root/drivers/edac/skx_common.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. skx_adxl_get
  2. skx_adxl_put
  3. skx_adxl_decode
  4. skx_set_decode
  5. skx_get_src_id
  6. skx_get_node_id
  7. get_width
  8. skx_get_all_bus_mappings
  9. skx_get_hi_lo
  10. skx_get_dimm_attr
  11. skx_get_dimm_info
  12. skx_get_nvdimm_info
  13. skx_register_mci
  14. skx_unregister_mci
  15. get_mci
  16. skx_mce_output_error
  17. skx_mce_check_error
  18. skx_remove

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  *
   4  * Shared code by both skx_edac and i10nm_edac. Originally split out
   5  * from the skx_edac driver.
   6  *
   7  * This file is linked into both skx_edac and i10nm_edac drivers. In
   8  * order to avoid link errors, this file must be like a pure library
   9  * without including symbols and defines which would otherwise conflict,
  10  * when linked once into a module and into a built-in object, at the
  11  * same time. For example, __this_module symbol references when that
  12  * file is being linked into a built-in object.
  13  *
  14  * Copyright (c) 2018, Intel Corporation.
  15  */
  16 
  17 #include <linux/acpi.h>
  18 #include <linux/dmi.h>
  19 #include <linux/adxl.h>
  20 #include <acpi/nfit.h>
  21 #include <asm/mce.h>
  22 #include "edac_module.h"
  23 #include "skx_common.h"
  24 
  25 static const char * const component_names[] = {
  26         [INDEX_SOCKET]  = "ProcessorSocketId",
  27         [INDEX_MEMCTRL] = "MemoryControllerId",
  28         [INDEX_CHANNEL] = "ChannelId",
  29         [INDEX_DIMM]    = "DimmSlotId",
  30 };
  31 
  32 static int component_indices[ARRAY_SIZE(component_names)];
  33 static int adxl_component_count;
  34 static const char * const *adxl_component_names;
  35 static u64 *adxl_values;
  36 static char *adxl_msg;
  37 
  38 static char skx_msg[MSG_SIZE];
  39 static skx_decode_f skx_decode;
  40 static u64 skx_tolm, skx_tohm;
  41 static LIST_HEAD(dev_edac_list);
  42 
  43 int __init skx_adxl_get(void)
  44 {
  45         const char * const *names;
  46         int i, j;
  47 
  48         names = adxl_get_component_names();
  49         if (!names) {
  50                 skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
  51                 return -ENODEV;
  52         }
  53 
  54         for (i = 0; i < INDEX_MAX; i++) {
  55                 for (j = 0; names[j]; j++) {
  56                         if (!strcmp(component_names[i], names[j])) {
  57                                 component_indices[i] = j;
  58                                 break;
  59                         }
  60                 }
  61 
  62                 if (!names[j])
  63                         goto err;
  64         }
  65 
  66         adxl_component_names = names;
  67         while (*names++)
  68                 adxl_component_count++;
  69 
  70         adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
  71                               GFP_KERNEL);
  72         if (!adxl_values) {
  73                 adxl_component_count = 0;
  74                 return -ENOMEM;
  75         }
  76 
  77         adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
  78         if (!adxl_msg) {
  79                 adxl_component_count = 0;
  80                 kfree(adxl_values);
  81                 return -ENOMEM;
  82         }
  83 
  84         return 0;
  85 err:
  86         skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
  87                    component_names[i]);
  88         for (j = 0; names[j]; j++)
  89                 skx_printk(KERN_CONT, "%s ", names[j]);
  90         skx_printk(KERN_CONT, "\n");
  91 
  92         return -ENODEV;
  93 }
  94 
  95 void __exit skx_adxl_put(void)
  96 {
  97         kfree(adxl_values);
  98         kfree(adxl_msg);
  99 }
 100 
 101 static bool skx_adxl_decode(struct decoded_addr *res)
 102 {
 103         int i, len = 0;
 104 
 105         if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
 106                                       res->addr < BIT_ULL(32))) {
 107                 edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
 108                 return false;
 109         }
 110 
 111         if (adxl_decode(res->addr, adxl_values)) {
 112                 edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
 113                 return false;
 114         }
 115 
 116         res->socket  = (int)adxl_values[component_indices[INDEX_SOCKET]];
 117         res->imc     = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
 118         res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
 119         res->dimm    = (int)adxl_values[component_indices[INDEX_DIMM]];
 120 
 121         for (i = 0; i < adxl_component_count; i++) {
 122                 if (adxl_values[i] == ~0x0ull)
 123                         continue;
 124 
 125                 len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
 126                                 adxl_component_names[i], adxl_values[i]);
 127                 if (MSG_SIZE - len <= 0)
 128                         break;
 129         }
 130 
 131         return true;
 132 }
 133 
 134 void skx_set_decode(skx_decode_f decode)
 135 {
 136         skx_decode = decode;
 137 }
 138 
 139 int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
 140 {
 141         u32 reg;
 142 
 143         if (pci_read_config_dword(d->util_all, off, &reg)) {
 144                 skx_printk(KERN_ERR, "Failed to read src id\n");
 145                 return -ENODEV;
 146         }
 147 
 148         *id = GET_BITFIELD(reg, 12, 14);
 149         return 0;
 150 }
 151 
 152 int skx_get_node_id(struct skx_dev *d, u8 *id)
 153 {
 154         u32 reg;
 155 
 156         if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
 157                 skx_printk(KERN_ERR, "Failed to read node id\n");
 158                 return -ENODEV;
 159         }
 160 
 161         *id = GET_BITFIELD(reg, 0, 2);
 162         return 0;
 163 }
 164 
 165 static int get_width(u32 mtr)
 166 {
 167         switch (GET_BITFIELD(mtr, 8, 9)) {
 168         case 0:
 169                 return DEV_X4;
 170         case 1:
 171                 return DEV_X8;
 172         case 2:
 173                 return DEV_X16;
 174         }
 175         return DEV_UNKNOWN;
 176 }
 177 
 178 /*
 179  * We use the per-socket device @did to count how many sockets are present,
 180  * and to detemine which PCI buses are associated with each socket. Allocate
 181  * and build the full list of all the skx_dev structures that we need here.
 182  */
 183 int skx_get_all_bus_mappings(unsigned int did, int off, enum type type,
 184                              struct list_head **list)
 185 {
 186         struct pci_dev *pdev, *prev;
 187         struct skx_dev *d;
 188         u32 reg;
 189         int ndev = 0;
 190 
 191         prev = NULL;
 192         for (;;) {
 193                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, prev);
 194                 if (!pdev)
 195                         break;
 196                 ndev++;
 197                 d = kzalloc(sizeof(*d), GFP_KERNEL);
 198                 if (!d) {
 199                         pci_dev_put(pdev);
 200                         return -ENOMEM;
 201                 }
 202 
 203                 if (pci_read_config_dword(pdev, off, &reg)) {
 204                         kfree(d);
 205                         pci_dev_put(pdev);
 206                         skx_printk(KERN_ERR, "Failed to read bus idx\n");
 207                         return -ENODEV;
 208                 }
 209 
 210                 d->bus[0] = GET_BITFIELD(reg, 0, 7);
 211                 d->bus[1] = GET_BITFIELD(reg, 8, 15);
 212                 if (type == SKX) {
 213                         d->seg = pci_domain_nr(pdev->bus);
 214                         d->bus[2] = GET_BITFIELD(reg, 16, 23);
 215                         d->bus[3] = GET_BITFIELD(reg, 24, 31);
 216                 } else {
 217                         d->seg = GET_BITFIELD(reg, 16, 23);
 218                 }
 219 
 220                 edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
 221                          d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
 222                 list_add_tail(&d->list, &dev_edac_list);
 223                 prev = pdev;
 224         }
 225 
 226         if (list)
 227                 *list = &dev_edac_list;
 228         return ndev;
 229 }
 230 
 231 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
 232 {
 233         struct pci_dev *pdev;
 234         u32 reg;
 235 
 236         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
 237         if (!pdev) {
 238                 edac_dbg(2, "Can't get tolm/tohm\n");
 239                 return -ENODEV;
 240         }
 241 
 242         if (pci_read_config_dword(pdev, off[0], &reg)) {
 243                 skx_printk(KERN_ERR, "Failed to read tolm\n");
 244                 goto fail;
 245         }
 246         skx_tolm = reg;
 247 
 248         if (pci_read_config_dword(pdev, off[1], &reg)) {
 249                 skx_printk(KERN_ERR, "Failed to read lower tohm\n");
 250                 goto fail;
 251         }
 252         skx_tohm = reg;
 253 
 254         if (pci_read_config_dword(pdev, off[2], &reg)) {
 255                 skx_printk(KERN_ERR, "Failed to read upper tohm\n");
 256                 goto fail;
 257         }
 258         skx_tohm |= (u64)reg << 32;
 259 
 260         pci_dev_put(pdev);
 261         *tolm = skx_tolm;
 262         *tohm = skx_tohm;
 263         edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
 264         return 0;
 265 fail:
 266         pci_dev_put(pdev);
 267         return -ENODEV;
 268 }
 269 
 270 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
 271                              int minval, int maxval, const char *name)
 272 {
 273         u32 val = GET_BITFIELD(reg, lobit, hibit);
 274 
 275         if (val < minval || val > maxval) {
 276                 edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
 277                 return -EINVAL;
 278         }
 279         return val + add;
 280 }
 281 
 282 #define numrank(reg)    skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
 283 #define numrow(reg)     skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
 284 #define numcol(reg)     skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
 285 
 286 int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm,
 287                       struct skx_imc *imc, int chan, int dimmno)
 288 {
 289         int  banks = 16, ranks, rows, cols, npages;
 290         u64 size;
 291 
 292         ranks = numrank(mtr);
 293         rows = numrow(mtr);
 294         cols = numcol(mtr);
 295 
 296         /*
 297          * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
 298          */
 299         size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
 300         npages = MiB_TO_PAGES(size);
 301 
 302         edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
 303                  imc->mc, chan, dimmno, size, npages,
 304                  banks, 1 << ranks, rows, cols);
 305 
 306         imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0);
 307         imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9);
 308         imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
 309         imc->chan[chan].dimms[dimmno].rowbits = rows;
 310         imc->chan[chan].dimms[dimmno].colbits = cols;
 311 
 312         dimm->nr_pages = npages;
 313         dimm->grain = 32;
 314         dimm->dtype = get_width(mtr);
 315         dimm->mtype = MEM_DDR4;
 316         dimm->edac_mode = EDAC_SECDED; /* likely better than this */
 317         snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
 318                  imc->src_id, imc->lmc, chan, dimmno);
 319 
 320         return 1;
 321 }
 322 
 323 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
 324                         int chan, int dimmno, const char *mod_str)
 325 {
 326         int smbios_handle;
 327         u32 dev_handle;
 328         u16 flags;
 329         u64 size = 0;
 330 
 331         dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
 332                                                    imc->src_id, 0);
 333 
 334         smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
 335         if (smbios_handle == -EOPNOTSUPP) {
 336                 pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
 337                 goto unknown_size;
 338         }
 339 
 340         if (smbios_handle < 0) {
 341                 skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
 342                 goto unknown_size;
 343         }
 344 
 345         if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
 346                 skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
 347                 goto unknown_size;
 348         }
 349 
 350         size = dmi_memdev_size(smbios_handle);
 351         if (size == ~0ull)
 352                 skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
 353                            dev_handle, smbios_handle);
 354 
 355 unknown_size:
 356         dimm->nr_pages = size >> PAGE_SHIFT;
 357         dimm->grain = 32;
 358         dimm->dtype = DEV_UNKNOWN;
 359         dimm->mtype = MEM_NVDIMM;
 360         dimm->edac_mode = EDAC_SECDED; /* likely better than this */
 361 
 362         edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
 363                  imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
 364 
 365         snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
 366                  imc->src_id, imc->lmc, chan, dimmno);
 367 
 368         return (size == 0 || size == ~0ull) ? 0 : 1;
 369 }
 370 
 371 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
 372                      const char *ctl_name, const char *mod_str,
 373                      get_dimm_config_f get_dimm_config)
 374 {
 375         struct mem_ctl_info *mci;
 376         struct edac_mc_layer layers[2];
 377         struct skx_pvt *pvt;
 378         int rc;
 379 
 380         /* Allocate a new MC control structure */
 381         layers[0].type = EDAC_MC_LAYER_CHANNEL;
 382         layers[0].size = NUM_CHANNELS;
 383         layers[0].is_virt_csrow = false;
 384         layers[1].type = EDAC_MC_LAYER_SLOT;
 385         layers[1].size = NUM_DIMMS;
 386         layers[1].is_virt_csrow = true;
 387         mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
 388                             sizeof(struct skx_pvt));
 389 
 390         if (unlikely(!mci))
 391                 return -ENOMEM;
 392 
 393         edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
 394 
 395         /* Associate skx_dev and mci for future usage */
 396         imc->mci = mci;
 397         pvt = mci->pvt_info;
 398         pvt->imc = imc;
 399 
 400         mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
 401                                   imc->node_id, imc->lmc);
 402         if (!mci->ctl_name) {
 403                 rc = -ENOMEM;
 404                 goto fail0;
 405         }
 406 
 407         mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
 408         mci->edac_ctl_cap = EDAC_FLAG_NONE;
 409         mci->edac_cap = EDAC_FLAG_NONE;
 410         mci->mod_name = mod_str;
 411         mci->dev_name = pci_name(pdev);
 412         mci->ctl_page_to_phys = NULL;
 413 
 414         rc = get_dimm_config(mci);
 415         if (rc < 0)
 416                 goto fail;
 417 
 418         /* Record ptr to the generic device */
 419         mci->pdev = &pdev->dev;
 420 
 421         /* Add this new MC control structure to EDAC's list of MCs */
 422         if (unlikely(edac_mc_add_mc(mci))) {
 423                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
 424                 rc = -EINVAL;
 425                 goto fail;
 426         }
 427 
 428         return 0;
 429 
 430 fail:
 431         kfree(mci->ctl_name);
 432 fail0:
 433         edac_mc_free(mci);
 434         imc->mci = NULL;
 435         return rc;
 436 }
 437 
 438 static void skx_unregister_mci(struct skx_imc *imc)
 439 {
 440         struct mem_ctl_info *mci = imc->mci;
 441 
 442         if (!mci)
 443                 return;
 444 
 445         edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
 446 
 447         /* Remove MC sysfs nodes */
 448         edac_mc_del_mc(mci->pdev);
 449 
 450         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
 451         kfree(mci->ctl_name);
 452         edac_mc_free(mci);
 453 }
 454 
 455 static struct mem_ctl_info *get_mci(int src_id, int lmc)
 456 {
 457         struct skx_dev *d;
 458 
 459         if (lmc > NUM_IMC - 1) {
 460                 skx_printk(KERN_ERR, "Bad lmc %d\n", lmc);
 461                 return NULL;
 462         }
 463 
 464         list_for_each_entry(d, &dev_edac_list, list) {
 465                 if (d->imc[0].src_id == src_id)
 466                         return d->imc[lmc].mci;
 467         }
 468 
 469         skx_printk(KERN_ERR, "No mci for src_id %d lmc %d\n", src_id, lmc);
 470         return NULL;
 471 }
 472 
 473 static void skx_mce_output_error(struct mem_ctl_info *mci,
 474                                  const struct mce *m,
 475                                  struct decoded_addr *res)
 476 {
 477         enum hw_event_mc_err_type tp_event;
 478         char *type, *optype;
 479         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
 480         bool overflow = GET_BITFIELD(m->status, 62, 62);
 481         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
 482         bool recoverable;
 483         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
 484         u32 mscod = GET_BITFIELD(m->status, 16, 31);
 485         u32 errcode = GET_BITFIELD(m->status, 0, 15);
 486         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
 487 
 488         recoverable = GET_BITFIELD(m->status, 56, 56);
 489 
 490         if (uncorrected_error) {
 491                 core_err_cnt = 1;
 492                 if (ripv) {
 493                         type = "FATAL";
 494                         tp_event = HW_EVENT_ERR_FATAL;
 495                 } else {
 496                         type = "NON_FATAL";
 497                         tp_event = HW_EVENT_ERR_UNCORRECTED;
 498                 }
 499         } else {
 500                 type = "CORRECTED";
 501                 tp_event = HW_EVENT_ERR_CORRECTED;
 502         }
 503 
 504         /*
 505          * According to Intel Architecture spec vol 3B,
 506          * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
 507          * memory errors should fit one of these masks:
 508          *      000f 0000 1mmm cccc (binary)
 509          *      000f 0010 1mmm cccc (binary)    [RAM used as cache]
 510          * where:
 511          *      f = Correction Report Filtering Bit. If 1, subsequent errors
 512          *          won't be shown
 513          *      mmm = error type
 514          *      cccc = channel
 515          * If the mask doesn't match, report an error to the parsing logic
 516          */
 517         if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
 518                 optype = "Can't parse: it is not a mem";
 519         } else {
 520                 switch (optypenum) {
 521                 case 0:
 522                         optype = "generic undef request error";
 523                         break;
 524                 case 1:
 525                         optype = "memory read error";
 526                         break;
 527                 case 2:
 528                         optype = "memory write error";
 529                         break;
 530                 case 3:
 531                         optype = "addr/cmd error";
 532                         break;
 533                 case 4:
 534                         optype = "memory scrubbing error";
 535                         break;
 536                 default:
 537                         optype = "reserved";
 538                         break;
 539                 }
 540         }
 541         if (adxl_component_count) {
 542                 snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
 543                          overflow ? " OVERFLOW" : "",
 544                          (uncorrected_error && recoverable) ? " recoverable" : "",
 545                          mscod, errcode, adxl_msg);
 546         } else {
 547                 snprintf(skx_msg, MSG_SIZE,
 548                          "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
 549                          overflow ? " OVERFLOW" : "",
 550                          (uncorrected_error && recoverable) ? " recoverable" : "",
 551                          mscod, errcode,
 552                          res->socket, res->imc, res->rank,
 553                          res->bank_group, res->bank_address, res->row, res->column);
 554         }
 555 
 556         edac_dbg(0, "%s\n", skx_msg);
 557 
 558         /* Call the helper to output message */
 559         edac_mc_handle_error(tp_event, mci, core_err_cnt,
 560                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
 561                              res->channel, res->dimm, -1,
 562                              optype, skx_msg);
 563 }
 564 
 565 int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
 566                         void *data)
 567 {
 568         struct mce *mce = (struct mce *)data;
 569         struct decoded_addr res;
 570         struct mem_ctl_info *mci;
 571         char *type;
 572 
 573         if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
 574                 return NOTIFY_DONE;
 575 
 576         /* ignore unless this is memory related with an address */
 577         if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
 578                 return NOTIFY_DONE;
 579 
 580         memset(&res, 0, sizeof(res));
 581         res.addr = mce->addr;
 582 
 583         if (adxl_component_count) {
 584                 if (!skx_adxl_decode(&res))
 585                         return NOTIFY_DONE;
 586 
 587                 mci = get_mci(res.socket, res.imc);
 588         } else {
 589                 if (!skx_decode || !skx_decode(&res))
 590                         return NOTIFY_DONE;
 591 
 592                 mci = res.dev->imc[res.imc].mci;
 593         }
 594 
 595         if (!mci)
 596                 return NOTIFY_DONE;
 597 
 598         if (mce->mcgstatus & MCG_STATUS_MCIP)
 599                 type = "Exception";
 600         else
 601                 type = "Event";
 602 
 603         skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
 604 
 605         skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
 606                            "Bank %d: 0x%llx\n", mce->extcpu, type,
 607                            mce->mcgstatus, mce->bank, mce->status);
 608         skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
 609         skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
 610         skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
 611 
 612         skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
 613                            "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
 614                            mce->time, mce->socketid, mce->apicid);
 615 
 616         skx_mce_output_error(mci, mce, &res);
 617 
 618         return NOTIFY_DONE;
 619 }
 620 
 621 void skx_remove(void)
 622 {
 623         int i, j;
 624         struct skx_dev *d, *tmp;
 625 
 626         edac_dbg(0, "\n");
 627 
 628         list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
 629                 list_del(&d->list);
 630                 for (i = 0; i < NUM_IMC; i++) {
 631                         if (d->imc[i].mci)
 632                                 skx_unregister_mci(&d->imc[i]);
 633 
 634                         if (d->imc[i].mdev)
 635                                 pci_dev_put(d->imc[i].mdev);
 636 
 637                         if (d->imc[i].mbase)
 638                                 iounmap(d->imc[i].mbase);
 639 
 640                         for (j = 0; j < NUM_CHANNELS; j++) {
 641                                 if (d->imc[i].chan[j].cdev)
 642                                         pci_dev_put(d->imc[i].chan[j].cdev);
 643                         }
 644                 }
 645                 if (d->util_all)
 646                         pci_dev_put(d->util_all);
 647                 if (d->sad_all)
 648                         pci_dev_put(d->sad_all);
 649                 if (d->uracu)
 650                         pci_dev_put(d->uracu);
 651 
 652                 kfree(d);
 653         }
 654 }

/* [<][>][^][v][top][bottom][index][help] */