root/drivers/scsi/esas2r/esas2r_ioctl.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. complete_fm_api_req
  2. get_physaddr_fm_api
  3. get_physaddr_fm_api_header
  4. do_fm_api
  5. complete_nvr_req
  6. get_physaddr_buffered_ioctl
  7. complete_buffered_ioctl_req
  8. handle_buffered_ioctl
  9. smp_ioctl_callback
  10. handle_smp_ioctl
  11. esas2r_csmi_ioctl_tunnel_comp_cb
  12. csmi_ioctl_tunnel
  13. check_lun
  14. csmi_ioctl_callback
  15. csmi_ioctl_done_callback
  16. handle_csmi_ioctl
  17. hba_ioctl_tunnel
  18. scsi_passthru_comp_cb
  19. hba_ioctl_callback
  20. hba_ioctl_done_callback
  21. handle_hba_ioctl
  22. esas2r_write_params
  23. esas2r_ioctl_handler
  24. esas2r_ioctl
  25. free_fw_buffers
  26. allocate_fw_buffers
  27. esas2r_read_fw
  28. esas2r_write_fw
  29. vda_complete_req
  30. get_physaddr_vda
  31. esas2r_read_vda
  32. esas2r_write_vda
  33. fs_api_complete_req
  34. get_physaddr_fs_api
  35. esas2r_read_fs
  36. esas2r_write_fs

   1 /*
   2  *  linux/drivers/scsi/esas2r/esas2r_ioctl.c
   3  *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
   4  *
   5  *  Copyright (c) 2001-2013 ATTO Technology, Inc.
   6  *  (mailto:linuxdrivers@attotech.com)
   7  *
   8  * This program is free software; you can redistribute it and/or
   9  * modify it under the terms of the GNU General Public License
  10  * as published by the Free Software Foundation; either version 2
  11  * of the License, or (at your option) any later version.
  12  *
  13  * This program is distributed in the hope that it will be useful,
  14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16  * GNU General Public License for more details.
  17  *
  18  * NO WARRANTY
  19  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
  20  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
  21  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
  22  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
  23  * solely responsible for determining the appropriateness of using and
  24  * distributing the Program and assumes all risks associated with its
  25  * exercise of rights under this Agreement, including but not limited to
  26  * the risks and costs of program errors, damage to or loss of data,
  27  * programs or equipment, and unavailability or interruption of operations.
  28  *
  29  * DISCLAIMER OF LIABILITY
  30  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
  31  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  32  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
  33  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  34  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  35  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
  36  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
  37  *
  38  * You should have received a copy of the GNU General Public License
  39  * along with this program; if not, write to the Free Software
  40  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  41  * USA.
  42  */
  43 
  44 #include "esas2r.h"
  45 
  46 /*
  47  * Buffered ioctl handlers.  A buffered ioctl is one which requires that we
  48  * allocate a DMA-able memory area to communicate with the firmware.  In
  49  * order to prevent continually allocating and freeing consistent memory,
  50  * we will allocate a global buffer the first time we need it and re-use
  51  * it for subsequent ioctl calls that require it.
  52  */
  53 
  54 u8 *esas2r_buffered_ioctl;
  55 dma_addr_t esas2r_buffered_ioctl_addr;
  56 u32 esas2r_buffered_ioctl_size;
  57 struct pci_dev *esas2r_buffered_ioctl_pcid;
  58 
  59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
  60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
  61                                        struct esas2r_request *,
  62                                        struct esas2r_sg_context *,
  63                                        void *);
  64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
  65                                              struct esas2r_request *, void *);
  66 
  67 struct esas2r_buffered_ioctl {
  68         struct esas2r_adapter *a;
  69         void *ioctl;
  70         u32 length;
  71         u32 control_code;
  72         u32 offset;
  73         BUFFERED_IOCTL_CALLBACK
  74                 callback;
  75         void *context;
  76         BUFFERED_IOCTL_DONE_CALLBACK
  77                 done_callback;
  78         void *done_context;
  79 
  80 };
  81 
  82 static void complete_fm_api_req(struct esas2r_adapter *a,
  83                                 struct esas2r_request *rq)
  84 {
  85         a->fm_api_command_done = 1;
  86         wake_up_interruptible(&a->fm_api_waiter);
  87 }
  88 
  89 /* Callbacks for building scatter/gather lists for FM API requests */
  90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
  91 {
  92         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
  93         int offset = sgc->cur_offset - a->save_offset;
  94 
  95         (*addr) = a->firmware.phys + offset;
  96         return a->firmware.orig_len - offset;
  97 }
  98 
  99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
 100 {
 101         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
 102         int offset = sgc->cur_offset - a->save_offset;
 103 
 104         (*addr) = a->firmware.header_buff_phys + offset;
 105         return sizeof(struct esas2r_flash_img) - offset;
 106 }
 107 
 108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
 109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
 110 {
 111         struct esas2r_request *rq;
 112 
 113         if (mutex_lock_interruptible(&a->fm_api_mutex)) {
 114                 fi->status = FI_STAT_BUSY;
 115                 return;
 116         }
 117 
 118         rq = esas2r_alloc_request(a);
 119         if (rq == NULL) {
 120                 fi->status = FI_STAT_BUSY;
 121                 goto free_sem;
 122         }
 123 
 124         if (fi == &a->firmware.header) {
 125                 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
 126                                                              (size_t)sizeof(
 127                                                                      struct
 128                                                                      esas2r_flash_img),
 129                                                              (dma_addr_t *)&a->
 130                                                              firmware.
 131                                                              header_buff_phys,
 132                                                              GFP_KERNEL);
 133 
 134                 if (a->firmware.header_buff == NULL) {
 135                         esas2r_debug("failed to allocate header buffer!");
 136                         fi->status = FI_STAT_BUSY;
 137                         goto free_req;
 138                 }
 139 
 140                 memcpy(a->firmware.header_buff, fi,
 141                        sizeof(struct esas2r_flash_img));
 142                 a->save_offset = a->firmware.header_buff;
 143                 a->fm_api_sgc.get_phys_addr =
 144                         (PGETPHYSADDR)get_physaddr_fm_api_header;
 145         } else {
 146                 a->save_offset = (u8 *)fi;
 147                 a->fm_api_sgc.get_phys_addr =
 148                         (PGETPHYSADDR)get_physaddr_fm_api;
 149         }
 150 
 151         rq->comp_cb = complete_fm_api_req;
 152         a->fm_api_command_done = 0;
 153         a->fm_api_sgc.cur_offset = a->save_offset;
 154 
 155         if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
 156                            &a->fm_api_sgc))
 157                 goto all_done;
 158 
 159         /* Now wait around for it to complete. */
 160         while (!a->fm_api_command_done)
 161                 wait_event_interruptible(a->fm_api_waiter,
 162                                          a->fm_api_command_done);
 163 all_done:
 164         if (fi == &a->firmware.header) {
 165                 memcpy(fi, a->firmware.header_buff,
 166                        sizeof(struct esas2r_flash_img));
 167 
 168                 dma_free_coherent(&a->pcid->dev,
 169                                   (size_t)sizeof(struct esas2r_flash_img),
 170                                   a->firmware.header_buff,
 171                                   (dma_addr_t)a->firmware.header_buff_phys);
 172         }
 173 free_req:
 174         esas2r_free_request(a, (struct esas2r_request *)rq);
 175 free_sem:
 176         mutex_unlock(&a->fm_api_mutex);
 177         return;
 178 
 179 }
 180 
 181 static void complete_nvr_req(struct esas2r_adapter *a,
 182                              struct esas2r_request *rq)
 183 {
 184         a->nvram_command_done = 1;
 185         wake_up_interruptible(&a->nvram_waiter);
 186 }
 187 
 188 /* Callback for building scatter/gather lists for buffered ioctls */
 189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
 190                                        u64 *addr)
 191 {
 192         int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
 193 
 194         (*addr) = esas2r_buffered_ioctl_addr + offset;
 195         return esas2r_buffered_ioctl_size - offset;
 196 }
 197 
 198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
 199                                         struct esas2r_request *rq)
 200 {
 201         a->buffered_ioctl_done = 1;
 202         wake_up_interruptible(&a->buffered_ioctl_waiter);
 203 }
 204 
 205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
 206 {
 207         struct esas2r_adapter *a = bi->a;
 208         struct esas2r_request *rq;
 209         struct esas2r_sg_context sgc;
 210         u8 result = IOCTL_SUCCESS;
 211 
 212         if (down_interruptible(&buffered_ioctl_semaphore))
 213                 return IOCTL_OUT_OF_RESOURCES;
 214 
 215         /* allocate a buffer or use the existing buffer. */
 216         if (esas2r_buffered_ioctl) {
 217                 if (esas2r_buffered_ioctl_size < bi->length) {
 218                         /* free the too-small buffer and get a new one */
 219                         dma_free_coherent(&a->pcid->dev,
 220                                           (size_t)esas2r_buffered_ioctl_size,
 221                                           esas2r_buffered_ioctl,
 222                                           esas2r_buffered_ioctl_addr);
 223 
 224                         goto allocate_buffer;
 225                 }
 226         } else {
 227 allocate_buffer:
 228                 esas2r_buffered_ioctl_size = bi->length;
 229                 esas2r_buffered_ioctl_pcid = a->pcid;
 230                 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
 231                                                            (size_t)
 232                                                            esas2r_buffered_ioctl_size,
 233                                                            &
 234                                                            esas2r_buffered_ioctl_addr,
 235                                                            GFP_KERNEL);
 236         }
 237 
 238         if (!esas2r_buffered_ioctl) {
 239                 esas2r_log(ESAS2R_LOG_CRIT,
 240                            "could not allocate %d bytes of consistent memory "
 241                            "for a buffered ioctl!",
 242                            bi->length);
 243 
 244                 esas2r_debug("buffered ioctl alloc failure");
 245                 result = IOCTL_OUT_OF_RESOURCES;
 246                 goto exit_cleanly;
 247         }
 248 
 249         memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
 250 
 251         rq = esas2r_alloc_request(a);
 252         if (rq == NULL) {
 253                 esas2r_log(ESAS2R_LOG_CRIT,
 254                            "could not allocate an internal request");
 255 
 256                 result = IOCTL_OUT_OF_RESOURCES;
 257                 esas2r_debug("buffered ioctl - no requests");
 258                 goto exit_cleanly;
 259         }
 260 
 261         a->buffered_ioctl_done = 0;
 262         rq->comp_cb = complete_buffered_ioctl_req;
 263         sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
 264         sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
 265         sgc.length = esas2r_buffered_ioctl_size;
 266 
 267         if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
 268                 /* completed immediately, no need to wait */
 269                 a->buffered_ioctl_done = 0;
 270                 goto free_andexit_cleanly;
 271         }
 272 
 273         /* now wait around for it to complete. */
 274         while (!a->buffered_ioctl_done)
 275                 wait_event_interruptible(a->buffered_ioctl_waiter,
 276                                          a->buffered_ioctl_done);
 277 
 278 free_andexit_cleanly:
 279         if (result == IOCTL_SUCCESS && bi->done_callback)
 280                 (*bi->done_callback)(a, rq, bi->done_context);
 281 
 282         esas2r_free_request(a, rq);
 283 
 284 exit_cleanly:
 285         if (result == IOCTL_SUCCESS)
 286                 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
 287 
 288         up(&buffered_ioctl_semaphore);
 289         return result;
 290 }
 291 
 292 /* SMP ioctl support */
 293 static int smp_ioctl_callback(struct esas2r_adapter *a,
 294                               struct esas2r_request *rq,
 295                               struct esas2r_sg_context *sgc, void *context)
 296 {
 297         struct atto_ioctl_smp *si =
 298                 (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
 299 
 300         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
 301         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
 302 
 303         if (!esas2r_build_sg_list(a, rq, sgc)) {
 304                 si->status = ATTO_STS_OUT_OF_RSRC;
 305                 return false;
 306         }
 307 
 308         esas2r_start_request(a, rq);
 309         return true;
 310 }
 311 
 312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
 313 {
 314         struct esas2r_buffered_ioctl bi;
 315 
 316         memset(&bi, 0, sizeof(bi));
 317 
 318         bi.a = a;
 319         bi.ioctl = si;
 320         bi.length = sizeof(struct atto_ioctl_smp)
 321                     + le32_to_cpu(si->req_length)
 322                     + le32_to_cpu(si->rsp_length);
 323         bi.offset = 0;
 324         bi.callback = smp_ioctl_callback;
 325         return handle_buffered_ioctl(&bi);
 326 }
 327 
 328 
 329 /* CSMI ioctl support */
 330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
 331                                              struct esas2r_request *rq)
 332 {
 333         rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
 334         rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
 335 
 336         /* Now call the original completion callback. */
 337         (*rq->aux_req_cb)(a, rq);
 338 }
 339 
 340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
 341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
 342                               union atto_ioctl_csmi *ci,
 343                               struct esas2r_request *rq,
 344                               struct esas2r_sg_context *sgc,
 345                               u32 ctrl_code,
 346                               u16 target_id)
 347 {
 348         struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
 349 
 350         if (test_bit(AF_DEGRADED_MODE, &a->flags))
 351                 return false;
 352 
 353         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
 354         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
 355         ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
 356         ioctl->csmi.target_id = cpu_to_le16(target_id);
 357         ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
 358 
 359         /*
 360          * Always usurp the completion callback since the interrupt callback
 361          * mechanism may be used.
 362          */
 363         rq->aux_req_cx = ci;
 364         rq->aux_req_cb = rq->comp_cb;
 365         rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
 366 
 367         if (!esas2r_build_sg_list(a, rq, sgc))
 368                 return false;
 369 
 370         esas2r_start_request(a, rq);
 371         return true;
 372 }
 373 
 374 static bool check_lun(struct scsi_lun lun)
 375 {
 376         bool result;
 377 
 378         result = ((lun.scsi_lun[7] == 0) &&
 379                   (lun.scsi_lun[6] == 0) &&
 380                   (lun.scsi_lun[5] == 0) &&
 381                   (lun.scsi_lun[4] == 0) &&
 382                   (lun.scsi_lun[3] == 0) &&
 383                   (lun.scsi_lun[2] == 0) &&
 384 /* Byte 1 is intentionally skipped */
 385                   (lun.scsi_lun[0] == 0));
 386 
 387         return result;
 388 }
 389 
 390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
 391                                struct esas2r_request *rq,
 392                                struct esas2r_sg_context *sgc, void *context)
 393 {
 394         struct atto_csmi *ci = (struct atto_csmi *)context;
 395         union atto_ioctl_csmi *ioctl_csmi =
 396                 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
 397         u8 path = 0;
 398         u8 tid = 0;
 399         u8 lun = 0;
 400         u32 sts = CSMI_STS_SUCCESS;
 401         struct esas2r_target *t;
 402         unsigned long flags;
 403 
 404         if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
 405                 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
 406 
 407                 path = gda->path_id;
 408                 tid = gda->target_id;
 409                 lun = gda->lun;
 410         } else if (ci->control_code == CSMI_CC_TASK_MGT) {
 411                 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
 412 
 413                 path = tm->path_id;
 414                 tid = tm->target_id;
 415                 lun = tm->lun;
 416         }
 417 
 418         if (path > 0) {
 419                 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
 420                         CSMI_STS_INV_PARAM);
 421                 return false;
 422         }
 423 
 424         rq->target_id = tid;
 425         rq->vrq->scsi.flags |= cpu_to_le32(lun);
 426 
 427         switch (ci->control_code) {
 428         case CSMI_CC_GET_DRVR_INFO:
 429         {
 430                 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
 431 
 432                 strcpy(gdi->description, esas2r_get_model_name(a));
 433                 gdi->csmi_major_rev = CSMI_MAJOR_REV;
 434                 gdi->csmi_minor_rev = CSMI_MINOR_REV;
 435                 break;
 436         }
 437 
 438         case CSMI_CC_GET_CNTLR_CFG:
 439         {
 440                 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
 441 
 442                 gcc->base_io_addr = 0;
 443                 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
 444                                       &gcc->base_memaddr_lo);
 445                 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
 446                                       &gcc->base_memaddr_hi);
 447                 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
 448                                           a->pcid->subsystem_vendor);
 449                 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
 450                 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
 451                 gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
 452                 gcc->pci_addr.bus_num = a->pcid->bus->number;
 453                 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
 454                 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
 455 
 456                 memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
 457 
 458                 gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
 459                 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
 460                 gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
 461                 gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
 462                 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
 463                 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
 464                 gcc->bios_build_rev = LOWORD(a->flash_ver);
 465 
 466                 if (test_bit(AF2_THUNDERLINK, &a->flags2))
 467                         gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
 468                                            | CSMI_CNTLRF_SATA_HBA;
 469                 else
 470                         gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
 471                                            | CSMI_CNTLRF_SATA_RAID;
 472 
 473                 gcc->rrom_major_rev = 0;
 474                 gcc->rrom_minor_rev = 0;
 475                 gcc->rrom_build_rev = 0;
 476                 gcc->rrom_release_rev = 0;
 477                 gcc->rrom_biosmajor_rev = 0;
 478                 gcc->rrom_biosminor_rev = 0;
 479                 gcc->rrom_biosbuild_rev = 0;
 480                 gcc->rrom_biosrelease_rev = 0;
 481                 break;
 482         }
 483 
 484         case CSMI_CC_GET_CNTLR_STS:
 485         {
 486                 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
 487 
 488                 if (test_bit(AF_DEGRADED_MODE, &a->flags))
 489                         gcs->status = CSMI_CNTLR_STS_FAILED;
 490                 else
 491                         gcs->status = CSMI_CNTLR_STS_GOOD;
 492 
 493                 gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
 494                 break;
 495         }
 496 
 497         case CSMI_CC_FW_DOWNLOAD:
 498         case CSMI_CC_GET_RAID_INFO:
 499         case CSMI_CC_GET_RAID_CFG:
 500 
 501                 sts = CSMI_STS_BAD_CTRL_CODE;
 502                 break;
 503 
 504         case CSMI_CC_SMP_PASSTHRU:
 505         case CSMI_CC_SSP_PASSTHRU:
 506         case CSMI_CC_STP_PASSTHRU:
 507         case CSMI_CC_GET_PHY_INFO:
 508         case CSMI_CC_SET_PHY_INFO:
 509         case CSMI_CC_GET_LINK_ERRORS:
 510         case CSMI_CC_GET_SATA_SIG:
 511         case CSMI_CC_GET_CONN_INFO:
 512         case CSMI_CC_PHY_CTRL:
 513 
 514                 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
 515                                        ci->control_code,
 516                                        ESAS2R_TARG_ID_INV)) {
 517                         sts = CSMI_STS_FAILED;
 518                         break;
 519                 }
 520 
 521                 return true;
 522 
 523         case CSMI_CC_GET_SCSI_ADDR:
 524         {
 525                 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
 526 
 527                 struct scsi_lun lun;
 528 
 529                 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
 530 
 531                 if (!check_lun(lun)) {
 532                         sts = CSMI_STS_NO_SCSI_ADDR;
 533                         break;
 534                 }
 535 
 536                 /* make sure the device is present */
 537                 spin_lock_irqsave(&a->mem_lock, flags);
 538                 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
 539                 spin_unlock_irqrestore(&a->mem_lock, flags);
 540 
 541                 if (t == NULL) {
 542                         sts = CSMI_STS_NO_SCSI_ADDR;
 543                         break;
 544                 }
 545 
 546                 gsa->host_index = 0xFF;
 547                 gsa->lun = gsa->sas_lun[1];
 548                 rq->target_id = esas2r_targ_get_id(t, a);
 549                 break;
 550         }
 551 
 552         case CSMI_CC_GET_DEV_ADDR:
 553         {
 554                 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
 555 
 556                 /* make sure the target is present */
 557                 t = a->targetdb + rq->target_id;
 558 
 559                 if (t >= a->targetdb_end
 560                     || t->target_state != TS_PRESENT
 561                     || t->sas_addr == 0) {
 562                         sts = CSMI_STS_NO_DEV_ADDR;
 563                         break;
 564                 }
 565 
 566                 /* fill in the result */
 567                 *(u64 *)gda->sas_addr = t->sas_addr;
 568                 memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
 569                 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
 570                 break;
 571         }
 572 
 573         case CSMI_CC_TASK_MGT:
 574 
 575                 /* make sure the target is present */
 576                 t = a->targetdb + rq->target_id;
 577 
 578                 if (t >= a->targetdb_end
 579                     || t->target_state != TS_PRESENT
 580                     || !(t->flags & TF_PASS_THRU)) {
 581                         sts = CSMI_STS_NO_DEV_ADDR;
 582                         break;
 583                 }
 584 
 585                 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
 586                                        ci->control_code,
 587                                        t->phys_targ_id)) {
 588                         sts = CSMI_STS_FAILED;
 589                         break;
 590                 }
 591 
 592                 return true;
 593 
 594         default:
 595 
 596                 sts = CSMI_STS_BAD_CTRL_CODE;
 597                 break;
 598         }
 599 
 600         rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
 601 
 602         return false;
 603 }
 604 
 605 
 606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
 607                                      struct esas2r_request *rq, void *context)
 608 {
 609         struct atto_csmi *ci = (struct atto_csmi *)context;
 610         union atto_ioctl_csmi *ioctl_csmi =
 611                 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
 612 
 613         switch (ci->control_code) {
 614         case CSMI_CC_GET_DRVR_INFO:
 615         {
 616                 struct atto_csmi_get_driver_info *gdi =
 617                         &ioctl_csmi->drvr_info;
 618 
 619                 strcpy(gdi->name, ESAS2R_VERSION_STR);
 620 
 621                 gdi->major_rev = ESAS2R_MAJOR_REV;
 622                 gdi->minor_rev = ESAS2R_MINOR_REV;
 623                 gdi->build_rev = 0;
 624                 gdi->release_rev = 0;
 625                 break;
 626         }
 627 
 628         case CSMI_CC_GET_SCSI_ADDR:
 629         {
 630                 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
 631 
 632                 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
 633                     CSMI_STS_SUCCESS) {
 634                         gsa->target_id = rq->target_id;
 635                         gsa->path_id = 0;
 636                 }
 637 
 638                 break;
 639         }
 640         }
 641 
 642         ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
 643 }
 644 
 645 
 646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
 647 {
 648         struct esas2r_buffered_ioctl bi;
 649 
 650         memset(&bi, 0, sizeof(bi));
 651 
 652         bi.a = a;
 653         bi.ioctl = &ci->data;
 654         bi.length = sizeof(union atto_ioctl_csmi);
 655         bi.offset = 0;
 656         bi.callback = csmi_ioctl_callback;
 657         bi.context = ci;
 658         bi.done_callback = csmi_ioctl_done_callback;
 659         bi.done_context = ci;
 660 
 661         return handle_buffered_ioctl(&bi);
 662 }
 663 
 664 /* ATTO HBA ioctl support */
 665 
 666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
 667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
 668                              struct atto_ioctl *hi,
 669                              struct esas2r_request *rq,
 670                              struct esas2r_sg_context *sgc)
 671 {
 672         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
 673 
 674         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
 675 
 676         if (!esas2r_build_sg_list(a, rq, sgc)) {
 677                 hi->status = ATTO_STS_OUT_OF_RSRC;
 678 
 679                 return false;
 680         }
 681 
 682         esas2r_start_request(a, rq);
 683 
 684         return true;
 685 }
 686 
 687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
 688                                   struct esas2r_request *rq)
 689 {
 690         struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
 691         struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
 692         u8 sts = ATTO_SPT_RS_FAILED;
 693 
 694         spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
 695         spt->sense_length = rq->sense_len;
 696         spt->residual_length =
 697                 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
 698 
 699         switch (rq->req_stat) {
 700         case RS_SUCCESS:
 701         case RS_SCSI_ERROR:
 702                 sts = ATTO_SPT_RS_SUCCESS;
 703                 break;
 704         case RS_UNDERRUN:
 705                 sts = ATTO_SPT_RS_UNDERRUN;
 706                 break;
 707         case RS_OVERRUN:
 708                 sts = ATTO_SPT_RS_OVERRUN;
 709                 break;
 710         case RS_SEL:
 711         case RS_SEL2:
 712                 sts = ATTO_SPT_RS_NO_DEVICE;
 713                 break;
 714         case RS_NO_LUN:
 715                 sts = ATTO_SPT_RS_NO_LUN;
 716                 break;
 717         case RS_TIMEOUT:
 718                 sts = ATTO_SPT_RS_TIMEOUT;
 719                 break;
 720         case RS_DEGRADED:
 721                 sts = ATTO_SPT_RS_DEGRADED;
 722                 break;
 723         case RS_BUSY:
 724                 sts = ATTO_SPT_RS_BUSY;
 725                 break;
 726         case RS_ABORTED:
 727                 sts = ATTO_SPT_RS_ABORTED;
 728                 break;
 729         case RS_RESET:
 730                 sts = ATTO_SPT_RS_BUS_RESET;
 731                 break;
 732         }
 733 
 734         spt->req_status = sts;
 735 
 736         /* Update the target ID to the next one present. */
 737         spt->target_id =
 738                 esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
 739 
 740         /* Done, call the completion callback. */
 741         (*rq->aux_req_cb)(a, rq);
 742 }
 743 
 744 static int hba_ioctl_callback(struct esas2r_adapter *a,
 745                               struct esas2r_request *rq,
 746                               struct esas2r_sg_context *sgc,
 747                               void *context)
 748 {
 749         struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
 750 
 751         hi->status = ATTO_STS_SUCCESS;
 752 
 753         switch (hi->function) {
 754         case ATTO_FUNC_GET_ADAP_INFO:
 755         {
 756                 u8 *class_code = (u8 *)&a->pcid->class;
 757 
 758                 struct atto_hba_get_adapter_info *gai =
 759                         &hi->data.get_adap_info;
 760 
 761                 if (hi->flags & HBAF_TUNNEL) {
 762                         hi->status = ATTO_STS_UNSUPPORTED;
 763                         break;
 764                 }
 765 
 766                 if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
 767                         hi->status = ATTO_STS_INV_VERSION;
 768                         hi->version = ATTO_VER_GET_ADAP_INFO0;
 769                         break;
 770                 }
 771 
 772                 memset(gai, 0, sizeof(*gai));
 773 
 774                 gai->pci.vendor_id = a->pcid->vendor;
 775                 gai->pci.device_id = a->pcid->device;
 776                 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
 777                 gai->pci.ss_device_id = a->pcid->subsystem_device;
 778                 gai->pci.class_code[0] = class_code[0];
 779                 gai->pci.class_code[1] = class_code[1];
 780                 gai->pci.class_code[2] = class_code[2];
 781                 gai->pci.rev_id = a->pcid->revision;
 782                 gai->pci.bus_num = a->pcid->bus->number;
 783                 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
 784                 gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
 785 
 786                 if (pci_is_pcie(a->pcid)) {
 787                         u16 stat;
 788                         u32 caps;
 789 
 790                         pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA,
 791                                                   &stat);
 792                         pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP,
 793                                                    &caps);
 794 
 795                         gai->pci.link_speed_curr =
 796                                 (u8)(stat & PCI_EXP_LNKSTA_CLS);
 797                         gai->pci.link_speed_max =
 798                                 (u8)(caps & PCI_EXP_LNKCAP_SLS);
 799                         gai->pci.link_width_curr =
 800                                 (u8)((stat & PCI_EXP_LNKSTA_NLW)
 801                                      >> PCI_EXP_LNKSTA_NLW_SHIFT);
 802                         gai->pci.link_width_max =
 803                                 (u8)((caps & PCI_EXP_LNKCAP_MLW)
 804                                      >> 4);
 805                 }
 806 
 807                 gai->pci.msi_vector_cnt = 1;
 808 
 809                 if (a->pcid->msix_enabled)
 810                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
 811                 else if (a->pcid->msi_enabled)
 812                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
 813                 else
 814                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
 815 
 816                 gai->adap_type = ATTO_GAI_AT_ESASRAID2;
 817 
 818                 if (test_bit(AF2_THUNDERLINK, &a->flags2))
 819                         gai->adap_type = ATTO_GAI_AT_TLSASHBA;
 820 
 821                 if (test_bit(AF_DEGRADED_MODE, &a->flags))
 822                         gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
 823 
 824                 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
 825                                    ATTO_GAI_AF_DEVADDR_SUPP;
 826 
 827                 if (a->pcid->subsystem_device == ATTO_ESAS_R60F
 828                     || a->pcid->subsystem_device == ATTO_ESAS_R608
 829                     || a->pcid->subsystem_device == ATTO_ESAS_R644
 830                     || a->pcid->subsystem_device == ATTO_TSSC_3808E)
 831                         gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
 832 
 833                 gai->num_ports = ESAS2R_NUM_PHYS;
 834                 gai->num_phys = ESAS2R_NUM_PHYS;
 835 
 836                 strcpy(gai->firmware_rev, a->fw_rev);
 837                 strcpy(gai->flash_rev, a->flash_rev);
 838                 strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
 839                 strcpy(gai->model_name, esas2r_get_model_name(a));
 840 
 841                 gai->num_targets = ESAS2R_MAX_TARGETS;
 842 
 843                 gai->num_busses = 1;
 844                 gai->num_targsper_bus = gai->num_targets;
 845                 gai->num_lunsper_targ = 256;
 846 
 847                 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
 848                     || a->pcid->subsystem_device == ATTO_ESAS_R60F)
 849                         gai->num_connectors = 4;
 850                 else
 851                         gai->num_connectors = 2;
 852 
 853                 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
 854 
 855                 gai->num_targets_backend = a->num_targets_backend;
 856 
 857                 gai->tunnel_flags = a->ioctl_tunnel
 858                                     & (ATTO_GAI_TF_MEM_RW
 859                                        | ATTO_GAI_TF_TRACE
 860                                        | ATTO_GAI_TF_SCSI_PASS_THRU
 861                                        | ATTO_GAI_TF_GET_DEV_ADDR
 862                                        | ATTO_GAI_TF_PHY_CTRL
 863                                        | ATTO_GAI_TF_CONN_CTRL
 864                                        | ATTO_GAI_TF_GET_DEV_INFO);
 865                 break;
 866         }
 867 
 868         case ATTO_FUNC_GET_ADAP_ADDR:
 869         {
 870                 struct atto_hba_get_adapter_address *gaa =
 871                         &hi->data.get_adap_addr;
 872 
 873                 if (hi->flags & HBAF_TUNNEL) {
 874                         hi->status = ATTO_STS_UNSUPPORTED;
 875                         break;
 876                 }
 877 
 878                 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
 879                         hi->status = ATTO_STS_INV_VERSION;
 880                         hi->version = ATTO_VER_GET_ADAP_ADDR0;
 881                 } else if (gaa->addr_type == ATTO_GAA_AT_PORT
 882                            || gaa->addr_type == ATTO_GAA_AT_NODE) {
 883                         if (gaa->addr_type == ATTO_GAA_AT_PORT
 884                             && gaa->port_id >= ESAS2R_NUM_PHYS) {
 885                                 hi->status = ATTO_STS_NOT_APPL;
 886                         } else {
 887                                 memcpy((u64 *)gaa->address,
 888                                        &a->nvram->sas_addr[0], sizeof(u64));
 889                                 gaa->addr_len = sizeof(u64);
 890                         }
 891                 } else {
 892                         hi->status = ATTO_STS_INV_PARAM;
 893                 }
 894 
 895                 break;
 896         }
 897 
 898         case ATTO_FUNC_MEM_RW:
 899         {
 900                 if (hi->flags & HBAF_TUNNEL) {
 901                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
 902                                 return true;
 903 
 904                         break;
 905                 }
 906 
 907                 hi->status = ATTO_STS_UNSUPPORTED;
 908 
 909                 break;
 910         }
 911 
 912         case ATTO_FUNC_TRACE:
 913         {
 914                 struct atto_hba_trace *trc = &hi->data.trace;
 915 
 916                 if (hi->flags & HBAF_TUNNEL) {
 917                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
 918                                 return true;
 919 
 920                         break;
 921                 }
 922 
 923                 if (hi->version > ATTO_VER_TRACE1) {
 924                         hi->status = ATTO_STS_INV_VERSION;
 925                         hi->version = ATTO_VER_TRACE1;
 926                         break;
 927                 }
 928 
 929                 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
 930                     && hi->version >= ATTO_VER_TRACE1) {
 931                         if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
 932                                 u32 len = hi->data_length;
 933                                 u32 offset = trc->current_offset;
 934                                 u32 total_len = ESAS2R_FWCOREDUMP_SZ;
 935 
 936                                 /* Size is zero if a core dump isn't present */
 937                                 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
 938                                         total_len = 0;
 939 
 940                                 if (len > total_len)
 941                                         len = total_len;
 942 
 943                                 if (offset >= total_len
 944                                     || offset + len > total_len
 945                                     || len == 0) {
 946                                         hi->status = ATTO_STS_INV_PARAM;
 947                                         break;
 948                                 }
 949 
 950                                 memcpy(trc + 1,
 951                                        a->fw_coredump_buff + offset,
 952                                        len);
 953 
 954                                 hi->data_length = len;
 955                         } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
 956                                 memset(a->fw_coredump_buff, 0,
 957                                        ESAS2R_FWCOREDUMP_SZ);
 958 
 959                                 clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
 960                         } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
 961                                 hi->status = ATTO_STS_UNSUPPORTED;
 962                                 break;
 963                         }
 964 
 965                         /* Always return all the info we can. */
 966                         trc->trace_mask = 0;
 967                         trc->current_offset = 0;
 968                         trc->total_length = ESAS2R_FWCOREDUMP_SZ;
 969 
 970                         /* Return zero length buffer if core dump not present */
 971                         if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
 972                                 trc->total_length = 0;
 973                 } else {
 974                         hi->status = ATTO_STS_UNSUPPORTED;
 975                 }
 976 
 977                 break;
 978         }
 979 
 980         case ATTO_FUNC_SCSI_PASS_THRU:
 981         {
 982                 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
 983                 struct scsi_lun lun;
 984 
 985                 memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
 986 
 987                 if (hi->flags & HBAF_TUNNEL) {
 988                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
 989                                 return true;
 990 
 991                         break;
 992                 }
 993 
 994                 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
 995                         hi->status = ATTO_STS_INV_VERSION;
 996                         hi->version = ATTO_VER_SCSI_PASS_THRU0;
 997                         break;
 998                 }
 999 
1000                 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1001                         hi->status = ATTO_STS_INV_PARAM;
1002                         break;
1003                 }
1004 
1005                 esas2r_sgc_init(sgc, a, rq, NULL);
1006 
1007                 sgc->length = hi->data_length;
1008                 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1009                                    + sizeof(struct atto_hba_scsi_pass_thru);
1010 
1011                 /* Finish request initialization */
1012                 rq->target_id = (u16)spt->target_id;
1013                 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1014                 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1015                 rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1016                 rq->sense_len = spt->sense_length;
1017                 rq->sense_buf = (u8 *)spt->sense_data;
1018                 /* NOTE: we ignore spt->timeout */
1019 
1020                 /*
1021                  * always usurp the completion callback since the interrupt
1022                  * callback mechanism may be used.
1023                  */
1024 
1025                 rq->aux_req_cx = hi;
1026                 rq->aux_req_cb = rq->comp_cb;
1027                 rq->comp_cb = scsi_passthru_comp_cb;
1028 
1029                 if (spt->flags & ATTO_SPTF_DATA_IN) {
1030                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1031                 } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1032                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1033                 } else {
1034                         if (sgc->length) {
1035                                 hi->status = ATTO_STS_INV_PARAM;
1036                                 break;
1037                         }
1038                 }
1039 
1040                 if (spt->flags & ATTO_SPTF_ORDERED_Q)
1041                         rq->vrq->scsi.flags |=
1042                                 cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1043                 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1044                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1045 
1046 
1047                 if (!esas2r_build_sg_list(a, rq, sgc)) {
1048                         hi->status = ATTO_STS_OUT_OF_RSRC;
1049                         break;
1050                 }
1051 
1052                 esas2r_start_request(a, rq);
1053 
1054                 return true;
1055         }
1056 
1057         case ATTO_FUNC_GET_DEV_ADDR:
1058         {
1059                 struct atto_hba_get_device_address *gda =
1060                         &hi->data.get_dev_addr;
1061                 struct esas2r_target *t;
1062 
1063                 if (hi->flags & HBAF_TUNNEL) {
1064                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
1065                                 return true;
1066 
1067                         break;
1068                 }
1069 
1070                 if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1071                         hi->status = ATTO_STS_INV_VERSION;
1072                         hi->version = ATTO_VER_GET_DEV_ADDR0;
1073                         break;
1074                 }
1075 
1076                 if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1077                         hi->status = ATTO_STS_INV_PARAM;
1078                         break;
1079                 }
1080 
1081                 t = a->targetdb + (u16)gda->target_id;
1082 
1083                 if (t->target_state != TS_PRESENT) {
1084                         hi->status = ATTO_STS_FAILED;
1085                 } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1086                         if (t->sas_addr == 0) {
1087                                 hi->status = ATTO_STS_UNSUPPORTED;
1088                         } else {
1089                                 *(u64 *)gda->address = t->sas_addr;
1090 
1091                                 gda->addr_len = sizeof(u64);
1092                         }
1093                 } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1094                         hi->status = ATTO_STS_NOT_APPL;
1095                 } else {
1096                         hi->status = ATTO_STS_INV_PARAM;
1097                 }
1098 
1099                 /* update the target ID to the next one present. */
1100 
1101                 gda->target_id =
1102                         esas2r_targ_db_find_next_present(a,
1103                                                          (u16)gda->target_id);
1104                 break;
1105         }
1106 
1107         case ATTO_FUNC_PHY_CTRL:
1108         case ATTO_FUNC_CONN_CTRL:
1109         {
1110                 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1111                         return true;
1112 
1113                 break;
1114         }
1115 
1116         case ATTO_FUNC_ADAP_CTRL:
1117         {
1118                 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1119 
1120                 if (hi->flags & HBAF_TUNNEL) {
1121                         hi->status = ATTO_STS_UNSUPPORTED;
1122                         break;
1123                 }
1124 
1125                 if (hi->version > ATTO_VER_ADAP_CTRL0) {
1126                         hi->status = ATTO_STS_INV_VERSION;
1127                         hi->version = ATTO_VER_ADAP_CTRL0;
1128                         break;
1129                 }
1130 
1131                 if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1132                         esas2r_reset_adapter(a);
1133                 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1134                         hi->status = ATTO_STS_UNSUPPORTED;
1135                         break;
1136                 }
1137 
1138                 if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1139                         ac->adap_state = ATTO_AC_AS_RST_SCHED;
1140                 else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1141                         ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1142                 else if (test_bit(AF_DISC_PENDING, &a->flags))
1143                         ac->adap_state = ATTO_AC_AS_RST_DISC;
1144                 else if (test_bit(AF_DISABLED, &a->flags))
1145                         ac->adap_state = ATTO_AC_AS_DISABLED;
1146                 else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1147                         ac->adap_state = ATTO_AC_AS_DEGRADED;
1148                 else
1149                         ac->adap_state = ATTO_AC_AS_OK;
1150 
1151                 break;
1152         }
1153 
1154         case ATTO_FUNC_GET_DEV_INFO:
1155         {
1156                 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1157                 struct esas2r_target *t;
1158 
1159                 if (hi->flags & HBAF_TUNNEL) {
1160                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
1161                                 return true;
1162 
1163                         break;
1164                 }
1165 
1166                 if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1167                         hi->status = ATTO_STS_INV_VERSION;
1168                         hi->version = ATTO_VER_GET_DEV_INFO0;
1169                         break;
1170                 }
1171 
1172                 if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1173                         hi->status = ATTO_STS_INV_PARAM;
1174                         break;
1175                 }
1176 
1177                 t = a->targetdb + (u16)gdi->target_id;
1178 
1179                 /* update the target ID to the next one present. */
1180 
1181                 gdi->target_id =
1182                         esas2r_targ_db_find_next_present(a,
1183                                                          (u16)gdi->target_id);
1184 
1185                 if (t->target_state != TS_PRESENT) {
1186                         hi->status = ATTO_STS_FAILED;
1187                         break;
1188                 }
1189 
1190                 hi->status = ATTO_STS_UNSUPPORTED;
1191                 break;
1192         }
1193 
1194         default:
1195 
1196                 hi->status = ATTO_STS_INV_FUNC;
1197                 break;
1198         }
1199 
1200         return false;
1201 }
1202 
1203 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1204                                     struct esas2r_request *rq, void *context)
1205 {
1206         struct atto_ioctl *ioctl_hba =
1207                 (struct atto_ioctl *)esas2r_buffered_ioctl;
1208 
1209         esas2r_debug("hba_ioctl_done_callback %d", a->index);
1210 
1211         if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1212                 struct atto_hba_get_adapter_info *gai =
1213                         &ioctl_hba->data.get_adap_info;
1214 
1215                 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1216 
1217                 gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1218                 gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1219 
1220                 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1221                 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1222 
1223                 gai->num_busses = 1;
1224                 gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1225                 gai->num_lunsper_targ = 1;
1226         }
1227 }
1228 
1229 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1230                     struct atto_ioctl *ioctl_hba)
1231 {
1232         struct esas2r_buffered_ioctl bi;
1233 
1234         memset(&bi, 0, sizeof(bi));
1235 
1236         bi.a = a;
1237         bi.ioctl = ioctl_hba;
1238         bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1239         bi.callback = hba_ioctl_callback;
1240         bi.context = NULL;
1241         bi.done_callback = hba_ioctl_done_callback;
1242         bi.done_context = NULL;
1243         bi.offset = 0;
1244 
1245         return handle_buffered_ioctl(&bi);
1246 }
1247 
1248 
1249 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1250                         struct esas2r_sas_nvram *data)
1251 {
1252         int result = 0;
1253 
1254         a->nvram_command_done = 0;
1255         rq->comp_cb = complete_nvr_req;
1256 
1257         if (esas2r_nvram_write(a, rq, data)) {
1258                 /* now wait around for it to complete. */
1259                 while (!a->nvram_command_done)
1260                         wait_event_interruptible(a->nvram_waiter,
1261                                                  a->nvram_command_done);
1262                 ;
1263 
1264                 /* done, check the status. */
1265                 if (rq->req_stat == RS_SUCCESS)
1266                         result = 1;
1267         }
1268         return result;
1269 }
1270 
1271 
1272 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1273 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg)
1274 {
1275         struct atto_express_ioctl *ioctl = NULL;
1276         struct esas2r_adapter *a;
1277         struct esas2r_request *rq;
1278         u16 code;
1279         int err;
1280 
1281         esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1282 
1283         if ((arg == NULL)
1284             || (cmd < EXPRESS_IOCTL_MIN)
1285             || (cmd > EXPRESS_IOCTL_MAX))
1286                 return -ENOTSUPP;
1287 
1288         ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1289         if (IS_ERR(ioctl)) {
1290                 esas2r_log(ESAS2R_LOG_WARN,
1291                            "ioctl_handler access_ok failed for cmd %u, address %p",
1292                            cmd, arg);
1293                 return PTR_ERR(ioctl);
1294         }
1295 
1296         /* verify the signature */
1297 
1298         if (memcmp(ioctl->header.signature,
1299                    EXPRESS_IOCTL_SIGNATURE,
1300                    EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1301                 esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1302                 kfree(ioctl);
1303 
1304                 return -ENOTSUPP;
1305         }
1306 
1307         /* assume success */
1308 
1309         ioctl->header.return_code = IOCTL_SUCCESS;
1310         err = 0;
1311 
1312         /*
1313          * handle EXPRESS_IOCTL_GET_CHANNELS
1314          * without paying attention to channel
1315          */
1316 
1317         if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1318                 int i = 0, k = 0;
1319 
1320                 ioctl->data.chanlist.num_channels = 0;
1321 
1322                 while (i < MAX_ADAPTERS) {
1323                         if (esas2r_adapters[i]) {
1324                                 ioctl->data.chanlist.num_channels++;
1325                                 ioctl->data.chanlist.channel[k] = i;
1326                                 k++;
1327                         }
1328                         i++;
1329                 }
1330 
1331                 goto ioctl_done;
1332         }
1333 
1334         /* get the channel */
1335 
1336         if (ioctl->header.channel == 0xFF) {
1337                 a = (struct esas2r_adapter *)hostdata;
1338         } else {
1339                 if (ioctl->header.channel >= MAX_ADAPTERS ||
1340                         esas2r_adapters[ioctl->header.channel] == NULL) {
1341                         ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1342                         esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1343                         kfree(ioctl);
1344 
1345                         return -ENOTSUPP;
1346                 }
1347                 a = esas2r_adapters[ioctl->header.channel];
1348         }
1349 
1350         switch (cmd) {
1351         case EXPRESS_IOCTL_RW_FIRMWARE:
1352 
1353                 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1354                         err = esas2r_write_fw(a,
1355                                               (char *)ioctl->data.fwrw.image,
1356                                               0,
1357                                               sizeof(struct
1358                                                      atto_express_ioctl));
1359 
1360                         if (err >= 0) {
1361                                 err = esas2r_read_fw(a,
1362                                                      (char *)ioctl->data.fwrw.
1363                                                      image,
1364                                                      0,
1365                                                      sizeof(struct
1366                                                             atto_express_ioctl));
1367                         }
1368                 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1369                         err = esas2r_write_fs(a,
1370                                               (char *)ioctl->data.fwrw.image,
1371                                               0,
1372                                               sizeof(struct
1373                                                      atto_express_ioctl));
1374 
1375                         if (err >= 0) {
1376                                 err = esas2r_read_fs(a,
1377                                                      (char *)ioctl->data.fwrw.
1378                                                      image,
1379                                                      0,
1380                                                      sizeof(struct
1381                                                             atto_express_ioctl));
1382                         }
1383                 } else {
1384                         ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1385                 }
1386 
1387                 break;
1388 
1389         case EXPRESS_IOCTL_READ_PARAMS:
1390 
1391                 memcpy(ioctl->data.prw.data_buffer, a->nvram,
1392                        sizeof(struct esas2r_sas_nvram));
1393                 ioctl->data.prw.code = 1;
1394                 break;
1395 
1396         case EXPRESS_IOCTL_WRITE_PARAMS:
1397 
1398                 rq = esas2r_alloc_request(a);
1399                 if (rq == NULL) {
1400                         kfree(ioctl);
1401                         esas2r_log(ESAS2R_LOG_WARN,
1402                            "could not allocate an internal request");
1403                         return -ENOMEM;
1404                 }
1405 
1406                 code = esas2r_write_params(a, rq,
1407                                            (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1408                 ioctl->data.prw.code = code;
1409 
1410                 esas2r_free_request(a, rq);
1411 
1412                 break;
1413 
1414         case EXPRESS_IOCTL_DEFAULT_PARAMS:
1415 
1416                 esas2r_nvram_get_defaults(a,
1417                                           (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1418                 ioctl->data.prw.code = 1;
1419                 break;
1420 
1421         case EXPRESS_IOCTL_CHAN_INFO:
1422 
1423                 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1424                 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1425                 ioctl->data.chaninfo.IRQ = a->pcid->irq;
1426                 ioctl->data.chaninfo.device_id = a->pcid->device;
1427                 ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1428                 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1429                 ioctl->data.chaninfo.revision_id = a->pcid->revision;
1430                 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1431                 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1432                 ioctl->data.chaninfo.core_rev = 0;
1433                 ioctl->data.chaninfo.host_no = a->host->host_no;
1434                 ioctl->data.chaninfo.hbaapi_rev = 0;
1435                 break;
1436 
1437         case EXPRESS_IOCTL_SMP:
1438                 ioctl->header.return_code = handle_smp_ioctl(a,
1439                                                              &ioctl->data.
1440                                                              ioctl_smp);
1441                 break;
1442 
1443         case EXPRESS_CSMI:
1444                 ioctl->header.return_code =
1445                         handle_csmi_ioctl(a, &ioctl->data.csmi);
1446                 break;
1447 
1448         case EXPRESS_IOCTL_HBA:
1449                 ioctl->header.return_code = handle_hba_ioctl(a,
1450                                                              &ioctl->data.
1451                                                              ioctl_hba);
1452                 break;
1453 
1454         case EXPRESS_IOCTL_VDA:
1455                 err = esas2r_write_vda(a,
1456                                        (char *)&ioctl->data.ioctl_vda,
1457                                        0,
1458                                        sizeof(struct atto_ioctl_vda) +
1459                                        ioctl->data.ioctl_vda.data_length);
1460 
1461                 if (err >= 0) {
1462                         err = esas2r_read_vda(a,
1463                                               (char *)&ioctl->data.ioctl_vda,
1464                                               0,
1465                                               sizeof(struct atto_ioctl_vda) +
1466                                               ioctl->data.ioctl_vda.data_length);
1467                 }
1468 
1469 
1470 
1471 
1472                 break;
1473 
1474         case EXPRESS_IOCTL_GET_MOD_INFO:
1475 
1476                 ioctl->data.modinfo.adapter = a;
1477                 ioctl->data.modinfo.pci_dev = a->pcid;
1478                 ioctl->data.modinfo.scsi_host = a->host;
1479                 ioctl->data.modinfo.host_no = a->host->host_no;
1480 
1481                 break;
1482 
1483         default:
1484                 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1485                 ioctl->header.return_code = IOCTL_ERR_INVCMD;
1486         }
1487 
1488 ioctl_done:
1489 
1490         if (err < 0) {
1491                 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err,
1492                            cmd);
1493 
1494                 switch (err) {
1495                 case -ENOMEM:
1496                 case -EBUSY:
1497                         ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1498                         break;
1499 
1500                 case -ENOSYS:
1501                 case -EINVAL:
1502                         ioctl->header.return_code = IOCTL_INVALID_PARAM;
1503                         break;
1504 
1505                 default:
1506                         ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1507                         break;
1508                 }
1509 
1510         }
1511 
1512         /* Always copy the buffer back, if only to pick up the status */
1513         err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1514         if (err != 0) {
1515                 esas2r_log(ESAS2R_LOG_WARN,
1516                            "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)",
1517                            err, cmd);
1518                 kfree(ioctl);
1519 
1520                 return -EFAULT;
1521         }
1522 
1523         kfree(ioctl);
1524 
1525         return 0;
1526 }
1527 
1528 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg)
1529 {
1530         return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1531 }
1532 
1533 static void free_fw_buffers(struct esas2r_adapter *a)
1534 {
1535         if (a->firmware.data) {
1536                 dma_free_coherent(&a->pcid->dev,
1537                                   (size_t)a->firmware.orig_len,
1538                                   a->firmware.data,
1539                                   (dma_addr_t)a->firmware.phys);
1540 
1541                 a->firmware.data = NULL;
1542         }
1543 }
1544 
1545 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1546 {
1547         free_fw_buffers(a);
1548 
1549         a->firmware.orig_len = length;
1550 
1551         a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1552                                                     (size_t)length,
1553                                                     (dma_addr_t *)&a->firmware.
1554                                                     phys,
1555                                                     GFP_KERNEL);
1556 
1557         if (!a->firmware.data) {
1558                 esas2r_debug("buffer alloc failed!");
1559                 return 0;
1560         }
1561 
1562         return 1;
1563 }
1564 
1565 /* Handle a call to read firmware. */
1566 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1567 {
1568         esas2r_trace_enter();
1569         /* if the cached header is a status, simply copy it over and return. */
1570         if (a->firmware.state == FW_STATUS_ST) {
1571                 int size = min_t(int, count, sizeof(a->firmware.header));
1572                 esas2r_trace_exit();
1573                 memcpy(buf, &a->firmware.header, size);
1574                 esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1575                 return size;
1576         }
1577 
1578         /*
1579          * if the cached header is a command, do it if at
1580          * offset 0, otherwise copy the pieces.
1581          */
1582 
1583         if (a->firmware.state == FW_COMMAND_ST) {
1584                 u32 length = a->firmware.header.length;
1585                 esas2r_trace_exit();
1586 
1587                 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1588                              length,
1589                              off);
1590 
1591                 if (off == 0) {
1592                         if (a->firmware.header.action == FI_ACT_UP) {
1593                                 if (!allocate_fw_buffers(a, length))
1594                                         return -ENOMEM;
1595 
1596 
1597                                 /* copy header over */
1598 
1599                                 memcpy(a->firmware.data,
1600                                        &a->firmware.header,
1601                                        sizeof(a->firmware.header));
1602 
1603                                 do_fm_api(a,
1604                                           (struct esas2r_flash_img *)a->firmware.data);
1605                         } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1606                                 int size =
1607                                         min((int)count,
1608                                             (int)sizeof(a->firmware.header));
1609                                 do_fm_api(a, &a->firmware.header);
1610                                 memcpy(buf, &a->firmware.header, size);
1611                                 esas2r_debug("FI_ACT_UPSZ size %d", size);
1612                                 return size;
1613                         } else {
1614                                 esas2r_debug("invalid action %d",
1615                                              a->firmware.header.action);
1616                                 return -ENOSYS;
1617                         }
1618                 }
1619 
1620                 if (count + off > length)
1621                         count = length - off;
1622 
1623                 if (count < 0)
1624                         return 0;
1625 
1626                 if (!a->firmware.data) {
1627                         esas2r_debug(
1628                                 "read: nonzero offset but no buffer available!");
1629                         return -ENOMEM;
1630                 }
1631 
1632                 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1633                              count,
1634                              length);
1635 
1636                 memcpy(buf, &a->firmware.data[off], count);
1637 
1638                 /* when done, release the buffer */
1639 
1640                 if (length <= off + count) {
1641                         esas2r_debug("esas2r_read_fw: freeing buffer!");
1642 
1643                         free_fw_buffers(a);
1644                 }
1645 
1646                 return count;
1647         }
1648 
1649         esas2r_trace_exit();
1650         esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1651                      a->firmware.state);
1652 
1653         return -EINVAL;
1654 }
1655 
1656 /* Handle a call to write firmware. */
1657 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1658                     int count)
1659 {
1660         u32 length;
1661 
1662         if (off == 0) {
1663                 struct esas2r_flash_img *header =
1664                         (struct esas2r_flash_img *)buf;
1665 
1666                 /* assume version 0 flash image */
1667 
1668                 int min_size = sizeof(struct esas2r_flash_img_v0);
1669 
1670                 a->firmware.state = FW_INVALID_ST;
1671 
1672                 /* validate the version field first */
1673 
1674                 if (count < 4
1675                     ||  header->fi_version > FI_VERSION_1) {
1676                         esas2r_debug(
1677                                 "esas2r_write_fw: short header or invalid version");
1678                         return -EINVAL;
1679                 }
1680 
1681                 /* See if its a version 1 flash image */
1682 
1683                 if (header->fi_version == FI_VERSION_1)
1684                         min_size = sizeof(struct esas2r_flash_img);
1685 
1686                 /* If this is the start, the header must be full and valid. */
1687                 if (count < min_size) {
1688                         esas2r_debug("esas2r_write_fw: short header, aborting");
1689                         return -EINVAL;
1690                 }
1691 
1692                 /* Make sure the size is reasonable. */
1693                 length = header->length;
1694 
1695                 if (length > 1024 * 1024) {
1696                         esas2r_debug(
1697                                 "esas2r_write_fw: hosed, length %d  fi_version %d",
1698                                 length, header->fi_version);
1699                         return -EINVAL;
1700                 }
1701 
1702                 /*
1703                  * If this is a write command, allocate memory because
1704                  * we have to cache everything. otherwise, just cache
1705                  * the header, because the read op will do the command.
1706                  */
1707 
1708                 if (header->action == FI_ACT_DOWN) {
1709                         if (!allocate_fw_buffers(a, length))
1710                                 return -ENOMEM;
1711 
1712                         /*
1713                          * Store the command, so there is context on subsequent
1714                          * calls.
1715                          */
1716                         memcpy(&a->firmware.header,
1717                                buf,
1718                                sizeof(*header));
1719                 } else if (header->action == FI_ACT_UP
1720                            ||  header->action == FI_ACT_UPSZ) {
1721                         /* Save the command, result will be picked up on read */
1722                         memcpy(&a->firmware.header,
1723                                buf,
1724                                sizeof(*header));
1725 
1726                         a->firmware.state = FW_COMMAND_ST;
1727 
1728                         esas2r_debug(
1729                                 "esas2r_write_fw: COMMAND, count %d, action %d ",
1730                                 count, header->action);
1731 
1732                         /*
1733                          * Pretend we took the whole buffer,
1734                          * so we don't get bothered again.
1735                          */
1736 
1737                         return count;
1738                 } else {
1739                         esas2r_debug("esas2r_write_fw: invalid action %d ",
1740                                      a->firmware.header.action);
1741                         return -ENOSYS;
1742                 }
1743         } else {
1744                 length = a->firmware.header.length;
1745         }
1746 
1747         /*
1748          * We only get here on a download command, regardless of offset.
1749          * the chunks written by the system need to be cached, and when
1750          * the final one arrives, issue the fmapi command.
1751          */
1752 
1753         if (off + count > length)
1754                 count = length - off;
1755 
1756         if (count > 0) {
1757                 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1758                              count,
1759                              length);
1760 
1761                 /*
1762                  * On a full upload, the system tries sending the whole buffer.
1763                  * there's nothing to do with it, so just drop it here, before
1764                  * trying to copy over into unallocated memory!
1765                  */
1766                 if (a->firmware.header.action == FI_ACT_UP)
1767                         return count;
1768 
1769                 if (!a->firmware.data) {
1770                         esas2r_debug(
1771                                 "write: nonzero offset but no buffer available!");
1772                         return -ENOMEM;
1773                 }
1774 
1775                 memcpy(&a->firmware.data[off], buf, count);
1776 
1777                 if (length == off + count) {
1778                         do_fm_api(a,
1779                                   (struct esas2r_flash_img *)a->firmware.data);
1780 
1781                         /*
1782                          * Now copy the header result to be picked up by the
1783                          * next read
1784                          */
1785                         memcpy(&a->firmware.header,
1786                                a->firmware.data,
1787                                sizeof(a->firmware.header));
1788 
1789                         a->firmware.state = FW_STATUS_ST;
1790 
1791                         esas2r_debug("write completed");
1792 
1793                         /*
1794                          * Since the system has the data buffered, the only way
1795                          * this can leak is if a root user writes a program
1796                          * that writes a shorter buffer than it claims, and the
1797                          * copyin fails.
1798                          */
1799                         free_fw_buffers(a);
1800                 }
1801         }
1802 
1803         return count;
1804 }
1805 
1806 /* Callback for the completion of a VDA request. */
1807 static void vda_complete_req(struct esas2r_adapter *a,
1808                              struct esas2r_request *rq)
1809 {
1810         a->vda_command_done = 1;
1811         wake_up_interruptible(&a->vda_waiter);
1812 }
1813 
1814 /* Scatter/gather callback for VDA requests */
1815 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1816 {
1817         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1818         int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1819 
1820         (*addr) = a->ppvda_buffer + offset;
1821         return VDA_MAX_BUFFER_SIZE - offset;
1822 }
1823 
1824 /* Handle a call to read a VDA command. */
1825 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1826 {
1827         if (!a->vda_buffer)
1828                 return -ENOMEM;
1829 
1830         if (off == 0) {
1831                 struct esas2r_request *rq;
1832                 struct atto_ioctl_vda *vi =
1833                         (struct atto_ioctl_vda *)a->vda_buffer;
1834                 struct esas2r_sg_context sgc;
1835                 bool wait_for_completion;
1836 
1837                 /*
1838                  * Presumeably, someone has already written to the vda_buffer,
1839                  * and now they are reading the node the response, so now we
1840                  * will actually issue the request to the chip and reply.
1841                  */
1842 
1843                 /* allocate a request */
1844                 rq = esas2r_alloc_request(a);
1845                 if (rq == NULL) {
1846                         esas2r_debug("esas2r_read_vda: out of requests");
1847                         return -EBUSY;
1848                 }
1849 
1850                 rq->comp_cb = vda_complete_req;
1851 
1852                 sgc.first_req = rq;
1853                 sgc.adapter = a;
1854                 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1855                 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1856 
1857                 a->vda_command_done = 0;
1858 
1859                 wait_for_completion =
1860                         esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1861 
1862                 if (wait_for_completion) {
1863                         /* now wait around for it to complete. */
1864 
1865                         while (!a->vda_command_done)
1866                                 wait_event_interruptible(a->vda_waiter,
1867                                                          a->vda_command_done);
1868                 }
1869 
1870                 esas2r_free_request(a, (struct esas2r_request *)rq);
1871         }
1872 
1873         if (off > VDA_MAX_BUFFER_SIZE)
1874                 return 0;
1875 
1876         if (count + off > VDA_MAX_BUFFER_SIZE)
1877                 count = VDA_MAX_BUFFER_SIZE - off;
1878 
1879         if (count < 0)
1880                 return 0;
1881 
1882         memcpy(buf, a->vda_buffer + off, count);
1883 
1884         return count;
1885 }
1886 
1887 /* Handle a call to write a VDA command. */
1888 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1889                      int count)
1890 {
1891         /*
1892          * allocate memory for it, if not already done.  once allocated,
1893          * we will keep it around until the driver is unloaded.
1894          */
1895 
1896         if (!a->vda_buffer) {
1897                 dma_addr_t dma_addr;
1898                 a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1899                                                          (size_t)
1900                                                          VDA_MAX_BUFFER_SIZE,
1901                                                          &dma_addr,
1902                                                          GFP_KERNEL);
1903 
1904                 a->ppvda_buffer = dma_addr;
1905         }
1906 
1907         if (!a->vda_buffer)
1908                 return -ENOMEM;
1909 
1910         if (off > VDA_MAX_BUFFER_SIZE)
1911                 return 0;
1912 
1913         if (count + off > VDA_MAX_BUFFER_SIZE)
1914                 count = VDA_MAX_BUFFER_SIZE - off;
1915 
1916         if (count < 1)
1917                 return 0;
1918 
1919         memcpy(a->vda_buffer + off, buf, count);
1920 
1921         return count;
1922 }
1923 
1924 /* Callback for the completion of an FS_API request.*/
1925 static void fs_api_complete_req(struct esas2r_adapter *a,
1926                                 struct esas2r_request *rq)
1927 {
1928         a->fs_api_command_done = 1;
1929 
1930         wake_up_interruptible(&a->fs_api_waiter);
1931 }
1932 
1933 /* Scatter/gather callback for VDA requests */
1934 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1935 {
1936         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1937         struct esas2r_ioctl_fs *fs =
1938                 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1939         u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1940 
1941         (*addr) = a->ppfs_api_buffer + offset;
1942 
1943         return a->fs_api_buffer_size - offset;
1944 }
1945 
1946 /* Handle a call to read firmware via FS_API. */
1947 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1948 {
1949         if (!a->fs_api_buffer)
1950                 return -ENOMEM;
1951 
1952         if (off == 0) {
1953                 struct esas2r_request *rq;
1954                 struct esas2r_sg_context sgc;
1955                 struct esas2r_ioctl_fs *fs =
1956                         (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1957 
1958                 /* If another flash request is already in progress, return. */
1959                 if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1960 busy:
1961                         fs->status = ATTO_STS_OUT_OF_RSRC;
1962                         return -EBUSY;
1963                 }
1964 
1965                 /*
1966                  * Presumeably, someone has already written to the
1967                  * fs_api_buffer, and now they are reading the node the
1968                  * response, so now we will actually issue the request to the
1969                  * chip and reply. Allocate a request
1970                  */
1971 
1972                 rq = esas2r_alloc_request(a);
1973                 if (rq == NULL) {
1974                         esas2r_debug("esas2r_read_fs: out of requests");
1975                         mutex_unlock(&a->fs_api_mutex);
1976                         goto busy;
1977                 }
1978 
1979                 rq->comp_cb = fs_api_complete_req;
1980 
1981                 /* Set up the SGCONTEXT for to build the s/g table */
1982 
1983                 sgc.cur_offset = fs->data;
1984                 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1985 
1986                 a->fs_api_command_done = 0;
1987 
1988                 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1989                         if (fs->status == ATTO_STS_OUT_OF_RSRC)
1990                                 count = -EBUSY;
1991 
1992                         goto dont_wait;
1993                 }
1994 
1995                 /* Now wait around for it to complete. */
1996 
1997                 while (!a->fs_api_command_done)
1998                         wait_event_interruptible(a->fs_api_waiter,
1999                                                  a->fs_api_command_done);
2000                 ;
2001 dont_wait:
2002                 /* Free the request and keep going */
2003                 mutex_unlock(&a->fs_api_mutex);
2004                 esas2r_free_request(a, (struct esas2r_request *)rq);
2005 
2006                 /* Pick up possible error code from above */
2007                 if (count < 0)
2008                         return count;
2009         }
2010 
2011         if (off > a->fs_api_buffer_size)
2012                 return 0;
2013 
2014         if (count + off > a->fs_api_buffer_size)
2015                 count = a->fs_api_buffer_size - off;
2016 
2017         if (count < 0)
2018                 return 0;
2019 
2020         memcpy(buf, a->fs_api_buffer + off, count);
2021 
2022         return count;
2023 }
2024 
2025 /* Handle a call to write firmware via FS_API. */
2026 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2027                     int count)
2028 {
2029         if (off == 0) {
2030                 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2031                 u32 length = fs->command.length + offsetof(
2032                         struct esas2r_ioctl_fs,
2033                         data);
2034 
2035                 /*
2036                  * Special case, for BEGIN commands, the length field
2037                  * is lying to us, so just get enough for the header.
2038                  */
2039 
2040                 if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2041                         length = offsetof(struct esas2r_ioctl_fs, data);
2042 
2043                 /*
2044                  * Beginning a command.  We assume we'll get at least
2045                  * enough in the first write so we can look at the
2046                  * header and see how much we need to alloc.
2047                  */
2048 
2049                 if (count < offsetof(struct esas2r_ioctl_fs, data))
2050                         return -EINVAL;
2051 
2052                 /* Allocate a buffer or use the existing buffer. */
2053                 if (a->fs_api_buffer) {
2054                         if (a->fs_api_buffer_size < length) {
2055                                 /* Free too-small buffer and get a new one */
2056                                 dma_free_coherent(&a->pcid->dev,
2057                                                   (size_t)a->fs_api_buffer_size,
2058                                                   a->fs_api_buffer,
2059                                                   (dma_addr_t)a->ppfs_api_buffer);
2060 
2061                                 goto re_allocate_buffer;
2062                         }
2063                 } else {
2064 re_allocate_buffer:
2065                         a->fs_api_buffer_size = length;
2066 
2067                         a->fs_api_buffer = (u8 *)dma_alloc_coherent(
2068                                 &a->pcid->dev,
2069                                 (size_t)a->fs_api_buffer_size,
2070                                 (dma_addr_t *)&a->ppfs_api_buffer,
2071                                 GFP_KERNEL);
2072                 }
2073         }
2074 
2075         if (!a->fs_api_buffer)
2076                 return -ENOMEM;
2077 
2078         if (off > a->fs_api_buffer_size)
2079                 return 0;
2080 
2081         if (count + off > a->fs_api_buffer_size)
2082                 count = a->fs_api_buffer_size - off;
2083 
2084         if (count < 1)
2085                 return 0;
2086 
2087         memcpy(a->fs_api_buffer + off, buf, count);
2088 
2089         return count;
2090 }

/* [<][>][^][v][top][bottom][index][help] */