8_t)((temp >> 16) & 0xff);
 622                 smu_data->power_tune_table.LPMLTemperatureMax =
 623                                 (uint8_t)((temp >> 8) & 0xff);
 624                 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
 625         }
 626         return 0;
 627 }
 628 
 629 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
 630 {
 631         int i;
 632         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 633 
 634         /* Currently not used. Set all to zero. */
 635         for (i = 0; i < 16; i++)
 636                 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
 637 
 638         return 0;
 639 }
 640 
 641 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
 642 {
 643         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 644 
 645         if ((hwmgr->thermal_controller.advanceFanControlParameters.
 646                         usFanOutputSensitivity & (1 << 15)) ||
 647                         0 == hwmgr->thermal_controller.advanceFanControlParameters.
 648                         usFanOutputSensitivity)
 649                 hwmgr->thermal_controller.advanceFanControlParameters.
 650                 usFanOutputSensitivity = hwmgr->thermal_controller.
 651                         advanceFanControlParameters.usDefaultFanOutputSensitivity;
 652 
 653         smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
 654                         PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
 655                                         advanceFanControlParameters.usFanOutputSensitivity);
 656         return 0;
 657 }
 658 
 659 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
 660 {
 661         int i;
 662         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 663 
 664         /* Currently not used. Set all to zero. */
 665         for (i = 0; i < 16; i++)
 666                 smu_data->power_tune_table.GnbLPML[i] = 0;
 667 
 668         return 0;
 669 }
 670 
 671 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
 672 {
 673         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 674         struct phm_ppt_v1_information *table_info =
 675                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
 676         uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
 677         uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
 678         struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
 679 
 680         HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
 681         LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
 682 
 683         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
 684                         CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
 685         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
 686                         CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
 687 
 688         return 0;
 689 }
 690 
 691 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
 692 {
 693         uint32_t pm_fuse_table_offset;
 694         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 695 
 696         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 697                         PHM_PlatformCaps_PowerContainment)) {
 698                 if (smu7_read_smc_sram_dword(hwmgr,
 699                                 SMU7_FIRMWARE_HEADER_LOCATION +
 700                                 offsetof(SMU73_Firmware_Header, PmFuseTable),
 701                                 &pm_fuse_table_offset, SMC_RAM_END))
 702                         PP_ASSERT_WITH_CODE(false,
 703                                         "Attempt to get pm_fuse_table_offset Failed!",
 704                                         return -EINVAL);
 705 
 706                 /* DW6 */
 707                 if (fiji_populate_svi_load_line(hwmgr))
 708                         PP_ASSERT_WITH_CODE(false,
 709                                         "Attempt to populate SviLoadLine Failed!",
 710                                         return -EINVAL);
 711                 /* DW7 */
 712                 if (fiji_populate_tdc_limit(hwmgr))
 713                         PP_ASSERT_WITH_CODE(false,
 714                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
 715                 /* DW8 */
 716                 if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
 717                         PP_ASSERT_WITH_CODE(false,
 718                                         "Attempt to populate TdcWaterfallCtl, "
 719                                         "LPMLTemperature Min and Max Failed!",
 720                                         return -EINVAL);
 721 
 722                 /* DW9-DW12 */
 723                 if (0 != fiji_populate_temperature_scaler(hwmgr))
 724                         PP_ASSERT_WITH_CODE(false,
 725                                         "Attempt to populate LPMLTemperatureScaler Failed!",
 726                                         return -EINVAL);
 727 
 728                 /* DW13-DW14 */
 729                 if (fiji_populate_fuzzy_fan(hwmgr))
 730                         PP_ASSERT_WITH_CODE(false,
 731                                         "Attempt to populate Fuzzy Fan Control parameters Failed!",
 732                                         return -EINVAL);
 733 
 734                 /* DW15-DW18 */
 735                 if (fiji_populate_gnb_lpml(hwmgr))
 736                         PP_ASSERT_WITH_CODE(false,
 737                                         "Attempt to populate GnbLPML Failed!",
 738                                         return -EINVAL);
 739 
 740                 /* DW20 */
 741                 if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
 742                         PP_ASSERT_WITH_CODE(false,
 743                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
 744                                         "Sidd Failed!", return -EINVAL);
 745 
 746                 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
 747                                 (uint8_t *)&smu_data->power_tune_table,
 748                                 sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
 749                         PP_ASSERT_WITH_CODE(false,
 750                                         "Attempt to download PmFuseTable Failed!",
 751                                         return -EINVAL);
 752         }
 753         return 0;
 754 }
 755 
 756 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
 757                 struct SMU73_Discrete_DpmTable *table)
 758 {
 759         uint32_t count;
 760         uint8_t index;
 761         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 762         struct phm_ppt_v1_information *table_info =
 763                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
 764         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
 765                         table_info->vddc_lookup_table;
 766         /* tables is already swapped, so in order to use the value from it,
 767          * we need to swap it back.
 768          * We are populating vddc CAC data to BapmVddc table
 769          * in split and merged mode
 770          */
 771 
 772         for (count = 0; count < lookup_table->count; count++) {
 773                 index = phm_get_voltage_index(lookup_table,
 774                                 data->vddc_voltage_table.entries[count].value);
 775                 table->BapmVddcVidLoSidd[count] =
 776                         convert_to_vid(lookup_table->entries[index].us_cac_low);
 777                 table->BapmVddcVidHiSidd[count] =
 778                         convert_to_vid(lookup_table->entries[index].us_cac_high);
 779         }
 780 
 781         return 0;
 782 }
 783 
 784 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
 785                 struct SMU73_Discrete_DpmTable *table)
 786 {
 787         int result;
 788 
 789         result = fiji_populate_cac_table(hwmgr, table);
 790         PP_ASSERT_WITH_CODE(0 == result,
 791                         "can not populate CAC voltage tables to SMC",
 792                         return -EINVAL);
 793 
 794         return 0;
 795 }
 796 
 797 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
 798                 struct SMU73_Discrete_Ulv *state)
 799 {
 800         int result = 0;
 801 
 802         struct phm_ppt_v1_information *table_info =
 803                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
 804 
 805         state->CcPwrDynRm = 0;
 806         state->CcPwrDynRm1 = 0;
 807 
 808         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
 809         state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
 810                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
 811 
 812         state->VddcPhase = 1;
 813 
 814         if (!result) {
 815                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
 816                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
 817                 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
 818         }
 819         return result;
 820 }
 821 
 822 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
 823                 struct SMU73_Discrete_DpmTable *table)
 824 {
 825         return fiji_populate_ulv_level(hwmgr, &table->Ulv);
 826 }
 827 
 828 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
 829                 struct SMU73_Discrete_DpmTable *table)
 830 {
 831         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 832         struct smu7_dpm_table *dpm_table = &data->dpm_table;
 833         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
 834         int i;
 835 
 836         /* Index (dpm_table->pcie_speed_table.count)
 837          * is reserved for PCIE boot level. */
 838         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
 839                 table->LinkLevel[i].PcieGenSpeed  =
 840                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
 841                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
 842                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
 843                 table->LinkLevel[i].EnabledForActivity = 1;
 844                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
 845                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
 846                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
 847         }
 848 
 849         smu_data->smc_state_table.LinkLevelCount =
 850                         (uint8_t)dpm_table->pcie_speed_table.count;
 851         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
 852                         phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
 853 
 854         return 0;
 855 }
 856 
 857 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
 858                 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
 859 {
 860         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 861         struct pp_atomctrl_clock_dividers_vi dividers;
 862         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
 863         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
 864         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
 865         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
 866         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
 867         uint32_t ref_clock;
 868         uint32_t ref_divider;
 869         uint32_t fbdiv;
 870         int result;
 871 
 872         /* get the engine clock dividers for this clock value */
 873         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
 874 
 875         PP_ASSERT_WITH_CODE(result == 0,
 876                         "Error retrieving Engine Clock dividers from VBIOS.",
 877                         return result);
 878 
 879         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
 880         ref_clock = atomctrl_get_reference_clock(hwmgr);
 881         ref_divider = 1 + dividers.uc_pll_ref_div;
 882 
 883         /* low 14 bits is fraction and high 12 bits is divider */
 884         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
 885 
 886         /* SPLL_FUNC_CNTL setup */
 887         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
 888                         SPLL_REF_DIV, dividers.uc_pll_ref_div);
 889         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
 890                         SPLL_PDIV_A,  dividers.uc_pll_post_div);
 891 
 892         /* SPLL_FUNC_CNTL_3 setup*/
 893         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
 894                         SPLL_FB_DIV, fbdiv);
 895 
 896         /* set to use fractional accumulation*/
 897         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
 898                         SPLL_DITHEN, 1);
 899 
 900         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 901                                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
 902                 struct pp_atomctrl_internal_ss_info ssInfo;
 903 
 904                 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
 905                 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
 906                                 vco_freq, &ssInfo)) {
 907                         /*
 908                          * ss_info.speed_spectrum_percentage -- in unit of 0.01%
 909                          * ss_info.speed_spectrum_rate -- in unit of khz
 910                          *
 911                          * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
 912                          */
 913                         uint32_t clk_s = ref_clock * 5 /
 914                                         (ref_divider * ssInfo.speed_spectrum_rate);
 915                         /* clkv = 2 * D * fbdiv / NS */
 916                         uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
 917                                         fbdiv / (clk_s * 10000);
 918 
 919                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
 920                                         CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
 921                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
 922                                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
 923                         cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
 924                                         CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
 925                 }
 926         }
 927 
 928         sclk->SclkFrequency        = clock;
 929         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
 930         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
 931         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
 932         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
 933         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
 934 
 935         return 0;
 936 }
 937 
 938 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
 939                 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
 940 {
 941         int result;
 942         /* PP_Clocks minClocks; */
 943         uint32_t threshold, mvdd;
 944         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 945         struct phm_ppt_v1_information *table_info =
 946                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
 947         phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
 948 
 949         result = fiji_calculate_sclk_params(hwmgr, clock, level);
 950 
 951         if (hwmgr->od_enabled)
 952                 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
 953         else
 954                 vdd_dep_table = table_info->vdd_dep_on_sclk;
 955 
 956         /* populate graphics levels */
 957         result = fiji_get_dependency_volt_by_clk(hwmgr,
 958                         vdd_dep_table, clock,
 959                         (uint32_t *)(&level->MinVoltage), &mvdd);
 960         PP_ASSERT_WITH_CODE((0 == result),
 961                         "can not find VDDC voltage value for "
 962                         "VDDC engine clock dependency table",
 963                         return result);
 964 
 965         level->SclkFrequency = clock;
 966         level->ActivityLevel = data->current_profile_setting.sclk_activity;
 967         level->CcPwrDynRm = 0;
 968         level->CcPwrDynRm1 = 0;
 969         level->EnabledForActivity = 0;
 970         level->EnabledForThrottle = 1;
 971         level->UpHyst = data->current_profile_setting.sclk_up_hyst;
 972         level->DownHyst = data->current_profile_setting.sclk_down_hyst;
 973         level->VoltageDownHyst = 0;
 974         level->PowerThrottle = 0;
 975 
 976         threshold = clock * data->fast_watermark_threshold / 100;
 977 
 978         data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
 979 
 980         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
 981                 level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
 982                                                                 hwmgr->display_config->min_core_set_clock_in_sr);
 983 
 984 
 985         /* Default to slow, highest DPM level will be
 986          * set to PPSMC_DISPLAY_WATERMARK_LOW later.
 987          */
 988         level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
 989 
 990         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
 991         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
 992         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
 993         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
 994         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
 995         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
 996         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
 997         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
 998         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
 999 
1000         return 0;
1001 }
1002 
1003 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1004 {
1005         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1006         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1007 
1008         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1009         struct phm_ppt_v1_information *table_info =
1010                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1011         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1012         uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1013         int result = 0;
1014         uint32_t array = smu_data->smu7_data.dpm_table_start +
1015                         offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1016         uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1017                         SMU73_MAX_LEVELS_GRAPHICS;
1018         struct SMU73_Discrete_GraphicsLevel *levels =
1019                         smu_data->smc_state_table.GraphicsLevel;
1020         uint32_t i, max_entry;
1021         uint8_t hightest_pcie_level_enabled = 0,
1022                         lowest_pcie_level_enabled = 0,
1023                         mid_pcie_level_enabled = 0,
1024                         count = 0;
1025 
1026         for (i = 0; i < dpm_table->sclk_table.count; i++) {
1027                 result = fiji_populate_single_graphic_level(hwmgr,
1028                                 dpm_table->sclk_table.dpm_levels[i].value,
1029                                 &levels[i]);
1030                 if (result)
1031                         return result;
1032 
1033                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1034                 if (i > 1)
1035                         levels[i].DeepSleepDivId = 0;
1036         }
1037 
1038         /* Only enable level 0 for now.*/
1039         levels[0].EnabledForActivity = 1;
1040 
1041         /* set highest level watermark to high */
1042         levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1043                         PPSMC_DISPLAY_WATERMARK_HIGH;
1044 
1045         smu_data->smc_state_table.GraphicsDpmLevelCount =
1046                         (uint8_t)dpm_table->sclk_table.count;
1047         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1048                         phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1049 
1050         if (pcie_table != NULL) {
1051                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1052                                 "There must be 1 or more PCIE levels defined in PPTable.",
1053                                 return -EINVAL);
1054                 max_entry = pcie_entry_cnt - 1;
1055                 for (i = 0; i < dpm_table->sclk_table.count; i++)
1056                         levels[i].pcieDpmLevel =
1057                                         (uint8_t) ((i < max_entry) ? i : max_entry);
1058         } else {
1059                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1060                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1061                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0))
1062                         hightest_pcie_level_enabled++;
1063 
1064                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1065                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1066                                                 (1 << lowest_pcie_level_enabled)) == 0))
1067                         lowest_pcie_level_enabled++;
1068 
1069                 while ((count < hightest_pcie_level_enabled) &&
1070                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1071                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1072                         count++;
1073 
1074                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1075                                 hightest_pcie_level_enabled ?
1076                                                 (lowest_pcie_level_enabled + 1 + count) :
1077                                                 hightest_pcie_level_enabled;
1078 
1079                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
1080                 for (i = 2; i < dpm_table->sclk_table.count; i++)
1081                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1082 
1083                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
1084                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1085 
1086                 /* set pcieDpmLevel to mid_pcie_level_enabled */
1087                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1088         }
1089         /* level count will send to smc once at init smc table and never change */
1090         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1091                         (uint32_t)array_size, SMC_RAM_END);
1092 
1093         return result;
1094 }
1095 
1096 
1097 /**
1098  * MCLK Frequency Ratio
1099  * SEQ_CG_RESP  Bit[31:24] - 0x0
1100  * Bit[27:24] \96 DDR3 Frequency ratio
1101  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
1102  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
1103  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
1104  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
1105  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
1106  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
1107  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
1108  * 400 < 0x7 <= 450MHz,       800 < 0xF
1109  */
1110 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
1111 {
1112         if (mem_clock <= 10000)
1113                 return 0x0;
1114         if (mem_clock <= 15000)
1115                 return 0x1;
1116         if (mem_clock <= 20000)
1117                 return 0x2;
1118         if (mem_clock <= 25000)
1119                 return 0x3;
1120         if (mem_clock <= 30000)
1121                 return 0x4;
1122         if (mem_clock <= 35000)
1123                 return 0x5;
1124         if (mem_clock <= 40000)
1125                 return 0x6;
1126         if (mem_clock <= 45000)
1127                 return 0x7;
1128         if (mem_clock <= 50000)
1129                 return 0x8;
1130         if (mem_clock <= 55000)
1131                 return 0x9;
1132         if (mem_clock <= 60000)
1133                 return 0xa;
1134         if (mem_clock <= 65000)
1135                 return 0xb;
1136         if (mem_clock <= 70000)
1137                 return 0xc;
1138         if (mem_clock <= 75000)
1139                 return 0xd;
1140         if (mem_clock <= 80000)
1141                 return 0xe;
1142         /* mem_clock > 800MHz */
1143         return 0xf;
1144 }
1145 
1146 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
1147     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
1148 {
1149         struct pp_atomctrl_memory_clock_param mem_param;
1150         int result;
1151 
1152         result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
1153         PP_ASSERT_WITH_CODE((0 == result),
1154                         "Failed to get Memory PLL Dividers.",
1155                         );
1156 
1157         /* Save the result data to outpupt memory level structure */
1158         mclk->MclkFrequency   = clock;
1159         mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
1160         mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
1161 
1162         return result;
1163 }
1164 
1165 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1166                 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
1167 {
1168         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1169         struct phm_ppt_v1_information *table_info =
1170                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1171         int result = 0;
1172         uint32_t mclk_stutter_mode_threshold = 60000;
1173         phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
1174 
1175         if (hwmgr->od_enabled)
1176                 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
1177         else
1178                 vdd_dep_table = table_info->vdd_dep_on_mclk;
1179 
1180         if (vdd_dep_table) {
1181                 result = fiji_get_dependency_volt_by_clk(hwmgr,
1182                                 vdd_dep_table, clock,
1183                                 (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
1184                 PP_ASSERT_WITH_CODE((0 == result),
1185                                 "can not find MinVddc voltage value from memory "
1186                                 "VDDC voltage dependency table", return result);
1187         }
1188 
1189         mem_level->EnabledForThrottle = 1;
1190         mem_level->EnabledForActivity = 0;
1191         mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1192         mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1193         mem_level->VoltageDownHyst = 0;
1194         mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1195         mem_level->StutterEnable = false;
1196 
1197         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1198 
1199         /* enable stutter mode if all the follow condition applied
1200          * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
1201          * &(data->DisplayTiming.numExistingDisplays));
1202          */
1203         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1204         data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1205 
1206         if (mclk_stutter_mode_threshold &&
1207                 (clock <= mclk_stutter_mode_threshold) &&
1208                 (!data->is_uvd_enabled) &&
1209                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1210                                 STUTTER_ENABLE) & 0x1))
1211                 mem_level->StutterEnable = true;
1212 
1213         result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
1214         if (!result) {
1215                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1216                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1217                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1218                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1219         }
1220         return result;
1221 }
1222 
1223 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1224 {
1225         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1226         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1227         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1228         int result;
1229         /* populate MCLK dpm table to SMU7 */
1230         uint32_t array = smu_data->smu7_data.dpm_table_start +
1231                         offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1232         uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1233                         SMU73_MAX_LEVELS_MEMORY;
1234         struct SMU73_Discrete_MemoryLevel *levels =
1235                         smu_data->smc_state_table.MemoryLevel;
1236         uint32_t i;
1237 
1238         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1239                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1240                                 "can not populate memory level as memory clock is zero",
1241                                 return -EINVAL);
1242                 result = fiji_populate_single_memory_level(hwmgr,
1243                                 dpm_table->mclk_table.dpm_levels[i].value,
1244                                 &levels[i]);
1245                 if (result)
1246                         return result;
1247         }
1248 
1249         /* Only enable level 0 for now. */
1250         levels[0].EnabledForActivity = 1;
1251 
1252         /* in order to prevent MC activity from stutter mode to push DPM up.
1253          * the UVD change complements this by putting the MCLK in
1254          * a higher state by default such that we are not effected by
1255          * up threshold or and MCLK DPM latency.
1256          */
1257         levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1258         CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1259 
1260         smu_data->smc_state_table.MemoryDpmLevelCount =
1261                         (uint8_t)dpm_table->mclk_table.count;
1262         data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1263                         phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1264         /* set highest level watermark to high */
1265         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1266                         PPSMC_DISPLAY_WATERMARK_HIGH;
1267 
1268         /* level count will send to smc once at init smc table and never change */
1269         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1270                         (uint32_t)array_size, SMC_RAM_END);
1271 
1272         return result;
1273 }
1274 
1275 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1276                 uint32_t mclk, SMIO_Pattern *smio_pat)
1277 {
1278         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1279         struct phm_ppt_v1_information *table_info =
1280                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1281         uint32_t i = 0;
1282 
1283         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1284                 /* find mvdd value which clock is more than request */
1285                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1286                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1287                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1288                                 break;
1289                         }
1290                 }
1291                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1292                                 "MVDD Voltage is outside the supported range.",
1293                                 return -EINVAL);
1294         } else
1295                 return -EINVAL;
1296 
1297         return 0;
1298 }
1299 
1300 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1301                 SMU73_Discrete_DpmTable *table)
1302 {
1303         int result = 0;
1304         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1305         struct phm_ppt_v1_information *table_info =
1306                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1307         struct pp_atomctrl_clock_dividers_vi dividers;
1308         SMIO_Pattern vol_level;
1309         uint32_t mvdd;
1310         uint16_t us_mvdd;
1311         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1312         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1313 
1314         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1315 
1316         if (!data->sclk_dpm_key_disabled) {
1317                 /* Get MinVoltage and Frequency from DPM0,
1318                  * already converted to SMC_UL */
1319                 table->ACPILevel.SclkFrequency =
1320                                 data->dpm_table.sclk_table.dpm_levels[0].value;
1321                 result = fiji_get_dependency_volt_by_clk(hwmgr,
1322                                 table_info->vdd_dep_on_sclk,
1323                                 table->ACPILevel.SclkFrequency,
1324                                 (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1325                 PP_ASSERT_WITH_CODE((0 == result),
1326                                 "Cannot find ACPI VDDC voltage value " \
1327                                 "in Clock Dependency Table",
1328                                 );
1329         } else {
1330                 table->ACPILevel.SclkFrequency =
1331                                 data->vbios_boot_state.sclk_bootup_value;
1332                 table->ACPILevel.MinVoltage =
1333                                 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1334         }
1335 
1336         /* get the engine clock dividers for this clock value */
1337         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1338                         table->ACPILevel.SclkFrequency,  &dividers);
1339         PP_ASSERT_WITH_CODE(result == 0,
1340                         "Error retrieving Engine Clock dividers from VBIOS.",
1341                         return result);
1342 
1343         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1344         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1345         table->ACPILevel.DeepSleepDivId = 0;
1346 
1347         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1348                         SPLL_PWRON, 0);
1349         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1350                         SPLL_RESET, 1);
1351         spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1352                         SCLK_MUX_SEL, 4);
1353 
1354         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1355         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1356         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1357         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1358         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1359         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1360         table->ACPILevel.CcPwrDynRm = 0;
1361         table->ACPILevel.CcPwrDynRm1 = 0;
1362 
1363         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1364         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1365         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1366         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1367         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1368         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1369         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1370         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1371         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1372         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1373         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1374 
1375         if (!data->mclk_dpm_key_disabled) {
1376                 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1377                 table->MemoryACPILevel.MclkFrequency =
1378                                 data->dpm_table.mclk_table.dpm_levels[0].value;
1379                 result = fiji_get_dependency_volt_by_clk(hwmgr,
1380                                 table_info->vdd_dep_on_mclk,
1381                                 table->MemoryACPILevel.MclkFrequency,
1382                         (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1383                 PP_ASSERT_WITH_CODE((0 == result),
1384                                 "Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1385                                 );
1386         } else {
1387                 table->MemoryACPILevel.MclkFrequency =
1388                                 data->vbios_boot_state.mclk_bootup_value;
1389                 table->MemoryACPILevel.MinVoltage =
1390                                 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1391         }
1392 
1393         us_mvdd = 0;
1394         if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1395                         (data->mclk_dpm_key_disabled))
1396                 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1397         else {
1398                 if (!fiji_populate_mvdd_value(hwmgr,
1399                                 data->dpm_table.mclk_table.dpm_levels[0].value,
1400                                 &vol_level))
1401                         us_mvdd = vol_level.Voltage;
1402         }
1403 
1404         table->MemoryACPILevel.MinMvdd =
1405                         PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1406 
1407         table->MemoryACPILevel.EnabledForThrottle = 0;
1408         table->MemoryACPILevel.EnabledForActivity = 0;
1409         table->MemoryACPILevel.UpHyst = 0;
1410         table->MemoryACPILevel.DownHyst = 100;
1411         table->MemoryACPILevel.VoltageDownHyst = 0;
1412         table->MemoryACPILevel.ActivityLevel =
1413                         PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1414 
1415         table->MemoryACPILevel.StutterEnable = false;
1416         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1417         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1418 
1419         return result;
1420 }
1421 
1422 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1423                 SMU73_Discrete_DpmTable *table)
1424 {
1425         int result = -EINVAL;
1426         uint8_t count;
1427         struct pp_atomctrl_clock_dividers_vi dividers;
1428         struct phm_ppt_v1_information *table_info =
1429                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1430         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1431                         table_info->mm_dep_table;
1432 
1433         table->VceLevelCount = (uint8_t)(mm_table->count);
1434         table->VceBootLevel = 0;
1435 
1436         for (count = 0; count < table->VceLevelCount; count++) {
1437                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1438                 table->VceLevel[count].MinVoltage = 0;
1439                 table->VceLevel[count].MinVoltage |=
1440                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1441                 table->VceLevel[count].MinVoltage |=
1442                                 ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1443                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1444                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1445 
1446                 /*retrieve divider value for VBIOS */
1447                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1448                                 table->VceLevel[count].Frequency, &dividers);
1449                 PP_ASSERT_WITH_CODE((0 == result),
1450                                 "can not find divide id for VCE engine clock",
1451                                 return result);
1452 
1453                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1454 
1455                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1456                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1457         }
1458         return result;
1459 }
1460 
1461 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1462                 SMU73_Discrete_DpmTable *table)
1463 {
1464         int result = -EINVAL;
1465         uint8_t count;
1466         struct pp_atomctrl_clock_dividers_vi dividers;
1467         struct phm_ppt_v1_information *table_info =
1468                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1469         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1470                         table_info->mm_dep_table;
1471 
1472         table->AcpLevelCount = (uint8_t)(mm_table->count);
1473         table->AcpBootLevel = 0;
1474 
1475         for (count = 0; count < table->AcpLevelCount; count++) {
1476                 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1477                 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1478                                 VOLTAGE_SCALE) << VDDC_SHIFT;
1479                 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1480                                 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1481                 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1482 
1483                 /* retrieve divider value for VBIOS */
1484                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1485                                 table->AcpLevel[count].Frequency, &dividers);
1486                 PP_ASSERT_WITH_CODE((0 == result),
1487                                 "can not find divide id for engine clock", return result);
1488 
1489                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1490 
1491                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1492                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1493         }
1494         return result;
1495 }
1496 
1497 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1498                 int32_t eng_clock, int32_t mem_clock,
1499                 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1500 {
1501         uint32_t dram_timing;
1502         uint32_t dram_timing2;
1503         uint32_t burstTime;
1504         ULONG state, trrds, trrdl;
1505         int result;
1506 
1507         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1508                         eng_clock, mem_clock);
1509         PP_ASSERT_WITH_CODE(result == 0,
1510                         "Error calling VBIOS to set DRAM_TIMING.", return result);
1511 
1512         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1513         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1514         burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1515 
1516         state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
1517         trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1518         trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1519 
1520         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1521         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1522         arb_regs->McArbBurstTime   = (uint8_t)burstTime;
1523         arb_regs->TRRDS            = (uint8_t)trrds;
1524         arb_regs->TRRDL            = (uint8_t)trrdl;
1525 
1526         return 0;
1527 }
1528 
1529 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1530 {
1531         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1532         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1533         struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1534         uint32_t i, j;
1535         int result = 0;
1536 
1537         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1538                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1539                         result = fiji_populate_memory_timing_parameters(hwmgr,
1540                                         data->dpm_table.sclk_table.dpm_levels[i].value,
1541                                         data->dpm_table.mclk_table.dpm_levels[j].value,
1542                                         &arb_regs.entries[i][j]);
1543                         if (result)
1544                                 break;
1545                 }
1546         }
1547 
1548         if (!result)
1549                 result = smu7_copy_bytes_to_smc(
1550                                 hwmgr,
1551                                 smu_data->smu7_data.arb_table_start,
1552                                 (uint8_t *)&arb_regs,
1553                                 sizeof(SMU73_Discrete_MCArbDramTimingTable),
1554                                 SMC_RAM_END);
1555         return result;
1556 }
1557 
1558 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1559                 struct SMU73_Discrete_DpmTable *table)
1560 {
1561         int result = -EINVAL;
1562         uint8_t count;
1563         struct pp_atomctrl_clock_dividers_vi dividers;
1564         struct phm_ppt_v1_information *table_info =
1565                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1566         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1567                         table_info->mm_dep_table;
1568 
1569         table->UvdLevelCount = (uint8_t)(mm_table->count);
1570         table->UvdBootLevel = 0;
1571 
1572         for (count = 0; count < table->UvdLevelCount; count++) {
1573                 table->UvdLevel[count].MinVoltage = 0;
1574                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1575                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1576                 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1577                                 VOLTAGE_SCALE) << VDDC_SHIFT;
1578                 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1579                                 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1580                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1581 
1582                 /* retrieve divider value for VBIOS */
1583                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1584                                 table->UvdLevel[count].VclkFrequency, &dividers);
1585                 PP_ASSERT_WITH_CODE((0 == result),
1586                                 "can not find divide id for Vclk clock", return result);
1587 
1588                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1589 
1590                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1591                                 table->UvdLevel[count].DclkFrequency, &dividers);
1592                 PP_ASSERT_WITH_CODE((0 == result),
1593                                 "can not find divide id for Dclk clock", return result);
1594 
1595                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1596 
1597                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1598                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1599                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1600 
1601         }
1602         return result;
1603 }
1604 
1605 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1606                 struct SMU73_Discrete_DpmTable *table)
1607 {
1608         int result = 0;
1609         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1610 
1611         table->GraphicsBootLevel = 0;
1612         table->MemoryBootLevel = 0;
1613 
1614         /* find boot level from dpm table */
1615         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1616                         data->vbios_boot_state.sclk_bootup_value,
1617                         (uint32_t *)&(table->GraphicsBootLevel));
1618 
1619         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1620                         data->vbios_boot_state.mclk_bootup_value,
1621                         (uint32_t *)&(table->MemoryBootLevel));
1622 
1623         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1624                         VOLTAGE_SCALE;
1625         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1626                         VOLTAGE_SCALE;
1627         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1628                         VOLTAGE_SCALE;
1629 
1630         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1631         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1632         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1633 
1634         return 0;
1635 }
1636 
1637 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1638 {
1639         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1640         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1641         struct phm_ppt_v1_information *table_info =
1642                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1643         uint8_t count, level;
1644 
1645         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1646         for (level = 0; level < count; level++) {
1647                 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1648                                 data->vbios_boot_state.sclk_bootup_value) {
1649                         smu_data->smc_state_table.GraphicsBootLevel = level;
1650                         break;
1651                 }
1652         }
1653 
1654         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1655         for (level = 0; level < count; level++) {
1656                 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1657                                 data->vbios_boot_state.mclk_bootup_value) {
1658                         smu_data->smc_state_table.MemoryBootLevel = level;
1659                         break;
1660                 }
1661         }
1662 
1663         return 0;
1664 }
1665 
1666 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1667 {
1668         uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1669                         volt_with_cks, value;
1670         uint16_t clock_freq_u16;
1671         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1672         uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1673                         volt_offset = 0;
1674         struct phm_ppt_v1_information *table_info =
1675                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1676         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1677                         table_info->vdd_dep_on_sclk;
1678 
1679         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1680 
1681         /* Read SMU_Eefuse to read and calculate RO and determine
1682          * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1683          */
1684         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1685                         ixSMU_EFUSE_0 + (146 * 4));
1686         efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1687                         ixSMU_EFUSE_0 + (148 * 4));
1688         efuse &= 0xFF000000;
1689         efuse = efuse >> 24;
1690         efuse2 &= 0xF;
1691 
1692         if (efuse2 == 1)
1693                 ro = (2300 - 1350) * efuse / 255 + 1350;
1694         else
1695                 ro = (2500 - 1000) * efuse / 255 + 1000;
1696 
1697         if (ro >= 1660)
1698                 type = 0;
1699         else
1700                 type = 1;
1701 
1702         /* Populate Stretch amount */
1703         smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1704 
1705         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1706         for (i = 0; i < sclk_table->count; i++) {
1707                 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1708                                 sclk_table->entries[i].cks_enable << i;
1709                 volt_without_cks = (uint32_t)((14041 *
1710                         (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1711                         (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1712                 volt_with_cks = (uint32_t)((13946 *
1713                         (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1714                         (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1715                 if (volt_without_cks >= volt_with_cks)
1716                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1717                                         sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1718                 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1719         }
1720 
1721         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1722                         STRETCH_ENABLE, 0x0);
1723         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1724                         masterReset, 0x1);
1725         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1726                         staticEnable, 0x1);
1727         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1728                         masterReset, 0x0);
1729 
1730         /* Populate CKS Lookup Table */
1731         if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1732                 stretch_amount2 = 0;
1733         else if (stretch_amount == 3 || stretch_amount == 4)
1734                 stretch_amount2 = 1;
1735         else {
1736                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1737                                 PHM_PlatformCaps_ClockStretcher);
1738                 PP_ASSERT_WITH_CODE(false,
1739                                 "Stretch Amount in PPTable not supported",
1740                                 return -EINVAL);
1741         }
1742 
1743         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1744                         ixPWR_CKS_CNTL);
1745         value &= 0xFFC2FF87;
1746         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1747                         fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1748         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1749                         fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1750         clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1751                         GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1752                         SclkFrequency) / 100);
1753         if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1754                         clock_freq_u16 &&
1755             fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1756                         clock_freq_u16) {
1757                 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1758                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1759                 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1760                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1761                 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1762                 value |= (fiji_clock_stretch_amount_conversion
1763                                 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1764                                  [stretch_amount]) << 3;
1765         }
1766         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1767                         CKS_LOOKUPTableEntry[0].minFreq);
1768         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1769                         CKS_LOOKUPTableEntry[0].maxFreq);
1770         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1771                         fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1772         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1773                         (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1774 
1775         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1776                         ixPWR_CKS_CNTL, value);
1777 
1778         /* Populate DDT Lookup Table */
1779         for (i = 0; i < 4; i++) {
1780                 /* Assign the minimum and maximum VID stored
1781                  * in the last row of Clock Stretcher Voltage Table.
1782                  */
1783                 smu_data->smc_state_table.ClockStretcherDataTable.
1784                 ClockStretcherDataTableEntry[i].minVID =
1785                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1786                 smu_data->smc_state_table.ClockStretcherDataTable.
1787                 ClockStretcherDataTableEntry[i].maxVID =
1788                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1789                 /* Loop through each SCLK and check the frequency
1790                  * to see if it lies within the frequency for clock stretcher.
1791                  */
1792                 for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1793                         cks_setting = 0;
1794                         clock_freq = PP_SMC_TO_HOST_UL(
1795                                         smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1796                         /* Check the allowed frequency against the sclk level[j].
1797                          *  Sclk's endianness has already been converted,
1798                          *  and it's in 10Khz unit,
1799                          *  as opposed to Data table, which is in Mhz unit.
1800                          */
1801                         if (clock_freq >=
1802                                         (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1803                                 cks_setting |= 0x2;
1804                                 if (clock_freq <
1805                                                 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1806                                         cks_setting |= 0x1;
1807                         }
1808                         smu_data->smc_state_table.ClockStretcherDataTable.
1809                         ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1810                 }
1811                 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1812                                 ClockStretcherDataTable.
1813                                 ClockStretcherDataTableEntry[i].setting);
1814         }
1815 
1816         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1817         value &= 0xFFFFFFFE;
1818         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1819 
1820         return 0;
1821 }
1822 
1823 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1824                 struct SMU73_Discrete_DpmTable *table)
1825 {
1826         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1827         uint16_t config;
1828 
1829         config = VR_MERGED_WITH_VDDC;
1830         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1831 
1832         /* Set Vddc Voltage Controller */
1833         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1834                 config = VR_SVI2_PLANE_1;
1835                 table->VRConfig |= config;
1836         } else {
1837                 PP_ASSERT_WITH_CODE(false,
1838                                 "VDDC should be on SVI2 control in merged mode!",
1839                                 );
1840         }
1841         /* Set Vddci Voltage Controller */
1842         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1843                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
1844                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1845         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1846                 config = VR_SMIO_PATTERN_1;
1847                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1848         } else {
1849                 config = VR_STATIC_VOLTAGE;
1850                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1851         }
1852         /* Set Mvdd Voltage Controller */
1853         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1854                 config = VR_SVI2_PLANE_2;
1855                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1856         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1857                 config = VR_SMIO_PATTERN_2;
1858                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1859         } else {
1860                 config = VR_STATIC_VOLTAGE;
1861                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1862         }
1863 
1864         return 0;
1865 }
1866 
1867 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
1868 {
1869         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1870         uint32_t tmp;
1871         int result;
1872 
1873         /* This is a read-modify-write on the first byte of the ARB table.
1874          * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1875          * is the field 'current'.
1876          * This solution is ugly, but we never write the whole table only
1877          * individual fields in it.
1878          * In reality this field should not be in that structure
1879          * but in a soft register.
1880          */
1881         result = smu7_read_smc_sram_dword(hwmgr,
1882                         smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1883 
1884         if (result)
1885                 return result;
1886 
1887         tmp &= 0x00FFFFFF;
1888         tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1889 
1890         return smu7_write_smc_sram_dword(hwmgr,
1891                         smu_data->smu7_data.arb_table_start,  tmp, SMC_RAM_END);
1892 }
1893 
1894 static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
1895 {
1896         pp_atomctrl_voltage_table param_led_dpm;
1897         int result = 0;
1898         u32 mask = 0;
1899 
1900         result = atomctrl_get_voltage_table_v3(hwmgr,
1901                                                VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
1902                                                &param_led_dpm);
1903         if (result == 0) {
1904                 int i, j;
1905                 u32 tmp = param_led_dpm.mask_low;
1906 
1907                 for (i = 0, j = 0; i < 32; i++) {
1908                         if (tmp & 1) {
1909                                 mask |= (i << (8 * j));
1910                                 if (++j >= 3)
1911                                         break;
1912                         }
1913                         tmp >>= 1;
1914                 }
1915         }
1916         if (mask)
1917                 smum_send_msg_to_smc_with_parameter(hwmgr,
1918                                                     PPSMC_MSG_LedConfig,
1919                                                     mask);
1920         return 0;
1921 }
1922 
1923 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1924 {
1925         int result;
1926         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1927         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1928         struct phm_ppt_v1_information *table_info =
1929                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1930         struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1931         uint8_t i;
1932         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1933 
1934         fiji_initialize_power_tune_defaults(hwmgr);
1935 
1936         if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1937                 fiji_populate_smc_voltage_tables(hwmgr, table);
1938 
1939         table->SystemFlags = 0;
1940 
1941         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1942                         PHM_PlatformCaps_AutomaticDCTransition))
1943                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1944 
1945         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1946                         PHM_PlatformCaps_StepVddc))
1947                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1948 
1949         if (data->is_memory_gddr5)
1950                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1951 
1952         if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1953                 result = fiji_populate_ulv_state(hwmgr, table);
1954                 PP_ASSERT_WITH_CODE(0 == result,
1955                                 "Failed to initialize ULV state!", return result);
1956                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1957                                 ixCG_ULV_PARAMETER, 0x40035);
1958         }
1959 
1960         result = fiji_populate_smc_link_level(hwmgr, table);
1961         PP_ASSERT_WITH_CODE(0 == result,
1962                         "Failed to initialize Link Level!", return result);
1963 
1964         result = fiji_populate_all_graphic_levels(hwmgr);
1965         PP_ASSERT_WITH_CODE(0 == result,
1966                         "Failed to initialize Graphics Level!", return result);
1967 
1968         result = fiji_populate_all_memory_levels(hwmgr);
1969         PP_ASSERT_WITH_CODE(0 == result,
1970                         "Failed to initialize Memory Level!", return result);
1971 
1972         result = fiji_populate_smc_acpi_level(hwmgr, table);
1973         PP_ASSERT_WITH_CODE(0 == result,
1974                         "Failed to initialize ACPI Level!", return result);
1975 
1976         result = fiji_populate_smc_vce_level(hwmgr, table);
1977         PP_ASSERT_WITH_CODE(0 == result,
1978                         "Failed to initialize VCE Level!", return result);
1979 
1980         result = fiji_populate_smc_acp_level(hwmgr, table);
1981         PP_ASSERT_WITH_CODE(0 == result,
1982                         "Failed to initialize ACP Level!", return result);
1983 
1984         /* Since only the initial state is completely set up at this point
1985          * (the other states are just copies of the boot state) we only
1986          * need to populate the  ARB settings for the initial state.
1987          */
1988         result = fiji_program_memory_timing_parameters(hwmgr);
1989         PP_ASSERT_WITH_CODE(0 == result,
1990                         "Failed to Write ARB settings for the initial state.", return result);
1991 
1992         result = fiji_populate_smc_uvd_level(hwmgr, table);
1993         PP_ASSERT_WITH_CODE(0 == result,
1994                         "Failed to initialize UVD Level!", return result);
1995 
1996         result = fiji_populate_smc_boot_level(hwmgr, table);
1997         PP_ASSERT_WITH_CODE(0 == result,
1998                         "Failed to initialize Boot Level!", return result);
1999 
2000         result = fiji_populate_smc_initailial_state(hwmgr);
2001         PP_ASSERT_WITH_CODE(0 == result,
2002                         "Failed to initialize Boot State!", return result);
2003 
2004         result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2005         PP_ASSERT_WITH_CODE(0 == result,
2006                         "Failed to populate BAPM Parameters!", return result);
2007 
2008         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2009                         PHM_PlatformCaps_ClockStretcher)) {
2010                 result = fiji_populate_clock_stretcher_data_table(hwmgr);
2011                 PP_ASSERT_WITH_CODE(0 == result,
2012                                 "Failed to populate Clock Stretcher Data Table!",
2013                                 return result);
2014         }
2015 
2016         table->GraphicsVoltageChangeEnable  = 1;
2017         table->GraphicsThermThrottleEnable  = 1;
2018         table->GraphicsInterval = 1;
2019         table->VoltageInterval  = 1;
2020         table->ThermalInterval  = 1;
2021         table->TemperatureLimitHigh =
2022                         table_info->cac_dtp_table->usTargetOperatingTemp *
2023                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2024         table->TemperatureLimitLow  =
2025                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2026                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2027         table->MemoryVoltageChangeEnable = 1;
2028         table->MemoryInterval = 1;
2029         table->VoltageResponseTime = 0;
2030         table->PhaseResponseTime = 0;
2031         table->MemoryThermThrottleEnable = 1;
2032         table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
2033         table->PCIeGenInterval = 1;
2034         table->VRConfig = 0;
2035 
2036         result = fiji_populate_vr_config(hwmgr, table);
2037         PP_ASSERT_WITH_CODE(0 == result,
2038                         "Failed to populate VRConfig setting!", return result);
2039         data->vr_config = table->VRConfig;
2040         table->ThermGpio = 17;
2041         table->SclkStepSize = 0x4000;
2042 
2043         if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2044                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2045                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2046                                 PHM_PlatformCaps_RegulatorHot);
2047         } else {
2048                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2049                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2050                                 PHM_PlatformCaps_RegulatorHot);
2051         }
2052 
2053         if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2054                         &gpio_pin)) {
2055                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2056                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2057                                 PHM_PlatformCaps_AutomaticDCTransition);
2058         } else {
2059                 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2060                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2061                                 PHM_PlatformCaps_AutomaticDCTransition);
2062         }
2063 
2064         /* Thermal Output GPIO */
2065         if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2066                         &gpio_pin)) {
2067                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2068                                 PHM_PlatformCaps_ThermalOutGPIO);
2069 
2070                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2071 
2072                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2073                  * since VBIOS will program this register to set 'inactive state',
2074                  * driver can then determine 'active state' from this and
2075                  * program SMU with correct polarity
2076                  */
2077                 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2078                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2079                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2080 
2081                 /* if required, combine VRHot/PCC with thermal out GPIO */
2082                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2083                                 PHM_PlatformCaps_RegulatorHot) &&
2084                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2085                                         PHM_PlatformCaps_CombinePCCWithThermalSignal))
2086                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2087         } else {
2088                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2089                                 PHM_PlatformCaps_ThermalOutGPIO);
2090                 table->ThermOutGpio = 17;
2091                 table->ThermOutPolarity = 1;
2092                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2093         }
2094 
2095         for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
2096                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2097 
2098         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2099         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2100         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2101         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2102         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2103         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2104         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2105         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2106         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2107 
2108         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2109         result = smu7_copy_bytes_to_smc(hwmgr,
2110                         smu_data->smu7_data.dpm_table_start +
2111                         offsetof(SMU73_Discrete_DpmTable, SystemFlags),
2112                         (uint8_t *)&(table->SystemFlags),
2113                         sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
2114                         SMC_RAM_END);
2115         PP_ASSERT_WITH_CODE(0 == result,
2116                         "Failed to upload dpm data to SMC memory!", return result);
2117 
2118         result = fiji_init_arb_table_index(hwmgr);
2119         PP_ASSERT_WITH_CODE(0 == result,
2120                         "Failed to upload arb data to SMC memory!", return result);
2121 
2122         result = fiji_populate_pm_fuses(hwmgr);
2123         PP_ASSERT_WITH_CODE(0 == result,
2124                         "Failed to  populate PM fuses to SMC memory!", return result);
2125 
2126         result = fiji_setup_dpm_led_config(hwmgr);
2127         PP_ASSERT_WITH_CODE(0 == result,
2128                             "Failed to setup dpm led config", return result);
2129 
2130         return 0;
2131 }
2132 
2133 static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2134 {
2135         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2136 
2137         SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2138         uint32_t duty100;
2139         uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2140         uint16_t fdo_min, slope1, slope2;
2141         uint32_t reference_clock;
2142         int res;
2143         uint64_t tmp64;
2144 
2145         if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2146                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2147                         PHM_PlatformCaps_MicrocodeFanControl);
2148                 return 0;
2149         }
2150 
2151         if (smu_data->smu7_data.fan_table_start == 0) {
2152                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2153                                 PHM_PlatformCaps_MicrocodeFanControl);
2154                 return 0;
2155         }
2156 
2157         duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2158                         CG_FDO_CTRL1, FMAX_DUTY100);
2159 
2160         if (duty100 == 0) {
2161                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2162                                 PHM_PlatformCaps_MicrocodeFanControl);
2163                 return 0;
2164         }
2165 
2166         tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
2167                         usPWMMin * duty100;
2168         do_div(tmp64, 10000);
2169         fdo_min = (uint16_t)tmp64;
2170 
2171         t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2172                         hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2173         t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2174                         hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2175 
2176         pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2177                         hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2178         pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2179                         hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2180 
2181         slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2182         slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2183 
2184         fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2185                         thermal_controller.advanceFanControlParameters.usTMin) / 100);
2186         fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2187                         thermal_controller.advanceFanControlParameters.usTMed) / 100);
2188         fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2189                         thermal_controller.advanceFanControlParameters.usTMax) / 100);
2190 
2191         fan_table.Slope1 = cpu_to_be16(slope1);
2192         fan_table.Slope2 = cpu_to_be16(slope2);
2193 
2194         fan_table.FdoMin = cpu_to_be16(fdo_min);
2195 
2196         fan_table.HystDown = cpu_to_be16(hwmgr->
2197                         thermal_controller.advanceFanControlParameters.ucTHyst);
2198 
2199         fan_table.HystUp = cpu_to_be16(1);
2200 
2201         fan_table.HystSlope = cpu_to_be16(1);
2202 
2203         fan_table.TempRespLim = cpu_to_be16(5);
2204 
2205         reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2206 
2207         fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2208                         thermal_controller.advanceFanControlParameters.ulCycleDelay *
2209                         reference_clock) / 1600);
2210 
2211         fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2212 
2213         fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2214                         hwmgr->device, CGS_IND_REG__SMC,
2215                         CG_MULT_THERMAL_CTRL, TEMP_SEL);
2216 
2217         res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
2218                         (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2219                         SMC_RAM_END);
2220 
2221         if (!res && hwmgr->thermal_controller.
2222                         advanceFanControlParameters.ucMinimumPWMLimit)
2223                 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2224                                 PPSMC_MSG_SetFanMinPwm,
2225                                 hwmgr->thermal_controller.
2226                                 advanceFanControlParameters.ucMinimumPWMLimit);
2227 
2228         if (!res && hwmgr->thermal_controller.
2229                         advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2230                 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2231                                 PPSMC_MSG_SetFanSclkTarget,
2232                                 hwmgr->thermal_controller.
2233                                 advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
2234 
2235         if (res)
2236                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2237                                 PHM_PlatformCaps_MicrocodeFanControl);
2238 
2239         return 0;
2240 }
2241 
2242 
2243 static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2244 {
2245         if (!hwmgr->avfs_supported)
2246                 return 0;
2247 
2248         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2249 
2250         return 0;
2251 }
2252 
2253 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2254 {
2255         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2256 
2257         if (data->need_update_smu7_dpm_table &
2258                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2259                 return fiji_program_memory_timing_parameters(hwmgr);
2260 
2261         return 0;
2262 }
2263 
2264 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2265 {
2266         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2267         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2268 
2269         int result = 0;
2270         uint32_t low_sclk_interrupt_threshold = 0;
2271 
2272         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2273                         PHM_PlatformCaps_SclkThrottleLowNotification)
2274                 && (data->low_sclk_interrupt_threshold != 0)) {
2275                 low_sclk_interrupt_threshold =
2276                                 data->low_sclk_interrupt_threshold;
2277 
2278                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2279 
2280                 result = smu7_copy_bytes_to_smc(
2281                                 hwmgr,
2282                                 smu_data->smu7_data.dpm_table_start +
2283                                 offsetof(SMU73_Discrete_DpmTable,
2284                                         LowSclkInterruptThreshold),
2285                                 (uint8_t *)&low_sclk_interrupt_threshold,
2286                                 sizeof(uint32_t),
2287                                 SMC_RAM_END);
2288         }
2289         result = fiji_program_mem_timing_parameters(hwmgr);
2290         PP_ASSERT_WITH_CODE((result == 0),
2291                         "Failed to program memory timing parameters!",
2292                         );
2293         return result;
2294 }
2295 
2296 static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2297 {
2298         switch (type) {
2299         case SMU_SoftRegisters:
2300                 switch (member) {
2301                 case HandshakeDisables:
2302                         return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2303                 case VoltageChangeTimeout:
2304                         return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2305                 case AverageGraphicsActivity:
2306                         return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2307                 case AverageMemoryActivity:
2308                         return offsetof(SMU73_SoftRegisters, AverageMemoryActivity);
2309                 case PreVBlankGap:
2310                         return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2311                 case VBlankTimeout:
2312                         return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2313                 case UcodeLoadStatus:
2314                         return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2315                 case DRAM_LOG_ADDR_H:
2316                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
2317                 case DRAM_LOG_ADDR_L:
2318                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
2319                 case DRAM_LOG_PHY_ADDR_H:
2320                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2321                 case DRAM_LOG_PHY_ADDR_L:
2322                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2323                 case DRAM_LOG_BUFF_SIZE:
2324                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2325                 }
2326                 break;
2327         case SMU_Discrete_DpmTable:
2328                 switch (member) {
2329                 case UvdBootLevel:
2330                         return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2331                 case VceBootLevel:
2332                         return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2333                 case LowSclkInterruptThreshold:
2334                         return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2335                 }
2336                 break;
2337         }
2338         pr_warn("can't get the offset of type %x member %x\n", type, member);
2339         return 0;
2340 }
2341 
2342 static uint32_t fiji_get_mac_definition(uint32_t value)
2343 {
2344         switch (value) {
2345         case SMU_MAX_LEVELS_GRAPHICS:
2346                 return SMU73_MAX_LEVELS_GRAPHICS;
2347         case SMU_MAX_LEVELS_MEMORY:
2348                 return SMU73_MAX_LEVELS_MEMORY;
2349         case SMU_MAX_LEVELS_LINK:
2350                 return SMU73_MAX_LEVELS_LINK;
2351         case SMU_MAX_ENTRIES_SMIO:
2352                 return SMU73_MAX_ENTRIES_SMIO;
2353         case SMU_MAX_LEVELS_VDDC:
2354                 return SMU73_MAX_LEVELS_VDDC;
2355         case SMU_MAX_LEVELS_VDDGFX:
2356                 return SMU73_MAX_LEVELS_VDDGFX;
2357         case SMU_MAX_LEVELS_VDDCI:
2358                 return SMU73_MAX_LEVELS_VDDCI;
2359         case SMU_MAX_LEVELS_MVDD:
2360                 return SMU73_MAX_LEVELS_MVDD;
2361         }
2362 
2363         pr_warn("can't get the mac of %x\n", value);
2364         return 0;
2365 }
2366 
2367 
2368 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2369 {
2370         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2371         uint32_t mm_boot_level_offset, mm_boot_level_value;
2372         struct phm_ppt_v1_information *table_info =
2373                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2374 
2375         smu_data->smc_state_table.UvdBootLevel = 0;
2376         if (table_info->mm_dep_table->count > 0)
2377                 smu_data->smc_state_table.UvdBootLevel =
2378                                 (uint8_t) (table_info->mm_dep_table->count - 1);
2379         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2380                                                 UvdBootLevel);
2381         mm_boot_level_offset /= 4;
2382         mm_boot_level_offset *= 4;
2383         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2384                         CGS_IND_REG__SMC, mm_boot_level_offset);
2385         mm_boot_level_value &= 0x00FFFFFF;
2386         mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2387         cgs_write_ind_register(hwmgr->device,
2388                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2389 
2390         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2391                         PHM_PlatformCaps_UVDDPM) ||
2392                 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2393                         PHM_PlatformCaps_StablePState))
2394                 smum_send_msg_to_smc_with_parameter(hwmgr,
2395                                 PPSMC_MSG_UVDDPM_SetEnabledMask,
2396                                 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
2397         return 0;
2398 }
2399 
2400 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2401 {
2402         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2403         uint32_t mm_boot_level_offset, mm_boot_level_value;
2404         struct phm_ppt_v1_information *table_info =
2405                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2406 
2407         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2408                                         PHM_PlatformCaps_StablePState))
2409                 smu_data->smc_state_table.VceBootLevel =
2410                         (uint8_t) (table_info->mm_dep_table->count - 1);
2411         else
2412                 smu_data->smc_state_table.VceBootLevel = 0;
2413 
2414         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2415                                         offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2416         mm_boot_level_offset /= 4;
2417         mm_boot_level_offset *= 4;
2418         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2419                         CGS_IND_REG__SMC, mm_boot_level_offset);
2420         mm_boot_level_value &= 0xFF00FFFF;
2421         mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2422         cgs_write_ind_register(hwmgr->device,
2423                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2424 
2425         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2426                 smum_send_msg_to_smc_with_parameter(hwmgr,
2427                                 PPSMC_MSG_VCEDPM_SetEnabledMask,
2428                                 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
2429         return 0;
2430 }
2431 
2432 static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2433 {
2434         switch (type) {
2435         case SMU_UVD_TABLE:
2436                 fiji_update_uvd_smc_table(hwmgr);
2437                 break;
2438         case SMU_VCE_TABLE:
2439                 fiji_update_vce_smc_table(hwmgr);
2440                 break;
2441         default:
2442                 break;
2443         }
2444         return 0;
2445 }
2446 
2447 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2448 {
2449         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2450         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2451         uint32_t tmp;
2452         int result;
2453         bool error = false;
2454 
2455         result = smu7_read_smc_sram_dword(hwmgr,
2456                         SMU7_FIRMWARE_HEADER_LOCATION +
2457                         offsetof(SMU73_Firmware_Header, DpmTable),
2458                         &tmp, SMC_RAM_END);
2459 
2460         if (0 == result)
2461                 smu_data->smu7_data.dpm_table_start = tmp;
2462 
2463         error |= (0 != result);
2464 
2465         result = smu7_read_smc_sram_dword(hwmgr,
2466                         SMU7_FIRMWARE_HEADER_LOCATION +
2467                         offsetof(SMU73_Firmware_Header, SoftRegisters),
2468                         &tmp, SMC_RAM_END);
2469 
2470         if (!result) {
2471                 data->soft_regs_start = tmp;
2472                 smu_data->smu7_data.soft_regs_start = tmp;
2473         }
2474 
2475         error |= (0 != result);
2476 
2477         result = smu7_read_smc_sram_dword(hwmgr,
2478                         SMU7_FIRMWARE_HEADER_LOCATION +
2479                         offsetof(SMU73_Firmware_Header, mcRegisterTable),
2480                         &tmp, SMC_RAM_END);
2481 
2482         if (!result)
2483                 smu_data->smu7_data.mc_reg_table_start = tmp;
2484 
2485         result = smu7_read_smc_sram_dword(hwmgr,
2486                         SMU7_FIRMWARE_HEADER_LOCATION +
2487                         offsetof(SMU73_Firmware_Header, FanTable),
2488                         &tmp, SMC_RAM_END);
2489 
2490         if (!result)
2491                 smu_data->smu7_data.fan_table_start = tmp;
2492 
2493         error |= (0 != result);
2494 
2495         result = smu7_read_smc_sram_dword(hwmgr,
2496                         SMU7_FIRMWARE_HEADER_LOCATION +
2497                         offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2498                         &tmp, SMC_RAM_END);
2499 
2500         if (!result)
2501                 smu_data->smu7_data.arb_table_start = tmp;
2502 
2503         error |= (0 != result);
2504 
2505         result = smu7_read_smc_sram_dword(hwmgr,
2506                         SMU7_FIRMWARE_HEADER_LOCATION +
2507                         offsetof(SMU73_Firmware_Header, Version),
2508                         &tmp, SMC_RAM_END);
2509 
2510         if (!result)
2511                 hwmgr->microcode_version_info.SMC = tmp;
2512 
2513         error |= (0 != result);
2514 
2515         return error ? -1 : 0;
2516 }
2517 
2518 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2519 {
2520 
2521         /* Program additional LP registers
2522          * that are no longer programmed by VBIOS
2523          */
2524         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2525                         cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2526         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2527                         cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2528         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2529                         cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2530         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2531                         cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2532         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2533                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2534         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2535                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2536         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2537                         cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2538 
2539         return 0;
2540 }
2541 
2542 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2543 {
2544         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2545                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2546                         ? true : false;
2547 }
2548 
2549 static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
2550                                 void *profile_setting)
2551 {
2552         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2553         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
2554                         (hwmgr->smu_backend);
2555         struct profile_mode_setting *setting;
2556         struct SMU73_Discrete_GraphicsLevel *levels =
2557                         smu_data->smc_state_table.GraphicsLevel;
2558         uint32_t array = smu_data->smu7_data.dpm_table_start +
2559                         offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2560 
2561         uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
2562                         offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2563         struct SMU73_Discrete_MemoryLevel *mclk_levels =
2564                         smu_data->smc_state_table.MemoryLevel;
2565         uint32_t i;
2566         uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2567 
2568         if (profile_setting == NULL)
2569                 return -EINVAL;
2570 
2571         setting = (struct profile_mode_setting *)profile_setting;
2572 
2573         if (setting->bupdate_sclk) {
2574                 if (!data->sclk_dpm_key_disabled)
2575                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2576                 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2577                         if (levels[i].ActivityLevel !=
2578                                 cpu_to_be16(setting->sclk_activity)) {
2579                                 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2580 
2581                                 clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2582                                                 + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
2583                                 offset = clk_activity_offset & ~0x3;
2584                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2585                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2586                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2587 
2588                         }
2589                         if (levels[i].UpHyst != setting->sclk_up_hyst ||
2590                                 levels[i].DownHyst != setting->sclk_down_hyst) {
2591                                 levels[i].UpHyst = setting->sclk_up_hyst;
2592                                 levels[i].DownHyst = setting->sclk_down_hyst;
2593                                 up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2594                                                 + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
2595                                 down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2596                                                 + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
2597                                 offset = up_hyst_offset & ~0x3;
2598                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2599                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
2600                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
2601                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2602                         }
2603                 }
2604                 if (!data->sclk_dpm_key_disabled)
2605                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2606         }
2607 
2608         if (setting->bupdate_mclk) {
2609                 if (!data->mclk_dpm_key_disabled)
2610                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2611                 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2612                         if (mclk_levels[i].ActivityLevel !=
2613                                 cpu_to_be16(setting->mclk_activity)) {
2614                                 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2615 
2616                                 clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2617                                                 + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
2618                                 offset = clk_activity_offset & ~0x3;
2619                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2620                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2621                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2622 
2623                         }
2624                         if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
2625                                 mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
2626                                 mclk_levels[i].UpHyst = setting->mclk_up_hyst;
2627                                 mclk_levels[i].DownHyst = setting->mclk_down_hyst;
2628                                 up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2629                                                 + offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
2630                                 down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2631                                                 + offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
2632                                 offset = up_hyst_offset & ~0x3;
2633                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2634                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
2635                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
2636                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2637                         }
2638                 }
2639                 if (!data->mclk_dpm_key_disabled)
2640                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2641         }
2642         return 0;
2643 }
2644 
2645 const struct pp_smumgr_func fiji_smu_funcs = {
2646         .name = "fiji_smu",
2647         .smu_init = &fiji_smu_init,
2648         .smu_fini = &smu7_smu_fini,
2649         .start_smu = &fiji_start_smu,
2650         .check_fw_load_finish = &smu7_check_fw_load_finish,
2651         .request_smu_load_fw = &smu7_reload_firmware,
2652         .request_smu_load_specific_fw = NULL,
2653         .send_msg_to_smc = &smu7_send_msg_to_smc,
2654         .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2655         .download_pptable_settings = NULL,
2656         .upload_pptable_settings = NULL,
2657         .update_smc_table = fiji_update_smc_table,
2658         .get_offsetof = fiji_get_offsetof,
2659         .process_firmware_header = fiji_process_firmware_header,
2660         .init_smc_table = fiji_init_smc_table,
2661         .update_sclk_threshold = fiji_update_sclk_threshold,
2662         .thermal_setup_fan_table = fiji_thermal_setup_fan_table,
2663         .thermal_avfs_enable = fiji_thermal_avfs_enable,
2664         .populate_all_graphic_levels = fiji_populate_all_graphic_levels,
2665         .populate_all_memory_levels = fiji_populate_all_memory_levels,
2666         .get_mac_definition = fiji_get_mac_definition,
2667         .initialize_mc_reg_table = fiji_initialize_mc_reg_table,
2668         .is_dpm_running = fiji_is_dpm_running,
2669         .is_hw_avfs_present = fiji_is_hw_avfs_present,
2670         .update_dpm_settings = fiji_update_dpm_settings,
2671 };

/* [<][>][^][v][top][bottom][index][help] */