root/drivers/crypto/stm32/stm32-cryp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. is_aes
  2. is_des
  3. is_tdes
  4. is_ecb
  5. is_cbc
  6. is_ctr
  7. is_gcm
  8. is_ccm
  9. is_encrypt
  10. is_decrypt
  11. stm32_cryp_read
  12. stm32_cryp_write
  13. stm32_cryp_wait_busy
  14. stm32_cryp_wait_enable
  15. stm32_cryp_wait_output
  16. stm32_cryp_find_dev
  17. stm32_cryp_check_aligned
  18. stm32_cryp_check_io_aligned
  19. sg_copy_buf
  20. stm32_cryp_copy_sgs
  21. stm32_cryp_hw_write_iv
  22. stm32_cryp_get_iv
  23. stm32_cryp_hw_write_key
  24. stm32_cryp_get_hw_mode
  25. stm32_cryp_get_input_text_len
  26. stm32_cryp_gcm_init
  27. stm32_cryp_ccm_init
  28. stm32_cryp_hw_init
  29. stm32_cryp_finish_req
  30. stm32_cryp_cpu_start
  31. stm32_cryp_cra_init
  32. stm32_cryp_aes_aead_init
  33. stm32_cryp_crypt
  34. stm32_cryp_aead_crypt
  35. stm32_cryp_setkey
  36. stm32_cryp_aes_setkey
  37. stm32_cryp_des_setkey
  38. stm32_cryp_tdes_setkey
  39. stm32_cryp_aes_aead_setkey
  40. stm32_cryp_aes_gcm_setauthsize
  41. stm32_cryp_aes_ccm_setauthsize
  42. stm32_cryp_aes_ecb_encrypt
  43. stm32_cryp_aes_ecb_decrypt
  44. stm32_cryp_aes_cbc_encrypt
  45. stm32_cryp_aes_cbc_decrypt
  46. stm32_cryp_aes_ctr_encrypt
  47. stm32_cryp_aes_ctr_decrypt
  48. stm32_cryp_aes_gcm_encrypt
  49. stm32_cryp_aes_gcm_decrypt
  50. stm32_cryp_aes_ccm_encrypt
  51. stm32_cryp_aes_ccm_decrypt
  52. stm32_cryp_des_ecb_encrypt
  53. stm32_cryp_des_ecb_decrypt
  54. stm32_cryp_des_cbc_encrypt
  55. stm32_cryp_des_cbc_decrypt
  56. stm32_cryp_tdes_ecb_encrypt
  57. stm32_cryp_tdes_ecb_decrypt
  58. stm32_cryp_tdes_cbc_encrypt
  59. stm32_cryp_tdes_cbc_decrypt
  60. stm32_cryp_prepare_req
  61. stm32_cryp_prepare_cipher_req
  62. stm32_cryp_cipher_one_req
  63. stm32_cryp_prepare_aead_req
  64. stm32_cryp_aead_one_req
  65. stm32_cryp_next_out
  66. stm32_cryp_next_in
  67. stm32_cryp_read_auth_tag
  68. stm32_cryp_check_ctr_counter
  69. stm32_cryp_irq_read_data
  70. stm32_cryp_irq_write_block
  71. stm32_cryp_irq_write_gcm_padded_data
  72. stm32_cryp_irq_set_npblb
  73. stm32_cryp_irq_write_ccm_padded_data
  74. stm32_cryp_irq_write_data
  75. stm32_cryp_irq_write_gcm_header
  76. stm32_cryp_irq_write_ccm_header
  77. stm32_cryp_irq_thread
  78. stm32_cryp_irq
  79. stm32_cryp_probe
  80. stm32_cryp_remove
  81. stm32_cryp_runtime_suspend
  82. stm32_cryp_runtime_resume

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) STMicroelectronics SA 2017
   4  * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5  */
   6 
   7 #include <linux/clk.h>
   8 #include <linux/delay.h>
   9 #include <linux/interrupt.h>
  10 #include <linux/iopoll.h>
  11 #include <linux/module.h>
  12 #include <linux/of_device.h>
  13 #include <linux/platform_device.h>
  14 #include <linux/pm_runtime.h>
  15 #include <linux/reset.h>
  16 
  17 #include <crypto/aes.h>
  18 #include <crypto/internal/des.h>
  19 #include <crypto/engine.h>
  20 #include <crypto/scatterwalk.h>
  21 #include <crypto/internal/aead.h>
  22 
  23 #define DRIVER_NAME             "stm32-cryp"
  24 
  25 /* Bit [0] encrypt / decrypt */
  26 #define FLG_ENCRYPT             BIT(0)
  27 /* Bit [8..1] algo & operation mode */
  28 #define FLG_AES                 BIT(1)
  29 #define FLG_DES                 BIT(2)
  30 #define FLG_TDES                BIT(3)
  31 #define FLG_ECB                 BIT(4)
  32 #define FLG_CBC                 BIT(5)
  33 #define FLG_CTR                 BIT(6)
  34 #define FLG_GCM                 BIT(7)
  35 #define FLG_CCM                 BIT(8)
  36 /* Mode mask = bits [15..0] */
  37 #define FLG_MODE_MASK           GENMASK(15, 0)
  38 /* Bit [31..16] status  */
  39 #define FLG_CCM_PADDED_WA       BIT(16)
  40 
  41 /* Registers */
  42 #define CRYP_CR                 0x00000000
  43 #define CRYP_SR                 0x00000004
  44 #define CRYP_DIN                0x00000008
  45 #define CRYP_DOUT               0x0000000C
  46 #define CRYP_DMACR              0x00000010
  47 #define CRYP_IMSCR              0x00000014
  48 #define CRYP_RISR               0x00000018
  49 #define CRYP_MISR               0x0000001C
  50 #define CRYP_K0LR               0x00000020
  51 #define CRYP_K0RR               0x00000024
  52 #define CRYP_K1LR               0x00000028
  53 #define CRYP_K1RR               0x0000002C
  54 #define CRYP_K2LR               0x00000030
  55 #define CRYP_K2RR               0x00000034
  56 #define CRYP_K3LR               0x00000038
  57 #define CRYP_K3RR               0x0000003C
  58 #define CRYP_IV0LR              0x00000040
  59 #define CRYP_IV0RR              0x00000044
  60 #define CRYP_IV1LR              0x00000048
  61 #define CRYP_IV1RR              0x0000004C
  62 #define CRYP_CSGCMCCM0R         0x00000050
  63 #define CRYP_CSGCM0R            0x00000070
  64 
  65 /* Registers values */
  66 #define CR_DEC_NOT_ENC          0x00000004
  67 #define CR_TDES_ECB             0x00000000
  68 #define CR_TDES_CBC             0x00000008
  69 #define CR_DES_ECB              0x00000010
  70 #define CR_DES_CBC              0x00000018
  71 #define CR_AES_ECB              0x00000020
  72 #define CR_AES_CBC              0x00000028
  73 #define CR_AES_CTR              0x00000030
  74 #define CR_AES_KP               0x00000038
  75 #define CR_AES_GCM              0x00080000
  76 #define CR_AES_CCM              0x00080008
  77 #define CR_AES_UNKNOWN          0xFFFFFFFF
  78 #define CR_ALGO_MASK            0x00080038
  79 #define CR_DATA32               0x00000000
  80 #define CR_DATA16               0x00000040
  81 #define CR_DATA8                0x00000080
  82 #define CR_DATA1                0x000000C0
  83 #define CR_KEY128               0x00000000
  84 #define CR_KEY192               0x00000100
  85 #define CR_KEY256               0x00000200
  86 #define CR_FFLUSH               0x00004000
  87 #define CR_CRYPEN               0x00008000
  88 #define CR_PH_INIT              0x00000000
  89 #define CR_PH_HEADER            0x00010000
  90 #define CR_PH_PAYLOAD           0x00020000
  91 #define CR_PH_FINAL             0x00030000
  92 #define CR_PH_MASK              0x00030000
  93 #define CR_NBPBL_SHIFT          20
  94 
  95 #define SR_BUSY                 0x00000010
  96 #define SR_OFNE                 0x00000004
  97 
  98 #define IMSCR_IN                BIT(0)
  99 #define IMSCR_OUT               BIT(1)
 100 
 101 #define MISR_IN                 BIT(0)
 102 #define MISR_OUT                BIT(1)
 103 
 104 /* Misc */
 105 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 106 #define GCM_CTR_INIT            2
 107 #define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
 108 #define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
 109 #define CRYP_AUTOSUSPEND_DELAY  50
 110 
 111 struct stm32_cryp_caps {
 112         bool                    swap_final;
 113         bool                    padding_wa;
 114 };
 115 
 116 struct stm32_cryp_ctx {
 117         struct crypto_engine_ctx enginectx;
 118         struct stm32_cryp       *cryp;
 119         int                     keylen;
 120         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
 121         unsigned long           flags;
 122 };
 123 
 124 struct stm32_cryp_reqctx {
 125         unsigned long mode;
 126 };
 127 
 128 struct stm32_cryp {
 129         struct list_head        list;
 130         struct device           *dev;
 131         void __iomem            *regs;
 132         struct clk              *clk;
 133         unsigned long           flags;
 134         u32                     irq_status;
 135         const struct stm32_cryp_caps *caps;
 136         struct stm32_cryp_ctx   *ctx;
 137 
 138         struct crypto_engine    *engine;
 139 
 140         struct ablkcipher_request *req;
 141         struct aead_request     *areq;
 142 
 143         size_t                  authsize;
 144         size_t                  hw_blocksize;
 145 
 146         size_t                  total_in;
 147         size_t                  total_in_save;
 148         size_t                  total_out;
 149         size_t                  total_out_save;
 150 
 151         struct scatterlist      *in_sg;
 152         struct scatterlist      *out_sg;
 153         struct scatterlist      *out_sg_save;
 154 
 155         struct scatterlist      in_sgl;
 156         struct scatterlist      out_sgl;
 157         bool                    sgs_copied;
 158 
 159         int                     in_sg_len;
 160         int                     out_sg_len;
 161 
 162         struct scatter_walk     in_walk;
 163         struct scatter_walk     out_walk;
 164 
 165         u32                     last_ctr[4];
 166         u32                     gcm_ctr;
 167 };
 168 
 169 struct stm32_cryp_list {
 170         struct list_head        dev_list;
 171         spinlock_t              lock; /* protect dev_list */
 172 };
 173 
 174 static struct stm32_cryp_list cryp_list = {
 175         .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 176         .lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 177 };
 178 
 179 static inline bool is_aes(struct stm32_cryp *cryp)
 180 {
 181         return cryp->flags & FLG_AES;
 182 }
 183 
 184 static inline bool is_des(struct stm32_cryp *cryp)
 185 {
 186         return cryp->flags & FLG_DES;
 187 }
 188 
 189 static inline bool is_tdes(struct stm32_cryp *cryp)
 190 {
 191         return cryp->flags & FLG_TDES;
 192 }
 193 
 194 static inline bool is_ecb(struct stm32_cryp *cryp)
 195 {
 196         return cryp->flags & FLG_ECB;
 197 }
 198 
 199 static inline bool is_cbc(struct stm32_cryp *cryp)
 200 {
 201         return cryp->flags & FLG_CBC;
 202 }
 203 
 204 static inline bool is_ctr(struct stm32_cryp *cryp)
 205 {
 206         return cryp->flags & FLG_CTR;
 207 }
 208 
 209 static inline bool is_gcm(struct stm32_cryp *cryp)
 210 {
 211         return cryp->flags & FLG_GCM;
 212 }
 213 
 214 static inline bool is_ccm(struct stm32_cryp *cryp)
 215 {
 216         return cryp->flags & FLG_CCM;
 217 }
 218 
 219 static inline bool is_encrypt(struct stm32_cryp *cryp)
 220 {
 221         return cryp->flags & FLG_ENCRYPT;
 222 }
 223 
 224 static inline bool is_decrypt(struct stm32_cryp *cryp)
 225 {
 226         return !is_encrypt(cryp);
 227 }
 228 
 229 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 230 {
 231         return readl_relaxed(cryp->regs + ofst);
 232 }
 233 
 234 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 235 {
 236         writel_relaxed(val, cryp->regs + ofst);
 237 }
 238 
 239 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 240 {
 241         u32 status;
 242 
 243         return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 244                         !(status & SR_BUSY), 10, 100000);
 245 }
 246 
 247 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 248 {
 249         u32 status;
 250 
 251         return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
 252                         !(status & CR_CRYPEN), 10, 100000);
 253 }
 254 
 255 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 256 {
 257         u32 status;
 258 
 259         return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 260                         status & SR_OFNE, 10, 100000);
 261 }
 262 
 263 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 264 
 265 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 266 {
 267         struct stm32_cryp *tmp, *cryp = NULL;
 268 
 269         spin_lock_bh(&cryp_list.lock);
 270         if (!ctx->cryp) {
 271                 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 272                         cryp = tmp;
 273                         break;
 274                 }
 275                 ctx->cryp = cryp;
 276         } else {
 277                 cryp = ctx->cryp;
 278         }
 279 
 280         spin_unlock_bh(&cryp_list.lock);
 281 
 282         return cryp;
 283 }
 284 
 285 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
 286                                     size_t align)
 287 {
 288         int len = 0;
 289 
 290         if (!total)
 291                 return 0;
 292 
 293         if (!IS_ALIGNED(total, align))
 294                 return -EINVAL;
 295 
 296         while (sg) {
 297                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 298                         return -EINVAL;
 299 
 300                 if (!IS_ALIGNED(sg->length, align))
 301                         return -EINVAL;
 302 
 303                 len += sg->length;
 304                 sg = sg_next(sg);
 305         }
 306 
 307         if (len != total)
 308                 return -EINVAL;
 309 
 310         return 0;
 311 }
 312 
 313 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
 314 {
 315         int ret;
 316 
 317         ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
 318                                        cryp->hw_blocksize);
 319         if (ret)
 320                 return ret;
 321 
 322         ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
 323                                        cryp->hw_blocksize);
 324 
 325         return ret;
 326 }
 327 
 328 static void sg_copy_buf(void *buf, struct scatterlist *sg,
 329                         unsigned int start, unsigned int nbytes, int out)
 330 {
 331         struct scatter_walk walk;
 332 
 333         if (!nbytes)
 334                 return;
 335 
 336         scatterwalk_start(&walk, sg);
 337         scatterwalk_advance(&walk, start);
 338         scatterwalk_copychunks(buf, &walk, nbytes, out);
 339         scatterwalk_done(&walk, out, 0);
 340 }
 341 
 342 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
 343 {
 344         void *buf_in, *buf_out;
 345         int pages, total_in, total_out;
 346 
 347         if (!stm32_cryp_check_io_aligned(cryp)) {
 348                 cryp->sgs_copied = 0;
 349                 return 0;
 350         }
 351 
 352         total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
 353         pages = total_in ? get_order(total_in) : 1;
 354         buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
 355 
 356         total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
 357         pages = total_out ? get_order(total_out) : 1;
 358         buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
 359 
 360         if (!buf_in || !buf_out) {
 361                 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
 362                 cryp->sgs_copied = 0;
 363                 return -EFAULT;
 364         }
 365 
 366         sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
 367 
 368         sg_init_one(&cryp->in_sgl, buf_in, total_in);
 369         cryp->in_sg = &cryp->in_sgl;
 370         cryp->in_sg_len = 1;
 371 
 372         sg_init_one(&cryp->out_sgl, buf_out, total_out);
 373         cryp->out_sg_save = cryp->out_sg;
 374         cryp->out_sg = &cryp->out_sgl;
 375         cryp->out_sg_len = 1;
 376 
 377         cryp->sgs_copied = 1;
 378 
 379         return 0;
 380 }
 381 
 382 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
 383 {
 384         if (!iv)
 385                 return;
 386 
 387         stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
 388         stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
 389 
 390         if (is_aes(cryp)) {
 391                 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
 392                 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
 393         }
 394 }
 395 
 396 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 397 {
 398         struct ablkcipher_request *req = cryp->req;
 399         u32 *tmp = req->info;
 400 
 401         if (!tmp)
 402                 return;
 403 
 404         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
 405         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
 406 
 407         if (is_aes(cryp)) {
 408                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
 409                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
 410         }
 411 }
 412 
 413 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 414 {
 415         unsigned int i;
 416         int r_id;
 417 
 418         if (is_des(c)) {
 419                 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
 420                 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
 421         } else {
 422                 r_id = CRYP_K3RR;
 423                 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 424                         stm32_cryp_write(c, r_id,
 425                                          cpu_to_be32(c->ctx->key[i - 1]));
 426         }
 427 }
 428 
 429 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 430 {
 431         if (is_aes(cryp) && is_ecb(cryp))
 432                 return CR_AES_ECB;
 433 
 434         if (is_aes(cryp) && is_cbc(cryp))
 435                 return CR_AES_CBC;
 436 
 437         if (is_aes(cryp) && is_ctr(cryp))
 438                 return CR_AES_CTR;
 439 
 440         if (is_aes(cryp) && is_gcm(cryp))
 441                 return CR_AES_GCM;
 442 
 443         if (is_aes(cryp) && is_ccm(cryp))
 444                 return CR_AES_CCM;
 445 
 446         if (is_des(cryp) && is_ecb(cryp))
 447                 return CR_DES_ECB;
 448 
 449         if (is_des(cryp) && is_cbc(cryp))
 450                 return CR_DES_CBC;
 451 
 452         if (is_tdes(cryp) && is_ecb(cryp))
 453                 return CR_TDES_ECB;
 454 
 455         if (is_tdes(cryp) && is_cbc(cryp))
 456                 return CR_TDES_CBC;
 457 
 458         dev_err(cryp->dev, "Unknown mode\n");
 459         return CR_AES_UNKNOWN;
 460 }
 461 
 462 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 463 {
 464         return is_encrypt(cryp) ? cryp->areq->cryptlen :
 465                                   cryp->areq->cryptlen - cryp->authsize;
 466 }
 467 
 468 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 469 {
 470         int ret;
 471         u32 iv[4];
 472 
 473         /* Phase 1 : init */
 474         memcpy(iv, cryp->areq->iv, 12);
 475         iv[3] = cpu_to_be32(GCM_CTR_INIT);
 476         cryp->gcm_ctr = GCM_CTR_INIT;
 477         stm32_cryp_hw_write_iv(cryp, iv);
 478 
 479         stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 480 
 481         /* Wait for end of processing */
 482         ret = stm32_cryp_wait_enable(cryp);
 483         if (ret)
 484                 dev_err(cryp->dev, "Timeout (gcm init)\n");
 485 
 486         return ret;
 487 }
 488 
 489 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 490 {
 491         int ret;
 492         u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
 493         u32 *d;
 494         unsigned int i, textlen;
 495 
 496         /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 497         memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 498         memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 499         iv[AES_BLOCK_SIZE - 1] = 1;
 500         stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
 501 
 502         /* Build B0 */
 503         memcpy(b0, iv, AES_BLOCK_SIZE);
 504 
 505         b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 506 
 507         if (cryp->areq->assoclen)
 508                 b0[0] |= 0x40;
 509 
 510         textlen = stm32_cryp_get_input_text_len(cryp);
 511 
 512         b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 513         b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 514 
 515         /* Enable HW */
 516         stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 517 
 518         /* Write B0 */
 519         d = (u32 *)b0;
 520 
 521         for (i = 0; i < AES_BLOCK_32; i++) {
 522                 if (!cryp->caps->padding_wa)
 523                         *d = cpu_to_be32(*d);
 524                 stm32_cryp_write(cryp, CRYP_DIN, *d++);
 525         }
 526 
 527         /* Wait for end of processing */
 528         ret = stm32_cryp_wait_enable(cryp);
 529         if (ret)
 530                 dev_err(cryp->dev, "Timeout (ccm init)\n");
 531 
 532         return ret;
 533 }
 534 
 535 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 536 {
 537         int ret;
 538         u32 cfg, hw_mode;
 539 
 540         pm_runtime_get_sync(cryp->dev);
 541 
 542         /* Disable interrupt */
 543         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 544 
 545         /* Set key */
 546         stm32_cryp_hw_write_key(cryp);
 547 
 548         /* Set configuration */
 549         cfg = CR_DATA8 | CR_FFLUSH;
 550 
 551         switch (cryp->ctx->keylen) {
 552         case AES_KEYSIZE_128:
 553                 cfg |= CR_KEY128;
 554                 break;
 555 
 556         case AES_KEYSIZE_192:
 557                 cfg |= CR_KEY192;
 558                 break;
 559 
 560         default:
 561         case AES_KEYSIZE_256:
 562                 cfg |= CR_KEY256;
 563                 break;
 564         }
 565 
 566         hw_mode = stm32_cryp_get_hw_mode(cryp);
 567         if (hw_mode == CR_AES_UNKNOWN)
 568                 return -EINVAL;
 569 
 570         /* AES ECB/CBC decrypt: run key preparation first */
 571         if (is_decrypt(cryp) &&
 572             ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 573                 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
 574 
 575                 /* Wait for end of processing */
 576                 ret = stm32_cryp_wait_busy(cryp);
 577                 if (ret) {
 578                         dev_err(cryp->dev, "Timeout (key preparation)\n");
 579                         return ret;
 580                 }
 581         }
 582 
 583         cfg |= hw_mode;
 584 
 585         if (is_decrypt(cryp))
 586                 cfg |= CR_DEC_NOT_ENC;
 587 
 588         /* Apply config and flush (valid when CRYPEN = 0) */
 589         stm32_cryp_write(cryp, CRYP_CR, cfg);
 590 
 591         switch (hw_mode) {
 592         case CR_AES_GCM:
 593         case CR_AES_CCM:
 594                 /* Phase 1 : init */
 595                 if (hw_mode == CR_AES_CCM)
 596                         ret = stm32_cryp_ccm_init(cryp, cfg);
 597                 else
 598                         ret = stm32_cryp_gcm_init(cryp, cfg);
 599 
 600                 if (ret)
 601                         return ret;
 602 
 603                 /* Phase 2 : header (authenticated data) */
 604                 if (cryp->areq->assoclen) {
 605                         cfg |= CR_PH_HEADER;
 606                 } else if (stm32_cryp_get_input_text_len(cryp)) {
 607                         cfg |= CR_PH_PAYLOAD;
 608                         stm32_cryp_write(cryp, CRYP_CR, cfg);
 609                 } else {
 610                         cfg |= CR_PH_INIT;
 611                 }
 612 
 613                 break;
 614 
 615         case CR_DES_CBC:
 616         case CR_TDES_CBC:
 617         case CR_AES_CBC:
 618         case CR_AES_CTR:
 619                 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
 620                 break;
 621 
 622         default:
 623                 break;
 624         }
 625 
 626         /* Enable now */
 627         cfg |= CR_CRYPEN;
 628 
 629         stm32_cryp_write(cryp, CRYP_CR, cfg);
 630 
 631         cryp->flags &= ~FLG_CCM_PADDED_WA;
 632 
 633         return 0;
 634 }
 635 
 636 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 637 {
 638         if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 639                 /* Phase 4 : output tag */
 640                 err = stm32_cryp_read_auth_tag(cryp);
 641 
 642         if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
 643                 stm32_cryp_get_iv(cryp);
 644 
 645         if (cryp->sgs_copied) {
 646                 void *buf_in, *buf_out;
 647                 int pages, len;
 648 
 649                 buf_in = sg_virt(&cryp->in_sgl);
 650                 buf_out = sg_virt(&cryp->out_sgl);
 651 
 652                 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
 653                             cryp->total_out_save, 1);
 654 
 655                 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
 656                 pages = len ? get_order(len) : 1;
 657                 free_pages((unsigned long)buf_in, pages);
 658 
 659                 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
 660                 pages = len ? get_order(len) : 1;
 661                 free_pages((unsigned long)buf_out, pages);
 662         }
 663 
 664         pm_runtime_mark_last_busy(cryp->dev);
 665         pm_runtime_put_autosuspend(cryp->dev);
 666 
 667         if (is_gcm(cryp) || is_ccm(cryp))
 668                 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 669         else
 670                 crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
 671                                                    err);
 672 
 673         memset(cryp->ctx->key, 0, cryp->ctx->keylen);
 674 }
 675 
 676 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 677 {
 678         /* Enable interrupt and let the IRQ handler do everything */
 679         stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
 680 
 681         return 0;
 682 }
 683 
 684 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 685 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 686                                          void *areq);
 687 
 688 static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
 689 {
 690         struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
 691 
 692         tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
 693 
 694         ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 695         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 696         ctx->enginectx.op.unprepare_request = NULL;
 697         return 0;
 698 }
 699 
 700 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 701 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 702                                        void *areq);
 703 
 704 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 705 {
 706         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 707 
 708         tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 709 
 710         ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 711         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 712         ctx->enginectx.op.unprepare_request = NULL;
 713 
 714         return 0;
 715 }
 716 
 717 static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
 718 {
 719         struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
 720                         crypto_ablkcipher_reqtfm(req));
 721         struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
 722         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 723 
 724         if (!cryp)
 725                 return -ENODEV;
 726 
 727         rctx->mode = mode;
 728 
 729         return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
 730 }
 731 
 732 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 733 {
 734         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 735         struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 736         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 737 
 738         if (!cryp)
 739                 return -ENODEV;
 740 
 741         rctx->mode = mode;
 742 
 743         return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 744 }
 745 
 746 static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 747                              unsigned int keylen)
 748 {
 749         struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
 750 
 751         memcpy(ctx->key, key, keylen);
 752         ctx->keylen = keylen;
 753 
 754         return 0;
 755 }
 756 
 757 static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 758                                  unsigned int keylen)
 759 {
 760         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 761             keylen != AES_KEYSIZE_256)
 762                 return -EINVAL;
 763         else
 764                 return stm32_cryp_setkey(tfm, key, keylen);
 765 }
 766 
 767 static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 768                                  unsigned int keylen)
 769 {
 770         return verify_ablkcipher_des_key(tfm, key) ?:
 771                stm32_cryp_setkey(tfm, key, keylen);
 772 }
 773 
 774 static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 775                                   unsigned int keylen)
 776 {
 777         return verify_ablkcipher_des3_key(tfm, key) ?:
 778                stm32_cryp_setkey(tfm, key, keylen);
 779 }
 780 
 781 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 782                                       unsigned int keylen)
 783 {
 784         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 785 
 786         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 787             keylen != AES_KEYSIZE_256)
 788                 return -EINVAL;
 789 
 790         memcpy(ctx->key, key, keylen);
 791         ctx->keylen = keylen;
 792 
 793         return 0;
 794 }
 795 
 796 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 797                                           unsigned int authsize)
 798 {
 799         return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
 800 }
 801 
 802 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 803                                           unsigned int authsize)
 804 {
 805         switch (authsize) {
 806         case 4:
 807         case 6:
 808         case 8:
 809         case 10:
 810         case 12:
 811         case 14:
 812         case 16:
 813                 break;
 814         default:
 815                 return -EINVAL;
 816         }
 817 
 818         return 0;
 819 }
 820 
 821 static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
 822 {
 823         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 824 }
 825 
 826 static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
 827 {
 828         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 829 }
 830 
 831 static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
 832 {
 833         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 834 }
 835 
 836 static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
 837 {
 838         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 839 }
 840 
 841 static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
 842 {
 843         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 844 }
 845 
 846 static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
 847 {
 848         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 849 }
 850 
 851 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 852 {
 853         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 854 }
 855 
 856 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 857 {
 858         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 859 }
 860 
 861 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 862 {
 863         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 864 }
 865 
 866 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 867 {
 868         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 869 }
 870 
 871 static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
 872 {
 873         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 874 }
 875 
 876 static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
 877 {
 878         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 879 }
 880 
 881 static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
 882 {
 883         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 884 }
 885 
 886 static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
 887 {
 888         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 889 }
 890 
 891 static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
 892 {
 893         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 894 }
 895 
 896 static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
 897 {
 898         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 899 }
 900 
 901 static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
 902 {
 903         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 904 }
 905 
 906 static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
 907 {
 908         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 909 }
 910 
 911 static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
 912                                   struct aead_request *areq)
 913 {
 914         struct stm32_cryp_ctx *ctx;
 915         struct stm32_cryp *cryp;
 916         struct stm32_cryp_reqctx *rctx;
 917         int ret;
 918 
 919         if (!req && !areq)
 920                 return -EINVAL;
 921 
 922         ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
 923                     crypto_aead_ctx(crypto_aead_reqtfm(areq));
 924 
 925         cryp = ctx->cryp;
 926 
 927         if (!cryp)
 928                 return -ENODEV;
 929 
 930         rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
 931         rctx->mode &= FLG_MODE_MASK;
 932 
 933         ctx->cryp = cryp;
 934 
 935         cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
 936         cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
 937         cryp->ctx = ctx;
 938 
 939         if (req) {
 940                 cryp->req = req;
 941                 cryp->areq = NULL;
 942                 cryp->total_in = req->nbytes;
 943                 cryp->total_out = cryp->total_in;
 944         } else {
 945                 /*
 946                  * Length of input and output data:
 947                  * Encryption case:
 948                  *  INPUT  =   AssocData  ||   PlainText
 949                  *          <- assoclen ->  <- cryptlen ->
 950                  *          <------- total_in ----------->
 951                  *
 952                  *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
 953                  *          <- assoclen ->  <- cryptlen ->  <- authsize ->
 954                  *          <---------------- total_out ----------------->
 955                  *
 956                  * Decryption case:
 957                  *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
 958                  *          <- assoclen ->  <--------- cryptlen --------->
 959                  *                                          <- authsize ->
 960                  *          <---------------- total_in ------------------>
 961                  *
 962                  *  OUTPUT =   AssocData  ||   PlainText
 963                  *          <- assoclen ->  <- crypten - authsize ->
 964                  *          <---------- total_out ----------------->
 965                  */
 966                 cryp->areq = areq;
 967                 cryp->req = NULL;
 968                 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
 969                 cryp->total_in = areq->assoclen + areq->cryptlen;
 970                 if (is_encrypt(cryp))
 971                         /* Append auth tag to output */
 972                         cryp->total_out = cryp->total_in + cryp->authsize;
 973                 else
 974                         /* No auth tag in output */
 975                         cryp->total_out = cryp->total_in - cryp->authsize;
 976         }
 977 
 978         cryp->total_in_save = cryp->total_in;
 979         cryp->total_out_save = cryp->total_out;
 980 
 981         cryp->in_sg = req ? req->src : areq->src;
 982         cryp->out_sg = req ? req->dst : areq->dst;
 983         cryp->out_sg_save = cryp->out_sg;
 984 
 985         cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
 986         if (cryp->in_sg_len < 0) {
 987                 dev_err(cryp->dev, "Cannot get in_sg_len\n");
 988                 ret = cryp->in_sg_len;
 989                 return ret;
 990         }
 991 
 992         cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
 993         if (cryp->out_sg_len < 0) {
 994                 dev_err(cryp->dev, "Cannot get out_sg_len\n");
 995                 ret = cryp->out_sg_len;
 996                 return ret;
 997         }
 998 
 999         ret = stm32_cryp_copy_sgs(cryp);
1000         if (ret)
1001                 return ret;
1002 
1003         scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1004         scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1005 
1006         if (is_gcm(cryp) || is_ccm(cryp)) {
1007                 /* In output, jump after assoc data */
1008                 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1009                 cryp->total_out -= cryp->areq->assoclen;
1010         }
1011 
1012         ret = stm32_cryp_hw_init(cryp);
1013         return ret;
1014 }
1015 
1016 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1017                                          void *areq)
1018 {
1019         struct ablkcipher_request *req = container_of(areq,
1020                                                       struct ablkcipher_request,
1021                                                       base);
1022 
1023         return stm32_cryp_prepare_req(req, NULL);
1024 }
1025 
1026 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1027 {
1028         struct ablkcipher_request *req = container_of(areq,
1029                                                       struct ablkcipher_request,
1030                                                       base);
1031         struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1032                         crypto_ablkcipher_reqtfm(req));
1033         struct stm32_cryp *cryp = ctx->cryp;
1034 
1035         if (!cryp)
1036                 return -ENODEV;
1037 
1038         return stm32_cryp_cpu_start(cryp);
1039 }
1040 
1041 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1042 {
1043         struct aead_request *req = container_of(areq, struct aead_request,
1044                                                 base);
1045 
1046         return stm32_cryp_prepare_req(NULL, req);
1047 }
1048 
1049 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1050 {
1051         struct aead_request *req = container_of(areq, struct aead_request,
1052                                                 base);
1053         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1054         struct stm32_cryp *cryp = ctx->cryp;
1055 
1056         if (!cryp)
1057                 return -ENODEV;
1058 
1059         if (unlikely(!cryp->areq->assoclen &&
1060                      !stm32_cryp_get_input_text_len(cryp))) {
1061                 /* No input data to process: get tag and finish */
1062                 stm32_cryp_finish_req(cryp, 0);
1063                 return 0;
1064         }
1065 
1066         return stm32_cryp_cpu_start(cryp);
1067 }
1068 
1069 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1070                                 unsigned int n)
1071 {
1072         scatterwalk_advance(&cryp->out_walk, n);
1073 
1074         if (unlikely(cryp->out_sg->length == _walked_out)) {
1075                 cryp->out_sg = sg_next(cryp->out_sg);
1076                 if (cryp->out_sg) {
1077                         scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1078                         return (sg_virt(cryp->out_sg) + _walked_out);
1079                 }
1080         }
1081 
1082         return (u32 *)((u8 *)dst + n);
1083 }
1084 
1085 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1086                                unsigned int n)
1087 {
1088         scatterwalk_advance(&cryp->in_walk, n);
1089 
1090         if (unlikely(cryp->in_sg->length == _walked_in)) {
1091                 cryp->in_sg = sg_next(cryp->in_sg);
1092                 if (cryp->in_sg) {
1093                         scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1094                         return (sg_virt(cryp->in_sg) + _walked_in);
1095                 }
1096         }
1097 
1098         return (u32 *)((u8 *)src + n);
1099 }
1100 
1101 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1102 {
1103         u32 cfg, size_bit, *dst, d32;
1104         u8 *d8;
1105         unsigned int i, j;
1106         int ret = 0;
1107 
1108         /* Update Config */
1109         cfg = stm32_cryp_read(cryp, CRYP_CR);
1110 
1111         cfg &= ~CR_PH_MASK;
1112         cfg |= CR_PH_FINAL;
1113         cfg &= ~CR_DEC_NOT_ENC;
1114         cfg |= CR_CRYPEN;
1115 
1116         stm32_cryp_write(cryp, CRYP_CR, cfg);
1117 
1118         if (is_gcm(cryp)) {
1119                 /* GCM: write aad and payload size (in bits) */
1120                 size_bit = cryp->areq->assoclen * 8;
1121                 if (cryp->caps->swap_final)
1122                         size_bit = cpu_to_be32(size_bit);
1123 
1124                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1125                 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1126 
1127                 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1128                                 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1129                 size_bit *= 8;
1130                 if (cryp->caps->swap_final)
1131                         size_bit = cpu_to_be32(size_bit);
1132 
1133                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1134                 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1135         } else {
1136                 /* CCM: write CTR0 */
1137                 u8 iv[AES_BLOCK_SIZE];
1138                 u32 *iv32 = (u32 *)iv;
1139 
1140                 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1141                 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1142 
1143                 for (i = 0; i < AES_BLOCK_32; i++) {
1144                         if (!cryp->caps->padding_wa)
1145                                 *iv32 = cpu_to_be32(*iv32);
1146                         stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1147                 }
1148         }
1149 
1150         /* Wait for output data */
1151         ret = stm32_cryp_wait_output(cryp);
1152         if (ret) {
1153                 dev_err(cryp->dev, "Timeout (read tag)\n");
1154                 return ret;
1155         }
1156 
1157         if (is_encrypt(cryp)) {
1158                 /* Get and write tag */
1159                 dst = sg_virt(cryp->out_sg) + _walked_out;
1160 
1161                 for (i = 0; i < AES_BLOCK_32; i++) {
1162                         if (cryp->total_out >= sizeof(u32)) {
1163                                 /* Read a full u32 */
1164                                 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1165 
1166                                 dst = stm32_cryp_next_out(cryp, dst,
1167                                                           sizeof(u32));
1168                                 cryp->total_out -= sizeof(u32);
1169                         } else if (!cryp->total_out) {
1170                                 /* Empty fifo out (data from input padding) */
1171                                 stm32_cryp_read(cryp, CRYP_DOUT);
1172                         } else {
1173                                 /* Read less than an u32 */
1174                                 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1175                                 d8 = (u8 *)&d32;
1176 
1177                                 for (j = 0; j < cryp->total_out; j++) {
1178                                         *((u8 *)dst) = *(d8++);
1179                                         dst = stm32_cryp_next_out(cryp, dst, 1);
1180                                 }
1181                                 cryp->total_out = 0;
1182                         }
1183                 }
1184         } else {
1185                 /* Get and check tag */
1186                 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1187 
1188                 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1189                                          cryp->total_in_save - cryp->authsize,
1190                                          cryp->authsize, 0);
1191 
1192                 for (i = 0; i < AES_BLOCK_32; i++)
1193                         out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1194 
1195                 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1196                         ret = -EBADMSG;
1197         }
1198 
1199         /* Disable cryp */
1200         cfg &= ~CR_CRYPEN;
1201         stm32_cryp_write(cryp, CRYP_CR, cfg);
1202 
1203         return ret;
1204 }
1205 
1206 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1207 {
1208         u32 cr;
1209 
1210         if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1211                 cryp->last_ctr[3] = 0;
1212                 cryp->last_ctr[2]++;
1213                 if (!cryp->last_ctr[2]) {
1214                         cryp->last_ctr[1]++;
1215                         if (!cryp->last_ctr[1])
1216                                 cryp->last_ctr[0]++;
1217                 }
1218 
1219                 cr = stm32_cryp_read(cryp, CRYP_CR);
1220                 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1221 
1222                 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1223 
1224                 stm32_cryp_write(cryp, CRYP_CR, cr);
1225         }
1226 
1227         cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1228         cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1229         cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1230         cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1231 }
1232 
1233 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1234 {
1235         unsigned int i, j;
1236         u32 d32, *dst;
1237         u8 *d8;
1238         size_t tag_size;
1239 
1240         /* Do no read tag now (if any) */
1241         if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1242                 tag_size = cryp->authsize;
1243         else
1244                 tag_size = 0;
1245 
1246         dst = sg_virt(cryp->out_sg) + _walked_out;
1247 
1248         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1249                 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1250                         /* Read a full u32 */
1251                         *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1252 
1253                         dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1254                         cryp->total_out -= sizeof(u32);
1255                 } else if (cryp->total_out == tag_size) {
1256                         /* Empty fifo out (data from input padding) */
1257                         d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1258                 } else {
1259                         /* Read less than an u32 */
1260                         d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1261                         d8 = (u8 *)&d32;
1262 
1263                         for (j = 0; j < cryp->total_out - tag_size; j++) {
1264                                 *((u8 *)dst) = *(d8++);
1265                                 dst = stm32_cryp_next_out(cryp, dst, 1);
1266                         }
1267                         cryp->total_out = tag_size;
1268                 }
1269         }
1270 
1271         return !(cryp->total_out - tag_size) || !cryp->total_in;
1272 }
1273 
1274 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1275 {
1276         unsigned int i, j;
1277         u32 *src;
1278         u8 d8[4];
1279         size_t tag_size;
1280 
1281         /* Do no write tag (if any) */
1282         if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1283                 tag_size = cryp->authsize;
1284         else
1285                 tag_size = 0;
1286 
1287         src = sg_virt(cryp->in_sg) + _walked_in;
1288 
1289         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1290                 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1291                         /* Write a full u32 */
1292                         stm32_cryp_write(cryp, CRYP_DIN, *src);
1293 
1294                         src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1295                         cryp->total_in -= sizeof(u32);
1296                 } else if (cryp->total_in == tag_size) {
1297                         /* Write padding data */
1298                         stm32_cryp_write(cryp, CRYP_DIN, 0);
1299                 } else {
1300                         /* Write less than an u32 */
1301                         memset(d8, 0, sizeof(u32));
1302                         for (j = 0; j < cryp->total_in - tag_size; j++) {
1303                                 d8[j] = *((u8 *)src);
1304                                 src = stm32_cryp_next_in(cryp, src, 1);
1305                         }
1306 
1307                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1308                         cryp->total_in = tag_size;
1309                 }
1310         }
1311 }
1312 
1313 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1314 {
1315         int err;
1316         u32 cfg, tmp[AES_BLOCK_32];
1317         size_t total_in_ori = cryp->total_in;
1318         struct scatterlist *out_sg_ori = cryp->out_sg;
1319         unsigned int i;
1320 
1321         /* 'Special workaround' procedure described in the datasheet */
1322 
1323         /* a) disable ip */
1324         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1325         cfg = stm32_cryp_read(cryp, CRYP_CR);
1326         cfg &= ~CR_CRYPEN;
1327         stm32_cryp_write(cryp, CRYP_CR, cfg);
1328 
1329         /* b) Update IV1R */
1330         stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1331 
1332         /* c) change mode to CTR */
1333         cfg &= ~CR_ALGO_MASK;
1334         cfg |= CR_AES_CTR;
1335         stm32_cryp_write(cryp, CRYP_CR, cfg);
1336 
1337         /* a) enable IP */
1338         cfg |= CR_CRYPEN;
1339         stm32_cryp_write(cryp, CRYP_CR, cfg);
1340 
1341         /* b) pad and write the last block */
1342         stm32_cryp_irq_write_block(cryp);
1343         cryp->total_in = total_in_ori;
1344         err = stm32_cryp_wait_output(cryp);
1345         if (err) {
1346                 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1347                 return stm32_cryp_finish_req(cryp, err);
1348         }
1349 
1350         /* c) get and store encrypted data */
1351         stm32_cryp_irq_read_data(cryp);
1352         scatterwalk_map_and_copy(tmp, out_sg_ori,
1353                                  cryp->total_in_save - total_in_ori,
1354                                  total_in_ori, 0);
1355 
1356         /* d) change mode back to AES GCM */
1357         cfg &= ~CR_ALGO_MASK;
1358         cfg |= CR_AES_GCM;
1359         stm32_cryp_write(cryp, CRYP_CR, cfg);
1360 
1361         /* e) change phase to Final */
1362         cfg &= ~CR_PH_MASK;
1363         cfg |= CR_PH_FINAL;
1364         stm32_cryp_write(cryp, CRYP_CR, cfg);
1365 
1366         /* f) write padded data */
1367         for (i = 0; i < AES_BLOCK_32; i++) {
1368                 if (cryp->total_in)
1369                         stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1370                 else
1371                         stm32_cryp_write(cryp, CRYP_DIN, 0);
1372 
1373                 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1374         }
1375 
1376         /* g) Empty fifo out */
1377         err = stm32_cryp_wait_output(cryp);
1378         if (err) {
1379                 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1380                 return stm32_cryp_finish_req(cryp, err);
1381         }
1382 
1383         for (i = 0; i < AES_BLOCK_32; i++)
1384                 stm32_cryp_read(cryp, CRYP_DOUT);
1385 
1386         /* h) run the he normal Final phase */
1387         stm32_cryp_finish_req(cryp, 0);
1388 }
1389 
1390 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1391 {
1392         u32 cfg, payload_bytes;
1393 
1394         /* disable ip, set NPBLB and reneable ip */
1395         cfg = stm32_cryp_read(cryp, CRYP_CR);
1396         cfg &= ~CR_CRYPEN;
1397         stm32_cryp_write(cryp, CRYP_CR, cfg);
1398 
1399         payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1400                                            cryp->total_in;
1401         cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1402         cfg |= CR_CRYPEN;
1403         stm32_cryp_write(cryp, CRYP_CR, cfg);
1404 }
1405 
1406 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1407 {
1408         int err = 0;
1409         u32 cfg, iv1tmp;
1410         u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1411         size_t last_total_out, total_in_ori = cryp->total_in;
1412         struct scatterlist *out_sg_ori = cryp->out_sg;
1413         unsigned int i;
1414 
1415         /* 'Special workaround' procedure described in the datasheet */
1416         cryp->flags |= FLG_CCM_PADDED_WA;
1417 
1418         /* a) disable ip */
1419         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1420 
1421         cfg = stm32_cryp_read(cryp, CRYP_CR);
1422         cfg &= ~CR_CRYPEN;
1423         stm32_cryp_write(cryp, CRYP_CR, cfg);
1424 
1425         /* b) get IV1 from CRYP_CSGCMCCM7 */
1426         iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1427 
1428         /* c) Load CRYP_CSGCMCCMxR */
1429         for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1430                 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1431 
1432         /* d) Write IV1R */
1433         stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1434 
1435         /* e) change mode to CTR */
1436         cfg &= ~CR_ALGO_MASK;
1437         cfg |= CR_AES_CTR;
1438         stm32_cryp_write(cryp, CRYP_CR, cfg);
1439 
1440         /* a) enable IP */
1441         cfg |= CR_CRYPEN;
1442         stm32_cryp_write(cryp, CRYP_CR, cfg);
1443 
1444         /* b) pad and write the last block */
1445         stm32_cryp_irq_write_block(cryp);
1446         cryp->total_in = total_in_ori;
1447         err = stm32_cryp_wait_output(cryp);
1448         if (err) {
1449                 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1450                 return stm32_cryp_finish_req(cryp, err);
1451         }
1452 
1453         /* c) get and store decrypted data */
1454         last_total_out = cryp->total_out;
1455         stm32_cryp_irq_read_data(cryp);
1456 
1457         memset(tmp, 0, sizeof(tmp));
1458         scatterwalk_map_and_copy(tmp, out_sg_ori,
1459                                  cryp->total_out_save - last_total_out,
1460                                  last_total_out, 0);
1461 
1462         /* d) Load again CRYP_CSGCMCCMxR */
1463         for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1464                 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1465 
1466         /* e) change mode back to AES CCM */
1467         cfg &= ~CR_ALGO_MASK;
1468         cfg |= CR_AES_CCM;
1469         stm32_cryp_write(cryp, CRYP_CR, cfg);
1470 
1471         /* f) change phase to header */
1472         cfg &= ~CR_PH_MASK;
1473         cfg |= CR_PH_HEADER;
1474         stm32_cryp_write(cryp, CRYP_CR, cfg);
1475 
1476         /* g) XOR and write padded data */
1477         for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1478                 tmp[i] ^= cstmp1[i];
1479                 tmp[i] ^= cstmp2[i];
1480                 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1481         }
1482 
1483         /* h) wait for completion */
1484         err = stm32_cryp_wait_busy(cryp);
1485         if (err)
1486                 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1487 
1488         /* i) run the he normal Final phase */
1489         stm32_cryp_finish_req(cryp, err);
1490 }
1491 
1492 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1493 {
1494         if (unlikely(!cryp->total_in)) {
1495                 dev_warn(cryp->dev, "No more data to process\n");
1496                 return;
1497         }
1498 
1499         if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1500                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1501                      is_encrypt(cryp))) {
1502                 /* Padding for AES GCM encryption */
1503                 if (cryp->caps->padding_wa)
1504                         /* Special case 1 */
1505                         return stm32_cryp_irq_write_gcm_padded_data(cryp);
1506 
1507                 /* Setting padding bytes (NBBLB) */
1508                 stm32_cryp_irq_set_npblb(cryp);
1509         }
1510 
1511         if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1512                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1513                      is_decrypt(cryp))) {
1514                 /* Padding for AES CCM decryption */
1515                 if (cryp->caps->padding_wa)
1516                         /* Special case 2 */
1517                         return stm32_cryp_irq_write_ccm_padded_data(cryp);
1518 
1519                 /* Setting padding bytes (NBBLB) */
1520                 stm32_cryp_irq_set_npblb(cryp);
1521         }
1522 
1523         if (is_aes(cryp) && is_ctr(cryp))
1524                 stm32_cryp_check_ctr_counter(cryp);
1525 
1526         stm32_cryp_irq_write_block(cryp);
1527 }
1528 
1529 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1530 {
1531         int err;
1532         unsigned int i, j;
1533         u32 cfg, *src;
1534 
1535         src = sg_virt(cryp->in_sg) + _walked_in;
1536 
1537         for (i = 0; i < AES_BLOCK_32; i++) {
1538                 stm32_cryp_write(cryp, CRYP_DIN, *src);
1539 
1540                 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1541                 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1542 
1543                 /* Check if whole header written */
1544                 if ((cryp->total_in_save - cryp->total_in) ==
1545                                 cryp->areq->assoclen) {
1546                         /* Write padding if needed */
1547                         for (j = i + 1; j < AES_BLOCK_32; j++)
1548                                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1549 
1550                         /* Wait for completion */
1551                         err = stm32_cryp_wait_busy(cryp);
1552                         if (err) {
1553                                 dev_err(cryp->dev, "Timeout (gcm header)\n");
1554                                 return stm32_cryp_finish_req(cryp, err);
1555                         }
1556 
1557                         if (stm32_cryp_get_input_text_len(cryp)) {
1558                                 /* Phase 3 : payload */
1559                                 cfg = stm32_cryp_read(cryp, CRYP_CR);
1560                                 cfg &= ~CR_CRYPEN;
1561                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1562 
1563                                 cfg &= ~CR_PH_MASK;
1564                                 cfg |= CR_PH_PAYLOAD;
1565                                 cfg |= CR_CRYPEN;
1566                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1567                         } else {
1568                                 /* Phase 4 : tag */
1569                                 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1570                                 stm32_cryp_finish_req(cryp, 0);
1571                         }
1572 
1573                         break;
1574                 }
1575 
1576                 if (!cryp->total_in)
1577                         break;
1578         }
1579 }
1580 
1581 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1582 {
1583         int err;
1584         unsigned int i = 0, j, k;
1585         u32 alen, cfg, *src;
1586         u8 d8[4];
1587 
1588         src = sg_virt(cryp->in_sg) + _walked_in;
1589         alen = cryp->areq->assoclen;
1590 
1591         if (!_walked_in) {
1592                 if (cryp->areq->assoclen <= 65280) {
1593                         /* Write first u32 of B1 */
1594                         d8[0] = (alen >> 8) & 0xFF;
1595                         d8[1] = alen & 0xFF;
1596                         d8[2] = *((u8 *)src);
1597                         src = stm32_cryp_next_in(cryp, src, 1);
1598                         d8[3] = *((u8 *)src);
1599                         src = stm32_cryp_next_in(cryp, src, 1);
1600 
1601                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1602                         i++;
1603 
1604                         cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1605                 } else {
1606                         /* Build the two first u32 of B1 */
1607                         d8[0] = 0xFF;
1608                         d8[1] = 0xFE;
1609                         d8[2] = alen & 0xFF000000;
1610                         d8[3] = alen & 0x00FF0000;
1611 
1612                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1613                         i++;
1614 
1615                         d8[0] = alen & 0x0000FF00;
1616                         d8[1] = alen & 0x000000FF;
1617                         d8[2] = *((u8 *)src);
1618                         src = stm32_cryp_next_in(cryp, src, 1);
1619                         d8[3] = *((u8 *)src);
1620                         src = stm32_cryp_next_in(cryp, src, 1);
1621 
1622                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1623                         i++;
1624 
1625                         cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1626                 }
1627         }
1628 
1629         /* Write next u32 */
1630         for (; i < AES_BLOCK_32; i++) {
1631                 /* Build an u32 */
1632                 memset(d8, 0, sizeof(u32));
1633                 for (k = 0; k < sizeof(u32); k++) {
1634                         d8[k] = *((u8 *)src);
1635                         src = stm32_cryp_next_in(cryp, src, 1);
1636 
1637                         cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1638                         if ((cryp->total_in_save - cryp->total_in) == alen)
1639                                 break;
1640                 }
1641 
1642                 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1643 
1644                 if ((cryp->total_in_save - cryp->total_in) == alen) {
1645                         /* Write padding if needed */
1646                         for (j = i + 1; j < AES_BLOCK_32; j++)
1647                                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1648 
1649                         /* Wait for completion */
1650                         err = stm32_cryp_wait_busy(cryp);
1651                         if (err) {
1652                                 dev_err(cryp->dev, "Timeout (ccm header)\n");
1653                                 return stm32_cryp_finish_req(cryp, err);
1654                         }
1655 
1656                         if (stm32_cryp_get_input_text_len(cryp)) {
1657                                 /* Phase 3 : payload */
1658                                 cfg = stm32_cryp_read(cryp, CRYP_CR);
1659                                 cfg &= ~CR_CRYPEN;
1660                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1661 
1662                                 cfg &= ~CR_PH_MASK;
1663                                 cfg |= CR_PH_PAYLOAD;
1664                                 cfg |= CR_CRYPEN;
1665                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1666                         } else {
1667                                 /* Phase 4 : tag */
1668                                 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1669                                 stm32_cryp_finish_req(cryp, 0);
1670                         }
1671 
1672                         break;
1673                 }
1674         }
1675 }
1676 
1677 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1678 {
1679         struct stm32_cryp *cryp = arg;
1680         u32 ph;
1681 
1682         if (cryp->irq_status & MISR_OUT)
1683                 /* Output FIFO IRQ: read data */
1684                 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1685                         /* All bytes processed, finish */
1686                         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1687                         stm32_cryp_finish_req(cryp, 0);
1688                         return IRQ_HANDLED;
1689                 }
1690 
1691         if (cryp->irq_status & MISR_IN) {
1692                 if (is_gcm(cryp)) {
1693                         ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1694                         if (unlikely(ph == CR_PH_HEADER))
1695                                 /* Write Header */
1696                                 stm32_cryp_irq_write_gcm_header(cryp);
1697                         else
1698                                 /* Input FIFO IRQ: write data */
1699                                 stm32_cryp_irq_write_data(cryp);
1700                         cryp->gcm_ctr++;
1701                 } else if (is_ccm(cryp)) {
1702                         ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1703                         if (unlikely(ph == CR_PH_HEADER))
1704                                 /* Write Header */
1705                                 stm32_cryp_irq_write_ccm_header(cryp);
1706                         else
1707                                 /* Input FIFO IRQ: write data */
1708                                 stm32_cryp_irq_write_data(cryp);
1709                 } else {
1710                         /* Input FIFO IRQ: write data */
1711                         stm32_cryp_irq_write_data(cryp);
1712                 }
1713         }
1714 
1715         return IRQ_HANDLED;
1716 }
1717 
1718 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719 {
1720         struct stm32_cryp *cryp = arg;
1721 
1722         cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1723 
1724         return IRQ_WAKE_THREAD;
1725 }
1726 
1727 static struct crypto_alg crypto_algs[] = {
1728 {
1729         .cra_name               = "ecb(aes)",
1730         .cra_driver_name        = "stm32-ecb-aes",
1731         .cra_priority           = 200,
1732         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1733                                   CRYPTO_ALG_ASYNC,
1734         .cra_blocksize          = AES_BLOCK_SIZE,
1735         .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1736         .cra_alignmask          = 0xf,
1737         .cra_type               = &crypto_ablkcipher_type,
1738         .cra_module             = THIS_MODULE,
1739         .cra_init               = stm32_cryp_cra_init,
1740         .cra_ablkcipher = {
1741                 .min_keysize    = AES_MIN_KEY_SIZE,
1742                 .max_keysize    = AES_MAX_KEY_SIZE,
1743                 .setkey         = stm32_cryp_aes_setkey,
1744                 .encrypt        = stm32_cryp_aes_ecb_encrypt,
1745                 .decrypt        = stm32_cryp_aes_ecb_decrypt,
1746         }
1747 },
1748 {
1749         .cra_name               = "cbc(aes)",
1750         .cra_driver_name        = "stm32-cbc-aes",
1751         .cra_priority           = 200,
1752         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1753                                   CRYPTO_ALG_ASYNC,
1754         .cra_blocksize          = AES_BLOCK_SIZE,
1755         .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1756         .cra_alignmask          = 0xf,
1757         .cra_type               = &crypto_ablkcipher_type,
1758         .cra_module             = THIS_MODULE,
1759         .cra_init               = stm32_cryp_cra_init,
1760         .cra_ablkcipher = {
1761                 .min_keysize    = AES_MIN_KEY_SIZE,
1762                 .max_keysize    = AES_MAX_KEY_SIZE,
1763                 .ivsize         = AES_BLOCK_SIZE,
1764                 .setkey         = stm32_cryp_aes_setkey,
1765                 .encrypt        = stm32_cryp_aes_cbc_encrypt,
1766                 .decrypt        = stm32_cryp_aes_cbc_decrypt,
1767         }
1768 },
1769 {
1770         .cra_name               = "ctr(aes)",
1771         .cra_driver_name        = "stm32-ctr-aes",
1772         .cra_priority           = 200,
1773         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1774                                   CRYPTO_ALG_ASYNC,
1775         .cra_blocksize          = 1,
1776         .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1777         .cra_alignmask          = 0xf,
1778         .cra_type               = &crypto_ablkcipher_type,
1779         .cra_module             = THIS_MODULE,
1780         .cra_init               = stm32_cryp_cra_init,
1781         .cra_ablkcipher = {
1782                 .min_keysize    = AES_MIN_KEY_SIZE,
1783                 .max_keysize    = AES_MAX_KEY_SIZE,
1784                 .ivsize         = AES_BLOCK_SIZE,
1785                 .setkey         = stm32_cryp_aes_setkey,
1786                 .encrypt        = stm32_cryp_aes_ctr_encrypt,
1787                 .decrypt        = stm32_cryp_aes_ctr_decrypt,
1788         }
1789 },
1790 {
1791         .cra_name               = "ecb(des)",
1792         .cra_driver_name        = "stm32-ecb-des",
1793         .cra_priority           = 200,
1794         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1795                                   CRYPTO_ALG_ASYNC,
1796         .cra_blocksize          = DES_BLOCK_SIZE,
1797         .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1798         .cra_alignmask          = 0xf,
1799         .cra_type               = &crypto_ablkcipher_type,
1800         .cra_module             = THIS_MODULE,
1801         .cra_init               = stm32_cryp_cra_init,
1802         .cra_ablkcipher = {
1803                 .min_keysize    = DES_BLOCK_SIZE,
1804                 .max_keysize    = DES_BLOCK_SIZE,
1805                 .setkey         = stm32_cryp_des_setkey,
1806                 .encrypt        = stm32_cryp_des_ecb_encrypt,
1807                 .decrypt        = stm32_cryp_des_ecb_decrypt,
1808         }
1809 },
1810 {
1811         .cra_name               = "cbc(des)",
1812         .cra_driver_name        = "stm32-cbc-des",
1813         .cra_priority           = 200,
1814         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1815                                   CRYPTO_ALG_ASYNC,
1816         .cra_blocksize          = DES_BLOCK_SIZE,
1817         .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1818         .cra_alignmask          = 0xf,
1819         .cra_type               = &crypto_ablkcipher_type,
1820         .cra_module             = THIS_MODULE,
1821         .cra_init               = stm32_cryp_cra_init,
1822         .cra_ablkcipher = {
1823                 .min_keysize    = DES_BLOCK_SIZE,
1824                 .max_keysize    = DES_BLOCK_SIZE,
1825                 .ivsize         = DES_BLOCK_SIZE,
1826                 .setkey         = stm32_cryp_des_setkey,
1827                 .encrypt        = stm32_cryp_des_cbc_encrypt,
1828                 .decrypt        = stm32_cryp_des_cbc_decrypt,
1829         }
1830 },
1831 {
1832         .cra_name               = "ecb(des3_ede)",
1833         .cra_driver_name        = "stm32-ecb-des3",
1834         .cra_priority           = 200,
1835         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1836                                   CRYPTO_ALG_ASYNC,
1837         .cra_blocksize          = DES_BLOCK_SIZE,
1838         .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1839         .cra_alignmask          = 0xf,
1840         .cra_type               = &crypto_ablkcipher_type,
1841         .cra_module             = THIS_MODULE,
1842         .cra_init               = stm32_cryp_cra_init,
1843         .cra_ablkcipher = {
1844                 .min_keysize    = 3 * DES_BLOCK_SIZE,
1845                 .max_keysize    = 3 * DES_BLOCK_SIZE,
1846                 .setkey         = stm32_cryp_tdes_setkey,
1847                 .encrypt        = stm32_cryp_tdes_ecb_encrypt,
1848                 .decrypt        = stm32_cryp_tdes_ecb_decrypt,
1849         }
1850 },
1851 {
1852         .cra_name               = "cbc(des3_ede)",
1853         .cra_driver_name        = "stm32-cbc-des3",
1854         .cra_priority           = 200,
1855         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1856                                   CRYPTO_ALG_ASYNC,
1857         .cra_blocksize          = DES_BLOCK_SIZE,
1858         .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1859         .cra_alignmask          = 0xf,
1860         .cra_type               = &crypto_ablkcipher_type,
1861         .cra_module             = THIS_MODULE,
1862         .cra_init               = stm32_cryp_cra_init,
1863         .cra_ablkcipher = {
1864                 .min_keysize    = 3 * DES_BLOCK_SIZE,
1865                 .max_keysize    = 3 * DES_BLOCK_SIZE,
1866                 .ivsize         = DES_BLOCK_SIZE,
1867                 .setkey         = stm32_cryp_tdes_setkey,
1868                 .encrypt        = stm32_cryp_tdes_cbc_encrypt,
1869                 .decrypt        = stm32_cryp_tdes_cbc_decrypt,
1870         }
1871 },
1872 };
1873 
1874 static struct aead_alg aead_algs[] = {
1875 {
1876         .setkey         = stm32_cryp_aes_aead_setkey,
1877         .setauthsize    = stm32_cryp_aes_gcm_setauthsize,
1878         .encrypt        = stm32_cryp_aes_gcm_encrypt,
1879         .decrypt        = stm32_cryp_aes_gcm_decrypt,
1880         .init           = stm32_cryp_aes_aead_init,
1881         .ivsize         = 12,
1882         .maxauthsize    = AES_BLOCK_SIZE,
1883 
1884         .base = {
1885                 .cra_name               = "gcm(aes)",
1886                 .cra_driver_name        = "stm32-gcm-aes",
1887                 .cra_priority           = 200,
1888                 .cra_flags              = CRYPTO_ALG_ASYNC,
1889                 .cra_blocksize          = 1,
1890                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1891                 .cra_alignmask          = 0xf,
1892                 .cra_module             = THIS_MODULE,
1893         },
1894 },
1895 {
1896         .setkey         = stm32_cryp_aes_aead_setkey,
1897         .setauthsize    = stm32_cryp_aes_ccm_setauthsize,
1898         .encrypt        = stm32_cryp_aes_ccm_encrypt,
1899         .decrypt        = stm32_cryp_aes_ccm_decrypt,
1900         .init           = stm32_cryp_aes_aead_init,
1901         .ivsize         = AES_BLOCK_SIZE,
1902         .maxauthsize    = AES_BLOCK_SIZE,
1903 
1904         .base = {
1905                 .cra_name               = "ccm(aes)",
1906                 .cra_driver_name        = "stm32-ccm-aes",
1907                 .cra_priority           = 200,
1908                 .cra_flags              = CRYPTO_ALG_ASYNC,
1909                 .cra_blocksize          = 1,
1910                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1911                 .cra_alignmask          = 0xf,
1912                 .cra_module             = THIS_MODULE,
1913         },
1914 },
1915 };
1916 
1917 static const struct stm32_cryp_caps f7_data = {
1918         .swap_final = true,
1919         .padding_wa = true,
1920 };
1921 
1922 static const struct stm32_cryp_caps mp1_data = {
1923         .swap_final = false,
1924         .padding_wa = false,
1925 };
1926 
1927 static const struct of_device_id stm32_dt_ids[] = {
1928         { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1929         { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1930         {},
1931 };
1932 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1933 
1934 static int stm32_cryp_probe(struct platform_device *pdev)
1935 {
1936         struct device *dev = &pdev->dev;
1937         struct stm32_cryp *cryp;
1938         struct reset_control *rst;
1939         int irq, ret;
1940 
1941         cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1942         if (!cryp)
1943                 return -ENOMEM;
1944 
1945         cryp->caps = of_device_get_match_data(dev);
1946         if (!cryp->caps)
1947                 return -ENODEV;
1948 
1949         cryp->dev = dev;
1950 
1951         cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1952         if (IS_ERR(cryp->regs))
1953                 return PTR_ERR(cryp->regs);
1954 
1955         irq = platform_get_irq(pdev, 0);
1956         if (irq < 0)
1957                 return irq;
1958 
1959         ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1960                                         stm32_cryp_irq_thread, IRQF_ONESHOT,
1961                                         dev_name(dev), cryp);
1962         if (ret) {
1963                 dev_err(dev, "Cannot grab IRQ\n");
1964                 return ret;
1965         }
1966 
1967         cryp->clk = devm_clk_get(dev, NULL);
1968         if (IS_ERR(cryp->clk)) {
1969                 dev_err(dev, "Could not get clock\n");
1970                 return PTR_ERR(cryp->clk);
1971         }
1972 
1973         ret = clk_prepare_enable(cryp->clk);
1974         if (ret) {
1975                 dev_err(cryp->dev, "Failed to enable clock\n");
1976                 return ret;
1977         }
1978 
1979         pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1980         pm_runtime_use_autosuspend(dev);
1981 
1982         pm_runtime_get_noresume(dev);
1983         pm_runtime_set_active(dev);
1984         pm_runtime_enable(dev);
1985 
1986         rst = devm_reset_control_get(dev, NULL);
1987         if (!IS_ERR(rst)) {
1988                 reset_control_assert(rst);
1989                 udelay(2);
1990                 reset_control_deassert(rst);
1991         }
1992 
1993         platform_set_drvdata(pdev, cryp);
1994 
1995         spin_lock(&cryp_list.lock);
1996         list_add(&cryp->list, &cryp_list.dev_list);
1997         spin_unlock(&cryp_list.lock);
1998 
1999         /* Initialize crypto engine */
2000         cryp->engine = crypto_engine_alloc_init(dev, 1);
2001         if (!cryp->engine) {
2002                 dev_err(dev, "Could not init crypto engine\n");
2003                 ret = -ENOMEM;
2004                 goto err_engine1;
2005         }
2006 
2007         ret = crypto_engine_start(cryp->engine);
2008         if (ret) {
2009                 dev_err(dev, "Could not start crypto engine\n");
2010                 goto err_engine2;
2011         }
2012 
2013         ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2014         if (ret) {
2015                 dev_err(dev, "Could not register algs\n");
2016                 goto err_algs;
2017         }
2018 
2019         ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2020         if (ret)
2021                 goto err_aead_algs;
2022 
2023         dev_info(dev, "Initialized\n");
2024 
2025         pm_runtime_put_sync(dev);
2026 
2027         return 0;
2028 
2029 err_aead_algs:
2030         crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2031 err_algs:
2032 err_engine2:
2033         crypto_engine_exit(cryp->engine);
2034 err_engine1:
2035         spin_lock(&cryp_list.lock);
2036         list_del(&cryp->list);
2037         spin_unlock(&cryp_list.lock);
2038 
2039         pm_runtime_disable(dev);
2040         pm_runtime_put_noidle(dev);
2041         pm_runtime_disable(dev);
2042         pm_runtime_put_noidle(dev);
2043 
2044         clk_disable_unprepare(cryp->clk);
2045 
2046         return ret;
2047 }
2048 
2049 static int stm32_cryp_remove(struct platform_device *pdev)
2050 {
2051         struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2052         int ret;
2053 
2054         if (!cryp)
2055                 return -ENODEV;
2056 
2057         ret = pm_runtime_get_sync(cryp->dev);
2058         if (ret < 0)
2059                 return ret;
2060 
2061         crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062         crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2063 
2064         crypto_engine_exit(cryp->engine);
2065 
2066         spin_lock(&cryp_list.lock);
2067         list_del(&cryp->list);
2068         spin_unlock(&cryp_list.lock);
2069 
2070         pm_runtime_disable(cryp->dev);
2071         pm_runtime_put_noidle(cryp->dev);
2072 
2073         clk_disable_unprepare(cryp->clk);
2074 
2075         return 0;
2076 }
2077 
2078 #ifdef CONFIG_PM
2079 static int stm32_cryp_runtime_suspend(struct device *dev)
2080 {
2081         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2082 
2083         clk_disable_unprepare(cryp->clk);
2084 
2085         return 0;
2086 }
2087 
2088 static int stm32_cryp_runtime_resume(struct device *dev)
2089 {
2090         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2091         int ret;
2092 
2093         ret = clk_prepare_enable(cryp->clk);
2094         if (ret) {
2095                 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2096                 return ret;
2097         }
2098 
2099         return 0;
2100 }
2101 #endif
2102 
2103 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2104         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2105                                 pm_runtime_force_resume)
2106         SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2107                            stm32_cryp_runtime_resume, NULL)
2108 };
2109 
2110 static struct platform_driver stm32_cryp_driver = {
2111         .probe  = stm32_cryp_probe,
2112         .remove = stm32_cryp_remove,
2113         .driver = {
2114                 .name           = DRIVER_NAME,
2115                 .pm             = &stm32_cryp_pm_ops,
2116                 .of_match_table = stm32_dt_ids,
2117         },
2118 };
2119 
2120 module_platform_driver(stm32_cryp_driver);
2121 
2122 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2123 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2124 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */