root/drivers/crypto/ccp/ccp-ops.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ccp_gen_jobid
  2. ccp_sg_free
  3. ccp_init_sg_workarea
  4. ccp_update_sg_workarea
  5. ccp_dm_free
  6. ccp_init_dm_workarea
  7. ccp_set_dm_area
  8. ccp_get_dm_area
  9. ccp_reverse_set_dm_area
  10. ccp_reverse_get_dm_area
  11. ccp_free_data
  12. ccp_init_data
  13. ccp_queue_buf
  14. ccp_fill_queue_buf
  15. ccp_empty_queue_buf
  16. ccp_prepare_data
  17. ccp_process_data
  18. ccp_copy_to_from_sb
  19. ccp_copy_to_sb
  20. ccp_copy_from_sb
  21. ccp_run_aes_cmac_cmd
  22. ccp_run_aes_gcm_cmd
  23. ccp_run_aes_cmd
  24. ccp_run_xts_aes_cmd
  25. ccp_run_des3_cmd
  26. ccp_run_sha_cmd
  27. ccp_run_rsa_cmd
  28. ccp_run_passthru_cmd
  29. ccp_run_passthru_nomap_cmd
  30. ccp_run_ecc_mm_cmd
  31. ccp_run_ecc_pm_cmd
  32. ccp_run_ecc_cmd
  33. ccp_run_cmd

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * AMD Cryptographic Coprocessor (CCP) driver
   4  *
   5  * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
   6  *
   7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8  * Author: Gary R Hook <gary.hook@amd.com>
   9  */
  10 
  11 #include <linux/module.h>
  12 #include <linux/kernel.h>
  13 #include <linux/interrupt.h>
  14 #include <crypto/scatterwalk.h>
  15 #include <crypto/des.h>
  16 #include <linux/ccp.h>
  17 
  18 #include "ccp-dev.h"
  19 
  20 /* SHA initial context values */
  21 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
  22         cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  23         cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  24         cpu_to_be32(SHA1_H4),
  25 };
  26 
  27 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  28         cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  29         cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  30         cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  31         cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  32 };
  33 
  34 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  35         cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  36         cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  37         cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  38         cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  39 };
  40 
  41 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  42         cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
  43         cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
  44         cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
  45         cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
  46 };
  47 
  48 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  49         cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
  50         cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
  51         cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
  52         cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
  53 };
  54 
  55 #define CCP_NEW_JOBID(ccp)      ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
  56                                         ccp_gen_jobid(ccp) : 0)
  57 
  58 static u32 ccp_gen_jobid(struct ccp_device *ccp)
  59 {
  60         return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
  61 }
  62 
  63 static void ccp_sg_free(struct ccp_sg_workarea *wa)
  64 {
  65         if (wa->dma_count)
  66                 dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
  67 
  68         wa->dma_count = 0;
  69 }
  70 
  71 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
  72                                 struct scatterlist *sg, u64 len,
  73                                 enum dma_data_direction dma_dir)
  74 {
  75         memset(wa, 0, sizeof(*wa));
  76 
  77         wa->sg = sg;
  78         if (!sg)
  79                 return 0;
  80 
  81         wa->nents = sg_nents_for_len(sg, len);
  82         if (wa->nents < 0)
  83                 return wa->nents;
  84 
  85         wa->bytes_left = len;
  86         wa->sg_used = 0;
  87 
  88         if (len == 0)
  89                 return 0;
  90 
  91         if (dma_dir == DMA_NONE)
  92                 return 0;
  93 
  94         wa->dma_sg = sg;
  95         wa->dma_dev = dev;
  96         wa->dma_dir = dma_dir;
  97         wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
  98         if (!wa->dma_count)
  99                 return -ENOMEM;
 100 
 101         return 0;
 102 }
 103 
 104 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 105 {
 106         unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 107 
 108         if (!wa->sg)
 109                 return;
 110 
 111         wa->sg_used += nbytes;
 112         wa->bytes_left -= nbytes;
 113         if (wa->sg_used == wa->sg->length) {
 114                 wa->sg = sg_next(wa->sg);
 115                 wa->sg_used = 0;
 116         }
 117 }
 118 
 119 static void ccp_dm_free(struct ccp_dm_workarea *wa)
 120 {
 121         if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 122                 if (wa->address)
 123                         dma_pool_free(wa->dma_pool, wa->address,
 124                                       wa->dma.address);
 125         } else {
 126                 if (wa->dma.address)
 127                         dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 128                                          wa->dma.dir);
 129                 kfree(wa->address);
 130         }
 131 
 132         wa->address = NULL;
 133         wa->dma.address = 0;
 134 }
 135 
 136 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 137                                 struct ccp_cmd_queue *cmd_q,
 138                                 unsigned int len,
 139                                 enum dma_data_direction dir)
 140 {
 141         memset(wa, 0, sizeof(*wa));
 142 
 143         if (!len)
 144                 return 0;
 145 
 146         wa->dev = cmd_q->ccp->dev;
 147         wa->length = len;
 148 
 149         if (len <= CCP_DMAPOOL_MAX_SIZE) {
 150                 wa->dma_pool = cmd_q->dma_pool;
 151 
 152                 wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
 153                                              &wa->dma.address);
 154                 if (!wa->address)
 155                         return -ENOMEM;
 156 
 157                 wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 158 
 159         } else {
 160                 wa->address = kzalloc(len, GFP_KERNEL);
 161                 if (!wa->address)
 162                         return -ENOMEM;
 163 
 164                 wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 165                                                  dir);
 166                 if (dma_mapping_error(wa->dev, wa->dma.address))
 167                         return -ENOMEM;
 168 
 169                 wa->dma.length = len;
 170         }
 171         wa->dma.dir = dir;
 172 
 173         return 0;
 174 }
 175 
 176 static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 177                            struct scatterlist *sg, unsigned int sg_offset,
 178                            unsigned int len)
 179 {
 180         WARN_ON(!wa->address);
 181 
 182         if (len > (wa->length - wa_offset))
 183                 return -EINVAL;
 184 
 185         scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 186                                  0);
 187         return 0;
 188 }
 189 
 190 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 191                             struct scatterlist *sg, unsigned int sg_offset,
 192                             unsigned int len)
 193 {
 194         WARN_ON(!wa->address);
 195 
 196         scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 197                                  1);
 198 }
 199 
 200 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 201                                    unsigned int wa_offset,
 202                                    struct scatterlist *sg,
 203                                    unsigned int sg_offset,
 204                                    unsigned int len)
 205 {
 206         u8 *p, *q;
 207         int     rc;
 208 
 209         rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
 210         if (rc)
 211                 return rc;
 212 
 213         p = wa->address + wa_offset;
 214         q = p + len - 1;
 215         while (p < q) {
 216                 *p = *p ^ *q;
 217                 *q = *p ^ *q;
 218                 *p = *p ^ *q;
 219                 p++;
 220                 q--;
 221         }
 222         return 0;
 223 }
 224 
 225 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 226                                     unsigned int wa_offset,
 227                                     struct scatterlist *sg,
 228                                     unsigned int sg_offset,
 229                                     unsigned int len)
 230 {
 231         u8 *p, *q;
 232 
 233         p = wa->address + wa_offset;
 234         q = p + len - 1;
 235         while (p < q) {
 236                 *p = *p ^ *q;
 237                 *q = *p ^ *q;
 238                 *p = *p ^ *q;
 239                 p++;
 240                 q--;
 241         }
 242 
 243         ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
 244 }
 245 
 246 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 247 {
 248         ccp_dm_free(&data->dm_wa);
 249         ccp_sg_free(&data->sg_wa);
 250 }
 251 
 252 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 253                          struct scatterlist *sg, u64 sg_len,
 254                          unsigned int dm_len,
 255                          enum dma_data_direction dir)
 256 {
 257         int ret;
 258 
 259         memset(data, 0, sizeof(*data));
 260 
 261         ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 262                                    dir);
 263         if (ret)
 264                 goto e_err;
 265 
 266         ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 267         if (ret)
 268                 goto e_err;
 269 
 270         return 0;
 271 
 272 e_err:
 273         ccp_free_data(data, cmd_q);
 274 
 275         return ret;
 276 }
 277 
 278 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 279 {
 280         struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 281         struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 282         unsigned int buf_count, nbytes;
 283 
 284         /* Clear the buffer if setting it */
 285         if (!from)
 286                 memset(dm_wa->address, 0, dm_wa->length);
 287 
 288         if (!sg_wa->sg)
 289                 return 0;
 290 
 291         /* Perform the copy operation
 292          *   nbytes will always be <= UINT_MAX because dm_wa->length is
 293          *   an unsigned int
 294          */
 295         nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 296         scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 297                                  nbytes, from);
 298 
 299         /* Update the structures and generate the count */
 300         buf_count = 0;
 301         while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 302                 nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
 303                              dm_wa->length - buf_count);
 304                 nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 305 
 306                 buf_count += nbytes;
 307                 ccp_update_sg_workarea(sg_wa, nbytes);
 308         }
 309 
 310         return buf_count;
 311 }
 312 
 313 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 314 {
 315         return ccp_queue_buf(data, 0);
 316 }
 317 
 318 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 319 {
 320         return ccp_queue_buf(data, 1);
 321 }
 322 
 323 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 324                              struct ccp_op *op, unsigned int block_size,
 325                              bool blocksize_op)
 326 {
 327         unsigned int sg_src_len, sg_dst_len, op_len;
 328 
 329         /* The CCP can only DMA from/to one address each per operation. This
 330          * requires that we find the smallest DMA area between the source
 331          * and destination. The resulting len values will always be <= UINT_MAX
 332          * because the dma length is an unsigned int.
 333          */
 334         sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
 335         sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 336 
 337         if (dst) {
 338                 sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
 339                 sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 340                 op_len = min(sg_src_len, sg_dst_len);
 341         } else {
 342                 op_len = sg_src_len;
 343         }
 344 
 345         /* The data operation length will be at least block_size in length
 346          * or the smaller of available sg room remaining for the source or
 347          * the destination
 348          */
 349         op_len = max(op_len, block_size);
 350 
 351         /* Unless we have to buffer data, there's no reason to wait */
 352         op->soc = 0;
 353 
 354         if (sg_src_len < block_size) {
 355                 /* Not enough data in the sg element, so it
 356                  * needs to be buffered into a blocksize chunk
 357                  */
 358                 int cp_len = ccp_fill_queue_buf(src);
 359 
 360                 op->soc = 1;
 361                 op->src.u.dma.address = src->dm_wa.dma.address;
 362                 op->src.u.dma.offset = 0;
 363                 op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 364         } else {
 365                 /* Enough data in the sg element, but we need to
 366                  * adjust for any previously copied data
 367                  */
 368                 op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
 369                 op->src.u.dma.offset = src->sg_wa.sg_used;
 370                 op->src.u.dma.length = op_len & ~(block_size - 1);
 371 
 372                 ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 373         }
 374 
 375         if (dst) {
 376                 if (sg_dst_len < block_size) {
 377                         /* Not enough room in the sg element or we're on the
 378                          * last piece of data (when using padding), so the
 379                          * output needs to be buffered into a blocksize chunk
 380                          */
 381                         op->soc = 1;
 382                         op->dst.u.dma.address = dst->dm_wa.dma.address;
 383                         op->dst.u.dma.offset = 0;
 384                         op->dst.u.dma.length = op->src.u.dma.length;
 385                 } else {
 386                         /* Enough room in the sg element, but we need to
 387                          * adjust for any previously used area
 388                          */
 389                         op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
 390                         op->dst.u.dma.offset = dst->sg_wa.sg_used;
 391                         op->dst.u.dma.length = op->src.u.dma.length;
 392                 }
 393         }
 394 }
 395 
 396 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 397                              struct ccp_op *op)
 398 {
 399         op->init = 0;
 400 
 401         if (dst) {
 402                 if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 403                         ccp_empty_queue_buf(dst);
 404                 else
 405                         ccp_update_sg_workarea(&dst->sg_wa,
 406                                                op->dst.u.dma.length);
 407         }
 408 }
 409 
 410 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
 411                                struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 412                                u32 byte_swap, bool from)
 413 {
 414         struct ccp_op op;
 415 
 416         memset(&op, 0, sizeof(op));
 417 
 418         op.cmd_q = cmd_q;
 419         op.jobid = jobid;
 420         op.eom = 1;
 421 
 422         if (from) {
 423                 op.soc = 1;
 424                 op.src.type = CCP_MEMTYPE_SB;
 425                 op.src.u.sb = sb;
 426                 op.dst.type = CCP_MEMTYPE_SYSTEM;
 427                 op.dst.u.dma.address = wa->dma.address;
 428                 op.dst.u.dma.length = wa->length;
 429         } else {
 430                 op.src.type = CCP_MEMTYPE_SYSTEM;
 431                 op.src.u.dma.address = wa->dma.address;
 432                 op.src.u.dma.length = wa->length;
 433                 op.dst.type = CCP_MEMTYPE_SB;
 434                 op.dst.u.sb = sb;
 435         }
 436 
 437         op.u.passthru.byte_swap = byte_swap;
 438 
 439         return cmd_q->ccp->vdata->perform->passthru(&op);
 440 }
 441 
 442 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
 443                           struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 444                           u32 byte_swap)
 445 {
 446         return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
 447 }
 448 
 449 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
 450                             struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 451                             u32 byte_swap)
 452 {
 453         return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
 454 }
 455 
 456 static noinline_for_stack int
 457 ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 458 {
 459         struct ccp_aes_engine *aes = &cmd->u.aes;
 460         struct ccp_dm_workarea key, ctx;
 461         struct ccp_data src;
 462         struct ccp_op op;
 463         unsigned int dm_offset;
 464         int ret;
 465 
 466         if (!((aes->key_len == AES_KEYSIZE_128) ||
 467               (aes->key_len == AES_KEYSIZE_192) ||
 468               (aes->key_len == AES_KEYSIZE_256)))
 469                 return -EINVAL;
 470 
 471         if (aes->src_len & (AES_BLOCK_SIZE - 1))
 472                 return -EINVAL;
 473 
 474         if (aes->iv_len != AES_BLOCK_SIZE)
 475                 return -EINVAL;
 476 
 477         if (!aes->key || !aes->iv || !aes->src)
 478                 return -EINVAL;
 479 
 480         if (aes->cmac_final) {
 481                 if (aes->cmac_key_len != AES_BLOCK_SIZE)
 482                         return -EINVAL;
 483 
 484                 if (!aes->cmac_key)
 485                         return -EINVAL;
 486         }
 487 
 488         BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 489         BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 490 
 491         ret = -EIO;
 492         memset(&op, 0, sizeof(op));
 493         op.cmd_q = cmd_q;
 494         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 495         op.sb_key = cmd_q->sb_key;
 496         op.sb_ctx = cmd_q->sb_ctx;
 497         op.init = 1;
 498         op.u.aes.type = aes->type;
 499         op.u.aes.mode = aes->mode;
 500         op.u.aes.action = aes->action;
 501 
 502         /* All supported key sizes fit in a single (32-byte) SB entry
 503          * and must be in little endian format. Use the 256-bit byte
 504          * swap passthru option to convert from big endian to little
 505          * endian.
 506          */
 507         ret = ccp_init_dm_workarea(&key, cmd_q,
 508                                    CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 509                                    DMA_TO_DEVICE);
 510         if (ret)
 511                 return ret;
 512 
 513         dm_offset = CCP_SB_BYTES - aes->key_len;
 514         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 515         if (ret)
 516                 goto e_key;
 517         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 518                              CCP_PASSTHRU_BYTESWAP_256BIT);
 519         if (ret) {
 520                 cmd->engine_error = cmd_q->cmd_error;
 521                 goto e_key;
 522         }
 523 
 524         /* The AES context fits in a single (32-byte) SB entry and
 525          * must be in little endian format. Use the 256-bit byte swap
 526          * passthru option to convert from big endian to little endian.
 527          */
 528         ret = ccp_init_dm_workarea(&ctx, cmd_q,
 529                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 530                                    DMA_BIDIRECTIONAL);
 531         if (ret)
 532                 goto e_key;
 533 
 534         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 535         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 536         if (ret)
 537                 goto e_ctx;
 538         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 539                              CCP_PASSTHRU_BYTESWAP_256BIT);
 540         if (ret) {
 541                 cmd->engine_error = cmd_q->cmd_error;
 542                 goto e_ctx;
 543         }
 544 
 545         /* Send data to the CCP AES engine */
 546         ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 547                             AES_BLOCK_SIZE, DMA_TO_DEVICE);
 548         if (ret)
 549                 goto e_ctx;
 550 
 551         while (src.sg_wa.bytes_left) {
 552                 ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 553                 if (aes->cmac_final && !src.sg_wa.bytes_left) {
 554                         op.eom = 1;
 555 
 556                         /* Push the K1/K2 key to the CCP now */
 557                         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
 558                                                op.sb_ctx,
 559                                                CCP_PASSTHRU_BYTESWAP_256BIT);
 560                         if (ret) {
 561                                 cmd->engine_error = cmd_q->cmd_error;
 562                                 goto e_src;
 563                         }
 564 
 565                         ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 566                                               aes->cmac_key_len);
 567                         if (ret)
 568                                 goto e_src;
 569                         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 570                                              CCP_PASSTHRU_BYTESWAP_256BIT);
 571                         if (ret) {
 572                                 cmd->engine_error = cmd_q->cmd_error;
 573                                 goto e_src;
 574                         }
 575                 }
 576 
 577                 ret = cmd_q->ccp->vdata->perform->aes(&op);
 578                 if (ret) {
 579                         cmd->engine_error = cmd_q->cmd_error;
 580                         goto e_src;
 581                 }
 582 
 583                 ccp_process_data(&src, NULL, &op);
 584         }
 585 
 586         /* Retrieve the AES context - convert from LE to BE using
 587          * 32-byte (256-bit) byteswapping
 588          */
 589         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 590                                CCP_PASSTHRU_BYTESWAP_256BIT);
 591         if (ret) {
 592                 cmd->engine_error = cmd_q->cmd_error;
 593                 goto e_src;
 594         }
 595 
 596         /* ...but we only need AES_BLOCK_SIZE bytes */
 597         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 598         ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 599 
 600 e_src:
 601         ccp_free_data(&src, cmd_q);
 602 
 603 e_ctx:
 604         ccp_dm_free(&ctx);
 605 
 606 e_key:
 607         ccp_dm_free(&key);
 608 
 609         return ret;
 610 }
 611 
 612 static noinline_for_stack int
 613 ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 614 {
 615         struct ccp_aes_engine *aes = &cmd->u.aes;
 616         struct ccp_dm_workarea key, ctx, final_wa, tag;
 617         struct ccp_data src, dst;
 618         struct ccp_data aad;
 619         struct ccp_op op;
 620 
 621         unsigned long long *final;
 622         unsigned int dm_offset;
 623         unsigned int authsize;
 624         unsigned int jobid;
 625         unsigned int ilen;
 626         bool in_place = true; /* Default value */
 627         int ret;
 628 
 629         struct scatterlist *p_inp, sg_inp[2];
 630         struct scatterlist *p_tag, sg_tag[2];
 631         struct scatterlist *p_outp, sg_outp[2];
 632         struct scatterlist *p_aad;
 633 
 634         if (!aes->iv)
 635                 return -EINVAL;
 636 
 637         if (!((aes->key_len == AES_KEYSIZE_128) ||
 638                 (aes->key_len == AES_KEYSIZE_192) ||
 639                 (aes->key_len == AES_KEYSIZE_256)))
 640                 return -EINVAL;
 641 
 642         if (!aes->key) /* Gotta have a key SGL */
 643                 return -EINVAL;
 644 
 645         /* Zero defaults to 16 bytes, the maximum size */
 646         authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
 647         switch (authsize) {
 648         case 16:
 649         case 15:
 650         case 14:
 651         case 13:
 652         case 12:
 653         case 8:
 654         case 4:
 655                 break;
 656         default:
 657                 return -EINVAL;
 658         }
 659 
 660         /* First, decompose the source buffer into AAD & PT,
 661          * and the destination buffer into AAD, CT & tag, or
 662          * the input into CT & tag.
 663          * It is expected that the input and output SGs will
 664          * be valid, even if the AAD and input lengths are 0.
 665          */
 666         p_aad = aes->src;
 667         p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
 668         p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
 669         if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 670                 ilen = aes->src_len;
 671                 p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
 672         } else {
 673                 /* Input length for decryption includes tag */
 674                 ilen = aes->src_len - authsize;
 675                 p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
 676         }
 677 
 678         jobid = CCP_NEW_JOBID(cmd_q->ccp);
 679 
 680         memset(&op, 0, sizeof(op));
 681         op.cmd_q = cmd_q;
 682         op.jobid = jobid;
 683         op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 684         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 685         op.init = 1;
 686         op.u.aes.type = aes->type;
 687 
 688         /* Copy the key to the LSB */
 689         ret = ccp_init_dm_workarea(&key, cmd_q,
 690                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 691                                    DMA_TO_DEVICE);
 692         if (ret)
 693                 return ret;
 694 
 695         dm_offset = CCP_SB_BYTES - aes->key_len;
 696         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 697         if (ret)
 698                 goto e_key;
 699         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 700                              CCP_PASSTHRU_BYTESWAP_256BIT);
 701         if (ret) {
 702                 cmd->engine_error = cmd_q->cmd_error;
 703                 goto e_key;
 704         }
 705 
 706         /* Copy the context (IV) to the LSB.
 707          * There is an assumption here that the IV is 96 bits in length, plus
 708          * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
 709          */
 710         ret = ccp_init_dm_workarea(&ctx, cmd_q,
 711                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 712                                    DMA_BIDIRECTIONAL);
 713         if (ret)
 714                 goto e_key;
 715 
 716         dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
 717         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 718         if (ret)
 719                 goto e_ctx;
 720 
 721         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 722                              CCP_PASSTHRU_BYTESWAP_256BIT);
 723         if (ret) {
 724                 cmd->engine_error = cmd_q->cmd_error;
 725                 goto e_ctx;
 726         }
 727 
 728         op.init = 1;
 729         if (aes->aad_len > 0) {
 730                 /* Step 1: Run a GHASH over the Additional Authenticated Data */
 731                 ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
 732                                     AES_BLOCK_SIZE,
 733                                     DMA_TO_DEVICE);
 734                 if (ret)
 735                         goto e_ctx;
 736 
 737                 op.u.aes.mode = CCP_AES_MODE_GHASH;
 738                 op.u.aes.action = CCP_AES_GHASHAAD;
 739 
 740                 while (aad.sg_wa.bytes_left) {
 741                         ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
 742 
 743                         ret = cmd_q->ccp->vdata->perform->aes(&op);
 744                         if (ret) {
 745                                 cmd->engine_error = cmd_q->cmd_error;
 746                                 goto e_aad;
 747                         }
 748 
 749                         ccp_process_data(&aad, NULL, &op);
 750                         op.init = 0;
 751                 }
 752         }
 753 
 754         op.u.aes.mode = CCP_AES_MODE_GCTR;
 755         op.u.aes.action = aes->action;
 756 
 757         if (ilen > 0) {
 758                 /* Step 2: Run a GCTR over the plaintext */
 759                 in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
 760 
 761                 ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
 762                                     AES_BLOCK_SIZE,
 763                                     in_place ? DMA_BIDIRECTIONAL
 764                                              : DMA_TO_DEVICE);
 765                 if (ret)
 766                         goto e_ctx;
 767 
 768                 if (in_place) {
 769                         dst = src;
 770                 } else {
 771                         ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
 772                                             AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 773                         if (ret)
 774                                 goto e_src;
 775                 }
 776 
 777                 op.soc = 0;
 778                 op.eom = 0;
 779                 op.init = 1;
 780                 while (src.sg_wa.bytes_left) {
 781                         ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 782                         if (!src.sg_wa.bytes_left) {
 783                                 unsigned int nbytes = ilen % AES_BLOCK_SIZE;
 784 
 785                                 if (nbytes) {
 786                                         op.eom = 1;
 787                                         op.u.aes.size = (nbytes * 8) - 1;
 788                                 }
 789                         }
 790 
 791                         ret = cmd_q->ccp->vdata->perform->aes(&op);
 792                         if (ret) {
 793                                 cmd->engine_error = cmd_q->cmd_error;
 794                                 goto e_dst;
 795                         }
 796 
 797                         ccp_process_data(&src, &dst, &op);
 798                         op.init = 0;
 799                 }
 800         }
 801 
 802         /* Step 3: Update the IV portion of the context with the original IV */
 803         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 804                                CCP_PASSTHRU_BYTESWAP_256BIT);
 805         if (ret) {
 806                 cmd->engine_error = cmd_q->cmd_error;
 807                 goto e_dst;
 808         }
 809 
 810         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 811         if (ret)
 812                 goto e_dst;
 813 
 814         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 815                              CCP_PASSTHRU_BYTESWAP_256BIT);
 816         if (ret) {
 817                 cmd->engine_error = cmd_q->cmd_error;
 818                 goto e_dst;
 819         }
 820 
 821         /* Step 4: Concatenate the lengths of the AAD and source, and
 822          * hash that 16 byte buffer.
 823          */
 824         ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
 825                                    DMA_BIDIRECTIONAL);
 826         if (ret)
 827                 goto e_dst;
 828         final = (unsigned long long *) final_wa.address;
 829         final[0] = cpu_to_be64(aes->aad_len * 8);
 830         final[1] = cpu_to_be64(ilen * 8);
 831 
 832         memset(&op, 0, sizeof(op));
 833         op.cmd_q = cmd_q;
 834         op.jobid = jobid;
 835         op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 836         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 837         op.init = 1;
 838         op.u.aes.type = aes->type;
 839         op.u.aes.mode = CCP_AES_MODE_GHASH;
 840         op.u.aes.action = CCP_AES_GHASHFINAL;
 841         op.src.type = CCP_MEMTYPE_SYSTEM;
 842         op.src.u.dma.address = final_wa.dma.address;
 843         op.src.u.dma.length = AES_BLOCK_SIZE;
 844         op.dst.type = CCP_MEMTYPE_SYSTEM;
 845         op.dst.u.dma.address = final_wa.dma.address;
 846         op.dst.u.dma.length = AES_BLOCK_SIZE;
 847         op.eom = 1;
 848         op.u.aes.size = 0;
 849         ret = cmd_q->ccp->vdata->perform->aes(&op);
 850         if (ret)
 851                 goto e_dst;
 852 
 853         if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 854                 /* Put the ciphered tag after the ciphertext. */
 855                 ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
 856         } else {
 857                 /* Does this ciphered tag match the input? */
 858                 ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
 859                                            DMA_BIDIRECTIONAL);
 860                 if (ret)
 861                         goto e_tag;
 862                 ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
 863                 if (ret)
 864                         goto e_tag;
 865 
 866                 ret = crypto_memneq(tag.address, final_wa.address,
 867                                     authsize) ? -EBADMSG : 0;
 868                 ccp_dm_free(&tag);
 869         }
 870 
 871 e_tag:
 872         ccp_dm_free(&final_wa);
 873 
 874 e_dst:
 875         if (ilen > 0 && !in_place)
 876                 ccp_free_data(&dst, cmd_q);
 877 
 878 e_src:
 879         if (ilen > 0)
 880                 ccp_free_data(&src, cmd_q);
 881 
 882 e_aad:
 883         if (aes->aad_len)
 884                 ccp_free_data(&aad, cmd_q);
 885 
 886 e_ctx:
 887         ccp_dm_free(&ctx);
 888 
 889 e_key:
 890         ccp_dm_free(&key);
 891 
 892         return ret;
 893 }
 894 
 895 static noinline_for_stack int
 896 ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 897 {
 898         struct ccp_aes_engine *aes = &cmd->u.aes;
 899         struct ccp_dm_workarea key, ctx;
 900         struct ccp_data src, dst;
 901         struct ccp_op op;
 902         unsigned int dm_offset;
 903         bool in_place = false;
 904         int ret;
 905 
 906         if (!((aes->key_len == AES_KEYSIZE_128) ||
 907               (aes->key_len == AES_KEYSIZE_192) ||
 908               (aes->key_len == AES_KEYSIZE_256)))
 909                 return -EINVAL;
 910 
 911         if (((aes->mode == CCP_AES_MODE_ECB) ||
 912              (aes->mode == CCP_AES_MODE_CBC)) &&
 913             (aes->src_len & (AES_BLOCK_SIZE - 1)))
 914                 return -EINVAL;
 915 
 916         if (!aes->key || !aes->src || !aes->dst)
 917                 return -EINVAL;
 918 
 919         if (aes->mode != CCP_AES_MODE_ECB) {
 920                 if (aes->iv_len != AES_BLOCK_SIZE)
 921                         return -EINVAL;
 922 
 923                 if (!aes->iv)
 924                         return -EINVAL;
 925         }
 926 
 927         BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 928         BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 929 
 930         ret = -EIO;
 931         memset(&op, 0, sizeof(op));
 932         op.cmd_q = cmd_q;
 933         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 934         op.sb_key = cmd_q->sb_key;
 935         op.sb_ctx = cmd_q->sb_ctx;
 936         op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 937         op.u.aes.type = aes->type;
 938         op.u.aes.mode = aes->mode;
 939         op.u.aes.action = aes->action;
 940 
 941         /* All supported key sizes fit in a single (32-byte) SB entry
 942          * and must be in little endian format. Use the 256-bit byte
 943          * swap passthru option to convert from big endian to little
 944          * endian.
 945          */
 946         ret = ccp_init_dm_workarea(&key, cmd_q,
 947                                    CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 948                                    DMA_TO_DEVICE);
 949         if (ret)
 950                 return ret;
 951 
 952         dm_offset = CCP_SB_BYTES - aes->key_len;
 953         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 954         if (ret)
 955                 goto e_key;
 956         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 957                              CCP_PASSTHRU_BYTESWAP_256BIT);
 958         if (ret) {
 959                 cmd->engine_error = cmd_q->cmd_error;
 960                 goto e_key;
 961         }
 962 
 963         /* The AES context fits in a single (32-byte) SB entry and
 964          * must be in little endian format. Use the 256-bit byte swap
 965          * passthru option to convert from big endian to little endian.
 966          */
 967         ret = ccp_init_dm_workarea(&ctx, cmd_q,
 968                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 969                                    DMA_BIDIRECTIONAL);
 970         if (ret)
 971                 goto e_key;
 972 
 973         if (aes->mode != CCP_AES_MODE_ECB) {
 974                 /* Load the AES context - convert to LE */
 975                 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 976                 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 977                 if (ret)
 978                         goto e_ctx;
 979                 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 980                                      CCP_PASSTHRU_BYTESWAP_256BIT);
 981                 if (ret) {
 982                         cmd->engine_error = cmd_q->cmd_error;
 983                         goto e_ctx;
 984                 }
 985         }
 986         switch (aes->mode) {
 987         case CCP_AES_MODE_CFB: /* CFB128 only */
 988         case CCP_AES_MODE_CTR:
 989                 op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
 990                 break;
 991         default:
 992                 op.u.aes.size = 0;
 993         }
 994 
 995         /* Prepare the input and output data workareas. For in-place
 996          * operations we need to set the dma direction to BIDIRECTIONAL
 997          * and copy the src workarea to the dst workarea.
 998          */
 999         if (sg_virt(aes->src) == sg_virt(aes->dst))
1000                 in_place = true;
1001 
1002         ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1003                             AES_BLOCK_SIZE,
1004                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1005         if (ret)
1006                 goto e_ctx;
1007 
1008         if (in_place) {
1009                 dst = src;
1010         } else {
1011                 ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1012                                     AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1013                 if (ret)
1014                         goto e_src;
1015         }
1016 
1017         /* Send data to the CCP AES engine */
1018         while (src.sg_wa.bytes_left) {
1019                 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1020                 if (!src.sg_wa.bytes_left) {
1021                         op.eom = 1;
1022 
1023                         /* Since we don't retrieve the AES context in ECB
1024                          * mode we have to wait for the operation to complete
1025                          * on the last piece of data
1026                          */
1027                         if (aes->mode == CCP_AES_MODE_ECB)
1028                                 op.soc = 1;
1029                 }
1030 
1031                 ret = cmd_q->ccp->vdata->perform->aes(&op);
1032                 if (ret) {
1033                         cmd->engine_error = cmd_q->cmd_error;
1034                         goto e_dst;
1035                 }
1036 
1037                 ccp_process_data(&src, &dst, &op);
1038         }
1039 
1040         if (aes->mode != CCP_AES_MODE_ECB) {
1041                 /* Retrieve the AES context - convert from LE to BE using
1042                  * 32-byte (256-bit) byteswapping
1043                  */
1044                 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1045                                        CCP_PASSTHRU_BYTESWAP_256BIT);
1046                 if (ret) {
1047                         cmd->engine_error = cmd_q->cmd_error;
1048                         goto e_dst;
1049                 }
1050 
1051                 /* ...but we only need AES_BLOCK_SIZE bytes */
1052                 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1053                 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1054         }
1055 
1056 e_dst:
1057         if (!in_place)
1058                 ccp_free_data(&dst, cmd_q);
1059 
1060 e_src:
1061         ccp_free_data(&src, cmd_q);
1062 
1063 e_ctx:
1064         ccp_dm_free(&ctx);
1065 
1066 e_key:
1067         ccp_dm_free(&key);
1068 
1069         return ret;
1070 }
1071 
1072 static noinline_for_stack int
1073 ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1074 {
1075         struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1076         struct ccp_dm_workarea key, ctx;
1077         struct ccp_data src, dst;
1078         struct ccp_op op;
1079         unsigned int unit_size, dm_offset;
1080         bool in_place = false;
1081         unsigned int sb_count;
1082         enum ccp_aes_type aestype;
1083         int ret;
1084 
1085         switch (xts->unit_size) {
1086         case CCP_XTS_AES_UNIT_SIZE_16:
1087                 unit_size = 16;
1088                 break;
1089         case CCP_XTS_AES_UNIT_SIZE_512:
1090                 unit_size = 512;
1091                 break;
1092         case CCP_XTS_AES_UNIT_SIZE_1024:
1093                 unit_size = 1024;
1094                 break;
1095         case CCP_XTS_AES_UNIT_SIZE_2048:
1096                 unit_size = 2048;
1097                 break;
1098         case CCP_XTS_AES_UNIT_SIZE_4096:
1099                 unit_size = 4096;
1100                 break;
1101 
1102         default:
1103                 return -EINVAL;
1104         }
1105 
1106         if (xts->key_len == AES_KEYSIZE_128)
1107                 aestype = CCP_AES_TYPE_128;
1108         else if (xts->key_len == AES_KEYSIZE_256)
1109                 aestype = CCP_AES_TYPE_256;
1110         else
1111                 return -EINVAL;
1112 
1113         if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1114                 return -EINVAL;
1115 
1116         if (xts->iv_len != AES_BLOCK_SIZE)
1117                 return -EINVAL;
1118 
1119         if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1120                 return -EINVAL;
1121 
1122         BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1123         BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1124 
1125         ret = -EIO;
1126         memset(&op, 0, sizeof(op));
1127         op.cmd_q = cmd_q;
1128         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1129         op.sb_key = cmd_q->sb_key;
1130         op.sb_ctx = cmd_q->sb_ctx;
1131         op.init = 1;
1132         op.u.xts.type = aestype;
1133         op.u.xts.action = xts->action;
1134         op.u.xts.unit_size = xts->unit_size;
1135 
1136         /* A version 3 device only supports 128-bit keys, which fits into a
1137          * single SB entry. A version 5 device uses a 512-bit vector, so two
1138          * SB entries.
1139          */
1140         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1141                 sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1142         else
1143                 sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1144         ret = ccp_init_dm_workarea(&key, cmd_q,
1145                                    sb_count * CCP_SB_BYTES,
1146                                    DMA_TO_DEVICE);
1147         if (ret)
1148                 return ret;
1149 
1150         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1151                 /* All supported key sizes must be in little endian format.
1152                  * Use the 256-bit byte swap passthru option to convert from
1153                  * big endian to little endian.
1154                  */
1155                 dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1156                 ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1157                 if (ret)
1158                         goto e_key;
1159                 ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1160                 if (ret)
1161                         goto e_key;
1162         } else {
1163                 /* Version 5 CCPs use a 512-bit space for the key: each portion
1164                  * occupies 256 bits, or one entire slot, and is zero-padded.
1165                  */
1166                 unsigned int pad;
1167 
1168                 dm_offset = CCP_SB_BYTES;
1169                 pad = dm_offset - xts->key_len;
1170                 ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1171                 if (ret)
1172                         goto e_key;
1173                 ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1174                                       xts->key_len, xts->key_len);
1175                 if (ret)
1176                         goto e_key;
1177         }
1178         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1179                              CCP_PASSTHRU_BYTESWAP_256BIT);
1180         if (ret) {
1181                 cmd->engine_error = cmd_q->cmd_error;
1182                 goto e_key;
1183         }
1184 
1185         /* The AES context fits in a single (32-byte) SB entry and
1186          * for XTS is already in little endian format so no byte swapping
1187          * is needed.
1188          */
1189         ret = ccp_init_dm_workarea(&ctx, cmd_q,
1190                                    CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1191                                    DMA_BIDIRECTIONAL);
1192         if (ret)
1193                 goto e_key;
1194 
1195         ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1196         if (ret)
1197                 goto e_ctx;
1198         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1199                              CCP_PASSTHRU_BYTESWAP_NOOP);
1200         if (ret) {
1201                 cmd->engine_error = cmd_q->cmd_error;
1202                 goto e_ctx;
1203         }
1204 
1205         /* Prepare the input and output data workareas. For in-place
1206          * operations we need to set the dma direction to BIDIRECTIONAL
1207          * and copy the src workarea to the dst workarea.
1208          */
1209         if (sg_virt(xts->src) == sg_virt(xts->dst))
1210                 in_place = true;
1211 
1212         ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1213                             unit_size,
1214                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1215         if (ret)
1216                 goto e_ctx;
1217 
1218         if (in_place) {
1219                 dst = src;
1220         } else {
1221                 ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1222                                     unit_size, DMA_FROM_DEVICE);
1223                 if (ret)
1224                         goto e_src;
1225         }
1226 
1227         /* Send data to the CCP AES engine */
1228         while (src.sg_wa.bytes_left) {
1229                 ccp_prepare_data(&src, &dst, &op, unit_size, true);
1230                 if (!src.sg_wa.bytes_left)
1231                         op.eom = 1;
1232 
1233                 ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1234                 if (ret) {
1235                         cmd->engine_error = cmd_q->cmd_error;
1236                         goto e_dst;
1237                 }
1238 
1239                 ccp_process_data(&src, &dst, &op);
1240         }
1241 
1242         /* Retrieve the AES context - convert from LE to BE using
1243          * 32-byte (256-bit) byteswapping
1244          */
1245         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1246                                CCP_PASSTHRU_BYTESWAP_256BIT);
1247         if (ret) {
1248                 cmd->engine_error = cmd_q->cmd_error;
1249                 goto e_dst;
1250         }
1251 
1252         /* ...but we only need AES_BLOCK_SIZE bytes */
1253         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1254         ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1255 
1256 e_dst:
1257         if (!in_place)
1258                 ccp_free_data(&dst, cmd_q);
1259 
1260 e_src:
1261         ccp_free_data(&src, cmd_q);
1262 
1263 e_ctx:
1264         ccp_dm_free(&ctx);
1265 
1266 e_key:
1267         ccp_dm_free(&key);
1268 
1269         return ret;
1270 }
1271 
1272 static noinline_for_stack int
1273 ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1274 {
1275         struct ccp_des3_engine *des3 = &cmd->u.des3;
1276 
1277         struct ccp_dm_workarea key, ctx;
1278         struct ccp_data src, dst;
1279         struct ccp_op op;
1280         unsigned int dm_offset;
1281         unsigned int len_singlekey;
1282         bool in_place = false;
1283         int ret;
1284 
1285         /* Error checks */
1286         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1287                 return -EINVAL;
1288 
1289         if (!cmd_q->ccp->vdata->perform->des3)
1290                 return -EINVAL;
1291 
1292         if (des3->key_len != DES3_EDE_KEY_SIZE)
1293                 return -EINVAL;
1294 
1295         if (((des3->mode == CCP_DES3_MODE_ECB) ||
1296                 (des3->mode == CCP_DES3_MODE_CBC)) &&
1297                 (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1298                 return -EINVAL;
1299 
1300         if (!des3->key || !des3->src || !des3->dst)
1301                 return -EINVAL;
1302 
1303         if (des3->mode != CCP_DES3_MODE_ECB) {
1304                 if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1305                         return -EINVAL;
1306 
1307                 if (!des3->iv)
1308                         return -EINVAL;
1309         }
1310 
1311         ret = -EIO;
1312         /* Zero out all the fields of the command desc */
1313         memset(&op, 0, sizeof(op));
1314 
1315         /* Set up the Function field */
1316         op.cmd_q = cmd_q;
1317         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1318         op.sb_key = cmd_q->sb_key;
1319 
1320         op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1321         op.u.des3.type = des3->type;
1322         op.u.des3.mode = des3->mode;
1323         op.u.des3.action = des3->action;
1324 
1325         /*
1326          * All supported key sizes fit in a single (32-byte) KSB entry and
1327          * (like AES) must be in little endian format. Use the 256-bit byte
1328          * swap passthru option to convert from big endian to little endian.
1329          */
1330         ret = ccp_init_dm_workarea(&key, cmd_q,
1331                                    CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1332                                    DMA_TO_DEVICE);
1333         if (ret)
1334                 return ret;
1335 
1336         /*
1337          * The contents of the key triplet are in the reverse order of what
1338          * is required by the engine. Copy the 3 pieces individually to put
1339          * them where they belong.
1340          */
1341         dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1342 
1343         len_singlekey = des3->key_len / 3;
1344         ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1345                               des3->key, 0, len_singlekey);
1346         if (ret)
1347                 goto e_key;
1348         ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1349                               des3->key, len_singlekey, len_singlekey);
1350         if (ret)
1351                 goto e_key;
1352         ret = ccp_set_dm_area(&key, dm_offset,
1353                               des3->key, 2 * len_singlekey, len_singlekey);
1354         if (ret)
1355                 goto e_key;
1356 
1357         /* Copy the key to the SB */
1358         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1359                              CCP_PASSTHRU_BYTESWAP_256BIT);
1360         if (ret) {
1361                 cmd->engine_error = cmd_q->cmd_error;
1362                 goto e_key;
1363         }
1364 
1365         /*
1366          * The DES3 context fits in a single (32-byte) KSB entry and
1367          * must be in little endian format. Use the 256-bit byte swap
1368          * passthru option to convert from big endian to little endian.
1369          */
1370         if (des3->mode != CCP_DES3_MODE_ECB) {
1371                 op.sb_ctx = cmd_q->sb_ctx;
1372 
1373                 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1374                                            CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1375                                            DMA_BIDIRECTIONAL);
1376                 if (ret)
1377                         goto e_key;
1378 
1379                 /* Load the context into the LSB */
1380                 dm_offset = CCP_SB_BYTES - des3->iv_len;
1381                 ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1382                                       des3->iv_len);
1383                 if (ret)
1384                         goto e_ctx;
1385 
1386                 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1387                                      CCP_PASSTHRU_BYTESWAP_256BIT);
1388                 if (ret) {
1389                         cmd->engine_error = cmd_q->cmd_error;
1390                         goto e_ctx;
1391                 }
1392         }
1393 
1394         /*
1395          * Prepare the input and output data workareas. For in-place
1396          * operations we need to set the dma direction to BIDIRECTIONAL
1397          * and copy the src workarea to the dst workarea.
1398          */
1399         if (sg_virt(des3->src) == sg_virt(des3->dst))
1400                 in_place = true;
1401 
1402         ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1403                         DES3_EDE_BLOCK_SIZE,
1404                         in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1405         if (ret)
1406                 goto e_ctx;
1407 
1408         if (in_place)
1409                 dst = src;
1410         else {
1411                 ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1412                                 DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1413                 if (ret)
1414                         goto e_src;
1415         }
1416 
1417         /* Send data to the CCP DES3 engine */
1418         while (src.sg_wa.bytes_left) {
1419                 ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1420                 if (!src.sg_wa.bytes_left) {
1421                         op.eom = 1;
1422 
1423                         /* Since we don't retrieve the context in ECB mode
1424                          * we have to wait for the operation to complete
1425                          * on the last piece of data
1426                          */
1427                         op.soc = 0;
1428                 }
1429 
1430                 ret = cmd_q->ccp->vdata->perform->des3(&op);
1431                 if (ret) {
1432                         cmd->engine_error = cmd_q->cmd_error;
1433                         goto e_dst;
1434                 }
1435 
1436                 ccp_process_data(&src, &dst, &op);
1437         }
1438 
1439         if (des3->mode != CCP_DES3_MODE_ECB) {
1440                 /* Retrieve the context and make BE */
1441                 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1442                                        CCP_PASSTHRU_BYTESWAP_256BIT);
1443                 if (ret) {
1444                         cmd->engine_error = cmd_q->cmd_error;
1445                         goto e_dst;
1446                 }
1447 
1448                 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1449                 ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1450                                 DES3_EDE_BLOCK_SIZE);
1451         }
1452 e_dst:
1453         if (!in_place)
1454                 ccp_free_data(&dst, cmd_q);
1455 
1456 e_src:
1457         ccp_free_data(&src, cmd_q);
1458 
1459 e_ctx:
1460         if (des3->mode != CCP_DES3_MODE_ECB)
1461                 ccp_dm_free(&ctx);
1462 
1463 e_key:
1464         ccp_dm_free(&key);
1465 
1466         return ret;
1467 }
1468 
1469 static noinline_for_stack int
1470 ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1471 {
1472         struct ccp_sha_engine *sha = &cmd->u.sha;
1473         struct ccp_dm_workarea ctx;
1474         struct ccp_data src;
1475         struct ccp_op op;
1476         unsigned int ioffset, ooffset;
1477         unsigned int digest_size;
1478         int sb_count;
1479         const void *init;
1480         u64 block_size;
1481         int ctx_size;
1482         int ret;
1483 
1484         switch (sha->type) {
1485         case CCP_SHA_TYPE_1:
1486                 if (sha->ctx_len < SHA1_DIGEST_SIZE)
1487                         return -EINVAL;
1488                 block_size = SHA1_BLOCK_SIZE;
1489                 break;
1490         case CCP_SHA_TYPE_224:
1491                 if (sha->ctx_len < SHA224_DIGEST_SIZE)
1492                         return -EINVAL;
1493                 block_size = SHA224_BLOCK_SIZE;
1494                 break;
1495         case CCP_SHA_TYPE_256:
1496                 if (sha->ctx_len < SHA256_DIGEST_SIZE)
1497                         return -EINVAL;
1498                 block_size = SHA256_BLOCK_SIZE;
1499                 break;
1500         case CCP_SHA_TYPE_384:
1501                 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1502                     || sha->ctx_len < SHA384_DIGEST_SIZE)
1503                         return -EINVAL;
1504                 block_size = SHA384_BLOCK_SIZE;
1505                 break;
1506         case CCP_SHA_TYPE_512:
1507                 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1508                     || sha->ctx_len < SHA512_DIGEST_SIZE)
1509                         return -EINVAL;
1510                 block_size = SHA512_BLOCK_SIZE;
1511                 break;
1512         default:
1513                 return -EINVAL;
1514         }
1515 
1516         if (!sha->ctx)
1517                 return -EINVAL;
1518 
1519         if (!sha->final && (sha->src_len & (block_size - 1)))
1520                 return -EINVAL;
1521 
1522         /* The version 3 device can't handle zero-length input */
1523         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1524 
1525                 if (!sha->src_len) {
1526                         unsigned int digest_len;
1527                         const u8 *sha_zero;
1528 
1529                         /* Not final, just return */
1530                         if (!sha->final)
1531                                 return 0;
1532 
1533                         /* CCP can't do a zero length sha operation so the
1534                          * caller must buffer the data.
1535                          */
1536                         if (sha->msg_bits)
1537                                 return -EINVAL;
1538 
1539                         /* The CCP cannot perform zero-length sha operations
1540                          * so the caller is required to buffer data for the
1541                          * final operation. However, a sha operation for a
1542                          * message with a total length of zero is valid so
1543                          * known values are required to supply the result.
1544                          */
1545                         switch (sha->type) {
1546                         case CCP_SHA_TYPE_1:
1547                                 sha_zero = sha1_zero_message_hash;
1548                                 digest_len = SHA1_DIGEST_SIZE;
1549                                 break;
1550                         case CCP_SHA_TYPE_224:
1551                                 sha_zero = sha224_zero_message_hash;
1552                                 digest_len = SHA224_DIGEST_SIZE;
1553                                 break;
1554                         case CCP_SHA_TYPE_256:
1555                                 sha_zero = sha256_zero_message_hash;
1556                                 digest_len = SHA256_DIGEST_SIZE;
1557                                 break;
1558                         default:
1559                                 return -EINVAL;
1560                         }
1561 
1562                         scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1563                                                  digest_len, 1);
1564 
1565                         return 0;
1566                 }
1567         }
1568 
1569         /* Set variables used throughout */
1570         switch (sha->type) {
1571         case CCP_SHA_TYPE_1:
1572                 digest_size = SHA1_DIGEST_SIZE;
1573                 init = (void *) ccp_sha1_init;
1574                 ctx_size = SHA1_DIGEST_SIZE;
1575                 sb_count = 1;
1576                 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1577                         ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1578                 else
1579                         ooffset = ioffset = 0;
1580                 break;
1581         case CCP_SHA_TYPE_224:
1582                 digest_size = SHA224_DIGEST_SIZE;
1583                 init = (void *) ccp_sha224_init;
1584                 ctx_size = SHA256_DIGEST_SIZE;
1585                 sb_count = 1;
1586                 ioffset = 0;
1587                 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1588                         ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1589                 else
1590                         ooffset = 0;
1591                 break;
1592         case CCP_SHA_TYPE_256:
1593                 digest_size = SHA256_DIGEST_SIZE;
1594                 init = (void *) ccp_sha256_init;
1595                 ctx_size = SHA256_DIGEST_SIZE;
1596                 sb_count = 1;
1597                 ooffset = ioffset = 0;
1598                 break;
1599         case CCP_SHA_TYPE_384:
1600                 digest_size = SHA384_DIGEST_SIZE;
1601                 init = (void *) ccp_sha384_init;
1602                 ctx_size = SHA512_DIGEST_SIZE;
1603                 sb_count = 2;
1604                 ioffset = 0;
1605                 ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1606                 break;
1607         case CCP_SHA_TYPE_512:
1608                 digest_size = SHA512_DIGEST_SIZE;
1609                 init = (void *) ccp_sha512_init;
1610                 ctx_size = SHA512_DIGEST_SIZE;
1611                 sb_count = 2;
1612                 ooffset = ioffset = 0;
1613                 break;
1614         default:
1615                 ret = -EINVAL;
1616                 goto e_data;
1617         }
1618 
1619         /* For zero-length plaintext the src pointer is ignored;
1620          * otherwise both parts must be valid
1621          */
1622         if (sha->src_len && !sha->src)
1623                 return -EINVAL;
1624 
1625         memset(&op, 0, sizeof(op));
1626         op.cmd_q = cmd_q;
1627         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1628         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1629         op.u.sha.type = sha->type;
1630         op.u.sha.msg_bits = sha->msg_bits;
1631 
1632         /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1633          * SHA384/512 require 2 adjacent SB slots, with the right half in the
1634          * first slot, and the left half in the second. Each portion must then
1635          * be in little endian format: use the 256-bit byte swap option.
1636          */
1637         ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1638                                    DMA_BIDIRECTIONAL);
1639         if (ret)
1640                 return ret;
1641         if (sha->first) {
1642                 switch (sha->type) {
1643                 case CCP_SHA_TYPE_1:
1644                 case CCP_SHA_TYPE_224:
1645                 case CCP_SHA_TYPE_256:
1646                         memcpy(ctx.address + ioffset, init, ctx_size);
1647                         break;
1648                 case CCP_SHA_TYPE_384:
1649                 case CCP_SHA_TYPE_512:
1650                         memcpy(ctx.address + ctx_size / 2, init,
1651                                ctx_size / 2);
1652                         memcpy(ctx.address, init + ctx_size / 2,
1653                                ctx_size / 2);
1654                         break;
1655                 default:
1656                         ret = -EINVAL;
1657                         goto e_ctx;
1658                 }
1659         } else {
1660                 /* Restore the context */
1661                 ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1662                                       sb_count * CCP_SB_BYTES);
1663                 if (ret)
1664                         goto e_ctx;
1665         }
1666 
1667         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1668                              CCP_PASSTHRU_BYTESWAP_256BIT);
1669         if (ret) {
1670                 cmd->engine_error = cmd_q->cmd_error;
1671                 goto e_ctx;
1672         }
1673 
1674         if (sha->src) {
1675                 /* Send data to the CCP SHA engine; block_size is set above */
1676                 ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1677                                     block_size, DMA_TO_DEVICE);
1678                 if (ret)
1679                         goto e_ctx;
1680 
1681                 while (src.sg_wa.bytes_left) {
1682                         ccp_prepare_data(&src, NULL, &op, block_size, false);
1683                         if (sha->final && !src.sg_wa.bytes_left)
1684                                 op.eom = 1;
1685 
1686                         ret = cmd_q->ccp->vdata->perform->sha(&op);
1687                         if (ret) {
1688                                 cmd->engine_error = cmd_q->cmd_error;
1689                                 goto e_data;
1690                         }
1691 
1692                         ccp_process_data(&src, NULL, &op);
1693                 }
1694         } else {
1695                 op.eom = 1;
1696                 ret = cmd_q->ccp->vdata->perform->sha(&op);
1697                 if (ret) {
1698                         cmd->engine_error = cmd_q->cmd_error;
1699                         goto e_data;
1700                 }
1701         }
1702 
1703         /* Retrieve the SHA context - convert from LE to BE using
1704          * 32-byte (256-bit) byteswapping to BE
1705          */
1706         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1707                                CCP_PASSTHRU_BYTESWAP_256BIT);
1708         if (ret) {
1709                 cmd->engine_error = cmd_q->cmd_error;
1710                 goto e_data;
1711         }
1712 
1713         if (sha->final) {
1714                 /* Finishing up, so get the digest */
1715                 switch (sha->type) {
1716                 case CCP_SHA_TYPE_1:
1717                 case CCP_SHA_TYPE_224:
1718                 case CCP_SHA_TYPE_256:
1719                         ccp_get_dm_area(&ctx, ooffset,
1720                                         sha->ctx, 0,
1721                                         digest_size);
1722                         break;
1723                 case CCP_SHA_TYPE_384:
1724                 case CCP_SHA_TYPE_512:
1725                         ccp_get_dm_area(&ctx, 0,
1726                                         sha->ctx, LSB_ITEM_SIZE - ooffset,
1727                                         LSB_ITEM_SIZE);
1728                         ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1729                                         sha->ctx, 0,
1730                                         LSB_ITEM_SIZE - ooffset);
1731                         break;
1732                 default:
1733                         ret = -EINVAL;
1734                         goto e_ctx;
1735                 }
1736         } else {
1737                 /* Stash the context */
1738                 ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1739                                 sb_count * CCP_SB_BYTES);
1740         }
1741 
1742         if (sha->final && sha->opad) {
1743                 /* HMAC operation, recursively perform final SHA */
1744                 struct ccp_cmd hmac_cmd;
1745                 struct scatterlist sg;
1746                 u8 *hmac_buf;
1747 
1748                 if (sha->opad_len != block_size) {
1749                         ret = -EINVAL;
1750                         goto e_data;
1751                 }
1752 
1753                 hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1754                 if (!hmac_buf) {
1755                         ret = -ENOMEM;
1756                         goto e_data;
1757                 }
1758                 sg_init_one(&sg, hmac_buf, block_size + digest_size);
1759 
1760                 scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1761                 switch (sha->type) {
1762                 case CCP_SHA_TYPE_1:
1763                 case CCP_SHA_TYPE_224:
1764                 case CCP_SHA_TYPE_256:
1765                         memcpy(hmac_buf + block_size,
1766                                ctx.address + ooffset,
1767                                digest_size);
1768                         break;
1769                 case CCP_SHA_TYPE_384:
1770                 case CCP_SHA_TYPE_512:
1771                         memcpy(hmac_buf + block_size,
1772                                ctx.address + LSB_ITEM_SIZE + ooffset,
1773                                LSB_ITEM_SIZE);
1774                         memcpy(hmac_buf + block_size +
1775                                (LSB_ITEM_SIZE - ooffset),
1776                                ctx.address,
1777                                LSB_ITEM_SIZE);
1778                         break;
1779                 default:
1780                         ret = -EINVAL;
1781                         goto e_ctx;
1782                 }
1783 
1784                 memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1785                 hmac_cmd.engine = CCP_ENGINE_SHA;
1786                 hmac_cmd.u.sha.type = sha->type;
1787                 hmac_cmd.u.sha.ctx = sha->ctx;
1788                 hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1789                 hmac_cmd.u.sha.src = &sg;
1790                 hmac_cmd.u.sha.src_len = block_size + digest_size;
1791                 hmac_cmd.u.sha.opad = NULL;
1792                 hmac_cmd.u.sha.opad_len = 0;
1793                 hmac_cmd.u.sha.first = 1;
1794                 hmac_cmd.u.sha.final = 1;
1795                 hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1796 
1797                 ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1798                 if (ret)
1799                         cmd->engine_error = hmac_cmd.engine_error;
1800 
1801                 kfree(hmac_buf);
1802         }
1803 
1804 e_data:
1805         if (sha->src)
1806                 ccp_free_data(&src, cmd_q);
1807 
1808 e_ctx:
1809         ccp_dm_free(&ctx);
1810 
1811         return ret;
1812 }
1813 
1814 static noinline_for_stack int
1815 ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1816 {
1817         struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1818         struct ccp_dm_workarea exp, src, dst;
1819         struct ccp_op op;
1820         unsigned int sb_count, i_len, o_len;
1821         int ret;
1822 
1823         /* Check against the maximum allowable size, in bits */
1824         if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1825                 return -EINVAL;
1826 
1827         if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1828                 return -EINVAL;
1829 
1830         memset(&op, 0, sizeof(op));
1831         op.cmd_q = cmd_q;
1832         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1833 
1834         /* The RSA modulus must precede the message being acted upon, so
1835          * it must be copied to a DMA area where the message and the
1836          * modulus can be concatenated.  Therefore the input buffer
1837          * length required is twice the output buffer length (which
1838          * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1839          * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1840          * required.
1841          */
1842         o_len = 32 * ((rsa->key_size + 255) / 256);
1843         i_len = o_len * 2;
1844 
1845         sb_count = 0;
1846         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1847                 /* sb_count is the number of storage block slots required
1848                  * for the modulus.
1849                  */
1850                 sb_count = o_len / CCP_SB_BYTES;
1851                 op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1852                                                                 sb_count);
1853                 if (!op.sb_key)
1854                         return -EIO;
1855         } else {
1856                 /* A version 5 device allows a modulus size that will not fit
1857                  * in the LSB, so the command will transfer it from memory.
1858                  * Set the sb key to the default, even though it's not used.
1859                  */
1860                 op.sb_key = cmd_q->sb_key;
1861         }
1862 
1863         /* The RSA exponent must be in little endian format. Reverse its
1864          * byte order.
1865          */
1866         ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1867         if (ret)
1868                 goto e_sb;
1869 
1870         ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1871         if (ret)
1872                 goto e_exp;
1873 
1874         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1875                 /* Copy the exponent to the local storage block, using
1876                  * as many 32-byte blocks as were allocated above. It's
1877                  * already little endian, so no further change is required.
1878                  */
1879                 ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1880                                      CCP_PASSTHRU_BYTESWAP_NOOP);
1881                 if (ret) {
1882                         cmd->engine_error = cmd_q->cmd_error;
1883                         goto e_exp;
1884                 }
1885         } else {
1886                 /* The exponent can be retrieved from memory via DMA. */
1887                 op.exp.u.dma.address = exp.dma.address;
1888                 op.exp.u.dma.offset = 0;
1889         }
1890 
1891         /* Concatenate the modulus and the message. Both the modulus and
1892          * the operands must be in little endian format.  Since the input
1893          * is in big endian format it must be converted.
1894          */
1895         ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1896         if (ret)
1897                 goto e_exp;
1898 
1899         ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1900         if (ret)
1901                 goto e_src;
1902         ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1903         if (ret)
1904                 goto e_src;
1905 
1906         /* Prepare the output area for the operation */
1907         ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1908         if (ret)
1909                 goto e_src;
1910 
1911         op.soc = 1;
1912         op.src.u.dma.address = src.dma.address;
1913         op.src.u.dma.offset = 0;
1914         op.src.u.dma.length = i_len;
1915         op.dst.u.dma.address = dst.dma.address;
1916         op.dst.u.dma.offset = 0;
1917         op.dst.u.dma.length = o_len;
1918 
1919         op.u.rsa.mod_size = rsa->key_size;
1920         op.u.rsa.input_len = i_len;
1921 
1922         ret = cmd_q->ccp->vdata->perform->rsa(&op);
1923         if (ret) {
1924                 cmd->engine_error = cmd_q->cmd_error;
1925                 goto e_dst;
1926         }
1927 
1928         ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1929 
1930 e_dst:
1931         ccp_dm_free(&dst);
1932 
1933 e_src:
1934         ccp_dm_free(&src);
1935 
1936 e_exp:
1937         ccp_dm_free(&exp);
1938 
1939 e_sb:
1940         if (sb_count)
1941                 cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1942 
1943         return ret;
1944 }
1945 
1946 static noinline_for_stack int
1947 ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1948 {
1949         struct ccp_passthru_engine *pt = &cmd->u.passthru;
1950         struct ccp_dm_workarea mask;
1951         struct ccp_data src, dst;
1952         struct ccp_op op;
1953         bool in_place = false;
1954         unsigned int i;
1955         int ret = 0;
1956 
1957         if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1958                 return -EINVAL;
1959 
1960         if (!pt->src || !pt->dst)
1961                 return -EINVAL;
1962 
1963         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1964                 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1965                         return -EINVAL;
1966                 if (!pt->mask)
1967                         return -EINVAL;
1968         }
1969 
1970         BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1971 
1972         memset(&op, 0, sizeof(op));
1973         op.cmd_q = cmd_q;
1974         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1975 
1976         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1977                 /* Load the mask */
1978                 op.sb_key = cmd_q->sb_key;
1979 
1980                 ret = ccp_init_dm_workarea(&mask, cmd_q,
1981                                            CCP_PASSTHRU_SB_COUNT *
1982                                            CCP_SB_BYTES,
1983                                            DMA_TO_DEVICE);
1984                 if (ret)
1985                         return ret;
1986 
1987                 ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1988                 if (ret)
1989                         goto e_mask;
1990                 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1991                                      CCP_PASSTHRU_BYTESWAP_NOOP);
1992                 if (ret) {
1993                         cmd->engine_error = cmd_q->cmd_error;
1994                         goto e_mask;
1995                 }
1996         }
1997 
1998         /* Prepare the input and output data workareas. For in-place
1999          * operations we need to set the dma direction to BIDIRECTIONAL
2000          * and copy the src workarea to the dst workarea.
2001          */
2002         if (sg_virt(pt->src) == sg_virt(pt->dst))
2003                 in_place = true;
2004 
2005         ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2006                             CCP_PASSTHRU_MASKSIZE,
2007                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2008         if (ret)
2009                 goto e_mask;
2010 
2011         if (in_place) {
2012                 dst = src;
2013         } else {
2014                 ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2015                                     CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2016                 if (ret)
2017                         goto e_src;
2018         }
2019 
2020         /* Send data to the CCP Passthru engine
2021          *   Because the CCP engine works on a single source and destination
2022          *   dma address at a time, each entry in the source scatterlist
2023          *   (after the dma_map_sg call) must be less than or equal to the
2024          *   (remaining) length in the destination scatterlist entry and the
2025          *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2026          */
2027         dst.sg_wa.sg_used = 0;
2028         for (i = 1; i <= src.sg_wa.dma_count; i++) {
2029                 if (!dst.sg_wa.sg ||
2030                     (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2031                         ret = -EINVAL;
2032                         goto e_dst;
2033                 }
2034 
2035                 if (i == src.sg_wa.dma_count) {
2036                         op.eom = 1;
2037                         op.soc = 1;
2038                 }
2039 
2040                 op.src.type = CCP_MEMTYPE_SYSTEM;
2041                 op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2042                 op.src.u.dma.offset = 0;
2043                 op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2044 
2045                 op.dst.type = CCP_MEMTYPE_SYSTEM;
2046                 op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2047                 op.dst.u.dma.offset = dst.sg_wa.sg_used;
2048                 op.dst.u.dma.length = op.src.u.dma.length;
2049 
2050                 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2051                 if (ret) {
2052                         cmd->engine_error = cmd_q->cmd_error;
2053                         goto e_dst;
2054                 }
2055 
2056                 dst.sg_wa.sg_used += src.sg_wa.sg->length;
2057                 if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2058                         dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2059                         dst.sg_wa.sg_used = 0;
2060                 }
2061                 src.sg_wa.sg = sg_next(src.sg_wa.sg);
2062         }
2063 
2064 e_dst:
2065         if (!in_place)
2066                 ccp_free_data(&dst, cmd_q);
2067 
2068 e_src:
2069         ccp_free_data(&src, cmd_q);
2070 
2071 e_mask:
2072         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2073                 ccp_dm_free(&mask);
2074 
2075         return ret;
2076 }
2077 
2078 static noinline_for_stack int
2079 ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2080                                       struct ccp_cmd *cmd)
2081 {
2082         struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2083         struct ccp_dm_workarea mask;
2084         struct ccp_op op;
2085         int ret;
2086 
2087         if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2088                 return -EINVAL;
2089 
2090         if (!pt->src_dma || !pt->dst_dma)
2091                 return -EINVAL;
2092 
2093         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2094                 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2095                         return -EINVAL;
2096                 if (!pt->mask)
2097                         return -EINVAL;
2098         }
2099 
2100         BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2101 
2102         memset(&op, 0, sizeof(op));
2103         op.cmd_q = cmd_q;
2104         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2105 
2106         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2107                 /* Load the mask */
2108                 op.sb_key = cmd_q->sb_key;
2109 
2110                 mask.length = pt->mask_len;
2111                 mask.dma.address = pt->mask;
2112                 mask.dma.length = pt->mask_len;
2113 
2114                 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2115                                      CCP_PASSTHRU_BYTESWAP_NOOP);
2116                 if (ret) {
2117                         cmd->engine_error = cmd_q->cmd_error;
2118                         return ret;
2119                 }
2120         }
2121 
2122         /* Send data to the CCP Passthru engine */
2123         op.eom = 1;
2124         op.soc = 1;
2125 
2126         op.src.type = CCP_MEMTYPE_SYSTEM;
2127         op.src.u.dma.address = pt->src_dma;
2128         op.src.u.dma.offset = 0;
2129         op.src.u.dma.length = pt->src_len;
2130 
2131         op.dst.type = CCP_MEMTYPE_SYSTEM;
2132         op.dst.u.dma.address = pt->dst_dma;
2133         op.dst.u.dma.offset = 0;
2134         op.dst.u.dma.length = pt->src_len;
2135 
2136         ret = cmd_q->ccp->vdata->perform->passthru(&op);
2137         if (ret)
2138                 cmd->engine_error = cmd_q->cmd_error;
2139 
2140         return ret;
2141 }
2142 
2143 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2144 {
2145         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2146         struct ccp_dm_workarea src, dst;
2147         struct ccp_op op;
2148         int ret;
2149         u8 *save;
2150 
2151         if (!ecc->u.mm.operand_1 ||
2152             (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2153                 return -EINVAL;
2154 
2155         if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2156                 if (!ecc->u.mm.operand_2 ||
2157                     (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2158                         return -EINVAL;
2159 
2160         if (!ecc->u.mm.result ||
2161             (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2162                 return -EINVAL;
2163 
2164         memset(&op, 0, sizeof(op));
2165         op.cmd_q = cmd_q;
2166         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2167 
2168         /* Concatenate the modulus and the operands. Both the modulus and
2169          * the operands must be in little endian format.  Since the input
2170          * is in big endian format it must be converted and placed in a
2171          * fixed length buffer.
2172          */
2173         ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2174                                    DMA_TO_DEVICE);
2175         if (ret)
2176                 return ret;
2177 
2178         /* Save the workarea address since it is updated in order to perform
2179          * the concatenation
2180          */
2181         save = src.address;
2182 
2183         /* Copy the ECC modulus */
2184         ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2185         if (ret)
2186                 goto e_src;
2187         src.address += CCP_ECC_OPERAND_SIZE;
2188 
2189         /* Copy the first operand */
2190         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2191                                       ecc->u.mm.operand_1_len);
2192         if (ret)
2193                 goto e_src;
2194         src.address += CCP_ECC_OPERAND_SIZE;
2195 
2196         if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2197                 /* Copy the second operand */
2198                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2199                                               ecc->u.mm.operand_2_len);
2200                 if (ret)
2201                         goto e_src;
2202                 src.address += CCP_ECC_OPERAND_SIZE;
2203         }
2204 
2205         /* Restore the workarea address */
2206         src.address = save;
2207 
2208         /* Prepare the output area for the operation */
2209         ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2210                                    DMA_FROM_DEVICE);
2211         if (ret)
2212                 goto e_src;
2213 
2214         op.soc = 1;
2215         op.src.u.dma.address = src.dma.address;
2216         op.src.u.dma.offset = 0;
2217         op.src.u.dma.length = src.length;
2218         op.dst.u.dma.address = dst.dma.address;
2219         op.dst.u.dma.offset = 0;
2220         op.dst.u.dma.length = dst.length;
2221 
2222         op.u.ecc.function = cmd->u.ecc.function;
2223 
2224         ret = cmd_q->ccp->vdata->perform->ecc(&op);
2225         if (ret) {
2226                 cmd->engine_error = cmd_q->cmd_error;
2227                 goto e_dst;
2228         }
2229 
2230         ecc->ecc_result = le16_to_cpup(
2231                 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2232         if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2233                 ret = -EIO;
2234                 goto e_dst;
2235         }
2236 
2237         /* Save the ECC result */
2238         ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2239                                 CCP_ECC_MODULUS_BYTES);
2240 
2241 e_dst:
2242         ccp_dm_free(&dst);
2243 
2244 e_src:
2245         ccp_dm_free(&src);
2246 
2247         return ret;
2248 }
2249 
2250 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2251 {
2252         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2253         struct ccp_dm_workarea src, dst;
2254         struct ccp_op op;
2255         int ret;
2256         u8 *save;
2257 
2258         if (!ecc->u.pm.point_1.x ||
2259             (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2260             !ecc->u.pm.point_1.y ||
2261             (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2262                 return -EINVAL;
2263 
2264         if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2265                 if (!ecc->u.pm.point_2.x ||
2266                     (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2267                     !ecc->u.pm.point_2.y ||
2268                     (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2269                         return -EINVAL;
2270         } else {
2271                 if (!ecc->u.pm.domain_a ||
2272                     (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2273                         return -EINVAL;
2274 
2275                 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2276                         if (!ecc->u.pm.scalar ||
2277                             (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2278                                 return -EINVAL;
2279         }
2280 
2281         if (!ecc->u.pm.result.x ||
2282             (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2283             !ecc->u.pm.result.y ||
2284             (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2285                 return -EINVAL;
2286 
2287         memset(&op, 0, sizeof(op));
2288         op.cmd_q = cmd_q;
2289         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2290 
2291         /* Concatenate the modulus and the operands. Both the modulus and
2292          * the operands must be in little endian format.  Since the input
2293          * is in big endian format it must be converted and placed in a
2294          * fixed length buffer.
2295          */
2296         ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2297                                    DMA_TO_DEVICE);
2298         if (ret)
2299                 return ret;
2300 
2301         /* Save the workarea address since it is updated in order to perform
2302          * the concatenation
2303          */
2304         save = src.address;
2305 
2306         /* Copy the ECC modulus */
2307         ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2308         if (ret)
2309                 goto e_src;
2310         src.address += CCP_ECC_OPERAND_SIZE;
2311 
2312         /* Copy the first point X and Y coordinate */
2313         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2314                                       ecc->u.pm.point_1.x_len);
2315         if (ret)
2316                 goto e_src;
2317         src.address += CCP_ECC_OPERAND_SIZE;
2318         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2319                                       ecc->u.pm.point_1.y_len);
2320         if (ret)
2321                 goto e_src;
2322         src.address += CCP_ECC_OPERAND_SIZE;
2323 
2324         /* Set the first point Z coordinate to 1 */
2325         *src.address = 0x01;
2326         src.address += CCP_ECC_OPERAND_SIZE;
2327 
2328         if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2329                 /* Copy the second point X and Y coordinate */
2330                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2331                                               ecc->u.pm.point_2.x_len);
2332                 if (ret)
2333                         goto e_src;
2334                 src.address += CCP_ECC_OPERAND_SIZE;
2335                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2336                                               ecc->u.pm.point_2.y_len);
2337                 if (ret)
2338                         goto e_src;
2339                 src.address += CCP_ECC_OPERAND_SIZE;
2340 
2341                 /* Set the second point Z coordinate to 1 */
2342                 *src.address = 0x01;
2343                 src.address += CCP_ECC_OPERAND_SIZE;
2344         } else {
2345                 /* Copy the Domain "a" parameter */
2346                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2347                                               ecc->u.pm.domain_a_len);
2348                 if (ret)
2349                         goto e_src;
2350                 src.address += CCP_ECC_OPERAND_SIZE;
2351 
2352                 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2353                         /* Copy the scalar value */
2354                         ret = ccp_reverse_set_dm_area(&src, 0,
2355                                                       ecc->u.pm.scalar, 0,
2356                                                       ecc->u.pm.scalar_len);
2357                         if (ret)
2358                                 goto e_src;
2359                         src.address += CCP_ECC_OPERAND_SIZE;
2360                 }
2361         }
2362 
2363         /* Restore the workarea address */
2364         src.address = save;
2365 
2366         /* Prepare the output area for the operation */
2367         ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2368                                    DMA_FROM_DEVICE);
2369         if (ret)
2370                 goto e_src;
2371 
2372         op.soc = 1;
2373         op.src.u.dma.address = src.dma.address;
2374         op.src.u.dma.offset = 0;
2375         op.src.u.dma.length = src.length;
2376         op.dst.u.dma.address = dst.dma.address;
2377         op.dst.u.dma.offset = 0;
2378         op.dst.u.dma.length = dst.length;
2379 
2380         op.u.ecc.function = cmd->u.ecc.function;
2381 
2382         ret = cmd_q->ccp->vdata->perform->ecc(&op);
2383         if (ret) {
2384                 cmd->engine_error = cmd_q->cmd_error;
2385                 goto e_dst;
2386         }
2387 
2388         ecc->ecc_result = le16_to_cpup(
2389                 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2390         if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2391                 ret = -EIO;
2392                 goto e_dst;
2393         }
2394 
2395         /* Save the workarea address since it is updated as we walk through
2396          * to copy the point math result
2397          */
2398         save = dst.address;
2399 
2400         /* Save the ECC result X and Y coordinates */
2401         ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2402                                 CCP_ECC_MODULUS_BYTES);
2403         dst.address += CCP_ECC_OUTPUT_SIZE;
2404         ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2405                                 CCP_ECC_MODULUS_BYTES);
2406         dst.address += CCP_ECC_OUTPUT_SIZE;
2407 
2408         /* Restore the workarea address */
2409         dst.address = save;
2410 
2411 e_dst:
2412         ccp_dm_free(&dst);
2413 
2414 e_src:
2415         ccp_dm_free(&src);
2416 
2417         return ret;
2418 }
2419 
2420 static noinline_for_stack int
2421 ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2422 {
2423         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2424 
2425         ecc->ecc_result = 0;
2426 
2427         if (!ecc->mod ||
2428             (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2429                 return -EINVAL;
2430 
2431         switch (ecc->function) {
2432         case CCP_ECC_FUNCTION_MMUL_384BIT:
2433         case CCP_ECC_FUNCTION_MADD_384BIT:
2434         case CCP_ECC_FUNCTION_MINV_384BIT:
2435                 return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2436 
2437         case CCP_ECC_FUNCTION_PADD_384BIT:
2438         case CCP_ECC_FUNCTION_PMUL_384BIT:
2439         case CCP_ECC_FUNCTION_PDBL_384BIT:
2440                 return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2441 
2442         default:
2443                 return -EINVAL;
2444         }
2445 }
2446 
2447 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2448 {
2449         int ret;
2450 
2451         cmd->engine_error = 0;
2452         cmd_q->cmd_error = 0;
2453         cmd_q->int_rcvd = 0;
2454         cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2455 
2456         switch (cmd->engine) {
2457         case CCP_ENGINE_AES:
2458                 switch (cmd->u.aes.mode) {
2459                 case CCP_AES_MODE_CMAC:
2460                         ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2461                         break;
2462                 case CCP_AES_MODE_GCM:
2463                         ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2464                         break;
2465                 default:
2466                         ret = ccp_run_aes_cmd(cmd_q, cmd);
2467                         break;
2468                 }
2469                 break;
2470         case CCP_ENGINE_XTS_AES_128:
2471                 ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2472                 break;
2473         case CCP_ENGINE_DES3:
2474                 ret = ccp_run_des3_cmd(cmd_q, cmd);
2475                 break;
2476         case CCP_ENGINE_SHA:
2477                 ret = ccp_run_sha_cmd(cmd_q, cmd);
2478                 break;
2479         case CCP_ENGINE_RSA:
2480                 ret = ccp_run_rsa_cmd(cmd_q, cmd);
2481                 break;
2482         case CCP_ENGINE_PASSTHRU:
2483                 if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2484                         ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2485                 else
2486                         ret = ccp_run_passthru_cmd(cmd_q, cmd);
2487                 break;
2488         case CCP_ENGINE_ECC:
2489                 ret = ccp_run_ecc_cmd(cmd_q, cmd);
2490                 break;
2491         default:
2492                 ret = -EINVAL;
2493         }
2494 
2495         return ret;
2496 }

/* [<][>][^][v][top][bottom][index][help] */