root/drivers/scsi/csiostor/csio_hw_t5.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. csio_t5_set_mem_win
  2. csio_t5_pcie_intr_handler
  3. csio_t5_flash_cfg_addr
  4. csio_t5_mc_read
  5. csio_t5_edc_read
  6. csio_t5_memory_rw
  7. csio_t5_dfs_create_ext_mem

   1 /*
   2  * This file is part of the Chelsio FCoE driver for Linux.
   3  *
   4  * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
   5  *
   6  * This software is available to you under a choice of one of two
   7  * licenses.  You may choose to be licensed under the terms of the GNU
   8  * General Public License (GPL) Version 2, available from the file
   9  * OpenIB.org BSD license below:
  10  *
  11  *     Redistribution and use in source and binary forms, with or
  12  *     without modification, are permitted provided that the following
  13  *     conditions are met:
  14  *
  15  *      - Redistributions of source code must retain the above
  16  *        copyright notice, this list of conditions and the following
  17  *        disclaimer.
  18  *
  19  *      - Redistributions in binary form must reproduce the above
  20  *        copyright notice, this list of conditions and the following
  21  *        disclaimer in the documentation and/or other materials
  22  *        provided with the distribution.
  23  *
  24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31  * SOFTWARE.
  32  */
  33 
  34 #include "csio_hw.h"
  35 #include "csio_init.h"
  36 
  37 static int
  38 csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win)
  39 {
  40         u32 mem_win_base;
  41         /*
  42          * Truncation intentional: we only read the bottom 32-bits of the
  43          * 64-bit BAR0/BAR1 ...  We use the hardware backdoor mechanism to
  44          * read BAR0 instead of using pci_resource_start() because we could be
  45          * operating from within a Virtual Machine which is trapping our
  46          * accesses to our Configuration Space and we need to set up the PCI-E
  47          * Memory Window decoders with the actual addresses which will be
  48          * coming across the PCI-E link.
  49          */
  50 
  51         /* For T5, only relative offset inside the PCIe BAR is passed */
  52         mem_win_base = MEMWIN_BASE;
  53 
  54         /*
  55          * Set up memory window for accessing adapter memory ranges.  (Read
  56          * back MA register to ensure that changes propagate before we attempt
  57          * to use the new values.)
  58          */
  59         csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
  60                           WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
  61                           PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
  62         csio_rd_reg32(hw,
  63                       PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
  64 
  65         return 0;
  66 }
  67 
  68 /*
  69  * Interrupt handler for the PCIE module.
  70  */
  71 static void
  72 csio_t5_pcie_intr_handler(struct csio_hw *hw)
  73 {
  74         static struct intr_info pcie_intr_info[] = {
  75                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
  76                 -1, 1 },
  77                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
  78                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
  79                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
  80                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
  81                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
  82                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
  83                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
  84                 -1, 1 },
  85                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
  86                 -1, 1 },
  87                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
  88                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
  89                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
  90                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
  91                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
  92                 -1, 1 },
  93                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
  94                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
  95                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
  96                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
  97                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
  98                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
  99                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
 100                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
 101                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
 102                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
 103                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
 104                 -1, 1 },
 105                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
 106                 -1, 1 },
 107                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
 108                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
 109                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
 110                 { READRSPERR_F, "Outbound read error", -1, 0 },
 111                 { 0, NULL, 0, 0 }
 112         };
 113 
 114         int fat;
 115         fat = csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
 116         if (fat)
 117                 csio_hw_fatal_err(hw);
 118 }
 119 
 120 /*
 121  * csio_t5_flash_cfg_addr - return the address of the flash configuration file
 122  * @hw: the HW module
 123  *
 124  * Return the address within the flash where the Firmware Configuration
 125  * File is stored.
 126  */
 127 static unsigned int
 128 csio_t5_flash_cfg_addr(struct csio_hw *hw)
 129 {
 130         return FLASH_CFG_START;
 131 }
 132 
 133 /*
 134  *      csio_t5_mc_read - read from MC through backdoor accesses
 135  *      @hw: the hw module
 136  *      @idx: index to the register
 137  *      @addr: address of first byte requested
 138  *      @data: 64 bytes of data containing the requested address
 139  *      @ecc: where to store the corresponding 64-bit ECC word
 140  *
 141  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
 142  *      that covers the requested address @addr.  If @parity is not %NULL it
 143  *      is assigned the 64-bit ECC word for the read data.
 144  */
 145 static int
 146 csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
 147                 uint64_t *ecc)
 148 {
 149         int i;
 150         uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
 151         uint32_t mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
 152 
 153         mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx);
 154         mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
 155         mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
 156         mc_bist_status_rdata_reg = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
 157         mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
 158 
 159         if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F)
 160                 return -EBUSY;
 161         csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg);
 162         csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg);
 163         csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg);
 164         csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
 165                       mc_bist_cmd_reg);
 166         i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F,
 167                                      0, 10, 1, NULL);
 168         if (i)
 169                 return i;
 170 
 171 #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
 172 
 173         for (i = 15; i >= 0; i--)
 174                 *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
 175         if (ecc)
 176                 *ecc = csio_rd_reg64(hw, MC_DATA(16));
 177 #undef MC_DATA
 178         return 0;
 179 }
 180 
 181 /*
 182  *      csio_t5_edc_read - read from EDC through backdoor accesses
 183  *      @hw: the hw module
 184  *      @idx: which EDC to access
 185  *      @addr: address of first byte requested
 186  *      @data: 64 bytes of data containing the requested address
 187  *      @ecc: where to store the corresponding 64-bit ECC word
 188  *
 189  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
 190  *      that covers the requested address @addr.  If @parity is not %NULL it
 191  *      is assigned the 64-bit ECC word for the read data.
 192  */
 193 static int
 194 csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
 195                 uint64_t *ecc)
 196 {
 197         int i;
 198         uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
 199         uint32_t edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
 200 
 201 /*
 202  * These macro are missing in t4_regs.h file.
 203  */
 204 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
 205 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
 206 
 207         edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
 208         edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
 209         edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
 210         edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
 211         edc_bist_status_rdata_reg = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
 212 #undef EDC_REG_T5
 213 #undef EDC_STRIDE_T5
 214 
 215         if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F)
 216                 return -EBUSY;
 217         csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg);
 218         csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg);
 219         csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern);
 220         csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
 221                       edc_bist_cmd_reg);
 222         i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F,
 223                                      0, 10, 1, NULL);
 224         if (i)
 225                 return i;
 226 
 227 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
 228 
 229         for (i = 15; i >= 0; i--)
 230                 *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
 231         if (ecc)
 232                 *ecc = csio_rd_reg64(hw, EDC_DATA(16));
 233 #undef EDC_DATA
 234         return 0;
 235 }
 236 
 237 /*
 238  * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 239  * @hw: the csio_hw
 240  * @win: PCI-E memory Window to use
 241  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
 242  * @addr: address within indicated memory type
 243  * @len: amount of memory to transfer
 244  * @buf: host memory buffer
 245  * @dir: direction of transfer 1 => read, 0 => write
 246  *
 247  * Reads/writes an [almost] arbitrary memory region in the firmware: the
 248  * firmware memory address, length and host buffer must be aligned on
 249  * 32-bit boudaries.  The memory is transferred as a raw byte sequence
 250  * from/to the firmware's memory.  If this memory contains data
 251  * structures which contain multi-byte integers, it's the callers
 252  * responsibility to perform appropriate byte order conversions.
 253  */
 254 static int
 255 csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
 256                 u32 len, uint32_t *buf, int dir)
 257 {
 258         u32 pos, start, offset, memoffset;
 259         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
 260 
 261         /*
 262          * Argument sanity checks ...
 263          */
 264         if ((addr & 0x3) || (len & 0x3))
 265                 return -EINVAL;
 266 
 267         /* Offset into the region of memory which is being accessed
 268          * MEM_EDC0 = 0
 269          * MEM_EDC1 = 1
 270          * MEM_MC   = 2 -- T4
 271          * MEM_MC0  = 2 -- For T5
 272          * MEM_MC1  = 3 -- For T5
 273          */
 274         edc_size  = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
 275         if (mtype != MEM_MC1)
 276                 memoffset = (mtype * (edc_size * 1024 * 1024));
 277         else {
 278                 mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
 279                                                        MA_EXT_MEMORY_BAR_A));
 280                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
 281         }
 282 
 283         /* Determine the PCIE_MEM_ACCESS_OFFSET */
 284         addr = addr + memoffset;
 285 
 286         /*
 287          * Each PCI-E Memory Window is programmed with a window size -- or
 288          * "aperture" -- which controls the granularity of its mapping onto
 289          * adapter memory.  We need to grab that aperture in order to know
 290          * how to use the specified window.  The window is also programmed
 291          * with the base address of the Memory Window in BAR0's address
 292          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
 293          * the address is relative to BAR0.
 294          */
 295         mem_reg = csio_rd_reg32(hw,
 296                         PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
 297         mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
 298         mem_base = PCIEOFST_G(mem_reg) << 10;
 299 
 300         start = addr & ~(mem_aperture-1);
 301         offset = addr - start;
 302         win_pf = PFNUM_V(hw->pfn);
 303 
 304         csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
 305                  mem_reg, mem_aperture);
 306         csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
 307                  mem_base, memoffset);
 308         csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n",
 309                  start, offset, win_pf);
 310         csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
 311                  mtype, addr, len);
 312 
 313         for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
 314                 /*
 315                  * Move PCI-E Memory Window to our current transfer
 316                  * position.  Read it back to ensure that changes propagate
 317                  * before we attempt to use the new value.
 318                  */
 319                 csio_wr_reg32(hw, pos | win_pf,
 320                         PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
 321                 csio_rd_reg32(hw,
 322                         PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
 323 
 324                 while (offset < mem_aperture && len > 0) {
 325                         if (dir)
 326                                 *buf++ = csio_rd_reg32(hw, mem_base + offset);
 327                         else
 328                                 csio_wr_reg32(hw, *buf++, mem_base + offset);
 329 
 330                         offset += sizeof(__be32);
 331                         len -= sizeof(__be32);
 332                 }
 333         }
 334         return 0;
 335 }
 336 
 337 /*
 338  * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values
 339  * @hw: the csio_hw
 340  *
 341  * This function creates files in the debugfs with external memory region
 342  * MC0 & MC1.
 343  */
 344 static void
 345 csio_t5_dfs_create_ext_mem(struct csio_hw *hw)
 346 {
 347         u32 size;
 348         int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
 349 
 350         if (i & EXT_MEM_ENABLE_F) {
 351                 size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
 352                 csio_add_debugfs_mem(hw, "mc0", MEM_MC0,
 353                                      EXT_MEM_SIZE_G(size));
 354         }
 355         if (i & EXT_MEM1_ENABLE_F) {
 356                 size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A);
 357                 csio_add_debugfs_mem(hw, "mc1", MEM_MC1,
 358                                      EXT_MEM_SIZE_G(size));
 359         }
 360 }
 361 
 362 /* T5 adapter specific function */
 363 struct csio_hw_chip_ops t5_ops = {
 364         .chip_set_mem_win               = csio_t5_set_mem_win,
 365         .chip_pcie_intr_handler         = csio_t5_pcie_intr_handler,
 366         .chip_flash_cfg_addr            = csio_t5_flash_cfg_addr,
 367         .chip_mc_read                   = csio_t5_mc_read,
 368         .chip_edc_read                  = csio_t5_edc_read,
 369         .chip_memory_rw                 = csio_t5_memory_rw,
 370         .chip_dfs_create_ext_mem        = csio_t5_dfs_create_ext_mem,
 371 };

/* [<][>][^][v][top][bottom][index][help] */