root/drivers/irqchip/irq-gic-v3-its.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_its_list
  2. dev_event_to_col
  3. valid_col
  4. valid_vpe
  5. its_mask_encode
  6. its_encode_cmd
  7. its_encode_devid
  8. its_encode_event_id
  9. its_encode_phys_id
  10. its_encode_size
  11. its_encode_itt
  12. its_encode_valid
  13. its_encode_target
  14. its_encode_collection
  15. its_encode_vpeid
  16. its_encode_virt_id
  17. its_encode_db_phys_id
  18. its_encode_db_valid
  19. its_encode_seq_num
  20. its_encode_its_list
  21. its_encode_vpt_addr
  22. its_encode_vpt_size
  23. its_fixup_cmd
  24. its_build_mapd_cmd
  25. its_build_mapc_cmd
  26. its_build_mapti_cmd
  27. its_build_movi_cmd
  28. its_build_discard_cmd
  29. its_build_inv_cmd
  30. its_build_int_cmd
  31. its_build_clear_cmd
  32. its_build_invall_cmd
  33. its_build_vinvall_cmd
  34. its_build_vmapp_cmd
  35. its_build_vmapti_cmd
  36. its_build_vmovi_cmd
  37. its_build_vmovp_cmd
  38. its_cmd_ptr_to_offset
  39. its_queue_full
  40. its_allocate_entry
  41. its_post_commands
  42. its_flush_cmd
  43. its_wait_for_range_completion
  44. its_build_sync_cmd
  45. BUILD_SINGLE_CMD_FUNC
  46. BUILD_SINGLE_CMD_FUNC
  47. its_send_clear
  48. its_send_inv
  49. its_send_mapd
  50. its_send_mapc
  51. its_send_mapti
  52. its_send_movi
  53. its_send_discard
  54. its_send_invall
  55. its_send_vmapti
  56. its_send_vmovi
  57. its_send_vmapp
  58. its_send_vmovp
  59. its_send_vinvall
  60. its_get_event_id
  61. lpi_write_config
  62. lpi_update_config
  63. its_vlpi_set_doorbell
  64. its_mask_irq
  65. its_unmask_irq
  66. its_set_affinity
  67. its_irq_get_msi_base
  68. its_irq_compose_msi_msg
  69. its_irq_set_irqchip_state
  70. its_map_vm
  71. its_unmap_vm
  72. its_vlpi_map
  73. its_vlpi_get
  74. its_vlpi_unmap
  75. its_vlpi_prop_update
  76. its_irq_set_vcpu_affinity
  77. mk_lpi_range
  78. alloc_lpi_range
  79. merge_lpi_ranges
  80. free_lpi_range
  81. its_lpi_init
  82. its_lpi_alloc
  83. its_lpi_free
  84. gic_reset_prop_table
  85. its_allocate_prop_table
  86. its_free_prop_table
  87. gic_check_reserved_range
  88. gic_reserve_range
  89. its_setup_lpi_prop_table
  90. its_read_baser
  91. its_write_baser
  92. its_setup_baser
  93. its_parse_indirect_baser
  94. its_free_tables
  95. its_alloc_tables
  96. its_alloc_collections
  97. its_allocate_pending_table
  98. its_free_pending_table
  99. enabled_lpis_allowed
  100. allocate_lpi_tables
  101. its_clear_vpend_valid
  102. its_cpu_init_lpis
  103. its_cpu_init_collection
  104. its_cpu_init_collections
  105. its_find_device
  106. its_get_baser
  107. its_alloc_table_entry
  108. its_alloc_device_table
  109. its_alloc_vpe_table
  110. its_create_device
  111. its_free_device
  112. its_alloc_device_irq
  113. its_msi_prepare
  114. its_irq_gic_domain_alloc
  115. its_irq_domain_alloc
  116. its_irq_domain_activate
  117. its_irq_domain_deactivate
  118. its_irq_domain_free
  119. its_vpe_db_proxy_unmap_locked
  120. its_vpe_db_proxy_unmap
  121. its_vpe_db_proxy_map_locked
  122. its_vpe_db_proxy_move
  123. its_vpe_set_affinity
  124. its_vpe_schedule
  125. its_vpe_deschedule
  126. its_vpe_invall
  127. its_vpe_set_vcpu_affinity
  128. its_vpe_send_cmd
  129. its_vpe_send_inv
  130. its_vpe_mask_irq
  131. its_vpe_unmask_irq
  132. its_vpe_set_irqchip_state
  133. its_vpe_retrigger
  134. its_vpe_id_alloc
  135. its_vpe_id_free
  136. its_vpe_init
  137. its_vpe_teardown
  138. its_vpe_irq_domain_free
  139. its_vpe_irq_domain_alloc
  140. its_vpe_irq_domain_activate
  141. its_vpe_irq_domain_deactivate
  142. its_force_quiescent
  143. its_enable_quirk_cavium_22375
  144. its_enable_quirk_cavium_23144
  145. its_enable_quirk_qdf2400_e0065
  146. its_irq_get_msi_base_pre_its
  147. its_enable_quirk_socionext_synquacer
  148. its_enable_quirk_hip07_161600802
  149. its_enable_quirks
  150. its_save_disable
  151. its_restore_enable
  152. its_init_domain
  153. its_init_vpe_domain
  154. its_compute_its_list_map
  155. its_probe_one
  156. gic_rdists_supports_plpis
  157. redist_disable_lpis
  158. its_cpu_init
  159. its_of_probe
  160. acpi_get_its_numa_node
  161. gic_acpi_match_srat_its
  162. gic_acpi_parse_srat_its
  163. acpi_table_parse_srat_its
  164. acpi_its_srat_maps_free
  165. acpi_table_parse_srat_its
  166. acpi_get_its_numa_node
  167. acpi_its_srat_maps_free
  168. gic_acpi_parse_madt_its
  169. its_acpi_probe
  170. its_acpi_probe
  171. its_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4  * Author: Marc Zyngier <marc.zyngier@arm.com>
   5  */
   6 
   7 #include <linux/acpi.h>
   8 #include <linux/acpi_iort.h>
   9 #include <linux/bitmap.h>
  10 #include <linux/cpu.h>
  11 #include <linux/crash_dump.h>
  12 #include <linux/delay.h>
  13 #include <linux/dma-iommu.h>
  14 #include <linux/efi.h>
  15 #include <linux/interrupt.h>
  16 #include <linux/irqdomain.h>
  17 #include <linux/list.h>
  18 #include <linux/log2.h>
  19 #include <linux/memblock.h>
  20 #include <linux/mm.h>
  21 #include <linux/msi.h>
  22 #include <linux/of.h>
  23 #include <linux/of_address.h>
  24 #include <linux/of_irq.h>
  25 #include <linux/of_pci.h>
  26 #include <linux/of_platform.h>
  27 #include <linux/percpu.h>
  28 #include <linux/slab.h>
  29 #include <linux/syscore_ops.h>
  30 
  31 #include <linux/irqchip.h>
  32 #include <linux/irqchip/arm-gic-v3.h>
  33 #include <linux/irqchip/arm-gic-v4.h>
  34 
  35 #include <asm/cputype.h>
  36 #include <asm/exception.h>
  37 
  38 #include "irq-gic-common.h"
  39 
  40 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
  41 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
  42 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
  43 #define ITS_FLAGS_SAVE_SUSPEND_STATE            (1ULL << 3)
  44 
  45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
  46 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
  47 
  48 static u32 lpi_id_bits;
  49 
  50 /*
  51  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  52  * deal with (one configuration byte per interrupt). PENDBASE has to
  53  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  54  */
  55 #define LPI_NRBITS              lpi_id_bits
  56 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
  57 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  58 
  59 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
  60 
  61 /*
  62  * Collection structure - just an ID, and a redistributor address to
  63  * ping. We use one per CPU as a bag of interrupts assigned to this
  64  * CPU.
  65  */
  66 struct its_collection {
  67         u64                     target_address;
  68         u16                     col_id;
  69 };
  70 
  71 /*
  72  * The ITS_BASER structure - contains memory information, cached
  73  * value of BASER register configuration and ITS page size.
  74  */
  75 struct its_baser {
  76         void            *base;
  77         u64             val;
  78         u32             order;
  79         u32             psz;
  80 };
  81 
  82 struct its_device;
  83 
  84 /*
  85  * The ITS structure - contains most of the infrastructure, with the
  86  * top-level MSI domain, the command queue, the collections, and the
  87  * list of devices writing to it.
  88  *
  89  * dev_alloc_lock has to be taken for device allocations, while the
  90  * spinlock must be taken to parse data structures such as the device
  91  * list.
  92  */
  93 struct its_node {
  94         raw_spinlock_t          lock;
  95         struct mutex            dev_alloc_lock;
  96         struct list_head        entry;
  97         void __iomem            *base;
  98         phys_addr_t             phys_base;
  99         struct its_cmd_block    *cmd_base;
 100         struct its_cmd_block    *cmd_write;
 101         struct its_baser        tables[GITS_BASER_NR_REGS];
 102         struct its_collection   *collections;
 103         struct fwnode_handle    *fwnode_handle;
 104         u64                     (*get_msi_base)(struct its_device *its_dev);
 105         u64                     cbaser_save;
 106         u32                     ctlr_save;
 107         struct list_head        its_device_list;
 108         u64                     flags;
 109         unsigned long           list_nr;
 110         u32                     ite_size;
 111         u32                     device_ids;
 112         int                     numa_node;
 113         unsigned int            msi_domain_flags;
 114         u32                     pre_its_base; /* for Socionext Synquacer */
 115         bool                    is_v4;
 116         int                     vlpi_redist_offset;
 117 };
 118 
 119 #define ITS_ITT_ALIGN           SZ_256
 120 
 121 /* The maximum number of VPEID bits supported by VLPI commands */
 122 #define ITS_MAX_VPEID_BITS      (16)
 123 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
 124 
 125 /* Convert page order to size in bytes */
 126 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
 127 
 128 struct event_lpi_map {
 129         unsigned long           *lpi_map;
 130         u16                     *col_map;
 131         irq_hw_number_t         lpi_base;
 132         int                     nr_lpis;
 133         struct mutex            vlpi_lock;
 134         struct its_vm           *vm;
 135         struct its_vlpi_map     *vlpi_maps;
 136         int                     nr_vlpis;
 137 };
 138 
 139 /*
 140  * The ITS view of a device - belongs to an ITS, owns an interrupt
 141  * translation table, and a list of interrupts.  If it some of its
 142  * LPIs are injected into a guest (GICv4), the event_map.vm field
 143  * indicates which one.
 144  */
 145 struct its_device {
 146         struct list_head        entry;
 147         struct its_node         *its;
 148         struct event_lpi_map    event_map;
 149         void                    *itt;
 150         u32                     nr_ites;
 151         u32                     device_id;
 152         bool                    shared;
 153 };
 154 
 155 static struct {
 156         raw_spinlock_t          lock;
 157         struct its_device       *dev;
 158         struct its_vpe          **vpes;
 159         int                     next_victim;
 160 } vpe_proxy;
 161 
 162 static LIST_HEAD(its_nodes);
 163 static DEFINE_RAW_SPINLOCK(its_lock);
 164 static struct rdists *gic_rdists;
 165 static struct irq_domain *its_parent;
 166 
 167 static unsigned long its_list_map;
 168 static u16 vmovp_seq_num;
 169 static DEFINE_RAW_SPINLOCK(vmovp_lock);
 170 
 171 static DEFINE_IDA(its_vpeid_ida);
 172 
 173 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
 174 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
 175 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
 176 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
 177 
 178 static u16 get_its_list(struct its_vm *vm)
 179 {
 180         struct its_node *its;
 181         unsigned long its_list = 0;
 182 
 183         list_for_each_entry(its, &its_nodes, entry) {
 184                 if (!its->is_v4)
 185                         continue;
 186 
 187                 if (vm->vlpi_count[its->list_nr])
 188                         __set_bit(its->list_nr, &its_list);
 189         }
 190 
 191         return (u16)its_list;
 192 }
 193 
 194 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 195                                                u32 event)
 196 {
 197         struct its_node *its = its_dev->its;
 198 
 199         return its->collections + its_dev->event_map.col_map[event];
 200 }
 201 
 202 static struct its_collection *valid_col(struct its_collection *col)
 203 {
 204         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 205                 return NULL;
 206 
 207         return col;
 208 }
 209 
 210 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 211 {
 212         if (valid_col(its->collections + vpe->col_idx))
 213                 return vpe;
 214 
 215         return NULL;
 216 }
 217 
 218 /*
 219  * ITS command descriptors - parameters to be encoded in a command
 220  * block.
 221  */
 222 struct its_cmd_desc {
 223         union {
 224                 struct {
 225                         struct its_device *dev;
 226                         u32 event_id;
 227                 } its_inv_cmd;
 228 
 229                 struct {
 230                         struct its_device *dev;
 231                         u32 event_id;
 232                 } its_clear_cmd;
 233 
 234                 struct {
 235                         struct its_device *dev;
 236                         u32 event_id;
 237                 } its_int_cmd;
 238 
 239                 struct {
 240                         struct its_device *dev;
 241                         int valid;
 242                 } its_mapd_cmd;
 243 
 244                 struct {
 245                         struct its_collection *col;
 246                         int valid;
 247                 } its_mapc_cmd;
 248 
 249                 struct {
 250                         struct its_device *dev;
 251                         u32 phys_id;
 252                         u32 event_id;
 253                 } its_mapti_cmd;
 254 
 255                 struct {
 256                         struct its_device *dev;
 257                         struct its_collection *col;
 258                         u32 event_id;
 259                 } its_movi_cmd;
 260 
 261                 struct {
 262                         struct its_device *dev;
 263                         u32 event_id;
 264                 } its_discard_cmd;
 265 
 266                 struct {
 267                         struct its_collection *col;
 268                 } its_invall_cmd;
 269 
 270                 struct {
 271                         struct its_vpe *vpe;
 272                 } its_vinvall_cmd;
 273 
 274                 struct {
 275                         struct its_vpe *vpe;
 276                         struct its_collection *col;
 277                         bool valid;
 278                 } its_vmapp_cmd;
 279 
 280                 struct {
 281                         struct its_vpe *vpe;
 282                         struct its_device *dev;
 283                         u32 virt_id;
 284                         u32 event_id;
 285                         bool db_enabled;
 286                 } its_vmapti_cmd;
 287 
 288                 struct {
 289                         struct its_vpe *vpe;
 290                         struct its_device *dev;
 291                         u32 event_id;
 292                         bool db_enabled;
 293                 } its_vmovi_cmd;
 294 
 295                 struct {
 296                         struct its_vpe *vpe;
 297                         struct its_collection *col;
 298                         u16 seq_num;
 299                         u16 its_list;
 300                 } its_vmovp_cmd;
 301         };
 302 };
 303 
 304 /*
 305  * The ITS command block, which is what the ITS actually parses.
 306  */
 307 struct its_cmd_block {
 308         u64     raw_cmd[4];
 309 };
 310 
 311 #define ITS_CMD_QUEUE_SZ                SZ_64K
 312 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 313 
 314 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 315                                                     struct its_cmd_block *,
 316                                                     struct its_cmd_desc *);
 317 
 318 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 319                                               struct its_cmd_block *,
 320                                               struct its_cmd_desc *);
 321 
 322 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 323 {
 324         u64 mask = GENMASK_ULL(h, l);
 325         *raw_cmd &= ~mask;
 326         *raw_cmd |= (val << l) & mask;
 327 }
 328 
 329 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 330 {
 331         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 332 }
 333 
 334 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 335 {
 336         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 337 }
 338 
 339 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 340 {
 341         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 342 }
 343 
 344 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 345 {
 346         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 347 }
 348 
 349 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 350 {
 351         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 352 }
 353 
 354 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 355 {
 356         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 357 }
 358 
 359 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 360 {
 361         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 362 }
 363 
 364 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 365 {
 366         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 367 }
 368 
 369 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 370 {
 371         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 372 }
 373 
 374 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 375 {
 376         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 377 }
 378 
 379 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 380 {
 381         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 382 }
 383 
 384 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 385 {
 386         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 387 }
 388 
 389 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 390 {
 391         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 392 }
 393 
 394 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 395 {
 396         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 397 }
 398 
 399 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 400 {
 401         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 402 }
 403 
 404 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 405 {
 406         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 407 }
 408 
 409 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 410 {
 411         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 412 }
 413 
 414 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 415 {
 416         /* Let's fixup BE commands */
 417         cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 418         cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 419         cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 420         cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 421 }
 422 
 423 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 424                                                  struct its_cmd_block *cmd,
 425                                                  struct its_cmd_desc *desc)
 426 {
 427         unsigned long itt_addr;
 428         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 429 
 430         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 431         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 432 
 433         its_encode_cmd(cmd, GITS_CMD_MAPD);
 434         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 435         its_encode_size(cmd, size - 1);
 436         its_encode_itt(cmd, itt_addr);
 437         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 438 
 439         its_fixup_cmd(cmd);
 440 
 441         return NULL;
 442 }
 443 
 444 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 445                                                  struct its_cmd_block *cmd,
 446                                                  struct its_cmd_desc *desc)
 447 {
 448         its_encode_cmd(cmd, GITS_CMD_MAPC);
 449         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 450         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 451         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 452 
 453         its_fixup_cmd(cmd);
 454 
 455         return desc->its_mapc_cmd.col;
 456 }
 457 
 458 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 459                                                   struct its_cmd_block *cmd,
 460                                                   struct its_cmd_desc *desc)
 461 {
 462         struct its_collection *col;
 463 
 464         col = dev_event_to_col(desc->its_mapti_cmd.dev,
 465                                desc->its_mapti_cmd.event_id);
 466 
 467         its_encode_cmd(cmd, GITS_CMD_MAPTI);
 468         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 469         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 470         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 471         its_encode_collection(cmd, col->col_id);
 472 
 473         its_fixup_cmd(cmd);
 474 
 475         return valid_col(col);
 476 }
 477 
 478 static struct its_collection *its_build_movi_cmd(struct its_node *its,
 479                                                  struct its_cmd_block *cmd,
 480                                                  struct its_cmd_desc *desc)
 481 {
 482         struct its_collection *col;
 483 
 484         col = dev_event_to_col(desc->its_movi_cmd.dev,
 485                                desc->its_movi_cmd.event_id);
 486 
 487         its_encode_cmd(cmd, GITS_CMD_MOVI);
 488         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 489         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 490         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 491 
 492         its_fixup_cmd(cmd);
 493 
 494         return valid_col(col);
 495 }
 496 
 497 static struct its_collection *its_build_discard_cmd(struct its_node *its,
 498                                                     struct its_cmd_block *cmd,
 499                                                     struct its_cmd_desc *desc)
 500 {
 501         struct its_collection *col;
 502 
 503         col = dev_event_to_col(desc->its_discard_cmd.dev,
 504                                desc->its_discard_cmd.event_id);
 505 
 506         its_encode_cmd(cmd, GITS_CMD_DISCARD);
 507         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 508         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 509 
 510         its_fixup_cmd(cmd);
 511 
 512         return valid_col(col);
 513 }
 514 
 515 static struct its_collection *its_build_inv_cmd(struct its_node *its,
 516                                                 struct its_cmd_block *cmd,
 517                                                 struct its_cmd_desc *desc)
 518 {
 519         struct its_collection *col;
 520 
 521         col = dev_event_to_col(desc->its_inv_cmd.dev,
 522                                desc->its_inv_cmd.event_id);
 523 
 524         its_encode_cmd(cmd, GITS_CMD_INV);
 525         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 526         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 527 
 528         its_fixup_cmd(cmd);
 529 
 530         return valid_col(col);
 531 }
 532 
 533 static struct its_collection *its_build_int_cmd(struct its_node *its,
 534                                                 struct its_cmd_block *cmd,
 535                                                 struct its_cmd_desc *desc)
 536 {
 537         struct its_collection *col;
 538 
 539         col = dev_event_to_col(desc->its_int_cmd.dev,
 540                                desc->its_int_cmd.event_id);
 541 
 542         its_encode_cmd(cmd, GITS_CMD_INT);
 543         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 544         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 545 
 546         its_fixup_cmd(cmd);
 547 
 548         return valid_col(col);
 549 }
 550 
 551 static struct its_collection *its_build_clear_cmd(struct its_node *its,
 552                                                   struct its_cmd_block *cmd,
 553                                                   struct its_cmd_desc *desc)
 554 {
 555         struct its_collection *col;
 556 
 557         col = dev_event_to_col(desc->its_clear_cmd.dev,
 558                                desc->its_clear_cmd.event_id);
 559 
 560         its_encode_cmd(cmd, GITS_CMD_CLEAR);
 561         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 562         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 563 
 564         its_fixup_cmd(cmd);
 565 
 566         return valid_col(col);
 567 }
 568 
 569 static struct its_collection *its_build_invall_cmd(struct its_node *its,
 570                                                    struct its_cmd_block *cmd,
 571                                                    struct its_cmd_desc *desc)
 572 {
 573         its_encode_cmd(cmd, GITS_CMD_INVALL);
 574         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
 575 
 576         its_fixup_cmd(cmd);
 577 
 578         return NULL;
 579 }
 580 
 581 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 582                                              struct its_cmd_block *cmd,
 583                                              struct its_cmd_desc *desc)
 584 {
 585         its_encode_cmd(cmd, GITS_CMD_VINVALL);
 586         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 587 
 588         its_fixup_cmd(cmd);
 589 
 590         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 591 }
 592 
 593 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 594                                            struct its_cmd_block *cmd,
 595                                            struct its_cmd_desc *desc)
 596 {
 597         unsigned long vpt_addr;
 598         u64 target;
 599 
 600         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 601         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 602 
 603         its_encode_cmd(cmd, GITS_CMD_VMAPP);
 604         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 605         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 606         its_encode_target(cmd, target);
 607         its_encode_vpt_addr(cmd, vpt_addr);
 608         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 609 
 610         its_fixup_cmd(cmd);
 611 
 612         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
 613 }
 614 
 615 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 616                                             struct its_cmd_block *cmd,
 617                                             struct its_cmd_desc *desc)
 618 {
 619         u32 db;
 620 
 621         if (desc->its_vmapti_cmd.db_enabled)
 622                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 623         else
 624                 db = 1023;
 625 
 626         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 627         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 628         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 629         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 630         its_encode_db_phys_id(cmd, db);
 631         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 632 
 633         its_fixup_cmd(cmd);
 634 
 635         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 636 }
 637 
 638 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 639                                            struct its_cmd_block *cmd,
 640                                            struct its_cmd_desc *desc)
 641 {
 642         u32 db;
 643 
 644         if (desc->its_vmovi_cmd.db_enabled)
 645                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 646         else
 647                 db = 1023;
 648 
 649         its_encode_cmd(cmd, GITS_CMD_VMOVI);
 650         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 651         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 652         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 653         its_encode_db_phys_id(cmd, db);
 654         its_encode_db_valid(cmd, true);
 655 
 656         its_fixup_cmd(cmd);
 657 
 658         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 659 }
 660 
 661 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 662                                            struct its_cmd_block *cmd,
 663                                            struct its_cmd_desc *desc)
 664 {
 665         u64 target;
 666 
 667         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 668         its_encode_cmd(cmd, GITS_CMD_VMOVP);
 669         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 670         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 671         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 672         its_encode_target(cmd, target);
 673 
 674         its_fixup_cmd(cmd);
 675 
 676         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 677 }
 678 
 679 static u64 its_cmd_ptr_to_offset(struct its_node *its,
 680                                  struct its_cmd_block *ptr)
 681 {
 682         return (ptr - its->cmd_base) * sizeof(*ptr);
 683 }
 684 
 685 static int its_queue_full(struct its_node *its)
 686 {
 687         int widx;
 688         int ridx;
 689 
 690         widx = its->cmd_write - its->cmd_base;
 691         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 692 
 693         /* This is incredibly unlikely to happen, unless the ITS locks up. */
 694         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 695                 return 1;
 696 
 697         return 0;
 698 }
 699 
 700 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 701 {
 702         struct its_cmd_block *cmd;
 703         u32 count = 1000000;    /* 1s! */
 704 
 705         while (its_queue_full(its)) {
 706                 count--;
 707                 if (!count) {
 708                         pr_err_ratelimited("ITS queue not draining\n");
 709                         return NULL;
 710                 }
 711                 cpu_relax();
 712                 udelay(1);
 713         }
 714 
 715         cmd = its->cmd_write++;
 716 
 717         /* Handle queue wrapping */
 718         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 719                 its->cmd_write = its->cmd_base;
 720 
 721         /* Clear command  */
 722         cmd->raw_cmd[0] = 0;
 723         cmd->raw_cmd[1] = 0;
 724         cmd->raw_cmd[2] = 0;
 725         cmd->raw_cmd[3] = 0;
 726 
 727         return cmd;
 728 }
 729 
 730 static struct its_cmd_block *its_post_commands(struct its_node *its)
 731 {
 732         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 733 
 734         writel_relaxed(wr, its->base + GITS_CWRITER);
 735 
 736         return its->cmd_write;
 737 }
 738 
 739 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 740 {
 741         /*
 742          * Make sure the commands written to memory are observable by
 743          * the ITS.
 744          */
 745         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 746                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
 747         else
 748                 dsb(ishst);
 749 }
 750 
 751 static int its_wait_for_range_completion(struct its_node *its,
 752                                          u64    prev_idx,
 753                                          struct its_cmd_block *to)
 754 {
 755         u64 rd_idx, to_idx, linear_idx;
 756         u32 count = 1000000;    /* 1s! */
 757 
 758         /* Linearize to_idx if the command set has wrapped around */
 759         to_idx = its_cmd_ptr_to_offset(its, to);
 760         if (to_idx < prev_idx)
 761                 to_idx += ITS_CMD_QUEUE_SZ;
 762 
 763         linear_idx = prev_idx;
 764 
 765         while (1) {
 766                 s64 delta;
 767 
 768                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
 769 
 770                 /*
 771                  * Compute the read pointer progress, taking the
 772                  * potential wrap-around into account.
 773                  */
 774                 delta = rd_idx - prev_idx;
 775                 if (rd_idx < prev_idx)
 776                         delta += ITS_CMD_QUEUE_SZ;
 777 
 778                 linear_idx += delta;
 779                 if (linear_idx >= to_idx)
 780                         break;
 781 
 782                 count--;
 783                 if (!count) {
 784                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
 785                                            to_idx, linear_idx);
 786                         return -1;
 787                 }
 788                 prev_idx = rd_idx;
 789                 cpu_relax();
 790                 udelay(1);
 791         }
 792 
 793         return 0;
 794 }
 795 
 796 /* Warning, macro hell follows */
 797 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
 798 void name(struct its_node *its,                                         \
 799           buildtype builder,                                            \
 800           struct its_cmd_desc *desc)                                    \
 801 {                                                                       \
 802         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
 803         synctype *sync_obj;                                             \
 804         unsigned long flags;                                            \
 805         u64 rd_idx;                                                     \
 806                                                                         \
 807         raw_spin_lock_irqsave(&its->lock, flags);                       \
 808                                                                         \
 809         cmd = its_allocate_entry(its);                                  \
 810         if (!cmd) {             /* We're soooooo screewed... */         \
 811                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
 812                 return;                                                 \
 813         }                                                               \
 814         sync_obj = builder(its, cmd, desc);                             \
 815         its_flush_cmd(its, cmd);                                        \
 816                                                                         \
 817         if (sync_obj) {                                                 \
 818                 sync_cmd = its_allocate_entry(its);                     \
 819                 if (!sync_cmd)                                          \
 820                         goto post;                                      \
 821                                                                         \
 822                 buildfn(its, sync_cmd, sync_obj);                       \
 823                 its_flush_cmd(its, sync_cmd);                           \
 824         }                                                               \
 825                                                                         \
 826 post:                                                                   \
 827         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
 828         next_cmd = its_post_commands(its);                              \
 829         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
 830                                                                         \
 831         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
 832                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
 833 }
 834 
 835 static void its_build_sync_cmd(struct its_node *its,
 836                                struct its_cmd_block *sync_cmd,
 837                                struct its_collection *sync_col)
 838 {
 839         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 840         its_encode_target(sync_cmd, sync_col->target_address);
 841 
 842         its_fixup_cmd(sync_cmd);
 843 }
 844 
 845 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
 846                              struct its_collection, its_build_sync_cmd)
 847 
 848 static void its_build_vsync_cmd(struct its_node *its,
 849                                 struct its_cmd_block *sync_cmd,
 850                                 struct its_vpe *sync_vpe)
 851 {
 852         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
 853         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
 854 
 855         its_fixup_cmd(sync_cmd);
 856 }
 857 
 858 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
 859                              struct its_vpe, its_build_vsync_cmd)
 860 
 861 static void its_send_int(struct its_device *dev, u32 event_id)
 862 {
 863         struct its_cmd_desc desc;
 864 
 865         desc.its_int_cmd.dev = dev;
 866         desc.its_int_cmd.event_id = event_id;
 867 
 868         its_send_single_command(dev->its, its_build_int_cmd, &desc);
 869 }
 870 
 871 static void its_send_clear(struct its_device *dev, u32 event_id)
 872 {
 873         struct its_cmd_desc desc;
 874 
 875         desc.its_clear_cmd.dev = dev;
 876         desc.its_clear_cmd.event_id = event_id;
 877 
 878         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
 879 }
 880 
 881 static void its_send_inv(struct its_device *dev, u32 event_id)
 882 {
 883         struct its_cmd_desc desc;
 884 
 885         desc.its_inv_cmd.dev = dev;
 886         desc.its_inv_cmd.event_id = event_id;
 887 
 888         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 889 }
 890 
 891 static void its_send_mapd(struct its_device *dev, int valid)
 892 {
 893         struct its_cmd_desc desc;
 894 
 895         desc.its_mapd_cmd.dev = dev;
 896         desc.its_mapd_cmd.valid = !!valid;
 897 
 898         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 899 }
 900 
 901 static void its_send_mapc(struct its_node *its, struct its_collection *col,
 902                           int valid)
 903 {
 904         struct its_cmd_desc desc;
 905 
 906         desc.its_mapc_cmd.col = col;
 907         desc.its_mapc_cmd.valid = !!valid;
 908 
 909         its_send_single_command(its, its_build_mapc_cmd, &desc);
 910 }
 911 
 912 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
 913 {
 914         struct its_cmd_desc desc;
 915 
 916         desc.its_mapti_cmd.dev = dev;
 917         desc.its_mapti_cmd.phys_id = irq_id;
 918         desc.its_mapti_cmd.event_id = id;
 919 
 920         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
 921 }
 922 
 923 static void its_send_movi(struct its_device *dev,
 924                           struct its_collection *col, u32 id)
 925 {
 926         struct its_cmd_desc desc;
 927 
 928         desc.its_movi_cmd.dev = dev;
 929         desc.its_movi_cmd.col = col;
 930         desc.its_movi_cmd.event_id = id;
 931 
 932         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 933 }
 934 
 935 static void its_send_discard(struct its_device *dev, u32 id)
 936 {
 937         struct its_cmd_desc desc;
 938 
 939         desc.its_discard_cmd.dev = dev;
 940         desc.its_discard_cmd.event_id = id;
 941 
 942         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 943 }
 944 
 945 static void its_send_invall(struct its_node *its, struct its_collection *col)
 946 {
 947         struct its_cmd_desc desc;
 948 
 949         desc.its_invall_cmd.col = col;
 950 
 951         its_send_single_command(its, its_build_invall_cmd, &desc);
 952 }
 953 
 954 static void its_send_vmapti(struct its_device *dev, u32 id)
 955 {
 956         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 957         struct its_cmd_desc desc;
 958 
 959         desc.its_vmapti_cmd.vpe = map->vpe;
 960         desc.its_vmapti_cmd.dev = dev;
 961         desc.its_vmapti_cmd.virt_id = map->vintid;
 962         desc.its_vmapti_cmd.event_id = id;
 963         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
 964 
 965         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
 966 }
 967 
 968 static void its_send_vmovi(struct its_device *dev, u32 id)
 969 {
 970         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 971         struct its_cmd_desc desc;
 972 
 973         desc.its_vmovi_cmd.vpe = map->vpe;
 974         desc.its_vmovi_cmd.dev = dev;
 975         desc.its_vmovi_cmd.event_id = id;
 976         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
 977 
 978         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
 979 }
 980 
 981 static void its_send_vmapp(struct its_node *its,
 982                            struct its_vpe *vpe, bool valid)
 983 {
 984         struct its_cmd_desc desc;
 985 
 986         desc.its_vmapp_cmd.vpe = vpe;
 987         desc.its_vmapp_cmd.valid = valid;
 988         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
 989 
 990         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
 991 }
 992 
 993 static void its_send_vmovp(struct its_vpe *vpe)
 994 {
 995         struct its_cmd_desc desc = {};
 996         struct its_node *its;
 997         unsigned long flags;
 998         int col_id = vpe->col_idx;
 999 
1000         desc.its_vmovp_cmd.vpe = vpe;
1001 
1002         if (!its_list_map) {
1003                 its = list_first_entry(&its_nodes, struct its_node, entry);
1004                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1005                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1006                 return;
1007         }
1008 
1009         /*
1010          * Yet another marvel of the architecture. If using the
1011          * its_list "feature", we need to make sure that all ITSs
1012          * receive all VMOVP commands in the same order. The only way
1013          * to guarantee this is to make vmovp a serialization point.
1014          *
1015          * Wall <-- Head.
1016          */
1017         raw_spin_lock_irqsave(&vmovp_lock, flags);
1018 
1019         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1020         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1021 
1022         /* Emit VMOVPs */
1023         list_for_each_entry(its, &its_nodes, entry) {
1024                 if (!its->is_v4)
1025                         continue;
1026 
1027                 if (!vpe->its_vm->vlpi_count[its->list_nr])
1028                         continue;
1029 
1030                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1031                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1032         }
1033 
1034         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1035 }
1036 
1037 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1038 {
1039         struct its_cmd_desc desc;
1040 
1041         desc.its_vinvall_cmd.vpe = vpe;
1042         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1043 }
1044 
1045 /*
1046  * irqchip functions - assumes MSI, mostly.
1047  */
1048 
1049 static inline u32 its_get_event_id(struct irq_data *d)
1050 {
1051         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1052         return d->hwirq - its_dev->event_map.lpi_base;
1053 }
1054 
1055 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1056 {
1057         irq_hw_number_t hwirq;
1058         void *va;
1059         u8 *cfg;
1060 
1061         if (irqd_is_forwarded_to_vcpu(d)) {
1062                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1063                 u32 event = its_get_event_id(d);
1064                 struct its_vlpi_map *map;
1065 
1066                 va = page_address(its_dev->event_map.vm->vprop_page);
1067                 map = &its_dev->event_map.vlpi_maps[event];
1068                 hwirq = map->vintid;
1069 
1070                 /* Remember the updated property */
1071                 map->properties &= ~clr;
1072                 map->properties |= set | LPI_PROP_GROUP1;
1073         } else {
1074                 va = gic_rdists->prop_table_va;
1075                 hwirq = d->hwirq;
1076         }
1077 
1078         cfg = va + hwirq - 8192;
1079         *cfg &= ~clr;
1080         *cfg |= set | LPI_PROP_GROUP1;
1081 
1082         /*
1083          * Make the above write visible to the redistributors.
1084          * And yes, we're flushing exactly: One. Single. Byte.
1085          * Humpf...
1086          */
1087         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1088                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1089         else
1090                 dsb(ishst);
1091 }
1092 
1093 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1094 {
1095         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1096 
1097         lpi_write_config(d, clr, set);
1098         its_send_inv(its_dev, its_get_event_id(d));
1099 }
1100 
1101 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1102 {
1103         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1104         u32 event = its_get_event_id(d);
1105 
1106         if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1107                 return;
1108 
1109         its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1110 
1111         /*
1112          * More fun with the architecture:
1113          *
1114          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1115          * value or to 1023, depending on the enable bit. But that
1116          * would be issueing a mapping for an /existing/ DevID+EventID
1117          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1118          * to the /same/ vPE, using this opportunity to adjust the
1119          * doorbell. Mouahahahaha. We loves it, Precious.
1120          */
1121         its_send_vmovi(its_dev, event);
1122 }
1123 
1124 static void its_mask_irq(struct irq_data *d)
1125 {
1126         if (irqd_is_forwarded_to_vcpu(d))
1127                 its_vlpi_set_doorbell(d, false);
1128 
1129         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1130 }
1131 
1132 static void its_unmask_irq(struct irq_data *d)
1133 {
1134         if (irqd_is_forwarded_to_vcpu(d))
1135                 its_vlpi_set_doorbell(d, true);
1136 
1137         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1138 }
1139 
1140 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1141                             bool force)
1142 {
1143         unsigned int cpu;
1144         const struct cpumask *cpu_mask = cpu_online_mask;
1145         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1146         struct its_collection *target_col;
1147         u32 id = its_get_event_id(d);
1148 
1149         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1150         if (irqd_is_forwarded_to_vcpu(d))
1151                 return -EINVAL;
1152 
1153        /* lpi cannot be routed to a redistributor that is on a foreign node */
1154         if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1155                 if (its_dev->its->numa_node >= 0) {
1156                         cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1157                         if (!cpumask_intersects(mask_val, cpu_mask))
1158                                 return -EINVAL;
1159                 }
1160         }
1161 
1162         cpu = cpumask_any_and(mask_val, cpu_mask);
1163 
1164         if (cpu >= nr_cpu_ids)
1165                 return -EINVAL;
1166 
1167         /* don't set the affinity when the target cpu is same as current one */
1168         if (cpu != its_dev->event_map.col_map[id]) {
1169                 target_col = &its_dev->its->collections[cpu];
1170                 its_send_movi(its_dev, target_col, id);
1171                 its_dev->event_map.col_map[id] = cpu;
1172                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1173         }
1174 
1175         return IRQ_SET_MASK_OK_DONE;
1176 }
1177 
1178 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1179 {
1180         struct its_node *its = its_dev->its;
1181 
1182         return its->phys_base + GITS_TRANSLATER;
1183 }
1184 
1185 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1186 {
1187         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1188         struct its_node *its;
1189         u64 addr;
1190 
1191         its = its_dev->its;
1192         addr = its->get_msi_base(its_dev);
1193 
1194         msg->address_lo         = lower_32_bits(addr);
1195         msg->address_hi         = upper_32_bits(addr);
1196         msg->data               = its_get_event_id(d);
1197 
1198         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1199 }
1200 
1201 static int its_irq_set_irqchip_state(struct irq_data *d,
1202                                      enum irqchip_irq_state which,
1203                                      bool state)
1204 {
1205         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1206         u32 event = its_get_event_id(d);
1207 
1208         if (which != IRQCHIP_STATE_PENDING)
1209                 return -EINVAL;
1210 
1211         if (state)
1212                 its_send_int(its_dev, event);
1213         else
1214                 its_send_clear(its_dev, event);
1215 
1216         return 0;
1217 }
1218 
1219 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1220 {
1221         unsigned long flags;
1222 
1223         /* Not using the ITS list? Everything is always mapped. */
1224         if (!its_list_map)
1225                 return;
1226 
1227         raw_spin_lock_irqsave(&vmovp_lock, flags);
1228 
1229         /*
1230          * If the VM wasn't mapped yet, iterate over the vpes and get
1231          * them mapped now.
1232          */
1233         vm->vlpi_count[its->list_nr]++;
1234 
1235         if (vm->vlpi_count[its->list_nr] == 1) {
1236                 int i;
1237 
1238                 for (i = 0; i < vm->nr_vpes; i++) {
1239                         struct its_vpe *vpe = vm->vpes[i];
1240                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1241 
1242                         /* Map the VPE to the first possible CPU */
1243                         vpe->col_idx = cpumask_first(cpu_online_mask);
1244                         its_send_vmapp(its, vpe, true);
1245                         its_send_vinvall(its, vpe);
1246                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1247                 }
1248         }
1249 
1250         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1251 }
1252 
1253 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1254 {
1255         unsigned long flags;
1256 
1257         /* Not using the ITS list? Everything is always mapped. */
1258         if (!its_list_map)
1259                 return;
1260 
1261         raw_spin_lock_irqsave(&vmovp_lock, flags);
1262 
1263         if (!--vm->vlpi_count[its->list_nr]) {
1264                 int i;
1265 
1266                 for (i = 0; i < vm->nr_vpes; i++)
1267                         its_send_vmapp(its, vm->vpes[i], false);
1268         }
1269 
1270         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1271 }
1272 
1273 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1274 {
1275         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1276         u32 event = its_get_event_id(d);
1277         int ret = 0;
1278 
1279         if (!info->map)
1280                 return -EINVAL;
1281 
1282         mutex_lock(&its_dev->event_map.vlpi_lock);
1283 
1284         if (!its_dev->event_map.vm) {
1285                 struct its_vlpi_map *maps;
1286 
1287                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1288                                GFP_KERNEL);
1289                 if (!maps) {
1290                         ret = -ENOMEM;
1291                         goto out;
1292                 }
1293 
1294                 its_dev->event_map.vm = info->map->vm;
1295                 its_dev->event_map.vlpi_maps = maps;
1296         } else if (its_dev->event_map.vm != info->map->vm) {
1297                 ret = -EINVAL;
1298                 goto out;
1299         }
1300 
1301         /* Get our private copy of the mapping information */
1302         its_dev->event_map.vlpi_maps[event] = *info->map;
1303 
1304         if (irqd_is_forwarded_to_vcpu(d)) {
1305                 /* Already mapped, move it around */
1306                 its_send_vmovi(its_dev, event);
1307         } else {
1308                 /* Ensure all the VPEs are mapped on this ITS */
1309                 its_map_vm(its_dev->its, info->map->vm);
1310 
1311                 /*
1312                  * Flag the interrupt as forwarded so that we can
1313                  * start poking the virtual property table.
1314                  */
1315                 irqd_set_forwarded_to_vcpu(d);
1316 
1317                 /* Write out the property to the prop table */
1318                 lpi_write_config(d, 0xff, info->map->properties);
1319 
1320                 /* Drop the physical mapping */
1321                 its_send_discard(its_dev, event);
1322 
1323                 /* and install the virtual one */
1324                 its_send_vmapti(its_dev, event);
1325 
1326                 /* Increment the number of VLPIs */
1327                 its_dev->event_map.nr_vlpis++;
1328         }
1329 
1330 out:
1331         mutex_unlock(&its_dev->event_map.vlpi_lock);
1332         return ret;
1333 }
1334 
1335 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1336 {
1337         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1338         u32 event = its_get_event_id(d);
1339         int ret = 0;
1340 
1341         mutex_lock(&its_dev->event_map.vlpi_lock);
1342 
1343         if (!its_dev->event_map.vm ||
1344             !its_dev->event_map.vlpi_maps[event].vm) {
1345                 ret = -EINVAL;
1346                 goto out;
1347         }
1348 
1349         /* Copy our mapping information to the incoming request */
1350         *info->map = its_dev->event_map.vlpi_maps[event];
1351 
1352 out:
1353         mutex_unlock(&its_dev->event_map.vlpi_lock);
1354         return ret;
1355 }
1356 
1357 static int its_vlpi_unmap(struct irq_data *d)
1358 {
1359         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1360         u32 event = its_get_event_id(d);
1361         int ret = 0;
1362 
1363         mutex_lock(&its_dev->event_map.vlpi_lock);
1364 
1365         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1366                 ret = -EINVAL;
1367                 goto out;
1368         }
1369 
1370         /* Drop the virtual mapping */
1371         its_send_discard(its_dev, event);
1372 
1373         /* and restore the physical one */
1374         irqd_clr_forwarded_to_vcpu(d);
1375         its_send_mapti(its_dev, d->hwirq, event);
1376         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1377                                     LPI_PROP_ENABLED |
1378                                     LPI_PROP_GROUP1));
1379 
1380         /* Potentially unmap the VM from this ITS */
1381         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1382 
1383         /*
1384          * Drop the refcount and make the device available again if
1385          * this was the last VLPI.
1386          */
1387         if (!--its_dev->event_map.nr_vlpis) {
1388                 its_dev->event_map.vm = NULL;
1389                 kfree(its_dev->event_map.vlpi_maps);
1390         }
1391 
1392 out:
1393         mutex_unlock(&its_dev->event_map.vlpi_lock);
1394         return ret;
1395 }
1396 
1397 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1398 {
1399         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1400 
1401         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1402                 return -EINVAL;
1403 
1404         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1405                 lpi_update_config(d, 0xff, info->config);
1406         else
1407                 lpi_write_config(d, 0xff, info->config);
1408         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1409 
1410         return 0;
1411 }
1412 
1413 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1414 {
1415         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1416         struct its_cmd_info *info = vcpu_info;
1417 
1418         /* Need a v4 ITS */
1419         if (!its_dev->its->is_v4)
1420                 return -EINVAL;
1421 
1422         /* Unmap request? */
1423         if (!info)
1424                 return its_vlpi_unmap(d);
1425 
1426         switch (info->cmd_type) {
1427         case MAP_VLPI:
1428                 return its_vlpi_map(d, info);
1429 
1430         case GET_VLPI:
1431                 return its_vlpi_get(d, info);
1432 
1433         case PROP_UPDATE_VLPI:
1434         case PROP_UPDATE_AND_INV_VLPI:
1435                 return its_vlpi_prop_update(d, info);
1436 
1437         default:
1438                 return -EINVAL;
1439         }
1440 }
1441 
1442 static struct irq_chip its_irq_chip = {
1443         .name                   = "ITS",
1444         .irq_mask               = its_mask_irq,
1445         .irq_unmask             = its_unmask_irq,
1446         .irq_eoi                = irq_chip_eoi_parent,
1447         .irq_set_affinity       = its_set_affinity,
1448         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1449         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1450         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1451 };
1452 
1453 
1454 /*
1455  * How we allocate LPIs:
1456  *
1457  * lpi_range_list contains ranges of LPIs that are to available to
1458  * allocate from. To allocate LPIs, just pick the first range that
1459  * fits the required allocation, and reduce it by the required
1460  * amount. Once empty, remove the range from the list.
1461  *
1462  * To free a range of LPIs, add a free range to the list, sort it and
1463  * merge the result if the new range happens to be adjacent to an
1464  * already free block.
1465  *
1466  * The consequence of the above is that allocation is cost is low, but
1467  * freeing is expensive. We assumes that freeing rarely occurs.
1468  */
1469 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
1470 
1471 static DEFINE_MUTEX(lpi_range_lock);
1472 static LIST_HEAD(lpi_range_list);
1473 
1474 struct lpi_range {
1475         struct list_head        entry;
1476         u32                     base_id;
1477         u32                     span;
1478 };
1479 
1480 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1481 {
1482         struct lpi_range *range;
1483 
1484         range = kmalloc(sizeof(*range), GFP_KERNEL);
1485         if (range) {
1486                 range->base_id = base;
1487                 range->span = span;
1488         }
1489 
1490         return range;
1491 }
1492 
1493 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1494 {
1495         struct lpi_range *range, *tmp;
1496         int err = -ENOSPC;
1497 
1498         mutex_lock(&lpi_range_lock);
1499 
1500         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1501                 if (range->span >= nr_lpis) {
1502                         *base = range->base_id;
1503                         range->base_id += nr_lpis;
1504                         range->span -= nr_lpis;
1505 
1506                         if (range->span == 0) {
1507                                 list_del(&range->entry);
1508                                 kfree(range);
1509                         }
1510 
1511                         err = 0;
1512                         break;
1513                 }
1514         }
1515 
1516         mutex_unlock(&lpi_range_lock);
1517 
1518         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1519         return err;
1520 }
1521 
1522 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1523 {
1524         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1525                 return;
1526         if (a->base_id + a->span != b->base_id)
1527                 return;
1528         b->base_id = a->base_id;
1529         b->span += a->span;
1530         list_del(&a->entry);
1531         kfree(a);
1532 }
1533 
1534 static int free_lpi_range(u32 base, u32 nr_lpis)
1535 {
1536         struct lpi_range *new, *old;
1537 
1538         new = mk_lpi_range(base, nr_lpis);
1539         if (!new)
1540                 return -ENOMEM;
1541 
1542         mutex_lock(&lpi_range_lock);
1543 
1544         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1545                 if (old->base_id < base)
1546                         break;
1547         }
1548         /*
1549          * old is the last element with ->base_id smaller than base,
1550          * so new goes right after it. If there are no elements with
1551          * ->base_id smaller than base, &old->entry ends up pointing
1552          * at the head of the list, and inserting new it the start of
1553          * the list is the right thing to do in that case as well.
1554          */
1555         list_add(&new->entry, &old->entry);
1556         /*
1557          * Now check if we can merge with the preceding and/or
1558          * following ranges.
1559          */
1560         merge_lpi_ranges(old, new);
1561         merge_lpi_ranges(new, list_next_entry(new, entry));
1562 
1563         mutex_unlock(&lpi_range_lock);
1564         return 0;
1565 }
1566 
1567 static int __init its_lpi_init(u32 id_bits)
1568 {
1569         u32 lpis = (1UL << id_bits) - 8192;
1570         u32 numlpis;
1571         int err;
1572 
1573         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1574 
1575         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1576                 lpis = numlpis;
1577                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1578                         lpis);
1579         }
1580 
1581         /*
1582          * Initializing the allocator is just the same as freeing the
1583          * full range of LPIs.
1584          */
1585         err = free_lpi_range(8192, lpis);
1586         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1587         return err;
1588 }
1589 
1590 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1591 {
1592         unsigned long *bitmap = NULL;
1593         int err = 0;
1594 
1595         do {
1596                 err = alloc_lpi_range(nr_irqs, base);
1597                 if (!err)
1598                         break;
1599 
1600                 nr_irqs /= 2;
1601         } while (nr_irqs > 0);
1602 
1603         if (!nr_irqs)
1604                 err = -ENOSPC;
1605 
1606         if (err)
1607                 goto out;
1608 
1609         bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1610         if (!bitmap)
1611                 goto out;
1612 
1613         *nr_ids = nr_irqs;
1614 
1615 out:
1616         if (!bitmap)
1617                 *base = *nr_ids = 0;
1618 
1619         return bitmap;
1620 }
1621 
1622 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1623 {
1624         WARN_ON(free_lpi_range(base, nr_ids));
1625         kfree(bitmap);
1626 }
1627 
1628 static void gic_reset_prop_table(void *va)
1629 {
1630         /* Priority 0xa0, Group-1, disabled */
1631         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1632 
1633         /* Make sure the GIC will observe the written configuration */
1634         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1635 }
1636 
1637 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1638 {
1639         struct page *prop_page;
1640 
1641         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1642         if (!prop_page)
1643                 return NULL;
1644 
1645         gic_reset_prop_table(page_address(prop_page));
1646 
1647         return prop_page;
1648 }
1649 
1650 static void its_free_prop_table(struct page *prop_page)
1651 {
1652         free_pages((unsigned long)page_address(prop_page),
1653                    get_order(LPI_PROPBASE_SZ));
1654 }
1655 
1656 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1657 {
1658         phys_addr_t start, end, addr_end;
1659         u64 i;
1660 
1661         /*
1662          * We don't bother checking for a kdump kernel as by
1663          * construction, the LPI tables are out of this kernel's
1664          * memory map.
1665          */
1666         if (is_kdump_kernel())
1667                 return true;
1668 
1669         addr_end = addr + size - 1;
1670 
1671         for_each_reserved_mem_region(i, &start, &end) {
1672                 if (addr >= start && addr_end <= end)
1673                         return true;
1674         }
1675 
1676         /* Not found, not a good sign... */
1677         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1678                 &addr, &addr_end);
1679         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1680         return false;
1681 }
1682 
1683 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1684 {
1685         if (efi_enabled(EFI_CONFIG_TABLES))
1686                 return efi_mem_reserve_persistent(addr, size);
1687 
1688         return 0;
1689 }
1690 
1691 static int __init its_setup_lpi_prop_table(void)
1692 {
1693         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1694                 u64 val;
1695 
1696                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1697                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1698 
1699                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1700                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1701                                                      LPI_PROPBASE_SZ,
1702                                                      MEMREMAP_WB);
1703                 gic_reset_prop_table(gic_rdists->prop_table_va);
1704         } else {
1705                 struct page *page;
1706 
1707                 lpi_id_bits = min_t(u32,
1708                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1709                                     ITS_MAX_LPI_NRBITS);
1710                 page = its_allocate_prop_table(GFP_NOWAIT);
1711                 if (!page) {
1712                         pr_err("Failed to allocate PROPBASE\n");
1713                         return -ENOMEM;
1714                 }
1715 
1716                 gic_rdists->prop_table_pa = page_to_phys(page);
1717                 gic_rdists->prop_table_va = page_address(page);
1718                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1719                                           LPI_PROPBASE_SZ));
1720         }
1721 
1722         pr_info("GICv3: using LPI property table @%pa\n",
1723                 &gic_rdists->prop_table_pa);
1724 
1725         return its_lpi_init(lpi_id_bits);
1726 }
1727 
1728 static const char *its_base_type_string[] = {
1729         [GITS_BASER_TYPE_DEVICE]        = "Devices",
1730         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
1731         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
1732         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
1733         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
1734         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
1735         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
1736 };
1737 
1738 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1739 {
1740         u32 idx = baser - its->tables;
1741 
1742         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1743 }
1744 
1745 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1746                             u64 val)
1747 {
1748         u32 idx = baser - its->tables;
1749 
1750         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1751         baser->val = its_read_baser(its, baser);
1752 }
1753 
1754 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1755                            u64 cache, u64 shr, u32 psz, u32 order,
1756                            bool indirect)
1757 {
1758         u64 val = its_read_baser(its, baser);
1759         u64 esz = GITS_BASER_ENTRY_SIZE(val);
1760         u64 type = GITS_BASER_TYPE(val);
1761         u64 baser_phys, tmp;
1762         u32 alloc_pages;
1763         struct page *page;
1764         void *base;
1765 
1766 retry_alloc_baser:
1767         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1768         if (alloc_pages > GITS_BASER_PAGES_MAX) {
1769                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1770                         &its->phys_base, its_base_type_string[type],
1771                         alloc_pages, GITS_BASER_PAGES_MAX);
1772                 alloc_pages = GITS_BASER_PAGES_MAX;
1773                 order = get_order(GITS_BASER_PAGES_MAX * psz);
1774         }
1775 
1776         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1777         if (!page)
1778                 return -ENOMEM;
1779 
1780         base = (void *)page_address(page);
1781         baser_phys = virt_to_phys(base);
1782 
1783         /* Check if the physical address of the memory is above 48bits */
1784         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1785 
1786                 /* 52bit PA is supported only when PageSize=64K */
1787                 if (psz != SZ_64K) {
1788                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1789                         free_pages((unsigned long)base, order);
1790                         return -ENXIO;
1791                 }
1792 
1793                 /* Convert 52bit PA to 48bit field */
1794                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1795         }
1796 
1797 retry_baser:
1798         val = (baser_phys                                        |
1799                 (type << GITS_BASER_TYPE_SHIFT)                  |
1800                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
1801                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
1802                 cache                                            |
1803                 shr                                              |
1804                 GITS_BASER_VALID);
1805 
1806         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
1807 
1808         switch (psz) {
1809         case SZ_4K:
1810                 val |= GITS_BASER_PAGE_SIZE_4K;
1811                 break;
1812         case SZ_16K:
1813                 val |= GITS_BASER_PAGE_SIZE_16K;
1814                 break;
1815         case SZ_64K:
1816                 val |= GITS_BASER_PAGE_SIZE_64K;
1817                 break;
1818         }
1819 
1820         its_write_baser(its, baser, val);
1821         tmp = baser->val;
1822 
1823         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1824                 /*
1825                  * Shareability didn't stick. Just use
1826                  * whatever the read reported, which is likely
1827                  * to be the only thing this redistributor
1828                  * supports. If that's zero, make it
1829                  * non-cacheable as well.
1830                  */
1831                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1832                 if (!shr) {
1833                         cache = GITS_BASER_nC;
1834                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1835                 }
1836                 goto retry_baser;
1837         }
1838 
1839         if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1840                 /*
1841                  * Page size didn't stick. Let's try a smaller
1842                  * size and retry. If we reach 4K, then
1843                  * something is horribly wrong...
1844                  */
1845                 free_pages((unsigned long)base, order);
1846                 baser->base = NULL;
1847 
1848                 switch (psz) {
1849                 case SZ_16K:
1850                         psz = SZ_4K;
1851                         goto retry_alloc_baser;
1852                 case SZ_64K:
1853                         psz = SZ_16K;
1854                         goto retry_alloc_baser;
1855                 }
1856         }
1857 
1858         if (val != tmp) {
1859                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1860                        &its->phys_base, its_base_type_string[type],
1861                        val, tmp);
1862                 free_pages((unsigned long)base, order);
1863                 return -ENXIO;
1864         }
1865 
1866         baser->order = order;
1867         baser->base = base;
1868         baser->psz = psz;
1869         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1870 
1871         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1872                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1873                 its_base_type_string[type],
1874                 (unsigned long)virt_to_phys(base),
1875                 indirect ? "indirect" : "flat", (int)esz,
1876                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1877 
1878         return 0;
1879 }
1880 
1881 static bool its_parse_indirect_baser(struct its_node *its,
1882                                      struct its_baser *baser,
1883                                      u32 psz, u32 *order, u32 ids)
1884 {
1885         u64 tmp = its_read_baser(its, baser);
1886         u64 type = GITS_BASER_TYPE(tmp);
1887         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1888         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1889         u32 new_order = *order;
1890         bool indirect = false;
1891 
1892         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1893         if ((esz << ids) > (psz * 2)) {
1894                 /*
1895                  * Find out whether hw supports a single or two-level table by
1896                  * table by reading bit at offset '62' after writing '1' to it.
1897                  */
1898                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1899                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
1900 
1901                 if (indirect) {
1902                         /*
1903                          * The size of the lvl2 table is equal to ITS page size
1904                          * which is 'psz'. For computing lvl1 table size,
1905                          * subtract ID bits that sparse lvl2 table from 'ids'
1906                          * which is reported by ITS hardware times lvl1 table
1907                          * entry size.
1908                          */
1909                         ids -= ilog2(psz / (int)esz);
1910                         esz = GITS_LVL1_ENTRY_SIZE;
1911                 }
1912         }
1913 
1914         /*
1915          * Allocate as many entries as required to fit the
1916          * range of device IDs that the ITS can grok... The ID
1917          * space being incredibly sparse, this results in a
1918          * massive waste of memory if two-level device table
1919          * feature is not supported by hardware.
1920          */
1921         new_order = max_t(u32, get_order(esz << ids), new_order);
1922         if (new_order >= MAX_ORDER) {
1923                 new_order = MAX_ORDER - 1;
1924                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1925                 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1926                         &its->phys_base, its_base_type_string[type],
1927                         its->device_ids, ids);
1928         }
1929 
1930         *order = new_order;
1931 
1932         return indirect;
1933 }
1934 
1935 static void its_free_tables(struct its_node *its)
1936 {
1937         int i;
1938 
1939         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1940                 if (its->tables[i].base) {
1941                         free_pages((unsigned long)its->tables[i].base,
1942                                    its->tables[i].order);
1943                         its->tables[i].base = NULL;
1944                 }
1945         }
1946 }
1947 
1948 static int its_alloc_tables(struct its_node *its)
1949 {
1950         u64 shr = GITS_BASER_InnerShareable;
1951         u64 cache = GITS_BASER_RaWaWb;
1952         u32 psz = SZ_64K;
1953         int err, i;
1954 
1955         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1956                 /* erratum 24313: ignore memory access type */
1957                 cache = GITS_BASER_nCnB;
1958 
1959         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1960                 struct its_baser *baser = its->tables + i;
1961                 u64 val = its_read_baser(its, baser);
1962                 u64 type = GITS_BASER_TYPE(val);
1963                 u32 order = get_order(psz);
1964                 bool indirect = false;
1965 
1966                 switch (type) {
1967                 case GITS_BASER_TYPE_NONE:
1968                         continue;
1969 
1970                 case GITS_BASER_TYPE_DEVICE:
1971                         indirect = its_parse_indirect_baser(its, baser,
1972                                                             psz, &order,
1973                                                             its->device_ids);
1974                         break;
1975 
1976                 case GITS_BASER_TYPE_VCPU:
1977                         indirect = its_parse_indirect_baser(its, baser,
1978                                                             psz, &order,
1979                                                             ITS_MAX_VPEID_BITS);
1980                         break;
1981                 }
1982 
1983                 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1984                 if (err < 0) {
1985                         its_free_tables(its);
1986                         return err;
1987                 }
1988 
1989                 /* Update settings which will be used for next BASERn */
1990                 psz = baser->psz;
1991                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1992                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1993         }
1994 
1995         return 0;
1996 }
1997 
1998 static int its_alloc_collections(struct its_node *its)
1999 {
2000         int i;
2001 
2002         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2003                                    GFP_KERNEL);
2004         if (!its->collections)
2005                 return -ENOMEM;
2006 
2007         for (i = 0; i < nr_cpu_ids; i++)
2008                 its->collections[i].target_address = ~0ULL;
2009 
2010         return 0;
2011 }
2012 
2013 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2014 {
2015         struct page *pend_page;
2016 
2017         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2018                                 get_order(LPI_PENDBASE_SZ));
2019         if (!pend_page)
2020                 return NULL;
2021 
2022         /* Make sure the GIC will observe the zero-ed page */
2023         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2024 
2025         return pend_page;
2026 }
2027 
2028 static void its_free_pending_table(struct page *pt)
2029 {
2030         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2031 }
2032 
2033 /*
2034  * Booting with kdump and LPIs enabled is generally fine. Any other
2035  * case is wrong in the absence of firmware/EFI support.
2036  */
2037 static bool enabled_lpis_allowed(void)
2038 {
2039         phys_addr_t addr;
2040         u64 val;
2041 
2042         /* Check whether the property table is in a reserved region */
2043         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2044         addr = val & GENMASK_ULL(51, 12);
2045 
2046         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2047 }
2048 
2049 static int __init allocate_lpi_tables(void)
2050 {
2051         u64 val;
2052         int err, cpu;
2053 
2054         /*
2055          * If LPIs are enabled while we run this from the boot CPU,
2056          * flag the RD tables as pre-allocated if the stars do align.
2057          */
2058         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2059         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2060                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2061                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2062                 pr_info("GICv3: Using preallocated redistributor tables\n");
2063         }
2064 
2065         err = its_setup_lpi_prop_table();
2066         if (err)
2067                 return err;
2068 
2069         /*
2070          * We allocate all the pending tables anyway, as we may have a
2071          * mix of RDs that have had LPIs enabled, and some that
2072          * don't. We'll free the unused ones as each CPU comes online.
2073          */
2074         for_each_possible_cpu(cpu) {
2075                 struct page *pend_page;
2076 
2077                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2078                 if (!pend_page) {
2079                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2080                         return -ENOMEM;
2081                 }
2082 
2083                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2084         }
2085 
2086         return 0;
2087 }
2088 
2089 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2090 {
2091         u32 count = 1000000;    /* 1s! */
2092         bool clean;
2093         u64 val;
2094 
2095         val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2096         val &= ~GICR_VPENDBASER_Valid;
2097         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2098 
2099         do {
2100                 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2101                 clean = !(val & GICR_VPENDBASER_Dirty);
2102                 if (!clean) {
2103                         count--;
2104                         cpu_relax();
2105                         udelay(1);
2106                 }
2107         } while (!clean && count);
2108 
2109         return val;
2110 }
2111 
2112 static void its_cpu_init_lpis(void)
2113 {
2114         void __iomem *rbase = gic_data_rdist_rd_base();
2115         struct page *pend_page;
2116         phys_addr_t paddr;
2117         u64 val, tmp;
2118 
2119         if (gic_data_rdist()->lpi_enabled)
2120                 return;
2121 
2122         val = readl_relaxed(rbase + GICR_CTLR);
2123         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2124             (val & GICR_CTLR_ENABLE_LPIS)) {
2125                 /*
2126                  * Check that we get the same property table on all
2127                  * RDs. If we don't, this is hopeless.
2128                  */
2129                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2130                 paddr &= GENMASK_ULL(51, 12);
2131                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2132                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2133 
2134                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2135                 paddr &= GENMASK_ULL(51, 16);
2136 
2137                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2138                 its_free_pending_table(gic_data_rdist()->pend_page);
2139                 gic_data_rdist()->pend_page = NULL;
2140 
2141                 goto out;
2142         }
2143 
2144         pend_page = gic_data_rdist()->pend_page;
2145         paddr = page_to_phys(pend_page);
2146         WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2147 
2148         /* set PROPBASE */
2149         val = (gic_rdists->prop_table_pa |
2150                GICR_PROPBASER_InnerShareable |
2151                GICR_PROPBASER_RaWaWb |
2152                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2153 
2154         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2155         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2156 
2157         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2158                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2159                         /*
2160                          * The HW reports non-shareable, we must
2161                          * remove the cacheability attributes as
2162                          * well.
2163                          */
2164                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2165                                  GICR_PROPBASER_CACHEABILITY_MASK);
2166                         val |= GICR_PROPBASER_nC;
2167                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2168                 }
2169                 pr_info_once("GIC: using cache flushing for LPI property table\n");
2170                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2171         }
2172 
2173         /* set PENDBASE */
2174         val = (page_to_phys(pend_page) |
2175                GICR_PENDBASER_InnerShareable |
2176                GICR_PENDBASER_RaWaWb);
2177 
2178         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2179         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2180 
2181         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2182                 /*
2183                  * The HW reports non-shareable, we must remove the
2184                  * cacheability attributes as well.
2185                  */
2186                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2187                          GICR_PENDBASER_CACHEABILITY_MASK);
2188                 val |= GICR_PENDBASER_nC;
2189                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2190         }
2191 
2192         /* Enable LPIs */
2193         val = readl_relaxed(rbase + GICR_CTLR);
2194         val |= GICR_CTLR_ENABLE_LPIS;
2195         writel_relaxed(val, rbase + GICR_CTLR);
2196 
2197         if (gic_rdists->has_vlpis) {
2198                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2199 
2200                 /*
2201                  * It's possible for CPU to receive VLPIs before it is
2202                  * sheduled as a vPE, especially for the first CPU, and the
2203                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
2204                  * as out of range and dropped by GIC.
2205                  * So we initialize IDbits to known value to avoid VLPI drop.
2206                  */
2207                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2208                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2209                         smp_processor_id(), val);
2210                 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2211 
2212                 /*
2213                  * Also clear Valid bit of GICR_VPENDBASER, in case some
2214                  * ancient programming gets left in and has possibility of
2215                  * corrupting memory.
2216                  */
2217                 val = its_clear_vpend_valid(vlpi_base);
2218                 WARN_ON(val & GICR_VPENDBASER_Dirty);
2219         }
2220 
2221         /* Make sure the GIC has seen the above */
2222         dsb(sy);
2223 out:
2224         gic_data_rdist()->lpi_enabled = true;
2225         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2226                 smp_processor_id(),
2227                 gic_data_rdist()->pend_page ? "allocated" : "reserved",
2228                 &paddr);
2229 }
2230 
2231 static void its_cpu_init_collection(struct its_node *its)
2232 {
2233         int cpu = smp_processor_id();
2234         u64 target;
2235 
2236         /* avoid cross node collections and its mapping */
2237         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2238                 struct device_node *cpu_node;
2239 
2240                 cpu_node = of_get_cpu_node(cpu, NULL);
2241                 if (its->numa_node != NUMA_NO_NODE &&
2242                         its->numa_node != of_node_to_nid(cpu_node))
2243                         return;
2244         }
2245 
2246         /*
2247          * We now have to bind each collection to its target
2248          * redistributor.
2249          */
2250         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2251                 /*
2252                  * This ITS wants the physical address of the
2253                  * redistributor.
2254                  */
2255                 target = gic_data_rdist()->phys_base;
2256         } else {
2257                 /* This ITS wants a linear CPU number. */
2258                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2259                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
2260         }
2261 
2262         /* Perform collection mapping */
2263         its->collections[cpu].target_address = target;
2264         its->collections[cpu].col_id = cpu;
2265 
2266         its_send_mapc(its, &its->collections[cpu], 1);
2267         its_send_invall(its, &its->collections[cpu]);
2268 }
2269 
2270 static void its_cpu_init_collections(void)
2271 {
2272         struct its_node *its;
2273 
2274         raw_spin_lock(&its_lock);
2275 
2276         list_for_each_entry(its, &its_nodes, entry)
2277                 its_cpu_init_collection(its);
2278 
2279         raw_spin_unlock(&its_lock);
2280 }
2281 
2282 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2283 {
2284         struct its_device *its_dev = NULL, *tmp;
2285         unsigned long flags;
2286 
2287         raw_spin_lock_irqsave(&its->lock, flags);
2288 
2289         list_for_each_entry(tmp, &its->its_device_list, entry) {
2290                 if (tmp->device_id == dev_id) {
2291                         its_dev = tmp;
2292                         break;
2293                 }
2294         }
2295 
2296         raw_spin_unlock_irqrestore(&its->lock, flags);
2297 
2298         return its_dev;
2299 }
2300 
2301 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2302 {
2303         int i;
2304 
2305         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2306                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
2307                         return &its->tables[i];
2308         }
2309 
2310         return NULL;
2311 }
2312 
2313 static bool its_alloc_table_entry(struct its_node *its,
2314                                   struct its_baser *baser, u32 id)
2315 {
2316         struct page *page;
2317         u32 esz, idx;
2318         __le64 *table;
2319 
2320         /* Don't allow device id that exceeds single, flat table limit */
2321         esz = GITS_BASER_ENTRY_SIZE(baser->val);
2322         if (!(baser->val & GITS_BASER_INDIRECT))
2323                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2324 
2325         /* Compute 1st level table index & check if that exceeds table limit */
2326         idx = id >> ilog2(baser->psz / esz);
2327         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2328                 return false;
2329 
2330         table = baser->base;
2331 
2332         /* Allocate memory for 2nd level table */
2333         if (!table[idx]) {
2334                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2335                                         get_order(baser->psz));
2336                 if (!page)
2337                         return false;
2338 
2339                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2340                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2341                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
2342 
2343                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2344 
2345                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2346                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2347                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2348 
2349                 /* Ensure updated table contents are visible to ITS hardware */
2350                 dsb(sy);
2351         }
2352 
2353         return true;
2354 }
2355 
2356 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2357 {
2358         struct its_baser *baser;
2359 
2360         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2361 
2362         /* Don't allow device id that exceeds ITS hardware limit */
2363         if (!baser)
2364                 return (ilog2(dev_id) < its->device_ids);
2365 
2366         return its_alloc_table_entry(its, baser, dev_id);
2367 }
2368 
2369 static bool its_alloc_vpe_table(u32 vpe_id)
2370 {
2371         struct its_node *its;
2372 
2373         /*
2374          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2375          * could try and only do it on ITSs corresponding to devices
2376          * that have interrupts targeted at this VPE, but the
2377          * complexity becomes crazy (and you have tons of memory
2378          * anyway, right?).
2379          */
2380         list_for_each_entry(its, &its_nodes, entry) {
2381                 struct its_baser *baser;
2382 
2383                 if (!its->is_v4)
2384                         continue;
2385 
2386                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2387                 if (!baser)
2388                         return false;
2389 
2390                 if (!its_alloc_table_entry(its, baser, vpe_id))
2391                         return false;
2392         }
2393 
2394         return true;
2395 }
2396 
2397 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2398                                             int nvecs, bool alloc_lpis)
2399 {
2400         struct its_device *dev;
2401         unsigned long *lpi_map = NULL;
2402         unsigned long flags;
2403         u16 *col_map = NULL;
2404         void *itt;
2405         int lpi_base;
2406         int nr_lpis;
2407         int nr_ites;
2408         int sz;
2409 
2410         if (!its_alloc_device_table(its, dev_id))
2411                 return NULL;
2412 
2413         if (WARN_ON(!is_power_of_2(nvecs)))
2414                 nvecs = roundup_pow_of_two(nvecs);
2415 
2416         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2417         /*
2418          * Even if the device wants a single LPI, the ITT must be
2419          * sized as a power of two (and you need at least one bit...).
2420          */
2421         nr_ites = max(2, nvecs);
2422         sz = nr_ites * its->ite_size;
2423         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2424         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2425         if (alloc_lpis) {
2426                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2427                 if (lpi_map)
2428                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
2429                                           GFP_KERNEL);
2430         } else {
2431                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2432                 nr_lpis = 0;
2433                 lpi_base = 0;
2434         }
2435 
2436         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2437                 kfree(dev);
2438                 kfree(itt);
2439                 kfree(lpi_map);
2440                 kfree(col_map);
2441                 return NULL;
2442         }
2443 
2444         gic_flush_dcache_to_poc(itt, sz);
2445 
2446         dev->its = its;
2447         dev->itt = itt;
2448         dev->nr_ites = nr_ites;
2449         dev->event_map.lpi_map = lpi_map;
2450         dev->event_map.col_map = col_map;
2451         dev->event_map.lpi_base = lpi_base;
2452         dev->event_map.nr_lpis = nr_lpis;
2453         mutex_init(&dev->event_map.vlpi_lock);
2454         dev->device_id = dev_id;
2455         INIT_LIST_HEAD(&dev->entry);
2456 
2457         raw_spin_lock_irqsave(&its->lock, flags);
2458         list_add(&dev->entry, &its->its_device_list);
2459         raw_spin_unlock_irqrestore(&its->lock, flags);
2460 
2461         /* Map device to its ITT */
2462         its_send_mapd(dev, 1);
2463 
2464         return dev;
2465 }
2466 
2467 static void its_free_device(struct its_device *its_dev)
2468 {
2469         unsigned long flags;
2470 
2471         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2472         list_del(&its_dev->entry);
2473         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2474         kfree(its_dev->itt);
2475         kfree(its_dev);
2476 }
2477 
2478 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2479 {
2480         int idx;
2481 
2482         /* Find a free LPI region in lpi_map and allocate them. */
2483         idx = bitmap_find_free_region(dev->event_map.lpi_map,
2484                                       dev->event_map.nr_lpis,
2485                                       get_count_order(nvecs));
2486         if (idx < 0)
2487                 return -ENOSPC;
2488 
2489         *hwirq = dev->event_map.lpi_base + idx;
2490 
2491         return 0;
2492 }
2493 
2494 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2495                            int nvec, msi_alloc_info_t *info)
2496 {
2497         struct its_node *its;
2498         struct its_device *its_dev;
2499         struct msi_domain_info *msi_info;
2500         u32 dev_id;
2501         int err = 0;
2502 
2503         /*
2504          * We ignore "dev" entirely, and rely on the dev_id that has
2505          * been passed via the scratchpad. This limits this domain's
2506          * usefulness to upper layers that definitely know that they
2507          * are built on top of the ITS.
2508          */
2509         dev_id = info->scratchpad[0].ul;
2510 
2511         msi_info = msi_get_domain_info(domain);
2512         its = msi_info->data;
2513 
2514         if (!gic_rdists->has_direct_lpi &&
2515             vpe_proxy.dev &&
2516             vpe_proxy.dev->its == its &&
2517             dev_id == vpe_proxy.dev->device_id) {
2518                 /* Bad luck. Get yourself a better implementation */
2519                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2520                           dev_id);
2521                 return -EINVAL;
2522         }
2523 
2524         mutex_lock(&its->dev_alloc_lock);
2525         its_dev = its_find_device(its, dev_id);
2526         if (its_dev) {
2527                 /*
2528                  * We already have seen this ID, probably through
2529                  * another alias (PCI bridge of some sort). No need to
2530                  * create the device.
2531                  */
2532                 its_dev->shared = true;
2533                 pr_debug("Reusing ITT for devID %x\n", dev_id);
2534                 goto out;
2535         }
2536 
2537         its_dev = its_create_device(its, dev_id, nvec, true);
2538         if (!its_dev) {
2539                 err = -ENOMEM;
2540                 goto out;
2541         }
2542 
2543         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2544 out:
2545         mutex_unlock(&its->dev_alloc_lock);
2546         info->scratchpad[0].ptr = its_dev;
2547         return err;
2548 }
2549 
2550 static struct msi_domain_ops its_msi_domain_ops = {
2551         .msi_prepare    = its_msi_prepare,
2552 };
2553 
2554 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2555                                     unsigned int virq,
2556                                     irq_hw_number_t hwirq)
2557 {
2558         struct irq_fwspec fwspec;
2559 
2560         if (irq_domain_get_of_node(domain->parent)) {
2561                 fwspec.fwnode = domain->parent->fwnode;
2562                 fwspec.param_count = 3;
2563                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2564                 fwspec.param[1] = hwirq;
2565                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2566         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2567                 fwspec.fwnode = domain->parent->fwnode;
2568                 fwspec.param_count = 2;
2569                 fwspec.param[0] = hwirq;
2570                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2571         } else {
2572                 return -EINVAL;
2573         }
2574 
2575         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2576 }
2577 
2578 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2579                                 unsigned int nr_irqs, void *args)
2580 {
2581         msi_alloc_info_t *info = args;
2582         struct its_device *its_dev = info->scratchpad[0].ptr;
2583         struct its_node *its = its_dev->its;
2584         irq_hw_number_t hwirq;
2585         int err;
2586         int i;
2587 
2588         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2589         if (err)
2590                 return err;
2591 
2592         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2593         if (err)
2594                 return err;
2595 
2596         for (i = 0; i < nr_irqs; i++) {
2597                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2598                 if (err)
2599                         return err;
2600 
2601                 irq_domain_set_hwirq_and_chip(domain, virq + i,
2602                                               hwirq + i, &its_irq_chip, its_dev);
2603                 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2604                 pr_debug("ID:%d pID:%d vID:%d\n",
2605                          (int)(hwirq + i - its_dev->event_map.lpi_base),
2606                          (int)(hwirq + i), virq + i);
2607         }
2608 
2609         return 0;
2610 }
2611 
2612 static int its_irq_domain_activate(struct irq_domain *domain,
2613                                    struct irq_data *d, bool reserve)
2614 {
2615         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2616         u32 event = its_get_event_id(d);
2617         const struct cpumask *cpu_mask = cpu_online_mask;
2618         int cpu;
2619 
2620         /* get the cpu_mask of local node */
2621         if (its_dev->its->numa_node >= 0)
2622                 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2623 
2624         /* Bind the LPI to the first possible CPU */
2625         cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2626         if (cpu >= nr_cpu_ids) {
2627                 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2628                         return -EINVAL;
2629 
2630                 cpu = cpumask_first(cpu_online_mask);
2631         }
2632 
2633         its_dev->event_map.col_map[event] = cpu;
2634         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2635 
2636         /* Map the GIC IRQ and event to the device */
2637         its_send_mapti(its_dev, d->hwirq, event);
2638         return 0;
2639 }
2640 
2641 static void its_irq_domain_deactivate(struct irq_domain *domain,
2642                                       struct irq_data *d)
2643 {
2644         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2645         u32 event = its_get_event_id(d);
2646 
2647         /* Stop the delivery of interrupts */
2648         its_send_discard(its_dev, event);
2649 }
2650 
2651 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2652                                 unsigned int nr_irqs)
2653 {
2654         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2655         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2656         struct its_node *its = its_dev->its;
2657         int i;
2658 
2659         bitmap_release_region(its_dev->event_map.lpi_map,
2660                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
2661                               get_count_order(nr_irqs));
2662 
2663         for (i = 0; i < nr_irqs; i++) {
2664                 struct irq_data *data = irq_domain_get_irq_data(domain,
2665                                                                 virq + i);
2666                 /* Nuke the entry in the domain */
2667                 irq_domain_reset_irq_data(data);
2668         }
2669 
2670         mutex_lock(&its->dev_alloc_lock);
2671 
2672         /*
2673          * If all interrupts have been freed, start mopping the
2674          * floor. This is conditionned on the device not being shared.
2675          */
2676         if (!its_dev->shared &&
2677             bitmap_empty(its_dev->event_map.lpi_map,
2678                          its_dev->event_map.nr_lpis)) {
2679                 its_lpi_free(its_dev->event_map.lpi_map,
2680                              its_dev->event_map.lpi_base,
2681                              its_dev->event_map.nr_lpis);
2682                 kfree(its_dev->event_map.col_map);
2683 
2684                 /* Unmap device/itt */
2685                 its_send_mapd(its_dev, 0);
2686                 its_free_device(its_dev);
2687         }
2688 
2689         mutex_unlock(&its->dev_alloc_lock);
2690 
2691         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2692 }
2693 
2694 static const struct irq_domain_ops its_domain_ops = {
2695         .alloc                  = its_irq_domain_alloc,
2696         .free                   = its_irq_domain_free,
2697         .activate               = its_irq_domain_activate,
2698         .deactivate             = its_irq_domain_deactivate,
2699 };
2700 
2701 /*
2702  * This is insane.
2703  *
2704  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2705  * likely), the only way to perform an invalidate is to use a fake
2706  * device to issue an INV command, implying that the LPI has first
2707  * been mapped to some event on that device. Since this is not exactly
2708  * cheap, we try to keep that mapping around as long as possible, and
2709  * only issue an UNMAP if we're short on available slots.
2710  *
2711  * Broken by design(tm).
2712  */
2713 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2714 {
2715         /* Already unmapped? */
2716         if (vpe->vpe_proxy_event == -1)
2717                 return;
2718 
2719         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2720         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2721 
2722         /*
2723          * We don't track empty slots at all, so let's move the
2724          * next_victim pointer if we can quickly reuse that slot
2725          * instead of nuking an existing entry. Not clear that this is
2726          * always a win though, and this might just generate a ripple
2727          * effect... Let's just hope VPEs don't migrate too often.
2728          */
2729         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2730                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2731 
2732         vpe->vpe_proxy_event = -1;
2733 }
2734 
2735 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2736 {
2737         if (!gic_rdists->has_direct_lpi) {
2738                 unsigned long flags;
2739 
2740                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2741                 its_vpe_db_proxy_unmap_locked(vpe);
2742                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2743         }
2744 }
2745 
2746 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2747 {
2748         /* Already mapped? */
2749         if (vpe->vpe_proxy_event != -1)
2750                 return;
2751 
2752         /* This slot was already allocated. Kick the other VPE out. */
2753         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2754                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2755 
2756         /* Map the new VPE instead */
2757         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2758         vpe->vpe_proxy_event = vpe_proxy.next_victim;
2759         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2760 
2761         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2762         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2763 }
2764 
2765 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2766 {
2767         unsigned long flags;
2768         struct its_collection *target_col;
2769 
2770         if (gic_rdists->has_direct_lpi) {
2771                 void __iomem *rdbase;
2772 
2773                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2774                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2775                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2776                         cpu_relax();
2777 
2778                 return;
2779         }
2780 
2781         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2782 
2783         its_vpe_db_proxy_map_locked(vpe);
2784 
2785         target_col = &vpe_proxy.dev->its->collections[to];
2786         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2787         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2788 
2789         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2790 }
2791 
2792 static int its_vpe_set_affinity(struct irq_data *d,
2793                                 const struct cpumask *mask_val,
2794                                 bool force)
2795 {
2796         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2797         int cpu = cpumask_first(mask_val);
2798 
2799         /*
2800          * Changing affinity is mega expensive, so let's be as lazy as
2801          * we can and only do it if we really have to. Also, if mapped
2802          * into the proxy device, we need to move the doorbell
2803          * interrupt to its new location.
2804          */
2805         if (vpe->col_idx != cpu) {
2806                 int from = vpe->col_idx;
2807 
2808                 vpe->col_idx = cpu;
2809                 its_send_vmovp(vpe);
2810                 its_vpe_db_proxy_move(vpe, from, cpu);
2811         }
2812 
2813         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2814 
2815         return IRQ_SET_MASK_OK_DONE;
2816 }
2817 
2818 static void its_vpe_schedule(struct its_vpe *vpe)
2819 {
2820         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2821         u64 val;
2822 
2823         /* Schedule the VPE */
2824         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2825                 GENMASK_ULL(51, 12);
2826         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2827         val |= GICR_VPROPBASER_RaWb;
2828         val |= GICR_VPROPBASER_InnerShareable;
2829         gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2830 
2831         val  = virt_to_phys(page_address(vpe->vpt_page)) &
2832                 GENMASK_ULL(51, 16);
2833         val |= GICR_VPENDBASER_RaWaWb;
2834         val |= GICR_VPENDBASER_NonShareable;
2835         /*
2836          * There is no good way of finding out if the pending table is
2837          * empty as we can race against the doorbell interrupt very
2838          * easily. So in the end, vpe->pending_last is only an
2839          * indication that the vcpu has something pending, not one
2840          * that the pending table is empty. A good implementation
2841          * would be able to read its coarse map pretty quickly anyway,
2842          * making this a tolerable issue.
2843          */
2844         val |= GICR_VPENDBASER_PendingLast;
2845         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2846         val |= GICR_VPENDBASER_Valid;
2847         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2848 }
2849 
2850 static void its_vpe_deschedule(struct its_vpe *vpe)
2851 {
2852         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2853         u64 val;
2854 
2855         val = its_clear_vpend_valid(vlpi_base);
2856 
2857         if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2858                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2859                 vpe->idai = false;
2860                 vpe->pending_last = true;
2861         } else {
2862                 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2863                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2864         }
2865 }
2866 
2867 static void its_vpe_invall(struct its_vpe *vpe)
2868 {
2869         struct its_node *its;
2870 
2871         list_for_each_entry(its, &its_nodes, entry) {
2872                 if (!its->is_v4)
2873                         continue;
2874 
2875                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2876                         continue;
2877 
2878                 /*
2879                  * Sending a VINVALL to a single ITS is enough, as all
2880                  * we need is to reach the redistributors.
2881                  */
2882                 its_send_vinvall(its, vpe);
2883                 return;
2884         }
2885 }
2886 
2887 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2888 {
2889         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2890         struct its_cmd_info *info = vcpu_info;
2891 
2892         switch (info->cmd_type) {
2893         case SCHEDULE_VPE:
2894                 its_vpe_schedule(vpe);
2895                 return 0;
2896 
2897         case DESCHEDULE_VPE:
2898                 its_vpe_deschedule(vpe);
2899                 return 0;
2900 
2901         case INVALL_VPE:
2902                 its_vpe_invall(vpe);
2903                 return 0;
2904 
2905         default:
2906                 return -EINVAL;
2907         }
2908 }
2909 
2910 static void its_vpe_send_cmd(struct its_vpe *vpe,
2911                              void (*cmd)(struct its_device *, u32))
2912 {
2913         unsigned long flags;
2914 
2915         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2916 
2917         its_vpe_db_proxy_map_locked(vpe);
2918         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2919 
2920         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2921 }
2922 
2923 static void its_vpe_send_inv(struct irq_data *d)
2924 {
2925         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2926 
2927         if (gic_rdists->has_direct_lpi) {
2928                 void __iomem *rdbase;
2929 
2930                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2931                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2932                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2933                         cpu_relax();
2934         } else {
2935                 its_vpe_send_cmd(vpe, its_send_inv);
2936         }
2937 }
2938 
2939 static void its_vpe_mask_irq(struct irq_data *d)
2940 {
2941         /*
2942          * We need to unmask the LPI, which is described by the parent
2943          * irq_data. Instead of calling into the parent (which won't
2944          * exactly do the right thing, let's simply use the
2945          * parent_data pointer. Yes, I'm naughty.
2946          */
2947         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2948         its_vpe_send_inv(d);
2949 }
2950 
2951 static void its_vpe_unmask_irq(struct irq_data *d)
2952 {
2953         /* Same hack as above... */
2954         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2955         its_vpe_send_inv(d);
2956 }
2957 
2958 static int its_vpe_set_irqchip_state(struct irq_data *d,
2959                                      enum irqchip_irq_state which,
2960                                      bool state)
2961 {
2962         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2963 
2964         if (which != IRQCHIP_STATE_PENDING)
2965                 return -EINVAL;
2966 
2967         if (gic_rdists->has_direct_lpi) {
2968                 void __iomem *rdbase;
2969 
2970                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2971                 if (state) {
2972                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2973                 } else {
2974                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2975                         while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2976                                 cpu_relax();
2977                 }
2978         } else {
2979                 if (state)
2980                         its_vpe_send_cmd(vpe, its_send_int);
2981                 else
2982                         its_vpe_send_cmd(vpe, its_send_clear);
2983         }
2984 
2985         return 0;
2986 }
2987 
2988 static int its_vpe_retrigger(struct irq_data *d)
2989 {
2990         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
2991 }
2992 
2993 static struct irq_chip its_vpe_irq_chip = {
2994         .name                   = "GICv4-vpe",
2995         .irq_mask               = its_vpe_mask_irq,
2996         .irq_unmask             = its_vpe_unmask_irq,
2997         .irq_eoi                = irq_chip_eoi_parent,
2998         .irq_set_affinity       = its_vpe_set_affinity,
2999         .irq_retrigger          = its_vpe_retrigger,
3000         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
3001         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
3002 };
3003 
3004 static int its_vpe_id_alloc(void)
3005 {
3006         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
3007 }
3008 
3009 static void its_vpe_id_free(u16 id)
3010 {
3011         ida_simple_remove(&its_vpeid_ida, id);
3012 }
3013 
3014 static int its_vpe_init(struct its_vpe *vpe)
3015 {
3016         struct page *vpt_page;
3017         int vpe_id;
3018 
3019         /* Allocate vpe_id */
3020         vpe_id = its_vpe_id_alloc();
3021         if (vpe_id < 0)
3022                 return vpe_id;
3023 
3024         /* Allocate VPT */
3025         vpt_page = its_allocate_pending_table(GFP_KERNEL);
3026         if (!vpt_page) {
3027                 its_vpe_id_free(vpe_id);
3028                 return -ENOMEM;
3029         }
3030 
3031         if (!its_alloc_vpe_table(vpe_id)) {
3032                 its_vpe_id_free(vpe_id);
3033                 its_free_pending_table(vpt_page);
3034                 return -ENOMEM;
3035         }
3036 
3037         vpe->vpe_id = vpe_id;
3038         vpe->vpt_page = vpt_page;
3039         vpe->vpe_proxy_event = -1;
3040 
3041         return 0;
3042 }
3043 
3044 static void its_vpe_teardown(struct its_vpe *vpe)
3045 {
3046         its_vpe_db_proxy_unmap(vpe);
3047         its_vpe_id_free(vpe->vpe_id);
3048         its_free_pending_table(vpe->vpt_page);
3049 }
3050 
3051 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3052                                     unsigned int virq,
3053                                     unsigned int nr_irqs)
3054 {
3055         struct its_vm *vm = domain->host_data;
3056         int i;
3057 
3058         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3059 
3060         for (i = 0; i < nr_irqs; i++) {
3061                 struct irq_data *data = irq_domain_get_irq_data(domain,
3062                                                                 virq + i);
3063                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3064 
3065                 BUG_ON(vm != vpe->its_vm);
3066 
3067                 clear_bit(data->hwirq, vm->db_bitmap);
3068                 its_vpe_teardown(vpe);
3069                 irq_domain_reset_irq_data(data);
3070         }
3071 
3072         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3073                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3074                 its_free_prop_table(vm->vprop_page);
3075         }
3076 }
3077 
3078 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3079                                     unsigned int nr_irqs, void *args)
3080 {
3081         struct its_vm *vm = args;
3082         unsigned long *bitmap;
3083         struct page *vprop_page;
3084         int base, nr_ids, i, err = 0;
3085 
3086         BUG_ON(!vm);
3087 
3088         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3089         if (!bitmap)
3090                 return -ENOMEM;
3091 
3092         if (nr_ids < nr_irqs) {
3093                 its_lpi_free(bitmap, base, nr_ids);
3094                 return -ENOMEM;
3095         }
3096 
3097         vprop_page = its_allocate_prop_table(GFP_KERNEL);
3098         if (!vprop_page) {
3099                 its_lpi_free(bitmap, base, nr_ids);
3100                 return -ENOMEM;
3101         }
3102 
3103         vm->db_bitmap = bitmap;
3104         vm->db_lpi_base = base;
3105         vm->nr_db_lpis = nr_ids;
3106         vm->vprop_page = vprop_page;
3107 
3108         for (i = 0; i < nr_irqs; i++) {
3109                 vm->vpes[i]->vpe_db_lpi = base + i;
3110                 err = its_vpe_init(vm->vpes[i]);
3111                 if (err)
3112                         break;
3113                 err = its_irq_gic_domain_alloc(domain, virq + i,
3114                                                vm->vpes[i]->vpe_db_lpi);
3115                 if (err)
3116                         break;
3117                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3118                                               &its_vpe_irq_chip, vm->vpes[i]);
3119                 set_bit(i, bitmap);
3120         }
3121 
3122         if (err) {
3123                 if (i > 0)
3124                         its_vpe_irq_domain_free(domain, virq, i - 1);
3125 
3126                 its_lpi_free(bitmap, base, nr_ids);
3127                 its_free_prop_table(vprop_page);
3128         }
3129 
3130         return err;
3131 }
3132 
3133 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3134                                        struct irq_data *d, bool reserve)
3135 {
3136         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3137         struct its_node *its;
3138 
3139         /* If we use the list map, we issue VMAPP on demand... */
3140         if (its_list_map)
3141                 return 0;
3142 
3143         /* Map the VPE to the first possible CPU */
3144         vpe->col_idx = cpumask_first(cpu_online_mask);
3145 
3146         list_for_each_entry(its, &its_nodes, entry) {
3147                 if (!its->is_v4)
3148                         continue;
3149 
3150                 its_send_vmapp(its, vpe, true);
3151                 its_send_vinvall(its, vpe);
3152         }
3153 
3154         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3155 
3156         return 0;
3157 }
3158 
3159 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3160                                           struct irq_data *d)
3161 {
3162         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3163         struct its_node *its;
3164 
3165         /*
3166          * If we use the list map, we unmap the VPE once no VLPIs are
3167          * associated with the VM.
3168          */
3169         if (its_list_map)
3170                 return;
3171 
3172         list_for_each_entry(its, &its_nodes, entry) {
3173                 if (!its->is_v4)
3174                         continue;
3175 
3176                 its_send_vmapp(its, vpe, false);
3177         }
3178 }
3179 
3180 static const struct irq_domain_ops its_vpe_domain_ops = {
3181         .alloc                  = its_vpe_irq_domain_alloc,
3182         .free                   = its_vpe_irq_domain_free,
3183         .activate               = its_vpe_irq_domain_activate,
3184         .deactivate             = its_vpe_irq_domain_deactivate,
3185 };
3186 
3187 static int its_force_quiescent(void __iomem *base)
3188 {
3189         u32 count = 1000000;    /* 1s */
3190         u32 val;
3191 
3192         val = readl_relaxed(base + GITS_CTLR);
3193         /*
3194          * GIC architecture specification requires the ITS to be both
3195          * disabled and quiescent for writes to GITS_BASER<n> or
3196          * GITS_CBASER to not have UNPREDICTABLE results.
3197          */
3198         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3199                 return 0;
3200 
3201         /* Disable the generation of all interrupts to this ITS */
3202         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3203         writel_relaxed(val, base + GITS_CTLR);
3204 
3205         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
3206         while (1) {
3207                 val = readl_relaxed(base + GITS_CTLR);
3208                 if (val & GITS_CTLR_QUIESCENT)
3209                         return 0;
3210 
3211                 count--;
3212                 if (!count)
3213                         return -EBUSY;
3214 
3215                 cpu_relax();
3216                 udelay(1);
3217         }
3218 }
3219 
3220 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3221 {
3222         struct its_node *its = data;
3223 
3224         /* erratum 22375: only alloc 8MB table size */
3225         its->device_ids = 0x14;         /* 20 bits, 8MB */
3226         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3227 
3228         return true;
3229 }
3230 
3231 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3232 {
3233         struct its_node *its = data;
3234 
3235         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3236 
3237         return true;
3238 }
3239 
3240 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3241 {
3242         struct its_node *its = data;
3243 
3244         /* On QDF2400, the size of the ITE is 16Bytes */
3245         its->ite_size = 16;
3246 
3247         return true;
3248 }
3249 
3250 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3251 {
3252         struct its_node *its = its_dev->its;
3253 
3254         /*
3255          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3256          * which maps 32-bit writes targeted at a separate window of
3257          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3258          * with device ID taken from bits [device_id_bits + 1:2] of
3259          * the window offset.
3260          */
3261         return its->pre_its_base + (its_dev->device_id << 2);
3262 }
3263 
3264 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3265 {
3266         struct its_node *its = data;
3267         u32 pre_its_window[2];
3268         u32 ids;
3269 
3270         if (!fwnode_property_read_u32_array(its->fwnode_handle,
3271                                            "socionext,synquacer-pre-its",
3272                                            pre_its_window,
3273                                            ARRAY_SIZE(pre_its_window))) {
3274 
3275                 its->pre_its_base = pre_its_window[0];
3276                 its->get_msi_base = its_irq_get_msi_base_pre_its;
3277 
3278                 ids = ilog2(pre_its_window[1]) - 2;
3279                 if (its->device_ids > ids)
3280                         its->device_ids = ids;
3281 
3282                 /* the pre-ITS breaks isolation, so disable MSI remapping */
3283                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3284                 return true;
3285         }
3286         return false;
3287 }
3288 
3289 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3290 {
3291         struct its_node *its = data;
3292 
3293         /*
3294          * Hip07 insists on using the wrong address for the VLPI
3295          * page. Trick it into doing the right thing...
3296          */
3297         its->vlpi_redist_offset = SZ_128K;
3298         return true;
3299 }
3300 
3301 static const struct gic_quirk its_quirks[] = {
3302 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3303         {
3304                 .desc   = "ITS: Cavium errata 22375, 24313",
3305                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3306                 .mask   = 0xffff0fff,
3307                 .init   = its_enable_quirk_cavium_22375,
3308         },
3309 #endif
3310 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3311         {
3312                 .desc   = "ITS: Cavium erratum 23144",
3313                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3314                 .mask   = 0xffff0fff,
3315                 .init   = its_enable_quirk_cavium_23144,
3316         },
3317 #endif
3318 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3319         {
3320                 .desc   = "ITS: QDF2400 erratum 0065",
3321                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
3322                 .mask   = 0xffffffff,
3323                 .init   = its_enable_quirk_qdf2400_e0065,
3324         },
3325 #endif
3326 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3327         {
3328                 /*
3329                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3330                  * implementation, but with a 'pre-ITS' added that requires
3331                  * special handling in software.
3332                  */
3333                 .desc   = "ITS: Socionext Synquacer pre-ITS",
3334                 .iidr   = 0x0001143b,
3335                 .mask   = 0xffffffff,
3336                 .init   = its_enable_quirk_socionext_synquacer,
3337         },
3338 #endif
3339 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3340         {
3341                 .desc   = "ITS: Hip07 erratum 161600802",
3342                 .iidr   = 0x00000004,
3343                 .mask   = 0xffffffff,
3344                 .init   = its_enable_quirk_hip07_161600802,
3345         },
3346 #endif
3347         {
3348         }
3349 };
3350 
3351 static void its_enable_quirks(struct its_node *its)
3352 {
3353         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3354 
3355         gic_enable_quirks(iidr, its_quirks, its);
3356 }
3357 
3358 static int its_save_disable(void)
3359 {
3360         struct its_node *its;
3361         int err = 0;
3362 
3363         raw_spin_lock(&its_lock);
3364         list_for_each_entry(its, &its_nodes, entry) {
3365                 void __iomem *base;
3366 
3367                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3368                         continue;
3369 
3370                 base = its->base;
3371                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3372                 err = its_force_quiescent(base);
3373                 if (err) {
3374                         pr_err("ITS@%pa: failed to quiesce: %d\n",
3375                                &its->phys_base, err);
3376                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3377                         goto err;
3378                 }
3379 
3380                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3381         }
3382 
3383 err:
3384         if (err) {
3385                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3386                         void __iomem *base;
3387 
3388                         if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3389                                 continue;
3390 
3391                         base = its->base;
3392                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3393                 }
3394         }
3395         raw_spin_unlock(&its_lock);
3396 
3397         return err;
3398 }
3399 
3400 static void its_restore_enable(void)
3401 {
3402         struct its_node *its;
3403         int ret;
3404 
3405         raw_spin_lock(&its_lock);
3406         list_for_each_entry(its, &its_nodes, entry) {
3407                 void __iomem *base;
3408                 int i;
3409 
3410                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3411                         continue;
3412 
3413                 base = its->base;
3414 
3415                 /*
3416                  * Make sure that the ITS is disabled. If it fails to quiesce,
3417                  * don't restore it since writing to CBASER or BASER<n>
3418                  * registers is undefined according to the GIC v3 ITS
3419                  * Specification.
3420                  */
3421                 ret = its_force_quiescent(base);
3422                 if (ret) {
3423                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3424                                &its->phys_base, ret);
3425                         continue;
3426                 }
3427 
3428                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3429 
3430                 /*
3431                  * Writing CBASER resets CREADR to 0, so make CWRITER and
3432                  * cmd_write line up with it.
3433                  */
3434                 its->cmd_write = its->cmd_base;
3435                 gits_write_cwriter(0, base + GITS_CWRITER);
3436 
3437                 /* Restore GITS_BASER from the value cache. */
3438                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3439                         struct its_baser *baser = &its->tables[i];
3440 
3441                         if (!(baser->val & GITS_BASER_VALID))
3442                                 continue;
3443 
3444                         its_write_baser(its, baser, baser->val);
3445                 }
3446                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3447 
3448                 /*
3449                  * Reinit the collection if it's stored in the ITS. This is
3450                  * indicated by the col_id being less than the HCC field.
3451                  * CID < HCC as specified in the GIC v3 Documentation.
3452                  */
3453                 if (its->collections[smp_processor_id()].col_id <
3454                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3455                         its_cpu_init_collection(its);
3456         }
3457         raw_spin_unlock(&its_lock);
3458 }
3459 
3460 static struct syscore_ops its_syscore_ops = {
3461         .suspend = its_save_disable,
3462         .resume = its_restore_enable,
3463 };
3464 
3465 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3466 {
3467         struct irq_domain *inner_domain;
3468         struct msi_domain_info *info;
3469 
3470         info = kzalloc(sizeof(*info), GFP_KERNEL);
3471         if (!info)
3472                 return -ENOMEM;
3473 
3474         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3475         if (!inner_domain) {
3476                 kfree(info);
3477                 return -ENOMEM;
3478         }
3479 
3480         inner_domain->parent = its_parent;
3481         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3482         inner_domain->flags |= its->msi_domain_flags;
3483         info->ops = &its_msi_domain_ops;
3484         info->data = its;
3485         inner_domain->host_data = info;
3486 
3487         return 0;
3488 }
3489 
3490 static int its_init_vpe_domain(void)
3491 {
3492         struct its_node *its;
3493         u32 devid;
3494         int entries;
3495 
3496         if (gic_rdists->has_direct_lpi) {
3497                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3498                 return 0;
3499         }
3500 
3501         /* Any ITS will do, even if not v4 */
3502         its = list_first_entry(&its_nodes, struct its_node, entry);
3503 
3504         entries = roundup_pow_of_two(nr_cpu_ids);
3505         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3506                                  GFP_KERNEL);
3507         if (!vpe_proxy.vpes) {
3508                 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3509                 return -ENOMEM;
3510         }
3511 
3512         /* Use the last possible DevID */
3513         devid = GENMASK(its->device_ids - 1, 0);
3514         vpe_proxy.dev = its_create_device(its, devid, entries, false);
3515         if (!vpe_proxy.dev) {
3516                 kfree(vpe_proxy.vpes);
3517                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3518                 return -ENOMEM;
3519         }
3520 
3521         BUG_ON(entries > vpe_proxy.dev->nr_ites);
3522 
3523         raw_spin_lock_init(&vpe_proxy.lock);
3524         vpe_proxy.next_victim = 0;
3525         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3526                 devid, vpe_proxy.dev->nr_ites);
3527 
3528         return 0;
3529 }
3530 
3531 static int __init its_compute_its_list_map(struct resource *res,
3532                                            void __iomem *its_base)
3533 {
3534         int its_number;
3535         u32 ctlr;
3536 
3537         /*
3538          * This is assumed to be done early enough that we're
3539          * guaranteed to be single-threaded, hence no
3540          * locking. Should this change, we should address
3541          * this.
3542          */
3543         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3544         if (its_number >= GICv4_ITS_LIST_MAX) {
3545                 pr_err("ITS@%pa: No ITSList entry available!\n",
3546                        &res->start);
3547                 return -EINVAL;
3548         }
3549 
3550         ctlr = readl_relaxed(its_base + GITS_CTLR);
3551         ctlr &= ~GITS_CTLR_ITS_NUMBER;
3552         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3553         writel_relaxed(ctlr, its_base + GITS_CTLR);
3554         ctlr = readl_relaxed(its_base + GITS_CTLR);
3555         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3556                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3557                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3558         }
3559 
3560         if (test_and_set_bit(its_number, &its_list_map)) {
3561                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3562                        &res->start, its_number);
3563                 return -EINVAL;
3564         }
3565 
3566         return its_number;
3567 }
3568 
3569 static int __init its_probe_one(struct resource *res,
3570                                 struct fwnode_handle *handle, int numa_node)
3571 {
3572         struct its_node *its;
3573         void __iomem *its_base;
3574         u32 val, ctlr;
3575         u64 baser, tmp, typer;
3576         struct page *page;
3577         int err;
3578 
3579         its_base = ioremap(res->start, resource_size(res));
3580         if (!its_base) {
3581                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3582                 return -ENOMEM;
3583         }
3584 
3585         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3586         if (val != 0x30 && val != 0x40) {
3587                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3588                 err = -ENODEV;
3589                 goto out_unmap;
3590         }
3591 
3592         err = its_force_quiescent(its_base);
3593         if (err) {
3594                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3595                 goto out_unmap;
3596         }
3597 
3598         pr_info("ITS %pR\n", res);
3599 
3600         its = kzalloc(sizeof(*its), GFP_KERNEL);
3601         if (!its) {
3602                 err = -ENOMEM;
3603                 goto out_unmap;
3604         }
3605 
3606         raw_spin_lock_init(&its->lock);
3607         mutex_init(&its->dev_alloc_lock);
3608         INIT_LIST_HEAD(&its->entry);
3609         INIT_LIST_HEAD(&its->its_device_list);
3610         typer = gic_read_typer(its_base + GITS_TYPER);
3611         its->base = its_base;
3612         its->phys_base = res->start;
3613         its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3614         its->device_ids = GITS_TYPER_DEVBITS(typer);
3615         its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3616         if (its->is_v4) {
3617                 if (!(typer & GITS_TYPER_VMOVP)) {
3618                         err = its_compute_its_list_map(res, its_base);
3619                         if (err < 0)
3620                                 goto out_free_its;
3621 
3622                         its->list_nr = err;
3623 
3624                         pr_info("ITS@%pa: Using ITS number %d\n",
3625                                 &res->start, err);
3626                 } else {
3627                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3628                 }
3629         }
3630 
3631         its->numa_node = numa_node;
3632 
3633         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3634                                 get_order(ITS_CMD_QUEUE_SZ));
3635         if (!page) {
3636                 err = -ENOMEM;
3637                 goto out_free_its;
3638         }
3639         its->cmd_base = (void *)page_address(page);
3640         its->cmd_write = its->cmd_base;
3641         its->fwnode_handle = handle;
3642         its->get_msi_base = its_irq_get_msi_base;
3643         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3644 
3645         its_enable_quirks(its);
3646 
3647         err = its_alloc_tables(its);
3648         if (err)
3649                 goto out_free_cmd;
3650 
3651         err = its_alloc_collections(its);
3652         if (err)
3653                 goto out_free_tables;
3654 
3655         baser = (virt_to_phys(its->cmd_base)    |
3656                  GITS_CBASER_RaWaWb             |
3657                  GITS_CBASER_InnerShareable     |
3658                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3659                  GITS_CBASER_VALID);
3660 
3661         gits_write_cbaser(baser, its->base + GITS_CBASER);
3662         tmp = gits_read_cbaser(its->base + GITS_CBASER);
3663 
3664         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3665                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3666                         /*
3667                          * The HW reports non-shareable, we must
3668                          * remove the cacheability attributes as
3669                          * well.
3670                          */
3671                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3672                                    GITS_CBASER_CACHEABILITY_MASK);
3673                         baser |= GITS_CBASER_nC;
3674                         gits_write_cbaser(baser, its->base + GITS_CBASER);
3675                 }
3676                 pr_info("ITS: using cache flushing for cmd queue\n");
3677                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3678         }
3679 
3680         gits_write_cwriter(0, its->base + GITS_CWRITER);
3681         ctlr = readl_relaxed(its->base + GITS_CTLR);
3682         ctlr |= GITS_CTLR_ENABLE;
3683         if (its->is_v4)
3684                 ctlr |= GITS_CTLR_ImDe;
3685         writel_relaxed(ctlr, its->base + GITS_CTLR);
3686 
3687         if (GITS_TYPER_HCC(typer))
3688                 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3689 
3690         err = its_init_domain(handle, its);
3691         if (err)
3692                 goto out_free_tables;
3693 
3694         raw_spin_lock(&its_lock);
3695         list_add(&its->entry, &its_nodes);
3696         raw_spin_unlock(&its_lock);
3697 
3698         return 0;
3699 
3700 out_free_tables:
3701         its_free_tables(its);
3702 out_free_cmd:
3703         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3704 out_free_its:
3705         kfree(its);
3706 out_unmap:
3707         iounmap(its_base);
3708         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3709         return err;
3710 }
3711 
3712 static bool gic_rdists_supports_plpis(void)
3713 {
3714         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3715 }
3716 
3717 static int redist_disable_lpis(void)
3718 {
3719         void __iomem *rbase = gic_data_rdist_rd_base();
3720         u64 timeout = USEC_PER_SEC;
3721         u64 val;
3722 
3723         if (!gic_rdists_supports_plpis()) {
3724                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3725                 return -ENXIO;
3726         }
3727 
3728         val = readl_relaxed(rbase + GICR_CTLR);
3729         if (!(val & GICR_CTLR_ENABLE_LPIS))
3730                 return 0;
3731 
3732         /*
3733          * If coming via a CPU hotplug event, we don't need to disable
3734          * LPIs before trying to re-enable them. They are already
3735          * configured and all is well in the world.
3736          *
3737          * If running with preallocated tables, there is nothing to do.
3738          */
3739         if (gic_data_rdist()->lpi_enabled ||
3740             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3741                 return 0;
3742 
3743         /*
3744          * From that point on, we only try to do some damage control.
3745          */
3746         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3747                 smp_processor_id());
3748         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3749 
3750         /* Disable LPIs */
3751         val &= ~GICR_CTLR_ENABLE_LPIS;
3752         writel_relaxed(val, rbase + GICR_CTLR);
3753 
3754         /* Make sure any change to GICR_CTLR is observable by the GIC */
3755         dsb(sy);
3756 
3757         /*
3758          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3759          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3760          * Error out if we time out waiting for RWP to clear.
3761          */
3762         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3763                 if (!timeout) {
3764                         pr_err("CPU%d: Timeout while disabling LPIs\n",
3765                                smp_processor_id());
3766                         return -ETIMEDOUT;
3767                 }
3768                 udelay(1);
3769                 timeout--;
3770         }
3771 
3772         /*
3773          * After it has been written to 1, it is IMPLEMENTATION
3774          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3775          * cleared to 0. Error out if clearing the bit failed.
3776          */
3777         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3778                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3779                 return -EBUSY;
3780         }
3781 
3782         return 0;
3783 }
3784 
3785 int its_cpu_init(void)
3786 {
3787         if (!list_empty(&its_nodes)) {
3788                 int ret;
3789 
3790                 ret = redist_disable_lpis();
3791                 if (ret)
3792                         return ret;
3793 
3794                 its_cpu_init_lpis();
3795                 its_cpu_init_collections();
3796         }
3797 
3798         return 0;
3799 }
3800 
3801 static const struct of_device_id its_device_id[] = {
3802         {       .compatible     = "arm,gic-v3-its",     },
3803         {},
3804 };
3805 
3806 static int __init its_of_probe(struct device_node *node)
3807 {
3808         struct device_node *np;
3809         struct resource res;
3810 
3811         for (np = of_find_matching_node(node, its_device_id); np;
3812              np = of_find_matching_node(np, its_device_id)) {
3813                 if (!of_device_is_available(np))
3814                         continue;
3815                 if (!of_property_read_bool(np, "msi-controller")) {
3816                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3817                                 np);
3818                         continue;
3819                 }
3820 
3821                 if (of_address_to_resource(np, 0, &res)) {
3822                         pr_warn("%pOF: no regs?\n", np);
3823                         continue;
3824                 }
3825 
3826                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3827         }
3828         return 0;
3829 }
3830 
3831 #ifdef CONFIG_ACPI
3832 
3833 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3834 
3835 #ifdef CONFIG_ACPI_NUMA
3836 struct its_srat_map {
3837         /* numa node id */
3838         u32     numa_node;
3839         /* GIC ITS ID */
3840         u32     its_id;
3841 };
3842 
3843 static struct its_srat_map *its_srat_maps __initdata;
3844 static int its_in_srat __initdata;
3845 
3846 static int __init acpi_get_its_numa_node(u32 its_id)
3847 {
3848         int i;
3849 
3850         for (i = 0; i < its_in_srat; i++) {
3851                 if (its_id == its_srat_maps[i].its_id)
3852                         return its_srat_maps[i].numa_node;
3853         }
3854         return NUMA_NO_NODE;
3855 }
3856 
3857 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
3858                                           const unsigned long end)
3859 {
3860         return 0;
3861 }
3862 
3863 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
3864                          const unsigned long end)
3865 {
3866         int node;
3867         struct acpi_srat_gic_its_affinity *its_affinity;
3868 
3869         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3870         if (!its_affinity)
3871                 return -EINVAL;
3872 
3873         if (its_affinity->header.length < sizeof(*its_affinity)) {
3874                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3875                         its_affinity->header.length);
3876                 return -EINVAL;
3877         }
3878 
3879         node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3880 
3881         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3882                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3883                 return 0;
3884         }
3885 
3886         its_srat_maps[its_in_srat].numa_node = node;
3887         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3888         its_in_srat++;
3889         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3890                 its_affinity->proximity_domain, its_affinity->its_id, node);
3891 
3892         return 0;
3893 }
3894 
3895 static void __init acpi_table_parse_srat_its(void)
3896 {
3897         int count;
3898 
3899         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3900                         sizeof(struct acpi_table_srat),
3901                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3902                         gic_acpi_match_srat_its, 0);
3903         if (count <= 0)
3904                 return;
3905 
3906         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3907                                       GFP_KERNEL);
3908         if (!its_srat_maps) {
3909                 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3910                 return;
3911         }
3912 
3913         acpi_table_parse_entries(ACPI_SIG_SRAT,
3914                         sizeof(struct acpi_table_srat),
3915                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3916                         gic_acpi_parse_srat_its, 0);
3917 }
3918 
3919 /* free the its_srat_maps after ITS probing */
3920 static void __init acpi_its_srat_maps_free(void)
3921 {
3922         kfree(its_srat_maps);
3923 }
3924 #else
3925 static void __init acpi_table_parse_srat_its(void)      { }
3926 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3927 static void __init acpi_its_srat_maps_free(void) { }
3928 #endif
3929 
3930 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3931                                           const unsigned long end)
3932 {
3933         struct acpi_madt_generic_translator *its_entry;
3934         struct fwnode_handle *dom_handle;
3935         struct resource res;
3936         int err;
3937 
3938         its_entry = (struct acpi_madt_generic_translator *)header;
3939         memset(&res, 0, sizeof(res));
3940         res.start = its_entry->base_address;
3941         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3942         res.flags = IORESOURCE_MEM;
3943 
3944         dom_handle = irq_domain_alloc_fwnode(&res.start);
3945         if (!dom_handle) {
3946                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3947                        &res.start);
3948                 return -ENOMEM;
3949         }
3950 
3951         err = iort_register_domain_token(its_entry->translation_id, res.start,
3952                                          dom_handle);
3953         if (err) {
3954                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3955                        &res.start, its_entry->translation_id);
3956                 goto dom_err;
3957         }
3958 
3959         err = its_probe_one(&res, dom_handle,
3960                         acpi_get_its_numa_node(its_entry->translation_id));
3961         if (!err)
3962                 return 0;
3963 
3964         iort_deregister_domain_token(its_entry->translation_id);
3965 dom_err:
3966         irq_domain_free_fwnode(dom_handle);
3967         return err;
3968 }
3969 
3970 static void __init its_acpi_probe(void)
3971 {
3972         acpi_table_parse_srat_its();
3973         acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3974                               gic_acpi_parse_madt_its, 0);
3975         acpi_its_srat_maps_free();
3976 }
3977 #else
3978 static void __init its_acpi_probe(void) { }
3979 #endif
3980 
3981 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3982                     struct irq_domain *parent_domain)
3983 {
3984         struct device_node *of_node;
3985         struct its_node *its;
3986         bool has_v4 = false;
3987         int err;
3988 
3989         its_parent = parent_domain;
3990         of_node = to_of_node(handle);
3991         if (of_node)
3992                 its_of_probe(of_node);
3993         else
3994                 its_acpi_probe();
3995 
3996         if (list_empty(&its_nodes)) {
3997                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3998                 return -ENXIO;
3999         }
4000 
4001         gic_rdists = rdists;
4002 
4003         err = allocate_lpi_tables();
4004         if (err)
4005                 return err;
4006 
4007         list_for_each_entry(its, &its_nodes, entry)
4008                 has_v4 |= its->is_v4;
4009 
4010         if (has_v4 & rdists->has_vlpis) {
4011                 if (its_init_vpe_domain() ||
4012                     its_init_v4(parent_domain, &its_vpe_domain_ops)) {
4013                         rdists->has_vlpis = false;
4014                         pr_err("ITS: Disabling GICv4 support\n");
4015                 }
4016         }
4017 
4018         register_syscore_ops(&its_syscore_ops);
4019 
4020         return 0;
4021 }

/* [<][>][^][v][top][bottom][index][help] */