root/drivers/rtc/rtc-stmp3xxx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. stmp3xxx_wdt_set_timeout
  2. stmp3xxx_wdt_register
  3. stmp3xxx_wdt_register
  4. stmp3xxx_wait_time
  5. stmp3xxx_rtc_gettime
  6. stmp3xxx_rtc_settime
  7. stmp3xxx_rtc_interrupt
  8. stmp3xxx_alarm_irq_enable
  9. stmp3xxx_rtc_read_alarm
  10. stmp3xxx_rtc_set_alarm
  11. stmp3xxx_rtc_remove
  12. stmp3xxx_rtc_probe
  13. stmp3xxx_rtc_suspend
  14. stmp3xxx_rtc_resume

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Freescale STMP37XX/STMP378X Real Time Clock driver
   4  *
   5  * Copyright (c) 2007 Sigmatel, Inc.
   6  * Peter Hartley, <peter.hartley@sigmatel.com>
   7  *
   8  * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
   9  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
  10  * Copyright 2011 Wolfram Sang, Pengutronix e.K.
  11  */
  12 #include <linux/kernel.h>
  13 #include <linux/module.h>
  14 #include <linux/io.h>
  15 #include <linux/init.h>
  16 #include <linux/platform_device.h>
  17 #include <linux/interrupt.h>
  18 #include <linux/delay.h>
  19 #include <linux/rtc.h>
  20 #include <linux/slab.h>
  21 #include <linux/of_device.h>
  22 #include <linux/of.h>
  23 #include <linux/stmp_device.h>
  24 #include <linux/stmp3xxx_rtc_wdt.h>
  25 
  26 #define STMP3XXX_RTC_CTRL                       0x0
  27 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN          0x00000001
  28 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN        0x00000002
  29 #define STMP3XXX_RTC_CTRL_ALARM_IRQ             0x00000004
  30 #define STMP3XXX_RTC_CTRL_WATCHDOGEN            0x00000010
  31 
  32 #define STMP3XXX_RTC_STAT                       0x10
  33 #define STMP3XXX_RTC_STAT_STALE_SHIFT           16
  34 #define STMP3XXX_RTC_STAT_RTC_PRESENT           0x80000000
  35 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT     0x10000000
  36 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT     0x08000000
  37 
  38 #define STMP3XXX_RTC_SECONDS                    0x30
  39 
  40 #define STMP3XXX_RTC_ALARM                      0x40
  41 
  42 #define STMP3XXX_RTC_WATCHDOG                   0x50
  43 
  44 #define STMP3XXX_RTC_PERSISTENT0                0x60
  45 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE            (1 << 0)
  46 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN          (1 << 1)
  47 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN               (1 << 2)
  48 #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP        (1 << 4)
  49 #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP        (1 << 5)
  50 #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ            (1 << 6)
  51 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE             (1 << 7)
  52 
  53 #define STMP3XXX_RTC_PERSISTENT1                0x70
  54 /* missing bitmask in headers */
  55 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER  0x80000000
  56 
  57 struct stmp3xxx_rtc_data {
  58         struct rtc_device *rtc;
  59         void __iomem *io;
  60         int irq_alarm;
  61 };
  62 
  63 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
  64 /**
  65  * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
  66  * @dev: the parent device of the watchdog (= the RTC)
  67  * @timeout: the desired value for the timeout register of the watchdog.
  68  *           0 disables the watchdog
  69  *
  70  * The watchdog needs one register and two bits which are in the RTC domain.
  71  * To handle the resource conflict, the RTC driver will create another
  72  * platform_device for the watchdog driver as a child of the RTC device.
  73  * The watchdog driver is passed the below accessor function via platform_data
  74  * to configure the watchdog. Locking is not needed because accessing SET/CLR
  75  * registers is atomic.
  76  */
  77 
  78 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
  79 {
  80         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
  81 
  82         if (timeout) {
  83                 writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
  84                 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
  85                        rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
  86                 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
  87                        rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
  88         } else {
  89                 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
  90                        rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
  91                 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
  92                        rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
  93         }
  94 }
  95 
  96 static struct stmp3xxx_wdt_pdata wdt_pdata = {
  97         .wdt_set_timeout = stmp3xxx_wdt_set_timeout,
  98 };
  99 
 100 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
 101 {
 102         int rc = -1;
 103         struct platform_device *wdt_pdev =
 104                 platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
 105 
 106         if (wdt_pdev) {
 107                 wdt_pdev->dev.parent = &rtc_pdev->dev;
 108                 wdt_pdev->dev.platform_data = &wdt_pdata;
 109                 rc = platform_device_add(wdt_pdev);
 110         }
 111 
 112         if (rc)
 113                 dev_err(&rtc_pdev->dev,
 114                         "failed to register stmp3xxx_rtc_wdt\n");
 115 }
 116 #else
 117 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
 118 {
 119 }
 120 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
 121 
 122 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
 123 {
 124         int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
 125         /*
 126          * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
 127          * states:
 128          * | The order in which registers are updated is
 129          * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
 130          * | (This list is in bitfield order, from LSB to MSB, as they would
 131          * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
 132          * | register. For example, the Seconds register corresponds to
 133          * | STALE_REGS or NEW_REGS containing 0x80.)
 134          */
 135         do {
 136                 if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
 137                                 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
 138                         return 0;
 139                 udelay(1);
 140         } while (--timeout > 0);
 141         return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
 142                 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
 143 }
 144 
 145 /* Time read/write */
 146 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
 147 {
 148         int ret;
 149         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
 150 
 151         ret = stmp3xxx_wait_time(rtc_data);
 152         if (ret)
 153                 return ret;
 154 
 155         rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
 156         return 0;
 157 }
 158 
 159 static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
 160 {
 161         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
 162 
 163         writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS);
 164         return stmp3xxx_wait_time(rtc_data);
 165 }
 166 
 167 /* interrupt(s) handler */
 168 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
 169 {
 170         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
 171         u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
 172 
 173         if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
 174                 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
 175                         rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
 176                 rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
 177                 return IRQ_HANDLED;
 178         }
 179 
 180         return IRQ_NONE;
 181 }
 182 
 183 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
 184 {
 185         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
 186 
 187         if (enabled) {
 188                 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
 189                                 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
 190                         rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
 191                                 STMP_OFFSET_REG_SET);
 192                 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
 193                         rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
 194         } else {
 195                 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
 196                                 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
 197                         rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
 198                                 STMP_OFFSET_REG_CLR);
 199                 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
 200                         rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
 201         }
 202         return 0;
 203 }
 204 
 205 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
 206 {
 207         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
 208 
 209         rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
 210         return 0;
 211 }
 212 
 213 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
 214 {
 215         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
 216 
 217         writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM);
 218 
 219         stmp3xxx_alarm_irq_enable(dev, alm->enabled);
 220 
 221         return 0;
 222 }
 223 
 224 static const struct rtc_class_ops stmp3xxx_rtc_ops = {
 225         .alarm_irq_enable =
 226                           stmp3xxx_alarm_irq_enable,
 227         .read_time      = stmp3xxx_rtc_gettime,
 228         .set_time       = stmp3xxx_rtc_settime,
 229         .read_alarm     = stmp3xxx_rtc_read_alarm,
 230         .set_alarm      = stmp3xxx_rtc_set_alarm,
 231 };
 232 
 233 static int stmp3xxx_rtc_remove(struct platform_device *pdev)
 234 {
 235         struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
 236 
 237         if (!rtc_data)
 238                 return 0;
 239 
 240         writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
 241                 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
 242 
 243         return 0;
 244 }
 245 
 246 static int stmp3xxx_rtc_probe(struct platform_device *pdev)
 247 {
 248         struct stmp3xxx_rtc_data *rtc_data;
 249         struct resource *r;
 250         u32 rtc_stat;
 251         u32 pers0_set, pers0_clr;
 252         u32 crystalfreq = 0;
 253         int err;
 254 
 255         rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
 256         if (!rtc_data)
 257                 return -ENOMEM;
 258 
 259         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 260         if (!r) {
 261                 dev_err(&pdev->dev, "failed to get resource\n");
 262                 return -ENXIO;
 263         }
 264 
 265         rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
 266         if (!rtc_data->io) {
 267                 dev_err(&pdev->dev, "ioremap failed\n");
 268                 return -EIO;
 269         }
 270 
 271         rtc_data->irq_alarm = platform_get_irq(pdev, 0);
 272 
 273         rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
 274         if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
 275                 dev_err(&pdev->dev, "no device onboard\n");
 276                 return -ENODEV;
 277         }
 278 
 279         platform_set_drvdata(pdev, rtc_data);
 280 
 281         /*
 282          * Resetting the rtc stops the watchdog timer that is potentially
 283          * running. So (assuming it is running on purpose) don't reset if the
 284          * watchdog is enabled.
 285          */
 286         if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) &
 287             STMP3XXX_RTC_CTRL_WATCHDOGEN) {
 288                 dev_info(&pdev->dev,
 289                          "Watchdog is running, skip resetting rtc\n");
 290         } else {
 291                 err = stmp_reset_block(rtc_data->io);
 292                 if (err) {
 293                         dev_err(&pdev->dev, "stmp_reset_block failed: %d\n",
 294                                 err);
 295                         return err;
 296                 }
 297         }
 298 
 299         /*
 300          * Obviously the rtc needs a clock input to be able to run.
 301          * This clock can be provided by an external 32k crystal. If that one is
 302          * missing XTAL must not be disabled in suspend which consumes a
 303          * lot of power. Normally the presence and exact frequency (supported
 304          * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
 305          * proves these fuses are not blown correctly on all machines, so the
 306          * frequency can be overridden in the device tree.
 307          */
 308         if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
 309                 crystalfreq = 32000;
 310         else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
 311                 crystalfreq = 32768;
 312 
 313         of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
 314                              &crystalfreq);
 315 
 316         switch (crystalfreq) {
 317         case 32000:
 318                 /* keep 32kHz crystal running in low-power mode */
 319                 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
 320                         STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
 321                         STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
 322                 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
 323                 break;
 324         case 32768:
 325                 /* keep 32.768kHz crystal running in low-power mode */
 326                 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
 327                         STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
 328                 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
 329                         STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
 330                 break;
 331         default:
 332                 dev_warn(&pdev->dev,
 333                          "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
 334                 /* fall-through */
 335         case 0:
 336                 /* keep XTAL on in low-power mode */
 337                 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
 338                 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
 339                         STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
 340         }
 341 
 342         writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
 343                         STMP_OFFSET_REG_SET);
 344 
 345         writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
 346                         STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
 347                         STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
 348                 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
 349 
 350         writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
 351                         STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
 352                 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
 353 
 354         rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev);
 355         if (IS_ERR(rtc_data->rtc))
 356                 return PTR_ERR(rtc_data->rtc);
 357 
 358         err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
 359                         stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
 360         if (err) {
 361                 dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
 362                         rtc_data->irq_alarm);
 363                 return err;
 364         }
 365 
 366         rtc_data->rtc->ops = &stmp3xxx_rtc_ops;
 367         rtc_data->rtc->range_max = U32_MAX;
 368 
 369         err = rtc_register_device(rtc_data->rtc);
 370         if (err)
 371                 return err;
 372 
 373         stmp3xxx_wdt_register(pdev);
 374         return 0;
 375 }
 376 
 377 #ifdef CONFIG_PM_SLEEP
 378 static int stmp3xxx_rtc_suspend(struct device *dev)
 379 {
 380         return 0;
 381 }
 382 
 383 static int stmp3xxx_rtc_resume(struct device *dev)
 384 {
 385         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
 386 
 387         stmp_reset_block(rtc_data->io);
 388         writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
 389                         STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
 390                         STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
 391                 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
 392         return 0;
 393 }
 394 #endif
 395 
 396 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
 397                         stmp3xxx_rtc_resume);
 398 
 399 static const struct of_device_id rtc_dt_ids[] = {
 400         { .compatible = "fsl,stmp3xxx-rtc", },
 401         { /* sentinel */ }
 402 };
 403 MODULE_DEVICE_TABLE(of, rtc_dt_ids);
 404 
 405 static struct platform_driver stmp3xxx_rtcdrv = {
 406         .probe          = stmp3xxx_rtc_probe,
 407         .remove         = stmp3xxx_rtc_remove,
 408         .driver         = {
 409                 .name   = "stmp3xxx-rtc",
 410                 .pm     = &stmp3xxx_rtc_pm_ops,
 411                 .of_match_table = rtc_dt_ids,
 412         },
 413 };
 414 
 415 module_platform_driver(stmp3xxx_rtcdrv);
 416 
 417 MODULE_DESCRIPTION("STMP3xxx RTC Driver");
 418 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
 419                 "Wolfram Sang <w.sang@pengutronix.de>");
 420 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */