root/drivers/crypto/nx/nx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. nx_hcall_sync
  2. nx_build_sg_list
  3. nx_walk_and_build
  4. trim_sg_list
  5. nx_build_sg_lists
  6. nx_ctx_init
  7. nx_of_update_status
  8. nx_of_update_sglen
  9. nx_of_update_msc
  10. nx_of_init
  11. nx_check_prop
  12. nx_check_props
  13. nx_register_alg
  14. nx_register_aead
  15. nx_register_shash
  16. nx_unregister_alg
  17. nx_unregister_aead
  18. nx_unregister_shash
  19. nx_register_algs
  20. nx_crypto_ctx_init
  21. nx_crypto_ctx_aes_ccm_init
  22. nx_crypto_ctx_aes_gcm_init
  23. nx_crypto_ctx_aes_ctr_init
  24. nx_crypto_ctx_aes_cbc_init
  25. nx_crypto_ctx_aes_ecb_init
  26. nx_crypto_ctx_sha_init
  27. nx_crypto_ctx_aes_xcbc_init
  28. nx_crypto_ctx_exit
  29. nx_crypto_ctx_aead_exit
  30. nx_probe
  31. nx_remove
  32. nx_init
  33. nx_fini

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /**
   3  * Routines supporting the Power 7+ Nest Accelerators driver
   4  *
   5  * Copyright (C) 2011-2012 International Business Machines Inc.
   6  *
   7  * Author: Kent Yoder <yoder1@us.ibm.com>
   8  */
   9 
  10 #include <crypto/internal/aead.h>
  11 #include <crypto/internal/hash.h>
  12 #include <crypto/aes.h>
  13 #include <crypto/sha.h>
  14 #include <crypto/algapi.h>
  15 #include <crypto/scatterwalk.h>
  16 #include <linux/module.h>
  17 #include <linux/moduleparam.h>
  18 #include <linux/types.h>
  19 #include <linux/mm.h>
  20 #include <linux/scatterlist.h>
  21 #include <linux/device.h>
  22 #include <linux/of.h>
  23 #include <asm/hvcall.h>
  24 #include <asm/vio.h>
  25 
  26 #include "nx_csbcpb.h"
  27 #include "nx.h"
  28 
  29 
  30 /**
  31  * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
  32  *
  33  * @nx_ctx: the crypto context handle
  34  * @op: PFO operation struct to pass in
  35  * @may_sleep: flag indicating the request can sleep
  36  *
  37  * Make the hcall, retrying while the hardware is busy. If we cannot yield
  38  * the thread, limit the number of retries to 10 here.
  39  */
  40 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
  41                   struct vio_pfo_op    *op,
  42                   u32                   may_sleep)
  43 {
  44         int rc, retries = 10;
  45         struct vio_dev *viodev = nx_driver.viodev;
  46 
  47         atomic_inc(&(nx_ctx->stats->sync_ops));
  48 
  49         do {
  50                 rc = vio_h_cop_sync(viodev, op);
  51         } while (rc == -EBUSY && !may_sleep && retries--);
  52 
  53         if (rc) {
  54                 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
  55                         "hcall rc: %ld\n", rc, op->hcall_err);
  56                 atomic_inc(&(nx_ctx->stats->errors));
  57                 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
  58                 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
  59         }
  60 
  61         return rc;
  62 }
  63 
  64 /**
  65  * nx_build_sg_list - build an NX scatter list describing a single  buffer
  66  *
  67  * @sg_head: pointer to the first scatter list element to build
  68  * @start_addr: pointer to the linear buffer
  69  * @len: length of the data at @start_addr
  70  * @sgmax: the largest number of scatter list elements we're allowed to create
  71  *
  72  * This function will start writing nx_sg elements at @sg_head and keep
  73  * writing them until all of the data from @start_addr is described or
  74  * until sgmax elements have been written. Scatter list elements will be
  75  * created such that none of the elements describes a buffer that crosses a 4K
  76  * boundary.
  77  */
  78 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
  79                                u8           *start_addr,
  80                                unsigned int *len,
  81                                u32           sgmax)
  82 {
  83         unsigned int sg_len = 0;
  84         struct nx_sg *sg;
  85         u64 sg_addr = (u64)start_addr;
  86         u64 end_addr;
  87 
  88         /* determine the start and end for this address range - slightly
  89          * different if this is in VMALLOC_REGION */
  90         if (is_vmalloc_addr(start_addr))
  91                 sg_addr = page_to_phys(vmalloc_to_page(start_addr))
  92                           + offset_in_page(sg_addr);
  93         else
  94                 sg_addr = __pa(sg_addr);
  95 
  96         end_addr = sg_addr + *len;
  97 
  98         /* each iteration will write one struct nx_sg element and add the
  99          * length of data described by that element to sg_len. Once @len bytes
 100          * have been described (or @sgmax elements have been written), the
 101          * loop ends. min_t is used to ensure @end_addr falls on the same page
 102          * as sg_addr, if not, we need to create another nx_sg element for the
 103          * data on the next page.
 104          *
 105          * Also when using vmalloc'ed data, every time that a system page
 106          * boundary is crossed the physical address needs to be re-calculated.
 107          */
 108         for (sg = sg_head; sg_len < *len; sg++) {
 109                 u64 next_page;
 110 
 111                 sg->addr = sg_addr;
 112                 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
 113                                 end_addr);
 114 
 115                 next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
 116                 sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
 117                 sg_len += sg->len;
 118 
 119                 if (sg_addr >= next_page &&
 120                                 is_vmalloc_addr(start_addr + sg_len)) {
 121                         sg_addr = page_to_phys(vmalloc_to_page(
 122                                                 start_addr + sg_len));
 123                         end_addr = sg_addr + *len - sg_len;
 124                 }
 125 
 126                 if ((sg - sg_head) == sgmax) {
 127                         pr_err("nx: scatter/gather list overflow, pid: %d\n",
 128                                current->pid);
 129                         sg++;
 130                         break;
 131                 }
 132         }
 133         *len = sg_len;
 134 
 135         /* return the moved sg_head pointer */
 136         return sg;
 137 }
 138 
 139 /**
 140  * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
 141  *
 142  * @nx_dst: pointer to the first nx_sg element to write
 143  * @sglen: max number of nx_sg entries we're allowed to write
 144  * @sg_src: pointer to the source linux scatterlist to walk
 145  * @start: number of bytes to fast-forward past at the beginning of @sg_src
 146  * @src_len: number of bytes to walk in @sg_src
 147  */
 148 struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
 149                                 unsigned int        sglen,
 150                                 struct scatterlist *sg_src,
 151                                 unsigned int        start,
 152                                 unsigned int       *src_len)
 153 {
 154         struct scatter_walk walk;
 155         struct nx_sg *nx_sg = nx_dst;
 156         unsigned int n, offset = 0, len = *src_len;
 157         char *dst;
 158 
 159         /* we need to fast forward through @start bytes first */
 160         for (;;) {
 161                 scatterwalk_start(&walk, sg_src);
 162 
 163                 if (start < offset + sg_src->length)
 164                         break;
 165 
 166                 offset += sg_src->length;
 167                 sg_src = sg_next(sg_src);
 168         }
 169 
 170         /* start - offset is the number of bytes to advance in the scatterlist
 171          * element we're currently looking at */
 172         scatterwalk_advance(&walk, start - offset);
 173 
 174         while (len && (nx_sg - nx_dst) < sglen) {
 175                 n = scatterwalk_clamp(&walk, len);
 176                 if (!n) {
 177                         /* In cases where we have scatterlist chain sg_next
 178                          * handles with it properly */
 179                         scatterwalk_start(&walk, sg_next(walk.sg));
 180                         n = scatterwalk_clamp(&walk, len);
 181                 }
 182                 dst = scatterwalk_map(&walk);
 183 
 184                 nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
 185                 len -= n;
 186 
 187                 scatterwalk_unmap(dst);
 188                 scatterwalk_advance(&walk, n);
 189                 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
 190         }
 191         /* update to_process */
 192         *src_len -= len;
 193 
 194         /* return the moved destination pointer */
 195         return nx_sg;
 196 }
 197 
 198 /**
 199  * trim_sg_list - ensures the bound in sg list.
 200  * @sg: sg list head
 201  * @end: sg lisg end
 202  * @delta:  is the amount we need to crop in order to bound the list.
 203  *
 204  */
 205 static long int trim_sg_list(struct nx_sg *sg,
 206                              struct nx_sg *end,
 207                              unsigned int delta,
 208                              unsigned int *nbytes)
 209 {
 210         long int oplen;
 211         long int data_back;
 212         unsigned int is_delta = delta;
 213 
 214         while (delta && end > sg) {
 215                 struct nx_sg *last = end - 1;
 216 
 217                 if (last->len > delta) {
 218                         last->len -= delta;
 219                         delta = 0;
 220                 } else {
 221                         end--;
 222                         delta -= last->len;
 223                 }
 224         }
 225 
 226         /* There are cases where we need to crop list in order to make it
 227          * a block size multiple, but we also need to align data. In order to
 228          * that we need to calculate how much we need to put back to be
 229          * processed
 230          */
 231         oplen = (sg - end) * sizeof(struct nx_sg);
 232         if (is_delta) {
 233                 data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
 234                 data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
 235                 *nbytes -= data_back;
 236         }
 237 
 238         return oplen;
 239 }
 240 
 241 /**
 242  * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
 243  *                     scatterlists based on them.
 244  *
 245  * @nx_ctx: NX crypto context for the lists we're building
 246  * @desc: the block cipher descriptor for the operation
 247  * @dst: destination scatterlist
 248  * @src: source scatterlist
 249  * @nbytes: length of data described in the scatterlists
 250  * @offset: number of bytes to fast-forward past at the beginning of
 251  *          scatterlists.
 252  * @iv: destination for the iv data, if the algorithm requires it
 253  *
 254  * This is common code shared by all the AES algorithms. It uses the block
 255  * cipher walk routines to traverse input and output scatterlists, building
 256  * corresponding NX scatterlists
 257  */
 258 int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
 259                       struct blkcipher_desc *desc,
 260                       struct scatterlist    *dst,
 261                       struct scatterlist    *src,
 262                       unsigned int          *nbytes,
 263                       unsigned int           offset,
 264                       u8                    *iv)
 265 {
 266         unsigned int delta = 0;
 267         unsigned int total = *nbytes;
 268         struct nx_sg *nx_insg = nx_ctx->in_sg;
 269         struct nx_sg *nx_outsg = nx_ctx->out_sg;
 270         unsigned int max_sg_len;
 271 
 272         max_sg_len = min_t(u64, nx_ctx->ap->sglen,
 273                         nx_driver.of.max_sg_len/sizeof(struct nx_sg));
 274         max_sg_len = min_t(u64, max_sg_len,
 275                         nx_ctx->ap->databytelen/NX_PAGE_SIZE);
 276 
 277         if (iv)
 278                 memcpy(iv, desc->info, AES_BLOCK_SIZE);
 279 
 280         *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
 281 
 282         nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
 283                                         offset, nbytes);
 284         nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
 285                                         offset, nbytes);
 286 
 287         if (*nbytes < total)
 288                 delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
 289 
 290         /* these lengths should be negative, which will indicate to phyp that
 291          * the input and output parameters are scatterlists, not linear
 292          * buffers */
 293         nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
 294         nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
 295 
 296         return 0;
 297 }
 298 
 299 /**
 300  * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
 301  *
 302  * @nx_ctx: the nx context to initialize
 303  * @function: the function code for the op
 304  */
 305 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
 306 {
 307         spin_lock_init(&nx_ctx->lock);
 308         memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
 309         nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
 310 
 311         nx_ctx->op.flags = function;
 312         nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
 313         nx_ctx->op.in = __pa(nx_ctx->in_sg);
 314         nx_ctx->op.out = __pa(nx_ctx->out_sg);
 315 
 316         if (nx_ctx->csbcpb_aead) {
 317                 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
 318 
 319                 nx_ctx->op_aead.flags = function;
 320                 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
 321                 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
 322                 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
 323         }
 324 }
 325 
 326 static void nx_of_update_status(struct device   *dev,
 327                                struct property *p,
 328                                struct nx_of    *props)
 329 {
 330         if (!strncmp(p->value, "okay", p->length)) {
 331                 props->status = NX_WAITING;
 332                 props->flags |= NX_OF_FLAG_STATUS_SET;
 333         } else {
 334                 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
 335                          (char *)p->value);
 336         }
 337 }
 338 
 339 static void nx_of_update_sglen(struct device   *dev,
 340                                struct property *p,
 341                                struct nx_of    *props)
 342 {
 343         if (p->length != sizeof(props->max_sg_len)) {
 344                 dev_err(dev, "%s: unexpected format for "
 345                         "ibm,max-sg-len property\n", __func__);
 346                 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
 347                         "long, expected %zd bytes\n", __func__,
 348                         p->length, sizeof(props->max_sg_len));
 349                 return;
 350         }
 351 
 352         props->max_sg_len = *(u32 *)p->value;
 353         props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
 354 }
 355 
 356 static void nx_of_update_msc(struct device   *dev,
 357                              struct property *p,
 358                              struct nx_of    *props)
 359 {
 360         struct msc_triplet *trip;
 361         struct max_sync_cop *msc;
 362         unsigned int bytes_so_far, i, lenp;
 363 
 364         msc = (struct max_sync_cop *)p->value;
 365         lenp = p->length;
 366 
 367         /* You can't tell if the data read in for this property is sane by its
 368          * size alone. This is because there are sizes embedded in the data
 369          * structure. The best we can do is check lengths as we parse and bail
 370          * as soon as a length error is detected. */
 371         bytes_so_far = 0;
 372 
 373         while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
 374                 bytes_so_far += sizeof(struct max_sync_cop);
 375 
 376                 trip = msc->trip;
 377 
 378                 for (i = 0;
 379                      ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
 380                      i < msc->triplets;
 381                      i++) {
 382                         if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
 383                                 dev_err(dev, "unknown function code/mode "
 384                                         "combo: %d/%d (ignored)\n", msc->fc,
 385                                         msc->mode);
 386                                 goto next_loop;
 387                         }
 388 
 389                         if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
 390                                 dev_warn(dev, "bogus sglen/databytelen: "
 391                                          "%u/%u (ignored)\n", trip->sglen,
 392                                          trip->databytelen);
 393                                 goto next_loop;
 394                         }
 395 
 396                         switch (trip->keybitlen) {
 397                         case 128:
 398                         case 160:
 399                                 props->ap[msc->fc][msc->mode][0].databytelen =
 400                                         trip->databytelen;
 401                                 props->ap[msc->fc][msc->mode][0].sglen =
 402                                         trip->sglen;
 403                                 break;
 404                         case 192:
 405                                 props->ap[msc->fc][msc->mode][1].databytelen =
 406                                         trip->databytelen;
 407                                 props->ap[msc->fc][msc->mode][1].sglen =
 408                                         trip->sglen;
 409                                 break;
 410                         case 256:
 411                                 if (msc->fc == NX_FC_AES) {
 412                                         props->ap[msc->fc][msc->mode][2].
 413                                                 databytelen = trip->databytelen;
 414                                         props->ap[msc->fc][msc->mode][2].sglen =
 415                                                 trip->sglen;
 416                                 } else if (msc->fc == NX_FC_AES_HMAC ||
 417                                            msc->fc == NX_FC_SHA) {
 418                                         props->ap[msc->fc][msc->mode][1].
 419                                                 databytelen = trip->databytelen;
 420                                         props->ap[msc->fc][msc->mode][1].sglen =
 421                                                 trip->sglen;
 422                                 } else {
 423                                         dev_warn(dev, "unknown function "
 424                                                 "code/key bit len combo"
 425                                                 ": (%u/256)\n", msc->fc);
 426                                 }
 427                                 break;
 428                         case 512:
 429                                 props->ap[msc->fc][msc->mode][2].databytelen =
 430                                         trip->databytelen;
 431                                 props->ap[msc->fc][msc->mode][2].sglen =
 432                                         trip->sglen;
 433                                 break;
 434                         default:
 435                                 dev_warn(dev, "unknown function code/key bit "
 436                                          "len combo: (%u/%u)\n", msc->fc,
 437                                          trip->keybitlen);
 438                                 break;
 439                         }
 440 next_loop:
 441                         bytes_so_far += sizeof(struct msc_triplet);
 442                         trip++;
 443                 }
 444 
 445                 msc = (struct max_sync_cop *)trip;
 446         }
 447 
 448         props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
 449 }
 450 
 451 /**
 452  * nx_of_init - read openFirmware values from the device tree
 453  *
 454  * @dev: device handle
 455  * @props: pointer to struct to hold the properties values
 456  *
 457  * Called once at driver probe time, this function will read out the
 458  * openFirmware properties we use at runtime. If all the OF properties are
 459  * acceptable, when we exit this function props->flags will indicate that
 460  * we're ready to register our crypto algorithms.
 461  */
 462 static void nx_of_init(struct device *dev, struct nx_of *props)
 463 {
 464         struct device_node *base_node = dev->of_node;
 465         struct property *p;
 466 
 467         p = of_find_property(base_node, "status", NULL);
 468         if (!p)
 469                 dev_info(dev, "%s: property 'status' not found\n", __func__);
 470         else
 471                 nx_of_update_status(dev, p, props);
 472 
 473         p = of_find_property(base_node, "ibm,max-sg-len", NULL);
 474         if (!p)
 475                 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
 476                          __func__);
 477         else
 478                 nx_of_update_sglen(dev, p, props);
 479 
 480         p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
 481         if (!p)
 482                 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
 483                          __func__);
 484         else
 485                 nx_of_update_msc(dev, p, props);
 486 }
 487 
 488 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
 489 {
 490         struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
 491 
 492         if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
 493                 if (dev)
 494                         dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
 495                                  "%u/%u (ignored)\n", fc, mode, slot,
 496                                  props->sglen, props->databytelen);
 497                 return false;
 498         }
 499 
 500         return true;
 501 }
 502 
 503 static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
 504 {
 505         int i;
 506 
 507         for (i = 0; i < 3; i++)
 508                 if (!nx_check_prop(dev, fc, mode, i))
 509                         return false;
 510 
 511         return true;
 512 }
 513 
 514 static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode)
 515 {
 516         return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
 517                crypto_register_alg(alg) : 0;
 518 }
 519 
 520 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
 521 {
 522         return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
 523                crypto_register_aead(alg) : 0;
 524 }
 525 
 526 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
 527 {
 528         return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
 529                                           fc, mode, slot) :
 530                             nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
 531                crypto_register_shash(alg) : 0;
 532 }
 533 
 534 static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode)
 535 {
 536         if (nx_check_props(NULL, fc, mode))
 537                 crypto_unregister_alg(alg);
 538 }
 539 
 540 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
 541 {
 542         if (nx_check_props(NULL, fc, mode))
 543                 crypto_unregister_aead(alg);
 544 }
 545 
 546 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
 547                                 int slot)
 548 {
 549         if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
 550                         nx_check_props(NULL, fc, mode))
 551                 crypto_unregister_shash(alg);
 552 }
 553 
 554 /**
 555  * nx_register_algs - register algorithms with the crypto API
 556  *
 557  * Called from nx_probe()
 558  *
 559  * If all OF properties are in an acceptable state, the driver flags will
 560  * indicate that we're ready and we'll create our debugfs files and register
 561  * out crypto algorithms.
 562  */
 563 static int nx_register_algs(void)
 564 {
 565         int rc = -1;
 566 
 567         if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
 568                 goto out;
 569 
 570         memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
 571 
 572         NX_DEBUGFS_INIT(&nx_driver);
 573 
 574         nx_driver.of.status = NX_OKAY;
 575 
 576         rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
 577         if (rc)
 578                 goto out;
 579 
 580         rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
 581         if (rc)
 582                 goto out_unreg_ecb;
 583 
 584         rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
 585         if (rc)
 586                 goto out_unreg_cbc;
 587 
 588         rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
 589         if (rc)
 590                 goto out_unreg_ctr3686;
 591 
 592         rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
 593         if (rc)
 594                 goto out_unreg_gcm;
 595 
 596         rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 597         if (rc)
 598                 goto out_unreg_gcm4106;
 599 
 600         rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 601         if (rc)
 602                 goto out_unreg_ccm;
 603 
 604         rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
 605                                NX_PROPS_SHA256);
 606         if (rc)
 607                 goto out_unreg_ccm4309;
 608 
 609         rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
 610                                NX_PROPS_SHA512);
 611         if (rc)
 612                 goto out_unreg_s256;
 613 
 614         rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
 615                                NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
 616         if (rc)
 617                 goto out_unreg_s512;
 618 
 619         goto out;
 620 
 621 out_unreg_s512:
 622         nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
 623                             NX_PROPS_SHA512);
 624 out_unreg_s256:
 625         nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
 626                             NX_PROPS_SHA256);
 627 out_unreg_ccm4309:
 628         nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 629 out_unreg_ccm:
 630         nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 631 out_unreg_gcm4106:
 632         nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
 633 out_unreg_gcm:
 634         nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
 635 out_unreg_ctr3686:
 636         nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
 637 out_unreg_cbc:
 638         nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
 639 out_unreg_ecb:
 640         nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
 641 out:
 642         return rc;
 643 }
 644 
 645 /**
 646  * nx_crypto_ctx_init - create and initialize a crypto api context
 647  *
 648  * @nx_ctx: the crypto api context
 649  * @fc: function code for the context
 650  * @mode: the function code specific mode for this context
 651  */
 652 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
 653 {
 654         if (nx_driver.of.status != NX_OKAY) {
 655                 pr_err("Attempt to initialize NX crypto context while device "
 656                        "is not available!\n");
 657                 return -ENODEV;
 658         }
 659 
 660         /* we need an extra page for csbcpb_aead for these modes */
 661         if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
 662                 nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
 663                                    sizeof(struct nx_csbcpb);
 664         else
 665                 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
 666                                    sizeof(struct nx_csbcpb);
 667 
 668         nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
 669         if (!nx_ctx->kmem)
 670                 return -ENOMEM;
 671 
 672         /* the csbcpb and scatterlists must be 4K aligned pages */
 673         nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
 674                                                        (u64)NX_PAGE_SIZE));
 675         nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
 676         nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
 677 
 678         if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
 679                 nx_ctx->csbcpb_aead =
 680                         (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
 681                                              NX_PAGE_SIZE);
 682 
 683         /* give each context a pointer to global stats and their OF
 684          * properties */
 685         nx_ctx->stats = &nx_driver.stats;
 686         memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
 687                sizeof(struct alg_props) * 3);
 688 
 689         return 0;
 690 }
 691 
 692 /* entry points from the crypto tfm initializers */
 693 int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
 694 {
 695         crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
 696         return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
 697                                   NX_MODE_AES_CCM);
 698 }
 699 
 700 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
 701 {
 702         crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
 703         return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
 704                                   NX_MODE_AES_GCM);
 705 }
 706 
 707 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
 708 {
 709         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
 710                                   NX_MODE_AES_CTR);
 711 }
 712 
 713 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
 714 {
 715         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
 716                                   NX_MODE_AES_CBC);
 717 }
 718 
 719 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
 720 {
 721         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
 722                                   NX_MODE_AES_ECB);
 723 }
 724 
 725 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
 726 {
 727         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
 728 }
 729 
 730 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
 731 {
 732         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
 733                                   NX_MODE_AES_XCBC_MAC);
 734 }
 735 
 736 /**
 737  * nx_crypto_ctx_exit - destroy a crypto api context
 738  *
 739  * @tfm: the crypto transform pointer for the context
 740  *
 741  * As crypto API contexts are destroyed, this exit hook is called to free the
 742  * memory associated with it.
 743  */
 744 void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
 745 {
 746         struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
 747 
 748         kzfree(nx_ctx->kmem);
 749         nx_ctx->csbcpb = NULL;
 750         nx_ctx->csbcpb_aead = NULL;
 751         nx_ctx->in_sg = NULL;
 752         nx_ctx->out_sg = NULL;
 753 }
 754 
 755 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
 756 {
 757         struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
 758 
 759         kzfree(nx_ctx->kmem);
 760 }
 761 
 762 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
 763 {
 764         dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
 765                 viodev->name, viodev->resource_id);
 766 
 767         if (nx_driver.viodev) {
 768                 dev_err(&viodev->dev, "%s: Attempt to register more than one "
 769                         "instance of the hardware\n", __func__);
 770                 return -EINVAL;
 771         }
 772 
 773         nx_driver.viodev = viodev;
 774 
 775         nx_of_init(&viodev->dev, &nx_driver.of);
 776 
 777         return nx_register_algs();
 778 }
 779 
 780 static int nx_remove(struct vio_dev *viodev)
 781 {
 782         dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
 783                 viodev->unit_address);
 784 
 785         if (nx_driver.of.status == NX_OKAY) {
 786                 NX_DEBUGFS_FINI(&nx_driver);
 787 
 788                 nx_unregister_shash(&nx_shash_aes_xcbc_alg,
 789                                     NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
 790                 nx_unregister_shash(&nx_shash_sha512_alg,
 791                                     NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
 792                 nx_unregister_shash(&nx_shash_sha256_alg,
 793                                     NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
 794                 nx_unregister_aead(&nx_ccm4309_aes_alg,
 795                                    NX_FC_AES, NX_MODE_AES_CCM);
 796                 nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 797                 nx_unregister_aead(&nx_gcm4106_aes_alg,
 798                                    NX_FC_AES, NX_MODE_AES_GCM);
 799                 nx_unregister_aead(&nx_gcm_aes_alg,
 800                                    NX_FC_AES, NX_MODE_AES_GCM);
 801                 nx_unregister_alg(&nx_ctr3686_aes_alg,
 802                                   NX_FC_AES, NX_MODE_AES_CTR);
 803                 nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
 804                 nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
 805         }
 806 
 807         return 0;
 808 }
 809 
 810 
 811 /* module wide initialization/cleanup */
 812 static int __init nx_init(void)
 813 {
 814         return vio_register_driver(&nx_driver.viodriver);
 815 }
 816 
 817 static void __exit nx_fini(void)
 818 {
 819         vio_unregister_driver(&nx_driver.viodriver);
 820 }
 821 
 822 static const struct vio_device_id nx_crypto_driver_ids[] = {
 823         { "ibm,sym-encryption-v1", "ibm,sym-encryption" },
 824         { "", "" }
 825 };
 826 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
 827 
 828 /* driver state structure */
 829 struct nx_crypto_driver nx_driver = {
 830         .viodriver = {
 831                 .id_table = nx_crypto_driver_ids,
 832                 .probe = nx_probe,
 833                 .remove = nx_remove,
 834                 .name  = NX_NAME,
 835         },
 836 };
 837 
 838 module_init(nx_init);
 839 module_exit(nx_fini);
 840 
 841 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
 842 MODULE_DESCRIPTION(NX_STRING);
 843 MODULE_LICENSE("GPL");
 844 MODULE_VERSION(NX_VERSION);

/* [<][>][^][v][top][bottom][index][help] */