root/drivers/i2c/busses/i2c-nomadik.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. i2c_set_bit
  2. i2c_clr_bit
  3. flush_i2c_fifo
  4. disable_all_interrupts
  5. clear_all_interrupts
  6. init_hw
  7. load_i2c_mcr_reg
  8. setup_i2c_controller
  9. read_i2c
  10. fill_tx_fifo
  11. write_i2c
  12. nmk_i2c_xfer_one
  13. nmk_i2c_xfer
  14. disable_interrupts
  15. i2c_irq_handler
  16. nmk_i2c_suspend_late
  17. nmk_i2c_resume_early
  18. nmk_i2c_runtime_suspend
  19. nmk_i2c_runtime_resume
  20. nmk_i2c_functionality
  21. nmk_i2c_of_probe
  22. nmk_i2c_probe
  23. nmk_i2c_remove
  24. nmk_i2c_init
  25. nmk_i2c_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) 2009 ST-Ericsson SA
   4  * Copyright (C) 2009 STMicroelectronics
   5  *
   6  * I2C master mode controller driver, used in Nomadik 8815
   7  * and Ux500 platforms.
   8  *
   9  * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
  10  * Author: Sachin Verma <sachin.verma@st.com>
  11  */
  12 #include <linux/init.h>
  13 #include <linux/module.h>
  14 #include <linux/amba/bus.h>
  15 #include <linux/slab.h>
  16 #include <linux/interrupt.h>
  17 #include <linux/i2c.h>
  18 #include <linux/err.h>
  19 #include <linux/clk.h>
  20 #include <linux/io.h>
  21 #include <linux/pm_runtime.h>
  22 #include <linux/of.h>
  23 #include <linux/pinctrl/consumer.h>
  24 
  25 #define DRIVER_NAME "nmk-i2c"
  26 
  27 /* I2C Controller register offsets */
  28 #define I2C_CR          (0x000)
  29 #define I2C_SCR         (0x004)
  30 #define I2C_HSMCR       (0x008)
  31 #define I2C_MCR         (0x00C)
  32 #define I2C_TFR         (0x010)
  33 #define I2C_SR          (0x014)
  34 #define I2C_RFR         (0x018)
  35 #define I2C_TFTR        (0x01C)
  36 #define I2C_RFTR        (0x020)
  37 #define I2C_DMAR        (0x024)
  38 #define I2C_BRCR        (0x028)
  39 #define I2C_IMSCR       (0x02C)
  40 #define I2C_RISR        (0x030)
  41 #define I2C_MISR        (0x034)
  42 #define I2C_ICR         (0x038)
  43 
  44 /* Control registers */
  45 #define I2C_CR_PE               (0x1 << 0)      /* Peripheral Enable */
  46 #define I2C_CR_OM               (0x3 << 1)      /* Operating mode */
  47 #define I2C_CR_SAM              (0x1 << 3)      /* Slave addressing mode */
  48 #define I2C_CR_SM               (0x3 << 4)      /* Speed mode */
  49 #define I2C_CR_SGCM             (0x1 << 6)      /* Slave general call mode */
  50 #define I2C_CR_FTX              (0x1 << 7)      /* Flush Transmit */
  51 #define I2C_CR_FRX              (0x1 << 8)      /* Flush Receive */
  52 #define I2C_CR_DMA_TX_EN        (0x1 << 9)      /* DMA Tx enable */
  53 #define I2C_CR_DMA_RX_EN        (0x1 << 10)     /* DMA Rx Enable */
  54 #define I2C_CR_DMA_SLE          (0x1 << 11)     /* DMA sync. logic enable */
  55 #define I2C_CR_LM               (0x1 << 12)     /* Loopback mode */
  56 #define I2C_CR_FON              (0x3 << 13)     /* Filtering on */
  57 #define I2C_CR_FS               (0x3 << 15)     /* Force stop enable */
  58 
  59 /* Master controller (MCR) register */
  60 #define I2C_MCR_OP              (0x1 << 0)      /* Operation */
  61 #define I2C_MCR_A7              (0x7f << 1)     /* 7-bit address */
  62 #define I2C_MCR_EA10            (0x7 << 8)      /* 10-bit Extended address */
  63 #define I2C_MCR_SB              (0x1 << 11)     /* Extended address */
  64 #define I2C_MCR_AM              (0x3 << 12)     /* Address type */
  65 #define I2C_MCR_STOP            (0x1 << 14)     /* Stop condition */
  66 #define I2C_MCR_LENGTH          (0x7ff << 15)   /* Transaction length */
  67 
  68 /* Status register (SR) */
  69 #define I2C_SR_OP               (0x3 << 0)      /* Operation */
  70 #define I2C_SR_STATUS           (0x3 << 2)      /* controller status */
  71 #define I2C_SR_CAUSE            (0x7 << 4)      /* Abort cause */
  72 #define I2C_SR_TYPE             (0x3 << 7)      /* Receive type */
  73 #define I2C_SR_LENGTH           (0x7ff << 9)    /* Transfer length */
  74 
  75 /* Interrupt mask set/clear (IMSCR) bits */
  76 #define I2C_IT_TXFE             (0x1 << 0)
  77 #define I2C_IT_TXFNE            (0x1 << 1)
  78 #define I2C_IT_TXFF             (0x1 << 2)
  79 #define I2C_IT_TXFOVR           (0x1 << 3)
  80 #define I2C_IT_RXFE             (0x1 << 4)
  81 #define I2C_IT_RXFNF            (0x1 << 5)
  82 #define I2C_IT_RXFF             (0x1 << 6)
  83 #define I2C_IT_RFSR             (0x1 << 16)
  84 #define I2C_IT_RFSE             (0x1 << 17)
  85 #define I2C_IT_WTSR             (0x1 << 18)
  86 #define I2C_IT_MTD              (0x1 << 19)
  87 #define I2C_IT_STD              (0x1 << 20)
  88 #define I2C_IT_MAL              (0x1 << 24)
  89 #define I2C_IT_BERR             (0x1 << 25)
  90 #define I2C_IT_MTDWS            (0x1 << 28)
  91 
  92 #define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
  93 
  94 /* some bits in ICR are reserved */
  95 #define I2C_CLEAR_ALL_INTS      0x131f007f
  96 
  97 /* first three msb bits are reserved */
  98 #define IRQ_MASK(mask)          (mask & 0x1fffffff)
  99 
 100 /* maximum threshold value */
 101 #define MAX_I2C_FIFO_THRESHOLD  15
 102 
 103 enum i2c_freq_mode {
 104         I2C_FREQ_MODE_STANDARD,         /* up to 100 Kb/s */
 105         I2C_FREQ_MODE_FAST,             /* up to 400 Kb/s */
 106         I2C_FREQ_MODE_HIGH_SPEED,       /* up to 3.4 Mb/s */
 107         I2C_FREQ_MODE_FAST_PLUS,        /* up to 1 Mb/s */
 108 };
 109 
 110 /**
 111  * struct i2c_vendor_data - per-vendor variations
 112  * @has_mtdws: variant has the MTDWS bit
 113  * @fifodepth: variant FIFO depth
 114  */
 115 struct i2c_vendor_data {
 116         bool has_mtdws;
 117         u32 fifodepth;
 118 };
 119 
 120 enum i2c_status {
 121         I2C_NOP,
 122         I2C_ON_GOING,
 123         I2C_OK,
 124         I2C_ABORT
 125 };
 126 
 127 /* operation */
 128 enum i2c_operation {
 129         I2C_NO_OPERATION = 0xff,
 130         I2C_WRITE = 0x00,
 131         I2C_READ = 0x01
 132 };
 133 
 134 /**
 135  * struct i2c_nmk_client - client specific data
 136  * @slave_adr: 7-bit slave address
 137  * @count: no. bytes to be transferred
 138  * @buffer: client data buffer
 139  * @xfer_bytes: bytes transferred till now
 140  * @operation: current I2C operation
 141  */
 142 struct i2c_nmk_client {
 143         unsigned short          slave_adr;
 144         unsigned long           count;
 145         unsigned char           *buffer;
 146         unsigned long           xfer_bytes;
 147         enum i2c_operation      operation;
 148 };
 149 
 150 /**
 151  * struct nmk_i2c_dev - private data structure of the controller.
 152  * @vendor: vendor data for this variant.
 153  * @adev: parent amba device.
 154  * @adap: corresponding I2C adapter.
 155  * @irq: interrupt line for the controller.
 156  * @virtbase: virtual io memory area.
 157  * @clk: hardware i2c block clock.
 158  * @cli: holder of client specific data.
 159  * @clk_freq: clock frequency for the operation mode
 160  * @tft: Tx FIFO Threshold in bytes
 161  * @rft: Rx FIFO Threshold in bytes
 162  * @timeout Slave response timeout (ms)
 163  * @sm: speed mode
 164  * @stop: stop condition.
 165  * @xfer_complete: acknowledge completion for a I2C message.
 166  * @result: controller propogated result.
 167  */
 168 struct nmk_i2c_dev {
 169         struct i2c_vendor_data          *vendor;
 170         struct amba_device              *adev;
 171         struct i2c_adapter              adap;
 172         int                             irq;
 173         void __iomem                    *virtbase;
 174         struct clk                      *clk;
 175         struct i2c_nmk_client           cli;
 176         u32                             clk_freq;
 177         unsigned char                   tft;
 178         unsigned char                   rft;
 179         int                             timeout;
 180         enum i2c_freq_mode              sm;
 181         int                             stop;
 182         struct completion               xfer_complete;
 183         int                             result;
 184 };
 185 
 186 /* controller's abort causes */
 187 static const char *abort_causes[] = {
 188         "no ack received after address transmission",
 189         "no ack received during data phase",
 190         "ack received after xmission of master code",
 191         "master lost arbitration",
 192         "slave restarts",
 193         "slave reset",
 194         "overflow, maxsize is 2047 bytes",
 195 };
 196 
 197 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
 198 {
 199         writel(readl(reg) | mask, reg);
 200 }
 201 
 202 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
 203 {
 204         writel(readl(reg) & ~mask, reg);
 205 }
 206 
 207 /**
 208  * flush_i2c_fifo() - This function flushes the I2C FIFO
 209  * @dev: private data of I2C Driver
 210  *
 211  * This function flushes the I2C Tx and Rx FIFOs. It returns
 212  * 0 on successful flushing of FIFO
 213  */
 214 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
 215 {
 216 #define LOOP_ATTEMPTS 10
 217         int i;
 218         unsigned long timeout;
 219 
 220         /*
 221          * flush the transmit and receive FIFO. The flushing
 222          * operation takes several cycles before to be completed.
 223          * On the completion, the I2C internal logic clears these
 224          * bits, until then no one must access Tx, Rx FIFO and
 225          * should poll on these bits waiting for the completion.
 226          */
 227         writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
 228 
 229         for (i = 0; i < LOOP_ATTEMPTS; i++) {
 230                 timeout = jiffies + dev->adap.timeout;
 231 
 232                 while (!time_after(jiffies, timeout)) {
 233                         if ((readl(dev->virtbase + I2C_CR) &
 234                                 (I2C_CR_FTX | I2C_CR_FRX)) == 0)
 235                                         return 0;
 236                 }
 237         }
 238 
 239         dev_err(&dev->adev->dev,
 240                 "flushing operation timed out giving up after %d attempts",
 241                 LOOP_ATTEMPTS);
 242 
 243         return -ETIMEDOUT;
 244 }
 245 
 246 /**
 247  * disable_all_interrupts() - Disable all interrupts of this I2c Bus
 248  * @dev: private data of I2C Driver
 249  */
 250 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
 251 {
 252         u32 mask = IRQ_MASK(0);
 253         writel(mask, dev->virtbase + I2C_IMSCR);
 254 }
 255 
 256 /**
 257  * clear_all_interrupts() - Clear all interrupts of I2C Controller
 258  * @dev: private data of I2C Driver
 259  */
 260 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
 261 {
 262         u32 mask;
 263         mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
 264         writel(mask, dev->virtbase + I2C_ICR);
 265 }
 266 
 267 /**
 268  * init_hw() - initialize the I2C hardware
 269  * @dev: private data of I2C Driver
 270  */
 271 static int init_hw(struct nmk_i2c_dev *dev)
 272 {
 273         int stat;
 274 
 275         stat = flush_i2c_fifo(dev);
 276         if (stat)
 277                 goto exit;
 278 
 279         /* disable the controller */
 280         i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
 281 
 282         disable_all_interrupts(dev);
 283 
 284         clear_all_interrupts(dev);
 285 
 286         dev->cli.operation = I2C_NO_OPERATION;
 287 
 288 exit:
 289         return stat;
 290 }
 291 
 292 /* enable peripheral, master mode operation */
 293 #define DEFAULT_I2C_REG_CR      ((1 << 1) | I2C_CR_PE)
 294 
 295 /**
 296  * load_i2c_mcr_reg() - load the MCR register
 297  * @dev: private data of controller
 298  * @flags: message flags
 299  */
 300 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
 301 {
 302         u32 mcr = 0;
 303         unsigned short slave_adr_3msb_bits;
 304 
 305         mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
 306 
 307         if (unlikely(flags & I2C_M_TEN)) {
 308                 /* 10-bit address transaction */
 309                 mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
 310                 /*
 311                  * Get the top 3 bits.
 312                  * EA10 represents extended address in MCR. This includes
 313                  * the extension (MSB bits) of the 7 bit address loaded
 314                  * in A7
 315                  */
 316                 slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
 317 
 318                 mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
 319         } else {
 320                 /* 7-bit address transaction */
 321                 mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
 322         }
 323 
 324         /* start byte procedure not applied */
 325         mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
 326 
 327         /* check the operation, master read/write? */
 328         if (dev->cli.operation == I2C_WRITE)
 329                 mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
 330         else
 331                 mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
 332 
 333         /* stop or repeated start? */
 334         if (dev->stop)
 335                 mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
 336         else
 337                 mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
 338 
 339         mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
 340 
 341         return mcr;
 342 }
 343 
 344 /**
 345  * setup_i2c_controller() - setup the controller
 346  * @dev: private data of controller
 347  */
 348 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
 349 {
 350         u32 brcr1, brcr2;
 351         u32 i2c_clk, div;
 352         u32 ns;
 353         u16 slsu;
 354 
 355         writel(0x0, dev->virtbase + I2C_CR);
 356         writel(0x0, dev->virtbase + I2C_HSMCR);
 357         writel(0x0, dev->virtbase + I2C_TFTR);
 358         writel(0x0, dev->virtbase + I2C_RFTR);
 359         writel(0x0, dev->virtbase + I2C_DMAR);
 360 
 361         i2c_clk = clk_get_rate(dev->clk);
 362 
 363         /*
 364          * set the slsu:
 365          *
 366          * slsu defines the data setup time after SCL clock
 367          * stretching in terms of i2c clk cycles + 1 (zero means
 368          * "wait one cycle"), the needed setup time for the three
 369          * modes are 250ns, 100ns, 10ns respectively.
 370          *
 371          * As the time for one cycle T in nanoseconds is
 372          * T = (1/f) * 1000000000 =>
 373          * slsu = cycles / (1000000000 / f) + 1
 374          */
 375         ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk);
 376         switch (dev->sm) {
 377         case I2C_FREQ_MODE_FAST:
 378         case I2C_FREQ_MODE_FAST_PLUS:
 379                 slsu = DIV_ROUND_UP(100, ns); /* Fast */
 380                 break;
 381         case I2C_FREQ_MODE_HIGH_SPEED:
 382                 slsu = DIV_ROUND_UP(10, ns); /* High */
 383                 break;
 384         case I2C_FREQ_MODE_STANDARD:
 385         default:
 386                 slsu = DIV_ROUND_UP(250, ns); /* Standard */
 387                 break;
 388         }
 389         slsu += 1;
 390 
 391         dev_dbg(&dev->adev->dev, "calculated SLSU = %04x\n", slsu);
 392         writel(slsu << 16, dev->virtbase + I2C_SCR);
 393 
 394         /*
 395          * The spec says, in case of std. mode the divider is
 396          * 2 whereas it is 3 for fast and fastplus mode of
 397          * operation. TODO - high speed support.
 398          */
 399         div = (dev->clk_freq > 100000) ? 3 : 2;
 400 
 401         /*
 402          * generate the mask for baud rate counters. The controller
 403          * has two baud rate counters. One is used for High speed
 404          * operation, and the other is for std, fast mode, fast mode
 405          * plus operation. Currently we do not supprt high speed mode
 406          * so set brcr1 to 0.
 407          */
 408         brcr1 = 0 << 16;
 409         brcr2 = (i2c_clk/(dev->clk_freq * div)) & 0xffff;
 410 
 411         /* set the baud rate counter register */
 412         writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
 413 
 414         /*
 415          * set the speed mode. Currently we support
 416          * only standard and fast mode of operation
 417          * TODO - support for fast mode plus (up to 1Mb/s)
 418          * and high speed (up to 3.4 Mb/s)
 419          */
 420         if (dev->sm > I2C_FREQ_MODE_FAST) {
 421                 dev_err(&dev->adev->dev,
 422                         "do not support this mode defaulting to std. mode\n");
 423                 brcr2 = i2c_clk/(100000 * 2) & 0xffff;
 424                 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
 425                 writel(I2C_FREQ_MODE_STANDARD << 4,
 426                                 dev->virtbase + I2C_CR);
 427         }
 428         writel(dev->sm << 4, dev->virtbase + I2C_CR);
 429 
 430         /* set the Tx and Rx FIFO threshold */
 431         writel(dev->tft, dev->virtbase + I2C_TFTR);
 432         writel(dev->rft, dev->virtbase + I2C_RFTR);
 433 }
 434 
 435 /**
 436  * read_i2c() - Read from I2C client device
 437  * @dev: private data of I2C Driver
 438  * @flags: message flags
 439  *
 440  * This function reads from i2c client device when controller is in
 441  * master mode. There is a completion timeout. If there is no transfer
 442  * before timeout error is returned.
 443  */
 444 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
 445 {
 446         int status = 0;
 447         u32 mcr, irq_mask;
 448         unsigned long timeout;
 449 
 450         mcr = load_i2c_mcr_reg(dev, flags);
 451         writel(mcr, dev->virtbase + I2C_MCR);
 452 
 453         /* load the current CR value */
 454         writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
 455                         dev->virtbase + I2C_CR);
 456 
 457         /* enable the controller */
 458         i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
 459 
 460         init_completion(&dev->xfer_complete);
 461 
 462         /* enable interrupts by setting the mask */
 463         irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
 464                         I2C_IT_MAL | I2C_IT_BERR);
 465 
 466         if (dev->stop || !dev->vendor->has_mtdws)
 467                 irq_mask |= I2C_IT_MTD;
 468         else
 469                 irq_mask |= I2C_IT_MTDWS;
 470 
 471         irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
 472 
 473         writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
 474                         dev->virtbase + I2C_IMSCR);
 475 
 476         timeout = wait_for_completion_timeout(
 477                 &dev->xfer_complete, dev->adap.timeout);
 478 
 479         if (timeout == 0) {
 480                 /* Controller timed out */
 481                 dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
 482                                 dev->cli.slave_adr);
 483                 status = -ETIMEDOUT;
 484         }
 485         return status;
 486 }
 487 
 488 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
 489 {
 490         int count;
 491 
 492         for (count = (no_bytes - 2);
 493                         (count > 0) &&
 494                         (dev->cli.count != 0);
 495                         count--) {
 496                 /* write to the Tx FIFO */
 497                 writeb(*dev->cli.buffer,
 498                         dev->virtbase + I2C_TFR);
 499                 dev->cli.buffer++;
 500                 dev->cli.count--;
 501                 dev->cli.xfer_bytes++;
 502         }
 503 
 504 }
 505 
 506 /**
 507  * write_i2c() - Write data to I2C client.
 508  * @dev: private data of I2C Driver
 509  * @flags: message flags
 510  *
 511  * This function writes data to I2C client
 512  */
 513 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
 514 {
 515         u32 status = 0;
 516         u32 mcr, irq_mask;
 517         unsigned long timeout;
 518 
 519         mcr = load_i2c_mcr_reg(dev, flags);
 520 
 521         writel(mcr, dev->virtbase + I2C_MCR);
 522 
 523         /* load the current CR value */
 524         writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
 525                         dev->virtbase + I2C_CR);
 526 
 527         /* enable the controller */
 528         i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
 529 
 530         init_completion(&dev->xfer_complete);
 531 
 532         /* enable interrupts by settings the masks */
 533         irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
 534 
 535         /* Fill the TX FIFO with transmit data */
 536         fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
 537 
 538         if (dev->cli.count != 0)
 539                 irq_mask |= I2C_IT_TXFNE;
 540 
 541         /*
 542          * check if we want to transfer a single or multiple bytes, if so
 543          * set the MTDWS bit (Master Transaction Done Without Stop)
 544          * to start repeated start operation
 545          */
 546         if (dev->stop || !dev->vendor->has_mtdws)
 547                 irq_mask |= I2C_IT_MTD;
 548         else
 549                 irq_mask |= I2C_IT_MTDWS;
 550 
 551         irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
 552 
 553         writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
 554                         dev->virtbase + I2C_IMSCR);
 555 
 556         timeout = wait_for_completion_timeout(
 557                 &dev->xfer_complete, dev->adap.timeout);
 558 
 559         if (timeout == 0) {
 560                 /* Controller timed out */
 561                 dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
 562                                 dev->cli.slave_adr);
 563                 status = -ETIMEDOUT;
 564         }
 565 
 566         return status;
 567 }
 568 
 569 /**
 570  * nmk_i2c_xfer_one() - transmit a single I2C message
 571  * @dev: device with a message encoded into it
 572  * @flags: message flags
 573  */
 574 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
 575 {
 576         int status;
 577 
 578         if (flags & I2C_M_RD) {
 579                 /* read operation */
 580                 dev->cli.operation = I2C_READ;
 581                 status = read_i2c(dev, flags);
 582         } else {
 583                 /* write operation */
 584                 dev->cli.operation = I2C_WRITE;
 585                 status = write_i2c(dev, flags);
 586         }
 587 
 588         if (status || (dev->result)) {
 589                 u32 i2c_sr;
 590                 u32 cause;
 591 
 592                 i2c_sr = readl(dev->virtbase + I2C_SR);
 593                 /*
 594                  * Check if the controller I2C operation status
 595                  * is set to ABORT(11b).
 596                  */
 597                 if (((i2c_sr >> 2) & 0x3) == 0x3) {
 598                         /* get the abort cause */
 599                         cause = (i2c_sr >> 4) & 0x7;
 600                         dev_err(&dev->adev->dev, "%s\n",
 601                                 cause >= ARRAY_SIZE(abort_causes) ?
 602                                 "unknown reason" :
 603                                 abort_causes[cause]);
 604                 }
 605 
 606                 (void) init_hw(dev);
 607 
 608                 status = status ? status : dev->result;
 609         }
 610 
 611         return status;
 612 }
 613 
 614 /**
 615  * nmk_i2c_xfer() - I2C transfer function used by kernel framework
 616  * @i2c_adap: Adapter pointer to the controller
 617  * @msgs: Pointer to data to be written.
 618  * @num_msgs: Number of messages to be executed
 619  *
 620  * This is the function called by the generic kernel i2c_transfer()
 621  * or i2c_smbus...() API calls. Note that this code is protected by the
 622  * semaphore set in the kernel i2c_transfer() function.
 623  *
 624  * NOTE:
 625  * READ TRANSFER : We impose a restriction of the first message to be the
 626  *              index message for any read transaction.
 627  *              - a no index is coded as '0',
 628  *              - 2byte big endian index is coded as '3'
 629  *              !!! msg[0].buf holds the actual index.
 630  *              This is compatible with generic messages of smbus emulator
 631  *              that send a one byte index.
 632  *              eg. a I2C transation to read 2 bytes from index 0
 633  *                      idx = 0;
 634  *                      msg[0].addr = client->addr;
 635  *                      msg[0].flags = 0x0;
 636  *                      msg[0].len = 1;
 637  *                      msg[0].buf = &idx;
 638  *
 639  *                      msg[1].addr = client->addr;
 640  *                      msg[1].flags = I2C_M_RD;
 641  *                      msg[1].len = 2;
 642  *                      msg[1].buf = rd_buff
 643  *                      i2c_transfer(adap, msg, 2);
 644  *
 645  * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
 646  *              If you want to emulate an SMBUS write transaction put the
 647  *              index as first byte(or first and second) in the payload.
 648  *              eg. a I2C transation to write 2 bytes from index 1
 649  *                      wr_buff[0] = 0x1;
 650  *                      wr_buff[1] = 0x23;
 651  *                      wr_buff[2] = 0x46;
 652  *                      msg[0].flags = 0x0;
 653  *                      msg[0].len = 3;
 654  *                      msg[0].buf = wr_buff;
 655  *                      i2c_transfer(adap, msg, 1);
 656  *
 657  * To read or write a block of data (multiple bytes) using SMBUS emulation
 658  * please use the i2c_smbus_read_i2c_block_data()
 659  * or i2c_smbus_write_i2c_block_data() API
 660  */
 661 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
 662                 struct i2c_msg msgs[], int num_msgs)
 663 {
 664         int status = 0;
 665         int i;
 666         struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
 667         int j;
 668 
 669         pm_runtime_get_sync(&dev->adev->dev);
 670 
 671         /* Attempt three times to send the message queue */
 672         for (j = 0; j < 3; j++) {
 673                 /* setup the i2c controller */
 674                 setup_i2c_controller(dev);
 675 
 676                 for (i = 0; i < num_msgs; i++) {
 677                         dev->cli.slave_adr      = msgs[i].addr;
 678                         dev->cli.buffer         = msgs[i].buf;
 679                         dev->cli.count          = msgs[i].len;
 680                         dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
 681                         dev->result = 0;
 682 
 683                         status = nmk_i2c_xfer_one(dev, msgs[i].flags);
 684                         if (status != 0)
 685                                 break;
 686                 }
 687                 if (status == 0)
 688                         break;
 689         }
 690 
 691         pm_runtime_put_sync(&dev->adev->dev);
 692 
 693         /* return the no. messages processed */
 694         if (status)
 695                 return status;
 696         else
 697                 return num_msgs;
 698 }
 699 
 700 /**
 701  * disable_interrupts() - disable the interrupts
 702  * @dev: private data of controller
 703  * @irq: interrupt number
 704  */
 705 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
 706 {
 707         irq = IRQ_MASK(irq);
 708         writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
 709                         dev->virtbase + I2C_IMSCR);
 710         return 0;
 711 }
 712 
 713 /**
 714  * i2c_irq_handler() - interrupt routine
 715  * @irq: interrupt number
 716  * @arg: data passed to the handler
 717  *
 718  * This is the interrupt handler for the i2c driver. Currently
 719  * it handles the major interrupts like Rx & Tx FIFO management
 720  * interrupts, master transaction interrupts, arbitration and
 721  * bus error interrupts. The rest of the interrupts are treated as
 722  * unhandled.
 723  */
 724 static irqreturn_t i2c_irq_handler(int irq, void *arg)
 725 {
 726         struct nmk_i2c_dev *dev = arg;
 727         u32 tft, rft;
 728         u32 count;
 729         u32 misr, src;
 730 
 731         /* load Tx FIFO and Rx FIFO threshold values */
 732         tft = readl(dev->virtbase + I2C_TFTR);
 733         rft = readl(dev->virtbase + I2C_RFTR);
 734 
 735         /* read interrupt status register */
 736         misr = readl(dev->virtbase + I2C_MISR);
 737 
 738         src = __ffs(misr);
 739         switch ((1 << src)) {
 740 
 741         /* Transmit FIFO nearly empty interrupt */
 742         case I2C_IT_TXFNE:
 743         {
 744                 if (dev->cli.operation == I2C_READ) {
 745                         /*
 746                          * in read operation why do we care for writing?
 747                          * so disable the Transmit FIFO interrupt
 748                          */
 749                         disable_interrupts(dev, I2C_IT_TXFNE);
 750                 } else {
 751                         fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
 752                         /*
 753                          * if done, close the transfer by disabling the
 754                          * corresponding TXFNE interrupt
 755                          */
 756                         if (dev->cli.count == 0)
 757                                 disable_interrupts(dev, I2C_IT_TXFNE);
 758                 }
 759         }
 760         break;
 761 
 762         /*
 763          * Rx FIFO nearly full interrupt.
 764          * This is set when the numer of entries in Rx FIFO is
 765          * greater or equal than the threshold value programmed
 766          * in RFT
 767          */
 768         case I2C_IT_RXFNF:
 769                 for (count = rft; count > 0; count--) {
 770                         /* Read the Rx FIFO */
 771                         *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
 772                         dev->cli.buffer++;
 773                 }
 774                 dev->cli.count -= rft;
 775                 dev->cli.xfer_bytes += rft;
 776                 break;
 777 
 778         /* Rx FIFO full */
 779         case I2C_IT_RXFF:
 780                 for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
 781                         *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
 782                         dev->cli.buffer++;
 783                 }
 784                 dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
 785                 dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
 786                 break;
 787 
 788         /* Master Transaction Done with/without stop */
 789         case I2C_IT_MTD:
 790         case I2C_IT_MTDWS:
 791                 if (dev->cli.operation == I2C_READ) {
 792                         while (!(readl(dev->virtbase + I2C_RISR)
 793                                  & I2C_IT_RXFE)) {
 794                                 if (dev->cli.count == 0)
 795                                         break;
 796                                 *dev->cli.buffer =
 797                                         readb(dev->virtbase + I2C_RFR);
 798                                 dev->cli.buffer++;
 799                                 dev->cli.count--;
 800                                 dev->cli.xfer_bytes++;
 801                         }
 802                 }
 803 
 804                 disable_all_interrupts(dev);
 805                 clear_all_interrupts(dev);
 806 
 807                 if (dev->cli.count) {
 808                         dev->result = -EIO;
 809                         dev_err(&dev->adev->dev,
 810                                 "%lu bytes still remain to be xfered\n",
 811                                 dev->cli.count);
 812                         (void) init_hw(dev);
 813                 }
 814                 complete(&dev->xfer_complete);
 815 
 816                 break;
 817 
 818         /* Master Arbitration lost interrupt */
 819         case I2C_IT_MAL:
 820                 dev->result = -EIO;
 821                 (void) init_hw(dev);
 822 
 823                 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
 824                 complete(&dev->xfer_complete);
 825 
 826                 break;
 827 
 828         /*
 829          * Bus Error interrupt.
 830          * This happens when an unexpected start/stop condition occurs
 831          * during the transaction.
 832          */
 833         case I2C_IT_BERR:
 834                 dev->result = -EIO;
 835                 /* get the status */
 836                 if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
 837                         (void) init_hw(dev);
 838 
 839                 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
 840                 complete(&dev->xfer_complete);
 841 
 842                 break;
 843 
 844         /*
 845          * Tx FIFO overrun interrupt.
 846          * This is set when a write operation in Tx FIFO is performed and
 847          * the Tx FIFO is full.
 848          */
 849         case I2C_IT_TXFOVR:
 850                 dev->result = -EIO;
 851                 (void) init_hw(dev);
 852 
 853                 dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
 854                 complete(&dev->xfer_complete);
 855 
 856                 break;
 857 
 858         /* unhandled interrupts by this driver - TODO*/
 859         case I2C_IT_TXFE:
 860         case I2C_IT_TXFF:
 861         case I2C_IT_RXFE:
 862         case I2C_IT_RFSR:
 863         case I2C_IT_RFSE:
 864         case I2C_IT_WTSR:
 865         case I2C_IT_STD:
 866                 dev_err(&dev->adev->dev, "unhandled Interrupt\n");
 867                 break;
 868         default:
 869                 dev_err(&dev->adev->dev, "spurious Interrupt..\n");
 870                 break;
 871         }
 872 
 873         return IRQ_HANDLED;
 874 }
 875 
 876 #ifdef CONFIG_PM_SLEEP
 877 static int nmk_i2c_suspend_late(struct device *dev)
 878 {
 879         int ret;
 880 
 881         ret = pm_runtime_force_suspend(dev);
 882         if (ret)
 883                 return ret;
 884 
 885         pinctrl_pm_select_sleep_state(dev);
 886         return 0;
 887 }
 888 
 889 static int nmk_i2c_resume_early(struct device *dev)
 890 {
 891         return pm_runtime_force_resume(dev);
 892 }
 893 #endif
 894 
 895 #ifdef CONFIG_PM
 896 static int nmk_i2c_runtime_suspend(struct device *dev)
 897 {
 898         struct amba_device *adev = to_amba_device(dev);
 899         struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
 900 
 901         clk_disable_unprepare(nmk_i2c->clk);
 902         pinctrl_pm_select_idle_state(dev);
 903         return 0;
 904 }
 905 
 906 static int nmk_i2c_runtime_resume(struct device *dev)
 907 {
 908         struct amba_device *adev = to_amba_device(dev);
 909         struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
 910         int ret;
 911 
 912         ret = clk_prepare_enable(nmk_i2c->clk);
 913         if (ret) {
 914                 dev_err(dev, "can't prepare_enable clock\n");
 915                 return ret;
 916         }
 917 
 918         pinctrl_pm_select_default_state(dev);
 919 
 920         ret = init_hw(nmk_i2c);
 921         if (ret) {
 922                 clk_disable_unprepare(nmk_i2c->clk);
 923                 pinctrl_pm_select_idle_state(dev);
 924         }
 925 
 926         return ret;
 927 }
 928 #endif
 929 
 930 static const struct dev_pm_ops nmk_i2c_pm = {
 931         SET_LATE_SYSTEM_SLEEP_PM_OPS(nmk_i2c_suspend_late, nmk_i2c_resume_early)
 932         SET_RUNTIME_PM_OPS(nmk_i2c_runtime_suspend,
 933                         nmk_i2c_runtime_resume,
 934                         NULL)
 935 };
 936 
 937 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
 938 {
 939         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
 940 }
 941 
 942 static const struct i2c_algorithm nmk_i2c_algo = {
 943         .master_xfer    = nmk_i2c_xfer,
 944         .functionality  = nmk_i2c_functionality
 945 };
 946 
 947 static void nmk_i2c_of_probe(struct device_node *np,
 948                              struct nmk_i2c_dev *nmk)
 949 {
 950         /* Default to 100 kHz if no frequency is given in the node */
 951         if (of_property_read_u32(np, "clock-frequency", &nmk->clk_freq))
 952                 nmk->clk_freq = 100000;
 953 
 954         /* This driver only supports 'standard' and 'fast' modes of operation. */
 955         if (nmk->clk_freq <= 100000)
 956                 nmk->sm = I2C_FREQ_MODE_STANDARD;
 957         else
 958                 nmk->sm = I2C_FREQ_MODE_FAST;
 959         nmk->tft = 1; /* Tx FIFO threshold */
 960         nmk->rft = 8; /* Rx FIFO threshold */
 961         nmk->timeout = 200; /* Slave response timeout(ms) */
 962 }
 963 
 964 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
 965 {
 966         int ret = 0;
 967         struct device_node *np = adev->dev.of_node;
 968         struct nmk_i2c_dev      *dev;
 969         struct i2c_adapter *adap;
 970         struct i2c_vendor_data *vendor = id->data;
 971         u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
 972 
 973         dev = devm_kzalloc(&adev->dev, sizeof(struct nmk_i2c_dev), GFP_KERNEL);
 974         if (!dev) {
 975                 dev_err(&adev->dev, "cannot allocate memory\n");
 976                 ret = -ENOMEM;
 977                 goto err_no_mem;
 978         }
 979         dev->vendor = vendor;
 980         dev->adev = adev;
 981         nmk_i2c_of_probe(np, dev);
 982 
 983         if (dev->tft > max_fifo_threshold) {
 984                 dev_warn(&adev->dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
 985                          dev->tft, max_fifo_threshold);
 986                 dev->tft = max_fifo_threshold;
 987         }
 988 
 989         if (dev->rft > max_fifo_threshold) {
 990                 dev_warn(&adev->dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
 991                         dev->rft, max_fifo_threshold);
 992                 dev->rft = max_fifo_threshold;
 993         }
 994 
 995         amba_set_drvdata(adev, dev);
 996 
 997         dev->virtbase = devm_ioremap(&adev->dev, adev->res.start,
 998                                 resource_size(&adev->res));
 999         if (!dev->virtbase) {
1000                 ret = -ENOMEM;
1001                 goto err_no_mem;
1002         }
1003 
1004         dev->irq = adev->irq[0];
1005         ret = devm_request_irq(&adev->dev, dev->irq, i2c_irq_handler, 0,
1006                                 DRIVER_NAME, dev);
1007         if (ret) {
1008                 dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
1009                 goto err_no_mem;
1010         }
1011 
1012         dev->clk = devm_clk_get(&adev->dev, NULL);
1013         if (IS_ERR(dev->clk)) {
1014                 dev_err(&adev->dev, "could not get i2c clock\n");
1015                 ret = PTR_ERR(dev->clk);
1016                 goto err_no_mem;
1017         }
1018 
1019         ret = clk_prepare_enable(dev->clk);
1020         if (ret) {
1021                 dev_err(&adev->dev, "can't prepare_enable clock\n");
1022                 goto err_no_mem;
1023         }
1024 
1025         init_hw(dev);
1026 
1027         adap = &dev->adap;
1028         adap->dev.of_node = np;
1029         adap->dev.parent = &adev->dev;
1030         adap->owner = THIS_MODULE;
1031         adap->class = I2C_CLASS_DEPRECATED;
1032         adap->algo = &nmk_i2c_algo;
1033         adap->timeout = msecs_to_jiffies(dev->timeout);
1034         snprintf(adap->name, sizeof(adap->name),
1035                  "Nomadik I2C at %pR", &adev->res);
1036 
1037         i2c_set_adapdata(adap, dev);
1038 
1039         dev_info(&adev->dev,
1040                  "initialize %s on virtual base %p\n",
1041                  adap->name, dev->virtbase);
1042 
1043         ret = i2c_add_adapter(adap);
1044         if (ret)
1045                 goto err_no_adap;
1046 
1047         pm_runtime_put(&adev->dev);
1048 
1049         return 0;
1050 
1051  err_no_adap:
1052         clk_disable_unprepare(dev->clk);
1053  err_no_mem:
1054 
1055         return ret;
1056 }
1057 
1058 static int nmk_i2c_remove(struct amba_device *adev)
1059 {
1060         struct resource *res = &adev->res;
1061         struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1062 
1063         i2c_del_adapter(&dev->adap);
1064         flush_i2c_fifo(dev);
1065         disable_all_interrupts(dev);
1066         clear_all_interrupts(dev);
1067         /* disable the controller */
1068         i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1069         clk_disable_unprepare(dev->clk);
1070         release_mem_region(res->start, resource_size(res));
1071 
1072         return 0;
1073 }
1074 
1075 static struct i2c_vendor_data vendor_stn8815 = {
1076         .has_mtdws = false,
1077         .fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
1078 };
1079 
1080 static struct i2c_vendor_data vendor_db8500 = {
1081         .has_mtdws = true,
1082         .fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
1083 };
1084 
1085 static const struct amba_id nmk_i2c_ids[] = {
1086         {
1087                 .id     = 0x00180024,
1088                 .mask   = 0x00ffffff,
1089                 .data   = &vendor_stn8815,
1090         },
1091         {
1092                 .id     = 0x00380024,
1093                 .mask   = 0x00ffffff,
1094                 .data   = &vendor_db8500,
1095         },
1096         {},
1097 };
1098 
1099 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1100 
1101 static struct amba_driver nmk_i2c_driver = {
1102         .drv = {
1103                 .owner = THIS_MODULE,
1104                 .name = DRIVER_NAME,
1105                 .pm = &nmk_i2c_pm,
1106         },
1107         .id_table = nmk_i2c_ids,
1108         .probe = nmk_i2c_probe,
1109         .remove = nmk_i2c_remove,
1110 };
1111 
1112 static int __init nmk_i2c_init(void)
1113 {
1114         return amba_driver_register(&nmk_i2c_driver);
1115 }
1116 
1117 static void __exit nmk_i2c_exit(void)
1118 {
1119         amba_driver_unregister(&nmk_i2c_driver);
1120 }
1121 
1122 subsys_initcall(nmk_i2c_init);
1123 module_exit(nmk_i2c_exit);
1124 
1125 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1126 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1127 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */