root/drivers/misc/sgi-gru/grutlbpurge.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_off_blade_tgh
  2. get_on_blade_tgh
  3. get_lock_tgh_handle
  4. get_unlock_tgh_handle
  5. gru_flush_tlb_range
  6. gru_flush_all_tlb
  7. gru_invalidate_range_start
  8. gru_invalidate_range_end
  9. gru_alloc_notifier
  10. gru_free_notifier
  11. gru_register_mmu_notifier
  12. gru_drop_mmu_notifier
  13. gru_tgh_flush_init

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * SN Platform GRU Driver
   4  *
   5  *              MMUOPS callbacks  + TLB flushing
   6  *
   7  * This file handles emu notifier callbacks from the core kernel. The callbacks
   8  * are used to update the TLB in the GRU as a result of changes in the
   9  * state of a process address space. This file also handles TLB invalidates
  10  * from the GRU driver.
  11  *
  12  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
  13  */
  14 
  15 #include <linux/kernel.h>
  16 #include <linux/list.h>
  17 #include <linux/spinlock.h>
  18 #include <linux/mm.h>
  19 #include <linux/slab.h>
  20 #include <linux/device.h>
  21 #include <linux/hugetlb.h>
  22 #include <linux/delay.h>
  23 #include <linux/timex.h>
  24 #include <linux/srcu.h>
  25 #include <asm/processor.h>
  26 #include "gru.h"
  27 #include "grutables.h"
  28 #include <asm/uv/uv_hub.h>
  29 
  30 #define gru_random()    get_cycles()
  31 
  32 /* ---------------------------------- TLB Invalidation functions --------
  33  * get_tgh_handle
  34  *
  35  * Find a TGH to use for issuing a TLB invalidate. For GRUs that are on the
  36  * local blade, use a fixed TGH that is a function of the blade-local cpu
  37  * number. Normally, this TGH is private to the cpu & no contention occurs for
  38  * the TGH. For offblade GRUs, select a random TGH in the range above the
  39  * private TGHs. A spinlock is required to access this TGH & the lock must be
  40  * released when the invalidate is completes. This sucks, but it is the best we
  41  * can do.
  42  *
  43  * Note that the spinlock is IN the TGH handle so locking does not involve
  44  * additional cache lines.
  45  *
  46  */
  47 static inline int get_off_blade_tgh(struct gru_state *gru)
  48 {
  49         int n;
  50 
  51         n = GRU_NUM_TGH - gru->gs_tgh_first_remote;
  52         n = gru_random() % n;
  53         n += gru->gs_tgh_first_remote;
  54         return n;
  55 }
  56 
  57 static inline int get_on_blade_tgh(struct gru_state *gru)
  58 {
  59         return uv_blade_processor_id() >> gru->gs_tgh_local_shift;
  60 }
  61 
  62 static struct gru_tlb_global_handle *get_lock_tgh_handle(struct gru_state
  63                                                          *gru)
  64 {
  65         struct gru_tlb_global_handle *tgh;
  66         int n;
  67 
  68         preempt_disable();
  69         if (uv_numa_blade_id() == gru->gs_blade_id)
  70                 n = get_on_blade_tgh(gru);
  71         else
  72                 n = get_off_blade_tgh(gru);
  73         tgh = get_tgh_by_index(gru, n);
  74         lock_tgh_handle(tgh);
  75 
  76         return tgh;
  77 }
  78 
  79 static void get_unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
  80 {
  81         unlock_tgh_handle(tgh);
  82         preempt_enable();
  83 }
  84 
  85 /*
  86  * gru_flush_tlb_range
  87  *
  88  * General purpose TLB invalidation function. This function scans every GRU in
  89  * the ENTIRE system (partition) looking for GRUs where the specified MM has
  90  * been accessed by the GRU. For each GRU found, the TLB must be invalidated OR
  91  * the ASID invalidated. Invalidating an ASID causes a new ASID to be assigned
  92  * on the next fault. This effectively flushes the ENTIRE TLB for the MM at the
  93  * cost of (possibly) a large number of future TLBmisses.
  94  *
  95  * The current algorithm is optimized based on the following (somewhat true)
  96  * assumptions:
  97  *      - GRU contexts are not loaded into a GRU unless a reference is made to
  98  *        the data segment or control block (this is true, not an assumption).
  99  *        If a DS/CB is referenced, the user will also issue instructions that
 100  *        cause TLBmisses. It is not necessary to optimize for the case where
 101  *        contexts are loaded but no instructions cause TLB misses. (I know
 102  *        this will happen but I'm not optimizing for it).
 103  *      - GRU instructions to invalidate TLB entries are SLOOOOWWW - normally
 104  *        a few usec but in unusual cases, it could be longer. Avoid if
 105  *        possible.
 106  *      - intrablade process migration between cpus is not frequent but is
 107  *        common.
 108  *      - a GRU context is not typically migrated to a different GRU on the
 109  *        blade because of intrablade migration
 110  *      - interblade migration is rare. Processes migrate their GRU context to
 111  *        the new blade.
 112  *      - if interblade migration occurs, migration back to the original blade
 113  *        is very very rare (ie., no optimization for this case)
 114  *      - most GRU instruction operate on a subset of the user REGIONS. Code
 115  *        & shared library regions are not likely targets of GRU instructions.
 116  *
 117  * To help improve the efficiency of TLB invalidation, the GMS data
 118  * structure is maintained for EACH address space (MM struct). The GMS is
 119  * also the structure that contains the pointer to the mmu callout
 120  * functions. This structure is linked to the mm_struct for the address space
 121  * using the mmu "register" function. The mmu interfaces are used to
 122  * provide the callbacks for TLB invalidation. The GMS contains:
 123  *
 124  *      - asid[maxgrus] array. ASIDs are assigned to a GRU when a context is
 125  *        loaded into the GRU.
 126  *      - asidmap[maxgrus]. bitmap to make it easier to find non-zero asids in
 127  *        the above array
 128  *      - ctxbitmap[maxgrus]. Indicates the contexts that are currently active
 129  *        in the GRU for the address space. This bitmap must be passed to the
 130  *        GRU to do an invalidate.
 131  *
 132  * The current algorithm for invalidating TLBs is:
 133  *      - scan the asidmap for GRUs where the context has been loaded, ie,
 134  *        asid is non-zero.
 135  *      - for each gru found:
 136  *              - if the ctxtmap is non-zero, there are active contexts in the
 137  *                GRU. TLB invalidate instructions must be issued to the GRU.
 138  *              - if the ctxtmap is zero, no context is active. Set the ASID to
 139  *                zero to force a full TLB invalidation. This is fast but will
 140  *                cause a lot of TLB misses if the context is reloaded onto the
 141  *                GRU
 142  *
 143  */
 144 
 145 void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
 146                          unsigned long len)
 147 {
 148         struct gru_state *gru;
 149         struct gru_mm_tracker *asids;
 150         struct gru_tlb_global_handle *tgh;
 151         unsigned long num;
 152         int grupagesize, pagesize, pageshift, gid, asid;
 153 
 154         /* ZZZ TODO - handle huge pages */
 155         pageshift = PAGE_SHIFT;
 156         pagesize = (1UL << pageshift);
 157         grupagesize = GRU_PAGESIZE(pageshift);
 158         num = min(((len + pagesize - 1) >> pageshift), GRUMAXINVAL);
 159 
 160         STAT(flush_tlb);
 161         gru_dbg(grudev, "gms %p, start 0x%lx, len 0x%lx, asidmap 0x%lx\n", gms,
 162                 start, len, gms->ms_asidmap[0]);
 163 
 164         spin_lock(&gms->ms_asid_lock);
 165         for_each_gru_in_bitmap(gid, gms->ms_asidmap) {
 166                 STAT(flush_tlb_gru);
 167                 gru = GID_TO_GRU(gid);
 168                 asids = gms->ms_asids + gid;
 169                 asid = asids->mt_asid;
 170                 if (asids->mt_ctxbitmap && asid) {
 171                         STAT(flush_tlb_gru_tgh);
 172                         asid = GRUASID(asid, start);
 173                         gru_dbg(grudev,
 174         "  FLUSH gruid %d, asid 0x%x, vaddr 0x%lx, vamask 0x%x, num %ld, cbmap 0x%x\n",
 175                               gid, asid, start, grupagesize, num, asids->mt_ctxbitmap);
 176                         tgh = get_lock_tgh_handle(gru);
 177                         tgh_invalidate(tgh, start, ~0, asid, grupagesize, 0,
 178                                        num - 1, asids->mt_ctxbitmap);
 179                         get_unlock_tgh_handle(tgh);
 180                 } else {
 181                         STAT(flush_tlb_gru_zero_asid);
 182                         asids->mt_asid = 0;
 183                         __clear_bit(gru->gs_gid, gms->ms_asidmap);
 184                         gru_dbg(grudev,
 185         "  CLEARASID gruid %d, asid 0x%x, cbtmap 0x%x, asidmap 0x%lx\n",
 186                                 gid, asid, asids->mt_ctxbitmap,
 187                                 gms->ms_asidmap[0]);
 188                 }
 189         }
 190         spin_unlock(&gms->ms_asid_lock);
 191 }
 192 
 193 /*
 194  * Flush the entire TLB on a chiplet.
 195  */
 196 void gru_flush_all_tlb(struct gru_state *gru)
 197 {
 198         struct gru_tlb_global_handle *tgh;
 199 
 200         gru_dbg(grudev, "gid %d\n", gru->gs_gid);
 201         tgh = get_lock_tgh_handle(gru);
 202         tgh_invalidate(tgh, 0, ~0, 0, 1, 1, GRUMAXINVAL - 1, 0xffff);
 203         get_unlock_tgh_handle(tgh);
 204 }
 205 
 206 /*
 207  * MMUOPS notifier callout functions
 208  */
 209 static int gru_invalidate_range_start(struct mmu_notifier *mn,
 210                         const struct mmu_notifier_range *range)
 211 {
 212         struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
 213                                                  ms_notifier);
 214 
 215         STAT(mmu_invalidate_range);
 216         atomic_inc(&gms->ms_range_active);
 217         gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx, act %d\n", gms,
 218                 range->start, range->end, atomic_read(&gms->ms_range_active));
 219         gru_flush_tlb_range(gms, range->start, range->end - range->start);
 220 
 221         return 0;
 222 }
 223 
 224 static void gru_invalidate_range_end(struct mmu_notifier *mn,
 225                         const struct mmu_notifier_range *range)
 226 {
 227         struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
 228                                                  ms_notifier);
 229 
 230         /* ..._and_test() provides needed barrier */
 231         (void)atomic_dec_and_test(&gms->ms_range_active);
 232 
 233         wake_up_all(&gms->ms_wait_queue);
 234         gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx\n",
 235                 gms, range->start, range->end);
 236 }
 237 
 238 static struct mmu_notifier *gru_alloc_notifier(struct mm_struct *mm)
 239 {
 240         struct gru_mm_struct *gms;
 241 
 242         gms = kzalloc(sizeof(*gms), GFP_KERNEL);
 243         if (!gms)
 244                 return ERR_PTR(-ENOMEM);
 245         STAT(gms_alloc);
 246         spin_lock_init(&gms->ms_asid_lock);
 247         init_waitqueue_head(&gms->ms_wait_queue);
 248 
 249         return &gms->ms_notifier;
 250 }
 251 
 252 static void gru_free_notifier(struct mmu_notifier *mn)
 253 {
 254         kfree(container_of(mn, struct gru_mm_struct, ms_notifier));
 255         STAT(gms_free);
 256 }
 257 
 258 static const struct mmu_notifier_ops gru_mmuops = {
 259         .invalidate_range_start = gru_invalidate_range_start,
 260         .invalidate_range_end   = gru_invalidate_range_end,
 261         .alloc_notifier         = gru_alloc_notifier,
 262         .free_notifier          = gru_free_notifier,
 263 };
 264 
 265 struct gru_mm_struct *gru_register_mmu_notifier(void)
 266 {
 267         struct mmu_notifier *mn;
 268 
 269         mn = mmu_notifier_get_locked(&gru_mmuops, current->mm);
 270         if (IS_ERR(mn))
 271                 return ERR_CAST(mn);
 272 
 273         return container_of(mn, struct gru_mm_struct, ms_notifier);
 274 }
 275 
 276 void gru_drop_mmu_notifier(struct gru_mm_struct *gms)
 277 {
 278         mmu_notifier_put(&gms->ms_notifier);
 279 }
 280 
 281 /*
 282  * Setup TGH parameters. There are:
 283  *      - 24 TGH handles per GRU chiplet
 284  *      - a portion (MAX_LOCAL_TGH) of the handles are reserved for
 285  *        use by blade-local cpus
 286  *      - the rest are used by off-blade cpus. This usage is
 287  *        less frequent than blade-local usage.
 288  *
 289  * For now, use 16 handles for local flushes, 8 for remote flushes. If the blade
 290  * has less tan or equal to 16 cpus, each cpu has a unique handle that it can
 291  * use.
 292  */
 293 #define MAX_LOCAL_TGH   16
 294 
 295 void gru_tgh_flush_init(struct gru_state *gru)
 296 {
 297         int cpus, shift = 0, n;
 298 
 299         cpus = uv_blade_nr_possible_cpus(gru->gs_blade_id);
 300 
 301         /* n = cpus rounded up to next power of 2 */
 302         if (cpus) {
 303                 n = 1 << fls(cpus - 1);
 304 
 305                 /*
 306                  * shift count for converting local cpu# to TGH index
 307                  *      0 if cpus <= MAX_LOCAL_TGH,
 308                  *      1 if cpus <= 2*MAX_LOCAL_TGH,
 309                  *      etc
 310                  */
 311                 shift = max(0, fls(n - 1) - fls(MAX_LOCAL_TGH - 1));
 312         }
 313         gru->gs_tgh_local_shift = shift;
 314 
 315         /* first starting TGH index to use for remote purges */
 316         gru->gs_tgh_first_remote = (cpus + (1 << shift) - 1) >> shift;
 317 
 318 }

/* [<][>][^][v][top][bottom][index][help] */