root/drivers/edac/i5000_edac.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. i5000_get_error_info
  2. i5000_process_fatal_error_info
  3. i5000_process_nonfatal_error_info
  4. i5000_process_error_info
  5. i5000_clear_error
  6. i5000_check_error
  7. i5000_get_devices
  8. i5000_put_devices
  9. determine_amb_present_reg
  10. determine_mtr
  11. decode_mtr
  12. handle_channel
  13. calculate_dimm_size
  14. i5000_get_mc_regs
  15. i5000_init_csrows
  16. i5000_enable_error_reporting
  17. i5000_get_dimm_and_channel_counts
  18. i5000_probe1
  19. i5000_init_one
  20. i5000_remove_one
  21. i5000_init
  22. i5000_exit

   1 /*
   2  * Intel 5000(P/V/X) class Memory Controllers kernel module
   3  *
   4  * This file may be distributed under the terms of the
   5  * GNU General Public License.
   6  *
   7  * Written by Douglas Thompson Linux Networx (http://lnxi.com)
   8  *      norsk5@xmission.com
   9  *
  10  * This module is based on the following document:
  11  *
  12  * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
  13  *      http://developer.intel.com/design/chipsets/datashts/313070.htm
  14  *
  15  */
  16 
  17 #include <linux/module.h>
  18 #include <linux/init.h>
  19 #include <linux/pci.h>
  20 #include <linux/pci_ids.h>
  21 #include <linux/slab.h>
  22 #include <linux/edac.h>
  23 #include <asm/mmzone.h>
  24 
  25 #include "edac_module.h"
  26 
  27 /*
  28  * Alter this version for the I5000 module when modifications are made
  29  */
  30 #define I5000_REVISION    " Ver: 2.0.12"
  31 #define EDAC_MOD_STR      "i5000_edac"
  32 
  33 #define i5000_printk(level, fmt, arg...) \
  34         edac_printk(level, "i5000", fmt, ##arg)
  35 
  36 #define i5000_mc_printk(mci, level, fmt, arg...) \
  37         edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
  38 
  39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
  40 #define PCI_DEVICE_ID_INTEL_FBD_0       0x25F5
  41 #endif
  42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
  43 #define PCI_DEVICE_ID_INTEL_FBD_1       0x25F6
  44 #endif
  45 
  46 /* Device 16,
  47  * Function 0: System Address
  48  * Function 1: Memory Branch Map, Control, Errors Register
  49  * Function 2: FSB Error Registers
  50  *
  51  * All 3 functions of Device 16 (0,1,2) share the SAME DID
  52  */
  53 #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
  54 
  55 /* OFFSETS for Function 0 */
  56 
  57 /* OFFSETS for Function 1 */
  58 #define         AMBASE                  0x48
  59 #define         MAXCH                   0x56
  60 #define         MAXDIMMPERCH            0x57
  61 #define         TOLM                    0x6C
  62 #define         REDMEMB                 0x7C
  63 #define                 RED_ECC_LOCATOR(x)      ((x) & 0x3FFFF)
  64 #define                 REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
  65 #define                 REC_ECC_LOCATOR_ODD(x)  ((x) & 0x3FE00)
  66 #define         MIR0                    0x80
  67 #define         MIR1                    0x84
  68 #define         MIR2                    0x88
  69 #define         AMIR0                   0x8C
  70 #define         AMIR1                   0x90
  71 #define         AMIR2                   0x94
  72 
  73 #define         FERR_FAT_FBD            0x98
  74 #define         NERR_FAT_FBD            0x9C
  75 #define                 EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
  76 #define                 FERR_FAT_FBDCHAN 0x30000000
  77 #define                 FERR_FAT_M3ERR  0x00000004
  78 #define                 FERR_FAT_M2ERR  0x00000002
  79 #define                 FERR_FAT_M1ERR  0x00000001
  80 #define                 FERR_FAT_MASK   (FERR_FAT_M1ERR | \
  81                                                 FERR_FAT_M2ERR | \
  82                                                 FERR_FAT_M3ERR)
  83 
  84 #define         FERR_NF_FBD             0xA0
  85 
  86 /* Thermal and SPD or BFD errors */
  87 #define                 FERR_NF_M28ERR  0x01000000
  88 #define                 FERR_NF_M27ERR  0x00800000
  89 #define                 FERR_NF_M26ERR  0x00400000
  90 #define                 FERR_NF_M25ERR  0x00200000
  91 #define                 FERR_NF_M24ERR  0x00100000
  92 #define                 FERR_NF_M23ERR  0x00080000
  93 #define                 FERR_NF_M22ERR  0x00040000
  94 #define                 FERR_NF_M21ERR  0x00020000
  95 
  96 /* Correctable errors */
  97 #define                 FERR_NF_M20ERR  0x00010000
  98 #define                 FERR_NF_M19ERR  0x00008000
  99 #define                 FERR_NF_M18ERR  0x00004000
 100 #define                 FERR_NF_M17ERR  0x00002000
 101 
 102 /* Non-Retry or redundant Retry errors */
 103 #define                 FERR_NF_M16ERR  0x00001000
 104 #define                 FERR_NF_M15ERR  0x00000800
 105 #define                 FERR_NF_M14ERR  0x00000400
 106 #define                 FERR_NF_M13ERR  0x00000200
 107 
 108 /* Uncorrectable errors */
 109 #define                 FERR_NF_M12ERR  0x00000100
 110 #define                 FERR_NF_M11ERR  0x00000080
 111 #define                 FERR_NF_M10ERR  0x00000040
 112 #define                 FERR_NF_M9ERR   0x00000020
 113 #define                 FERR_NF_M8ERR   0x00000010
 114 #define                 FERR_NF_M7ERR   0x00000008
 115 #define                 FERR_NF_M6ERR   0x00000004
 116 #define                 FERR_NF_M5ERR   0x00000002
 117 #define                 FERR_NF_M4ERR   0x00000001
 118 
 119 #define                 FERR_NF_UNCORRECTABLE   (FERR_NF_M12ERR | \
 120                                                         FERR_NF_M11ERR | \
 121                                                         FERR_NF_M10ERR | \
 122                                                         FERR_NF_M9ERR | \
 123                                                         FERR_NF_M8ERR | \
 124                                                         FERR_NF_M7ERR | \
 125                                                         FERR_NF_M6ERR | \
 126                                                         FERR_NF_M5ERR | \
 127                                                         FERR_NF_M4ERR)
 128 #define                 FERR_NF_CORRECTABLE     (FERR_NF_M20ERR | \
 129                                                         FERR_NF_M19ERR | \
 130                                                         FERR_NF_M18ERR | \
 131                                                         FERR_NF_M17ERR)
 132 #define                 FERR_NF_DIMM_SPARE      (FERR_NF_M27ERR | \
 133                                                         FERR_NF_M28ERR)
 134 #define                 FERR_NF_THERMAL         (FERR_NF_M26ERR | \
 135                                                         FERR_NF_M25ERR | \
 136                                                         FERR_NF_M24ERR | \
 137                                                         FERR_NF_M23ERR)
 138 #define                 FERR_NF_SPD_PROTOCOL    (FERR_NF_M22ERR)
 139 #define                 FERR_NF_NORTH_CRC       (FERR_NF_M21ERR)
 140 #define                 FERR_NF_NON_RETRY       (FERR_NF_M13ERR | \
 141                                                         FERR_NF_M14ERR | \
 142                                                         FERR_NF_M15ERR)
 143 
 144 #define         NERR_NF_FBD             0xA4
 145 #define                 FERR_NF_MASK            (FERR_NF_UNCORRECTABLE | \
 146                                                         FERR_NF_CORRECTABLE | \
 147                                                         FERR_NF_DIMM_SPARE | \
 148                                                         FERR_NF_THERMAL | \
 149                                                         FERR_NF_SPD_PROTOCOL | \
 150                                                         FERR_NF_NORTH_CRC | \
 151                                                         FERR_NF_NON_RETRY)
 152 
 153 #define         EMASK_FBD               0xA8
 154 #define                 EMASK_FBD_M28ERR        0x08000000
 155 #define                 EMASK_FBD_M27ERR        0x04000000
 156 #define                 EMASK_FBD_M26ERR        0x02000000
 157 #define                 EMASK_FBD_M25ERR        0x01000000
 158 #define                 EMASK_FBD_M24ERR        0x00800000
 159 #define                 EMASK_FBD_M23ERR        0x00400000
 160 #define                 EMASK_FBD_M22ERR        0x00200000
 161 #define                 EMASK_FBD_M21ERR        0x00100000
 162 #define                 EMASK_FBD_M20ERR        0x00080000
 163 #define                 EMASK_FBD_M19ERR        0x00040000
 164 #define                 EMASK_FBD_M18ERR        0x00020000
 165 #define                 EMASK_FBD_M17ERR        0x00010000
 166 
 167 #define                 EMASK_FBD_M15ERR        0x00004000
 168 #define                 EMASK_FBD_M14ERR        0x00002000
 169 #define                 EMASK_FBD_M13ERR        0x00001000
 170 #define                 EMASK_FBD_M12ERR        0x00000800
 171 #define                 EMASK_FBD_M11ERR        0x00000400
 172 #define                 EMASK_FBD_M10ERR        0x00000200
 173 #define                 EMASK_FBD_M9ERR         0x00000100
 174 #define                 EMASK_FBD_M8ERR         0x00000080
 175 #define                 EMASK_FBD_M7ERR         0x00000040
 176 #define                 EMASK_FBD_M6ERR         0x00000020
 177 #define                 EMASK_FBD_M5ERR         0x00000010
 178 #define                 EMASK_FBD_M4ERR         0x00000008
 179 #define                 EMASK_FBD_M3ERR         0x00000004
 180 #define                 EMASK_FBD_M2ERR         0x00000002
 181 #define                 EMASK_FBD_M1ERR         0x00000001
 182 
 183 #define                 ENABLE_EMASK_FBD_FATAL_ERRORS   (EMASK_FBD_M1ERR | \
 184                                                         EMASK_FBD_M2ERR | \
 185                                                         EMASK_FBD_M3ERR)
 186 
 187 #define                 ENABLE_EMASK_FBD_UNCORRECTABLE  (EMASK_FBD_M4ERR | \
 188                                                         EMASK_FBD_M5ERR | \
 189                                                         EMASK_FBD_M6ERR | \
 190                                                         EMASK_FBD_M7ERR | \
 191                                                         EMASK_FBD_M8ERR | \
 192                                                         EMASK_FBD_M9ERR | \
 193                                                         EMASK_FBD_M10ERR | \
 194                                                         EMASK_FBD_M11ERR | \
 195                                                         EMASK_FBD_M12ERR)
 196 #define                 ENABLE_EMASK_FBD_CORRECTABLE    (EMASK_FBD_M17ERR | \
 197                                                         EMASK_FBD_M18ERR | \
 198                                                         EMASK_FBD_M19ERR | \
 199                                                         EMASK_FBD_M20ERR)
 200 #define                 ENABLE_EMASK_FBD_DIMM_SPARE     (EMASK_FBD_M27ERR | \
 201                                                         EMASK_FBD_M28ERR)
 202 #define                 ENABLE_EMASK_FBD_THERMALS       (EMASK_FBD_M26ERR | \
 203                                                         EMASK_FBD_M25ERR | \
 204                                                         EMASK_FBD_M24ERR | \
 205                                                         EMASK_FBD_M23ERR)
 206 #define                 ENABLE_EMASK_FBD_SPD_PROTOCOL   (EMASK_FBD_M22ERR)
 207 #define                 ENABLE_EMASK_FBD_NORTH_CRC      (EMASK_FBD_M21ERR)
 208 #define                 ENABLE_EMASK_FBD_NON_RETRY      (EMASK_FBD_M15ERR | \
 209                                                         EMASK_FBD_M14ERR | \
 210                                                         EMASK_FBD_M13ERR)
 211 
 212 #define         ENABLE_EMASK_ALL        (ENABLE_EMASK_FBD_NON_RETRY | \
 213                                         ENABLE_EMASK_FBD_NORTH_CRC | \
 214                                         ENABLE_EMASK_FBD_SPD_PROTOCOL | \
 215                                         ENABLE_EMASK_FBD_THERMALS | \
 216                                         ENABLE_EMASK_FBD_DIMM_SPARE | \
 217                                         ENABLE_EMASK_FBD_FATAL_ERRORS | \
 218                                         ENABLE_EMASK_FBD_CORRECTABLE | \
 219                                         ENABLE_EMASK_FBD_UNCORRECTABLE)
 220 
 221 #define         ERR0_FBD                0xAC
 222 #define         ERR1_FBD                0xB0
 223 #define         ERR2_FBD                0xB4
 224 #define         MCERR_FBD               0xB8
 225 #define         NRECMEMA                0xBE
 226 #define                 NREC_BANK(x)            (((x)>>12) & 0x7)
 227 #define                 NREC_RDWR(x)            (((x)>>11) & 1)
 228 #define                 NREC_RANK(x)            (((x)>>8) & 0x7)
 229 #define         NRECMEMB                0xC0
 230 #define                 NREC_CAS(x)             (((x)>>16) & 0xFFF)
 231 #define                 NREC_RAS(x)             ((x) & 0x7FFF)
 232 #define         NRECFGLOG               0xC4
 233 #define         NREEECFBDA              0xC8
 234 #define         NREEECFBDB              0xCC
 235 #define         NREEECFBDC              0xD0
 236 #define         NREEECFBDD              0xD4
 237 #define         NREEECFBDE              0xD8
 238 #define         REDMEMA                 0xDC
 239 #define         RECMEMA                 0xE2
 240 #define                 REC_BANK(x)             (((x)>>12) & 0x7)
 241 #define                 REC_RDWR(x)             (((x)>>11) & 1)
 242 #define                 REC_RANK(x)             (((x)>>8) & 0x7)
 243 #define         RECMEMB                 0xE4
 244 #define                 REC_CAS(x)              (((x)>>16) & 0xFFFFFF)
 245 #define                 REC_RAS(x)              ((x) & 0x7FFF)
 246 #define         RECFGLOG                0xE8
 247 #define         RECFBDA                 0xEC
 248 #define         RECFBDB                 0xF0
 249 #define         RECFBDC                 0xF4
 250 #define         RECFBDD                 0xF8
 251 #define         RECFBDE                 0xFC
 252 
 253 /* OFFSETS for Function 2 */
 254 
 255 /*
 256  * Device 21,
 257  * Function 0: Memory Map Branch 0
 258  *
 259  * Device 22,
 260  * Function 0: Memory Map Branch 1
 261  */
 262 #define PCI_DEVICE_ID_I5000_BRANCH_0    0x25F5
 263 #define PCI_DEVICE_ID_I5000_BRANCH_1    0x25F6
 264 
 265 #define AMB_PRESENT_0   0x64
 266 #define AMB_PRESENT_1   0x66
 267 #define MTR0            0x80
 268 #define MTR1            0x84
 269 #define MTR2            0x88
 270 #define MTR3            0x8C
 271 
 272 #define NUM_MTRS                4
 273 #define CHANNELS_PER_BRANCH     2
 274 #define MAX_BRANCHES            2
 275 
 276 /* Defines to extract the various fields from the
 277  *      MTRx - Memory Technology Registers
 278  */
 279 #define MTR_DIMMS_PRESENT(mtr)          ((mtr) & (0x1 << 8))
 280 #define MTR_DRAM_WIDTH(mtr)             ((((mtr) >> 6) & 0x1) ? 8 : 4)
 281 #define MTR_DRAM_BANKS(mtr)             ((((mtr) >> 5) & 0x1) ? 8 : 4)
 282 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)   ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
 283 #define MTR_DIMM_RANK(mtr)              (((mtr) >> 4) & 0x1)
 284 #define MTR_DIMM_RANK_ADDR_BITS(mtr)    (MTR_DIMM_RANK(mtr) ? 2 : 1)
 285 #define MTR_DIMM_ROWS(mtr)              (((mtr) >> 2) & 0x3)
 286 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)    (MTR_DIMM_ROWS(mtr) + 13)
 287 #define MTR_DIMM_COLS(mtr)              ((mtr) & 0x3)
 288 #define MTR_DIMM_COLS_ADDR_BITS(mtr)    (MTR_DIMM_COLS(mtr) + 10)
 289 
 290 /* enables the report of miscellaneous messages as CE errors - default off */
 291 static int misc_messages;
 292 
 293 /* Enumeration of supported devices */
 294 enum i5000_chips {
 295         I5000P = 0,
 296         I5000V = 1,             /* future */
 297         I5000X = 2              /* future */
 298 };
 299 
 300 /* Device name and register DID (Device ID) */
 301 struct i5000_dev_info {
 302         const char *ctl_name;   /* name for this device */
 303         u16 fsb_mapping_errors; /* DID for the branchmap,control */
 304 };
 305 
 306 /* Table of devices attributes supported by this driver */
 307 static const struct i5000_dev_info i5000_devs[] = {
 308         [I5000P] = {
 309                 .ctl_name = "I5000",
 310                 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
 311         },
 312 };
 313 
 314 struct i5000_dimm_info {
 315         int megabytes;          /* size, 0 means not present  */
 316         int dual_rank;
 317 };
 318 
 319 #define MAX_CHANNELS    6       /* max possible channels */
 320 #define MAX_CSROWS      (8*2)   /* max possible csrows per channel */
 321 
 322 /* driver private data structure */
 323 struct i5000_pvt {
 324         struct pci_dev *system_address; /* 16.0 */
 325         struct pci_dev *branchmap_werrors;      /* 16.1 */
 326         struct pci_dev *fsb_error_regs; /* 16.2 */
 327         struct pci_dev *branch_0;       /* 21.0 */
 328         struct pci_dev *branch_1;       /* 22.0 */
 329 
 330         u16 tolm;               /* top of low memory */
 331         union {
 332                 u64 ambase;             /* AMB BAR */
 333                 struct {
 334                         u32 ambase_bottom;
 335                         u32 ambase_top;
 336                 } u __packed;
 337         };
 338 
 339         u16 mir0, mir1, mir2;
 340 
 341         u16 b0_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
 342         u16 b0_ambpresent0;     /* Branch 0, Channel 0 */
 343         u16 b0_ambpresent1;     /* Brnach 0, Channel 1 */
 344 
 345         u16 b1_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
 346         u16 b1_ambpresent0;     /* Branch 1, Channel 8 */
 347         u16 b1_ambpresent1;     /* Branch 1, Channel 1 */
 348 
 349         /* DIMM information matrix, allocating architecture maximums */
 350         struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
 351 
 352         /* Actual values for this controller */
 353         int maxch;              /* Max channels */
 354         int maxdimmperch;       /* Max DIMMs per channel */
 355 };
 356 
 357 /* I5000 MCH error information retrieved from Hardware */
 358 struct i5000_error_info {
 359 
 360         /* These registers are always read from the MC */
 361         u32 ferr_fat_fbd;       /* First Errors Fatal */
 362         u32 nerr_fat_fbd;       /* Next Errors Fatal */
 363         u32 ferr_nf_fbd;        /* First Errors Non-Fatal */
 364         u32 nerr_nf_fbd;        /* Next Errors Non-Fatal */
 365 
 366         /* These registers are input ONLY if there was a Recoverable  Error */
 367         u32 redmemb;            /* Recoverable Mem Data Error log B */
 368         u16 recmema;            /* Recoverable Mem Error log A */
 369         u32 recmemb;            /* Recoverable Mem Error log B */
 370 
 371         /* These registers are input ONLY if there was a
 372          * Non-Recoverable Error */
 373         u16 nrecmema;           /* Non-Recoverable Mem log A */
 374         u32 nrecmemb;           /* Non-Recoverable Mem log B */
 375 
 376 };
 377 
 378 static struct edac_pci_ctl_info *i5000_pci;
 379 
 380 /*
 381  *      i5000_get_error_info    Retrieve the hardware error information from
 382  *                              the hardware and cache it in the 'info'
 383  *                              structure
 384  */
 385 static void i5000_get_error_info(struct mem_ctl_info *mci,
 386                                  struct i5000_error_info *info)
 387 {
 388         struct i5000_pvt *pvt;
 389         u32 value;
 390 
 391         pvt = mci->pvt_info;
 392 
 393         /* read in the 1st FATAL error register */
 394         pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
 395 
 396         /* Mask only the bits that the doc says are valid
 397          */
 398         value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
 399 
 400         /* If there is an error, then read in the */
 401         /* NEXT FATAL error register and the Memory Error Log Register A */
 402         if (value & FERR_FAT_MASK) {
 403                 info->ferr_fat_fbd = value;
 404 
 405                 /* harvest the various error data we need */
 406                 pci_read_config_dword(pvt->branchmap_werrors,
 407                                 NERR_FAT_FBD, &info->nerr_fat_fbd);
 408                 pci_read_config_word(pvt->branchmap_werrors,
 409                                 NRECMEMA, &info->nrecmema);
 410                 pci_read_config_dword(pvt->branchmap_werrors,
 411                                 NRECMEMB, &info->nrecmemb);
 412 
 413                 /* Clear the error bits, by writing them back */
 414                 pci_write_config_dword(pvt->branchmap_werrors,
 415                                 FERR_FAT_FBD, value);
 416         } else {
 417                 info->ferr_fat_fbd = 0;
 418                 info->nerr_fat_fbd = 0;
 419                 info->nrecmema = 0;
 420                 info->nrecmemb = 0;
 421         }
 422 
 423         /* read in the 1st NON-FATAL error register */
 424         pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
 425 
 426         /* If there is an error, then read in the 1st NON-FATAL error
 427          * register as well */
 428         if (value & FERR_NF_MASK) {
 429                 info->ferr_nf_fbd = value;
 430 
 431                 /* harvest the various error data we need */
 432                 pci_read_config_dword(pvt->branchmap_werrors,
 433                                 NERR_NF_FBD, &info->nerr_nf_fbd);
 434                 pci_read_config_word(pvt->branchmap_werrors,
 435                                 RECMEMA, &info->recmema);
 436                 pci_read_config_dword(pvt->branchmap_werrors,
 437                                 RECMEMB, &info->recmemb);
 438                 pci_read_config_dword(pvt->branchmap_werrors,
 439                                 REDMEMB, &info->redmemb);
 440 
 441                 /* Clear the error bits, by writing them back */
 442                 pci_write_config_dword(pvt->branchmap_werrors,
 443                                 FERR_NF_FBD, value);
 444         } else {
 445                 info->ferr_nf_fbd = 0;
 446                 info->nerr_nf_fbd = 0;
 447                 info->recmema = 0;
 448                 info->recmemb = 0;
 449                 info->redmemb = 0;
 450         }
 451 }
 452 
 453 /*
 454  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 455  *                                      struct i5000_error_info *info,
 456  *                                      int handle_errors);
 457  *
 458  *      handle the Intel FATAL errors, if any
 459  */
 460 static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 461                                         struct i5000_error_info *info,
 462                                         int handle_errors)
 463 {
 464         char msg[EDAC_MC_LABEL_LEN + 1 + 160];
 465         char *specific = NULL;
 466         u32 allErrors;
 467         int channel;
 468         int bank;
 469         int rank;
 470         int rdwr;
 471         int ras, cas;
 472 
 473         /* mask off the Error bits that are possible */
 474         allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
 475         if (!allErrors)
 476                 return;         /* if no error, return now */
 477 
 478         channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
 479 
 480         /* Use the NON-Recoverable macros to extract data */
 481         bank = NREC_BANK(info->nrecmema);
 482         rank = NREC_RANK(info->nrecmema);
 483         rdwr = NREC_RDWR(info->nrecmema);
 484         ras = NREC_RAS(info->nrecmemb);
 485         cas = NREC_CAS(info->nrecmemb);
 486 
 487         edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 488                  rank, channel, bank,
 489                  rdwr ? "Write" : "Read", ras, cas);
 490 
 491         /* Only 1 bit will be on */
 492         switch (allErrors) {
 493         case FERR_FAT_M1ERR:
 494                 specific = "Alert on non-redundant retry or fast "
 495                                 "reset timeout";
 496                 break;
 497         case FERR_FAT_M2ERR:
 498                 specific = "Northbound CRC error on non-redundant "
 499                                 "retry";
 500                 break;
 501         case FERR_FAT_M3ERR:
 502                 {
 503                 static int done;
 504 
 505                 /*
 506                  * This error is generated to inform that the intelligent
 507                  * throttling is disabled and the temperature passed the
 508                  * specified middle point. Since this is something the BIOS
 509                  * should take care of, we'll warn only once to avoid
 510                  * worthlessly flooding the log.
 511                  */
 512                 if (done)
 513                         return;
 514                 done++;
 515 
 516                 specific = ">Tmid Thermal event with intelligent "
 517                            "throttling disabled";
 518                 }
 519                 break;
 520         }
 521 
 522         /* Form out message */
 523         snprintf(msg, sizeof(msg),
 524                  "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
 525                  bank, ras, cas, allErrors, specific);
 526 
 527         /* Call the helper to output message */
 528         edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
 529                              channel >> 1, channel & 1, rank,
 530                              rdwr ? "Write error" : "Read error",
 531                              msg);
 532 }
 533 
 534 /*
 535  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 536  *                              struct i5000_error_info *info,
 537  *                              int handle_errors);
 538  *
 539  *      handle the Intel NON-FATAL errors, if any
 540  */
 541 static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
 542                                         struct i5000_error_info *info,
 543                                         int handle_errors)
 544 {
 545         char msg[EDAC_MC_LABEL_LEN + 1 + 170];
 546         char *specific = NULL;
 547         u32 allErrors;
 548         u32 ue_errors;
 549         u32 ce_errors;
 550         u32 misc_errors;
 551         int branch;
 552         int channel;
 553         int bank;
 554         int rank;
 555         int rdwr;
 556         int ras, cas;
 557 
 558         /* mask off the Error bits that are possible */
 559         allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
 560         if (!allErrors)
 561                 return;         /* if no error, return now */
 562 
 563         /* ONLY ONE of the possible error bits will be set, as per the docs */
 564         ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
 565         if (ue_errors) {
 566                 edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
 567 
 568                 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 569 
 570                 /*
 571                  * According with i5000 datasheet, bit 28 has no significance
 572                  * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
 573                  */
 574                 channel = branch & 2;
 575 
 576                 bank = NREC_BANK(info->nrecmema);
 577                 rank = NREC_RANK(info->nrecmema);
 578                 rdwr = NREC_RDWR(info->nrecmema);
 579                 ras = NREC_RAS(info->nrecmemb);
 580                 cas = NREC_CAS(info->nrecmemb);
 581 
 582                 edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 583                          rank, channel, channel + 1, branch >> 1, bank,
 584                          rdwr ? "Write" : "Read", ras, cas);
 585 
 586                 switch (ue_errors) {
 587                 case FERR_NF_M12ERR:
 588                         specific = "Non-Aliased Uncorrectable Patrol Data ECC";
 589                         break;
 590                 case FERR_NF_M11ERR:
 591                         specific = "Non-Aliased Uncorrectable Spare-Copy "
 592                                         "Data ECC";
 593                         break;
 594                 case FERR_NF_M10ERR:
 595                         specific = "Non-Aliased Uncorrectable Mirrored Demand "
 596                                         "Data ECC";
 597                         break;
 598                 case FERR_NF_M9ERR:
 599                         specific = "Non-Aliased Uncorrectable Non-Mirrored "
 600                                         "Demand Data ECC";
 601                         break;
 602                 case FERR_NF_M8ERR:
 603                         specific = "Aliased Uncorrectable Patrol Data ECC";
 604                         break;
 605                 case FERR_NF_M7ERR:
 606                         specific = "Aliased Uncorrectable Spare-Copy Data ECC";
 607                         break;
 608                 case FERR_NF_M6ERR:
 609                         specific = "Aliased Uncorrectable Mirrored Demand "
 610                                         "Data ECC";
 611                         break;
 612                 case FERR_NF_M5ERR:
 613                         specific = "Aliased Uncorrectable Non-Mirrored Demand "
 614                                         "Data ECC";
 615                         break;
 616                 case FERR_NF_M4ERR:
 617                         specific = "Uncorrectable Data ECC on Replay";
 618                         break;
 619                 }
 620 
 621                 /* Form out message */
 622                 snprintf(msg, sizeof(msg),
 623                          "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
 624                          rank, bank, ras, cas, ue_errors, specific);
 625 
 626                 /* Call the helper to output message */
 627                 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
 628                                 channel >> 1, -1, rank,
 629                                 rdwr ? "Write error" : "Read error",
 630                                 msg);
 631         }
 632 
 633         /* Check correctable errors */
 634         ce_errors = allErrors & FERR_NF_CORRECTABLE;
 635         if (ce_errors) {
 636                 edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
 637 
 638                 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 639 
 640                 channel = 0;
 641                 if (REC_ECC_LOCATOR_ODD(info->redmemb))
 642                         channel = 1;
 643 
 644                 /* Convert channel to be based from zero, instead of
 645                  * from branch base of 0 */
 646                 channel += branch;
 647 
 648                 bank = REC_BANK(info->recmema);
 649                 rank = REC_RANK(info->recmema);
 650                 rdwr = REC_RDWR(info->recmema);
 651                 ras = REC_RAS(info->recmemb);
 652                 cas = REC_CAS(info->recmemb);
 653 
 654                 edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 655                          rank, channel, branch >> 1, bank,
 656                          rdwr ? "Write" : "Read", ras, cas);
 657 
 658                 switch (ce_errors) {
 659                 case FERR_NF_M17ERR:
 660                         specific = "Correctable Non-Mirrored Demand Data ECC";
 661                         break;
 662                 case FERR_NF_M18ERR:
 663                         specific = "Correctable Mirrored Demand Data ECC";
 664                         break;
 665                 case FERR_NF_M19ERR:
 666                         specific = "Correctable Spare-Copy Data ECC";
 667                         break;
 668                 case FERR_NF_M20ERR:
 669                         specific = "Correctable Patrol Data ECC";
 670                         break;
 671                 }
 672 
 673                 /* Form out message */
 674                 snprintf(msg, sizeof(msg),
 675                          "Rank=%d Bank=%d RDWR=%s RAS=%d "
 676                          "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
 677                          rdwr ? "Write" : "Read", ras, cas, ce_errors,
 678                          specific);
 679 
 680                 /* Call the helper to output message */
 681                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 682                                 channel >> 1, channel % 2, rank,
 683                                 rdwr ? "Write error" : "Read error",
 684                                 msg);
 685         }
 686 
 687         if (!misc_messages)
 688                 return;
 689 
 690         misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
 691                                    FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
 692         if (misc_errors) {
 693                 switch (misc_errors) {
 694                 case FERR_NF_M13ERR:
 695                         specific = "Non-Retry or Redundant Retry FBD Memory "
 696                                         "Alert or Redundant Fast Reset Timeout";
 697                         break;
 698                 case FERR_NF_M14ERR:
 699                         specific = "Non-Retry or Redundant Retry FBD "
 700                                         "Configuration Alert";
 701                         break;
 702                 case FERR_NF_M15ERR:
 703                         specific = "Non-Retry or Redundant Retry FBD "
 704                                         "Northbound CRC error on read data";
 705                         break;
 706                 case FERR_NF_M21ERR:
 707                         specific = "FBD Northbound CRC error on "
 708                                         "FBD Sync Status";
 709                         break;
 710                 case FERR_NF_M22ERR:
 711                         specific = "SPD protocol error";
 712                         break;
 713                 case FERR_NF_M27ERR:
 714                         specific = "DIMM-spare copy started";
 715                         break;
 716                 case FERR_NF_M28ERR:
 717                         specific = "DIMM-spare copy completed";
 718                         break;
 719                 }
 720                 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 721 
 722                 /* Form out message */
 723                 snprintf(msg, sizeof(msg),
 724                          "Err=%#x (%s)", misc_errors, specific);
 725 
 726                 /* Call the helper to output message */
 727                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 728                                 branch >> 1, -1, -1,
 729                                 "Misc error", msg);
 730         }
 731 }
 732 
 733 /*
 734  *      i5000_process_error_info        Process the error info that is
 735  *      in the 'info' structure, previously retrieved from hardware
 736  */
 737 static void i5000_process_error_info(struct mem_ctl_info *mci,
 738                                 struct i5000_error_info *info,
 739                                 int handle_errors)
 740 {
 741         /* First handle any fatal errors that occurred */
 742         i5000_process_fatal_error_info(mci, info, handle_errors);
 743 
 744         /* now handle any non-fatal errors that occurred */
 745         i5000_process_nonfatal_error_info(mci, info, handle_errors);
 746 }
 747 
 748 /*
 749  *      i5000_clear_error       Retrieve any error from the hardware
 750  *                              but do NOT process that error.
 751  *                              Used for 'clearing' out of previous errors
 752  *                              Called by the Core module.
 753  */
 754 static void i5000_clear_error(struct mem_ctl_info *mci)
 755 {
 756         struct i5000_error_info info;
 757 
 758         i5000_get_error_info(mci, &info);
 759 }
 760 
 761 /*
 762  *      i5000_check_error       Retrieve and process errors reported by the
 763  *                              hardware. Called by the Core module.
 764  */
 765 static void i5000_check_error(struct mem_ctl_info *mci)
 766 {
 767         struct i5000_error_info info;
 768         edac_dbg(4, "MC%d\n", mci->mc_idx);
 769         i5000_get_error_info(mci, &info);
 770         i5000_process_error_info(mci, &info, 1);
 771 }
 772 
 773 /*
 774  *      i5000_get_devices       Find and perform 'get' operation on the MCH's
 775  *                      device/functions we want to reference for this driver
 776  *
 777  *                      Need to 'get' device 16 func 1 and func 2
 778  */
 779 static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
 780 {
 781         //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
 782         struct i5000_pvt *pvt;
 783         struct pci_dev *pdev;
 784 
 785         pvt = mci->pvt_info;
 786 
 787         /* Attempt to 'get' the MCH register we want */
 788         pdev = NULL;
 789         while (1) {
 790                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 791                                 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 792 
 793                 /* End of list, leave */
 794                 if (pdev == NULL) {
 795                         i5000_printk(KERN_ERR,
 796                                 "'system address,Process Bus' "
 797                                 "device not found:"
 798                                 "vendor 0x%x device 0x%x FUNC 1 "
 799                                 "(broken BIOS?)\n",
 800                                 PCI_VENDOR_ID_INTEL,
 801                                 PCI_DEVICE_ID_INTEL_I5000_DEV16);
 802 
 803                         return 1;
 804                 }
 805 
 806                 /* Scan for device 16 func 1 */
 807                 if (PCI_FUNC(pdev->devfn) == 1)
 808                         break;
 809         }
 810 
 811         pvt->branchmap_werrors = pdev;
 812 
 813         /* Attempt to 'get' the MCH register we want */
 814         pdev = NULL;
 815         while (1) {
 816                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 817                                 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 818 
 819                 if (pdev == NULL) {
 820                         i5000_printk(KERN_ERR,
 821                                 "MC: 'branchmap,control,errors' "
 822                                 "device not found:"
 823                                 "vendor 0x%x device 0x%x Func 2 "
 824                                 "(broken BIOS?)\n",
 825                                 PCI_VENDOR_ID_INTEL,
 826                                 PCI_DEVICE_ID_INTEL_I5000_DEV16);
 827 
 828                         pci_dev_put(pvt->branchmap_werrors);
 829                         return 1;
 830                 }
 831 
 832                 /* Scan for device 16 func 1 */
 833                 if (PCI_FUNC(pdev->devfn) == 2)
 834                         break;
 835         }
 836 
 837         pvt->fsb_error_regs = pdev;
 838 
 839         edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 840                  pci_name(pvt->system_address),
 841                  pvt->system_address->vendor, pvt->system_address->device);
 842         edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 843                  pci_name(pvt->branchmap_werrors),
 844                  pvt->branchmap_werrors->vendor,
 845                  pvt->branchmap_werrors->device);
 846         edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 847                  pci_name(pvt->fsb_error_regs),
 848                  pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
 849 
 850         pdev = NULL;
 851         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 852                         PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
 853 
 854         if (pdev == NULL) {
 855                 i5000_printk(KERN_ERR,
 856                         "MC: 'BRANCH 0' device not found:"
 857                         "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 858                         PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
 859 
 860                 pci_dev_put(pvt->branchmap_werrors);
 861                 pci_dev_put(pvt->fsb_error_regs);
 862                 return 1;
 863         }
 864 
 865         pvt->branch_0 = pdev;
 866 
 867         /* If this device claims to have more than 2 channels then
 868          * fetch Branch 1's information
 869          */
 870         if (pvt->maxch >= CHANNELS_PER_BRANCH) {
 871                 pdev = NULL;
 872                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 873                                 PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
 874 
 875                 if (pdev == NULL) {
 876                         i5000_printk(KERN_ERR,
 877                                 "MC: 'BRANCH 1' device not found:"
 878                                 "vendor 0x%x device 0x%x Func 0 "
 879                                 "(broken BIOS?)\n",
 880                                 PCI_VENDOR_ID_INTEL,
 881                                 PCI_DEVICE_ID_I5000_BRANCH_1);
 882 
 883                         pci_dev_put(pvt->branchmap_werrors);
 884                         pci_dev_put(pvt->fsb_error_regs);
 885                         pci_dev_put(pvt->branch_0);
 886                         return 1;
 887                 }
 888 
 889                 pvt->branch_1 = pdev;
 890         }
 891 
 892         return 0;
 893 }
 894 
 895 /*
 896  *      i5000_put_devices       'put' all the devices that we have
 897  *                              reserved via 'get'
 898  */
 899 static void i5000_put_devices(struct mem_ctl_info *mci)
 900 {
 901         struct i5000_pvt *pvt;
 902 
 903         pvt = mci->pvt_info;
 904 
 905         pci_dev_put(pvt->branchmap_werrors);    /* FUNC 1 */
 906         pci_dev_put(pvt->fsb_error_regs);       /* FUNC 2 */
 907         pci_dev_put(pvt->branch_0);     /* DEV 21 */
 908 
 909         /* Only if more than 2 channels do we release the second branch */
 910         if (pvt->maxch >= CHANNELS_PER_BRANCH)
 911                 pci_dev_put(pvt->branch_1);     /* DEV 22 */
 912 }
 913 
 914 /*
 915  *      determine_amb_resent
 916  *
 917  *              the information is contained in NUM_MTRS different registers
 918  *              determineing which of the NUM_MTRS requires knowing
 919  *              which channel is in question
 920  *
 921  *      2 branches, each with 2 channels
 922  *              b0_ambpresent0 for channel '0'
 923  *              b0_ambpresent1 for channel '1'
 924  *              b1_ambpresent0 for channel '2'
 925  *              b1_ambpresent1 for channel '3'
 926  */
 927 static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
 928 {
 929         int amb_present;
 930 
 931         if (channel < CHANNELS_PER_BRANCH) {
 932                 if (channel & 0x1)
 933                         amb_present = pvt->b0_ambpresent1;
 934                 else
 935                         amb_present = pvt->b0_ambpresent0;
 936         } else {
 937                 if (channel & 0x1)
 938                         amb_present = pvt->b1_ambpresent1;
 939                 else
 940                         amb_present = pvt->b1_ambpresent0;
 941         }
 942 
 943         return amb_present;
 944 }
 945 
 946 /*
 947  * determine_mtr(pvt, csrow, channel)
 948  *
 949  *      return the proper MTR register as determine by the csrow and channel desired
 950  */
 951 static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
 952 {
 953         int mtr;
 954 
 955         if (channel < CHANNELS_PER_BRANCH)
 956                 mtr = pvt->b0_mtr[slot];
 957         else
 958                 mtr = pvt->b1_mtr[slot];
 959 
 960         return mtr;
 961 }
 962 
 963 /*
 964  */
 965 static void decode_mtr(int slot_row, u16 mtr)
 966 {
 967         int ans;
 968 
 969         ans = MTR_DIMMS_PRESENT(mtr);
 970 
 971         edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
 972                  slot_row, mtr, ans ? "" : "NOT ");
 973         if (!ans)
 974                 return;
 975 
 976         edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 977         edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 978         edac_dbg(2, "\t\tNUMRANK: %s\n",
 979                  MTR_DIMM_RANK(mtr) ? "double" : "single");
 980         edac_dbg(2, "\t\tNUMROW: %s\n",
 981                  MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
 982                  MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
 983                  MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
 984                  "reserved");
 985         edac_dbg(2, "\t\tNUMCOL: %s\n",
 986                  MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
 987                  MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
 988                  MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
 989                  "reserved");
 990 }
 991 
 992 static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
 993                         struct i5000_dimm_info *dinfo)
 994 {
 995         int mtr;
 996         int amb_present_reg;
 997         int addrBits;
 998 
 999         mtr = determine_mtr(pvt, slot, channel);
1000         if (MTR_DIMMS_PRESENT(mtr)) {
1001                 amb_present_reg = determine_amb_present_reg(pvt, channel);
1002 
1003                 /* Determine if there is a DIMM present in this DIMM slot */
1004                 if (amb_present_reg) {
1005                         dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1006 
1007                         /* Start with the number of bits for a Bank
1008                                 * on the DRAM */
1009                         addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1010                         /* Add the number of ROW bits */
1011                         addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1012                         /* add the number of COLUMN bits */
1013                         addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1014 
1015                         /* Dual-rank memories have twice the size */
1016                         if (dinfo->dual_rank)
1017                                 addrBits++;
1018 
1019                         addrBits += 6;  /* add 64 bits per DIMM */
1020                         addrBits -= 20; /* divide by 2^^20 */
1021                         addrBits -= 3;  /* 8 bits per bytes */
1022 
1023                         dinfo->megabytes = 1 << addrBits;
1024                 }
1025         }
1026 }
1027 
1028 /*
1029  *      calculate_dimm_size
1030  *
1031  *      also will output a DIMM matrix map, if debug is enabled, for viewing
1032  *      how the DIMMs are populated
1033  */
1034 static void calculate_dimm_size(struct i5000_pvt *pvt)
1035 {
1036         struct i5000_dimm_info *dinfo;
1037         int slot, channel, branch;
1038         char *p, *mem_buffer;
1039         int space, n;
1040 
1041         /* ================= Generate some debug output ================= */
1042         space = PAGE_SIZE;
1043         mem_buffer = p = kmalloc(space, GFP_KERNEL);
1044         if (p == NULL) {
1045                 i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046                         __FILE__, __func__);
1047                 return;
1048         }
1049 
1050         /* Scan all the actual slots
1051          * and calculate the information for each DIMM
1052          * Start with the highest slot first, to display it first
1053          * and work toward the 0th slot
1054          */
1055         for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056 
1057                 /* on an odd slot, first output a 'boundary' marker,
1058                  * then reset the message buffer  */
1059                 if (slot & 0x1) {
1060                         n = snprintf(p, space, "--------------------------"
1061                                 "--------------------------------");
1062                         p += n;
1063                         space -= n;
1064                         edac_dbg(2, "%s\n", mem_buffer);
1065                         p = mem_buffer;
1066                         space = PAGE_SIZE;
1067                 }
1068                 n = snprintf(p, space, "slot %2d    ", slot);
1069                 p += n;
1070                 space -= n;
1071 
1072                 for (channel = 0; channel < pvt->maxch; channel++) {
1073                         dinfo = &pvt->dimm_info[slot][channel];
1074                         handle_channel(pvt, slot, channel, dinfo);
1075                         if (dinfo->megabytes)
1076                                 n = snprintf(p, space, "%4d MB %dR| ",
1077                                              dinfo->megabytes, dinfo->dual_rank + 1);
1078                         else
1079                                 n = snprintf(p, space, "%4d MB   | ", 0);
1080                         p += n;
1081                         space -= n;
1082                 }
1083                 p += n;
1084                 space -= n;
1085                 edac_dbg(2, "%s\n", mem_buffer);
1086                 p = mem_buffer;
1087                 space = PAGE_SIZE;
1088         }
1089 
1090         /* Output the last bottom 'boundary' marker */
1091         n = snprintf(p, space, "--------------------------"
1092                 "--------------------------------");
1093         p += n;
1094         space -= n;
1095         edac_dbg(2, "%s\n", mem_buffer);
1096         p = mem_buffer;
1097         space = PAGE_SIZE;
1098 
1099         /* now output the 'channel' labels */
1100         n = snprintf(p, space, "           ");
1101         p += n;
1102         space -= n;
1103         for (channel = 0; channel < pvt->maxch; channel++) {
1104                 n = snprintf(p, space, "channel %d | ", channel);
1105                 p += n;
1106                 space -= n;
1107         }
1108         edac_dbg(2, "%s\n", mem_buffer);
1109         p = mem_buffer;
1110         space = PAGE_SIZE;
1111 
1112         n = snprintf(p, space, "           ");
1113         p += n;
1114         for (branch = 0; branch < MAX_BRANCHES; branch++) {
1115                 n = snprintf(p, space, "       branch %d       | ", branch);
1116                 p += n;
1117                 space -= n;
1118         }
1119 
1120         /* output the last message and free buffer */
1121         edac_dbg(2, "%s\n", mem_buffer);
1122         kfree(mem_buffer);
1123 }
1124 
1125 /*
1126  *      i5000_get_mc_regs       read in the necessary registers and
1127  *                              cache locally
1128  *
1129  *                      Fills in the private data members
1130  */
1131 static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1132 {
1133         struct i5000_pvt *pvt;
1134         u32 actual_tolm;
1135         u16 limit;
1136         int slot_row;
1137         int way0, way1;
1138 
1139         pvt = mci->pvt_info;
1140 
1141         pci_read_config_dword(pvt->system_address, AMBASE,
1142                         &pvt->u.ambase_bottom);
1143         pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1144                         &pvt->u.ambase_top);
1145 
1146         edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1147                  (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1148 
1149         /* Get the Branch Map regs */
1150         pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1151         pvt->tolm >>= 12;
1152         edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
1153                  pvt->tolm, pvt->tolm);
1154 
1155         actual_tolm = pvt->tolm << 28;
1156         edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
1157                  actual_tolm, actual_tolm);
1158 
1159         pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1160         pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1161         pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1162 
1163         /* Get the MIR[0-2] regs */
1164         limit = (pvt->mir0 >> 4) & 0x0FFF;
1165         way0 = pvt->mir0 & 0x1;
1166         way1 = pvt->mir0 & 0x2;
1167         edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1168                  limit, way1, way0);
1169         limit = (pvt->mir1 >> 4) & 0x0FFF;
1170         way0 = pvt->mir1 & 0x1;
1171         way1 = pvt->mir1 & 0x2;
1172         edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1173                  limit, way1, way0);
1174         limit = (pvt->mir2 >> 4) & 0x0FFF;
1175         way0 = pvt->mir2 & 0x1;
1176         way1 = pvt->mir2 & 0x2;
1177         edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1178                  limit, way1, way0);
1179 
1180         /* Get the MTR[0-3] regs */
1181         for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1182                 int where = MTR0 + (slot_row * sizeof(u32));
1183 
1184                 pci_read_config_word(pvt->branch_0, where,
1185                                 &pvt->b0_mtr[slot_row]);
1186 
1187                 edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1188                          slot_row, where, pvt->b0_mtr[slot_row]);
1189 
1190                 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1191                         pci_read_config_word(pvt->branch_1, where,
1192                                         &pvt->b1_mtr[slot_row]);
1193                         edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1194                                  slot_row, where, pvt->b1_mtr[slot_row]);
1195                 } else {
1196                         pvt->b1_mtr[slot_row] = 0;
1197                 }
1198         }
1199 
1200         /* Read and dump branch 0's MTRs */
1201         edac_dbg(2, "Memory Technology Registers:\n");
1202         edac_dbg(2, "   Branch 0:\n");
1203         for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1204                 decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1205         }
1206         pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1207                         &pvt->b0_ambpresent0);
1208         edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1209         pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1210                         &pvt->b0_ambpresent1);
1211         edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1212 
1213         /* Only if we have 2 branchs (4 channels) */
1214         if (pvt->maxch < CHANNELS_PER_BRANCH) {
1215                 pvt->b1_ambpresent0 = 0;
1216                 pvt->b1_ambpresent1 = 0;
1217         } else {
1218                 /* Read and dump  branch 1's MTRs */
1219                 edac_dbg(2, "   Branch 1:\n");
1220                 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1221                         decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1222                 }
1223                 pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1224                                 &pvt->b1_ambpresent0);
1225                 edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1226                          pvt->b1_ambpresent0);
1227                 pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1228                                 &pvt->b1_ambpresent1);
1229                 edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1230                          pvt->b1_ambpresent1);
1231         }
1232 
1233         /* Go and determine the size of each DIMM and place in an
1234          * orderly matrix */
1235         calculate_dimm_size(pvt);
1236 }
1237 
1238 /*
1239  *      i5000_init_csrows       Initialize the 'csrows' table within
1240  *                              the mci control structure with the
1241  *                              addressing of memory.
1242  *
1243  *      return:
1244  *              0       success
1245  *              1       no actual memory found on this MC
1246  */
1247 static int i5000_init_csrows(struct mem_ctl_info *mci)
1248 {
1249         struct i5000_pvt *pvt;
1250         struct dimm_info *dimm;
1251         int empty;
1252         int max_csrows;
1253         int mtr;
1254         int csrow_megs;
1255         int channel;
1256         int slot;
1257 
1258         pvt = mci->pvt_info;
1259         max_csrows = pvt->maxdimmperch * 2;
1260 
1261         empty = 1;              /* Assume NO memory */
1262 
1263         /*
1264          * FIXME: The memory layout used to map slot/channel into the
1265          * real memory architecture is weird: branch+slot are "csrows"
1266          * and channel is channel. That required an extra array (dimm_info)
1267          * to map the dimms. A good cleanup would be to remove this array,
1268          * and do a loop here with branch, channel, slot
1269          */
1270         for (slot = 0; slot < max_csrows; slot++) {
1271                 for (channel = 0; channel < pvt->maxch; channel++) {
1272 
1273                         mtr = determine_mtr(pvt, slot, channel);
1274 
1275                         if (!MTR_DIMMS_PRESENT(mtr))
1276                                 continue;
1277 
1278                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1279                                        channel / MAX_BRANCHES,
1280                                        channel % MAX_BRANCHES, slot);
1281 
1282                         csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1283                         dimm->grain = 8;
1284 
1285                         /* Assume DDR2 for now */
1286                         dimm->mtype = MEM_FB_DDR2;
1287 
1288                         /* ask what device type on this row */
1289                         if (MTR_DRAM_WIDTH(mtr) == 8)
1290                                 dimm->dtype = DEV_X8;
1291                         else
1292                                 dimm->dtype = DEV_X4;
1293 
1294                         dimm->edac_mode = EDAC_S8ECD8ED;
1295                         dimm->nr_pages = csrow_megs << 8;
1296                 }
1297 
1298                 empty = 0;
1299         }
1300 
1301         return empty;
1302 }
1303 
1304 /*
1305  *      i5000_enable_error_reporting
1306  *                      Turn on the memory reporting features of the hardware
1307  */
1308 static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1309 {
1310         struct i5000_pvt *pvt;
1311         u32 fbd_error_mask;
1312 
1313         pvt = mci->pvt_info;
1314 
1315         /* Read the FBD Error Mask Register */
1316         pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1317                         &fbd_error_mask);
1318 
1319         /* Enable with a '0' */
1320         fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1321 
1322         pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1323                         fbd_error_mask);
1324 }
1325 
1326 /*
1327  * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1328  *
1329  *      ask the device how many channels are present and how many CSROWS
1330  *       as well
1331  */
1332 static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1333                                         int *num_dimms_per_channel,
1334                                         int *num_channels)
1335 {
1336         u8 value;
1337 
1338         /* Need to retrieve just how many channels and dimms per channel are
1339          * supported on this memory controller
1340          */
1341         pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1342         *num_dimms_per_channel = (int)value;
1343 
1344         pci_read_config_byte(pdev, MAXCH, &value);
1345         *num_channels = (int)value;
1346 }
1347 
1348 /*
1349  *      i5000_probe1    Probe for ONE instance of device to see if it is
1350  *                      present.
1351  *      return:
1352  *              0 for FOUND a device
1353  *              < 0 for error code
1354  */
1355 static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1356 {
1357         struct mem_ctl_info *mci;
1358         struct edac_mc_layer layers[3];
1359         struct i5000_pvt *pvt;
1360         int num_channels;
1361         int num_dimms_per_channel;
1362 
1363         edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1364                  pdev->bus->number,
1365                  PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1366 
1367         /* We only are looking for func 0 of the set */
1368         if (PCI_FUNC(pdev->devfn) != 0)
1369                 return -ENODEV;
1370 
1371         /* Ask the devices for the number of CSROWS and CHANNELS so
1372          * that we can calculate the memory resources, etc
1373          *
1374          * The Chipset will report what it can handle which will be greater
1375          * or equal to what the motherboard manufacturer will implement.
1376          *
1377          * As we don't have a motherboard identification routine to determine
1378          * actual number of slots/dimms per channel, we thus utilize the
1379          * resource as specified by the chipset. Thus, we might have
1380          * have more DIMMs per channel than actually on the mobo, but this
1381          * allows the driver to support up to the chipset max, without
1382          * some fancy mobo determination.
1383          */
1384         i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1385                                         &num_channels);
1386 
1387         edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
1388                  num_channels, num_dimms_per_channel);
1389 
1390         /* allocate a new MC control structure */
1391 
1392         layers[0].type = EDAC_MC_LAYER_BRANCH;
1393         layers[0].size = MAX_BRANCHES;
1394         layers[0].is_virt_csrow = false;
1395         layers[1].type = EDAC_MC_LAYER_CHANNEL;
1396         layers[1].size = num_channels / MAX_BRANCHES;
1397         layers[1].is_virt_csrow = false;
1398         layers[2].type = EDAC_MC_LAYER_SLOT;
1399         layers[2].size = num_dimms_per_channel;
1400         layers[2].is_virt_csrow = true;
1401         mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1402         if (mci == NULL)
1403                 return -ENOMEM;
1404 
1405         edac_dbg(0, "MC: mci = %p\n", mci);
1406 
1407         mci->pdev = &pdev->dev; /* record ptr  to the generic device */
1408 
1409         pvt = mci->pvt_info;
1410         pvt->system_address = pdev;     /* Record this device in our private */
1411         pvt->maxch = num_channels;
1412         pvt->maxdimmperch = num_dimms_per_channel;
1413 
1414         /* 'get' the pci devices we want to reserve for our use */
1415         if (i5000_get_devices(mci, dev_idx))
1416                 goto fail0;
1417 
1418         /* Time to get serious */
1419         i5000_get_mc_regs(mci); /* retrieve the hardware registers */
1420 
1421         mci->mc_idx = 0;
1422         mci->mtype_cap = MEM_FLAG_FB_DDR2;
1423         mci->edac_ctl_cap = EDAC_FLAG_NONE;
1424         mci->edac_cap = EDAC_FLAG_NONE;
1425         mci->mod_name = "i5000_edac.c";
1426         mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1427         mci->dev_name = pci_name(pdev);
1428         mci->ctl_page_to_phys = NULL;
1429 
1430         /* Set the function pointer to an actual operation function */
1431         mci->edac_check = i5000_check_error;
1432 
1433         /* initialize the MC control structure 'csrows' table
1434          * with the mapping and control information */
1435         if (i5000_init_csrows(mci)) {
1436                 edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1437                 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1438         } else {
1439                 edac_dbg(1, "MC: Enable error reporting now\n");
1440                 i5000_enable_error_reporting(mci);
1441         }
1442 
1443         /* add this new MC control structure to EDAC's list of MCs */
1444         if (edac_mc_add_mc(mci)) {
1445                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1446                 /* FIXME: perhaps some code should go here that disables error
1447                  * reporting if we just enabled it
1448                  */
1449                 goto fail1;
1450         }
1451 
1452         i5000_clear_error(mci);
1453 
1454         /* allocating generic PCI control info */
1455         i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1456         if (!i5000_pci) {
1457                 printk(KERN_WARNING
1458                         "%s(): Unable to create PCI control\n",
1459                         __func__);
1460                 printk(KERN_WARNING
1461                         "%s(): PCI error report via EDAC not setup\n",
1462                         __func__);
1463         }
1464 
1465         return 0;
1466 
1467         /* Error exit unwinding stack */
1468 fail1:
1469 
1470         i5000_put_devices(mci);
1471 
1472 fail0:
1473         edac_mc_free(mci);
1474         return -ENODEV;
1475 }
1476 
1477 /*
1478  *      i5000_init_one  constructor for one instance of device
1479  *
1480  *      returns:
1481  *              negative on error
1482  *              count (>= 0)
1483  */
1484 static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1485 {
1486         int rc;
1487 
1488         edac_dbg(0, "MC:\n");
1489 
1490         /* wake up device */
1491         rc = pci_enable_device(pdev);
1492         if (rc)
1493                 return rc;
1494 
1495         /* now probe and enable the device */
1496         return i5000_probe1(pdev, id->driver_data);
1497 }
1498 
1499 /*
1500  *      i5000_remove_one        destructor for one instance of device
1501  *
1502  */
1503 static void i5000_remove_one(struct pci_dev *pdev)
1504 {
1505         struct mem_ctl_info *mci;
1506 
1507         edac_dbg(0, "\n");
1508 
1509         if (i5000_pci)
1510                 edac_pci_release_generic_ctl(i5000_pci);
1511 
1512         if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1513                 return;
1514 
1515         /* retrieve references to resources, and free those resources */
1516         i5000_put_devices(mci);
1517         edac_mc_free(mci);
1518 }
1519 
1520 /*
1521  *      pci_device_id   table for which devices we are looking for
1522  *
1523  *      The "E500P" device is the first device supported.
1524  */
1525 static const struct pci_device_id i5000_pci_tbl[] = {
1526         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1527          .driver_data = I5000P},
1528 
1529         {0,}                    /* 0 terminated list. */
1530 };
1531 
1532 MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1533 
1534 /*
1535  *      i5000_driver    pci_driver structure for this module
1536  *
1537  */
1538 static struct pci_driver i5000_driver = {
1539         .name = KBUILD_BASENAME,
1540         .probe = i5000_init_one,
1541         .remove = i5000_remove_one,
1542         .id_table = i5000_pci_tbl,
1543 };
1544 
1545 /*
1546  *      i5000_init              Module entry function
1547  *                      Try to initialize this module for its devices
1548  */
1549 static int __init i5000_init(void)
1550 {
1551         int pci_rc;
1552 
1553         edac_dbg(2, "MC:\n");
1554 
1555         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1556         opstate_init();
1557 
1558         pci_rc = pci_register_driver(&i5000_driver);
1559 
1560         return (pci_rc < 0) ? pci_rc : 0;
1561 }
1562 
1563 /*
1564  *      i5000_exit()    Module exit function
1565  *                      Unregister the driver
1566  */
1567 static void __exit i5000_exit(void)
1568 {
1569         edac_dbg(2, "MC:\n");
1570         pci_unregister_driver(&i5000_driver);
1571 }
1572 
1573 module_init(i5000_init);
1574 module_exit(i5000_exit);
1575 
1576 MODULE_LICENSE("GPL");
1577 MODULE_AUTHOR
1578     ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1579 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1580                 I5000_REVISION);
1581 
1582 module_param(edac_op_state, int, 0444);
1583 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1584 module_param(misc_messages, int, 0444);
1585 MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1586 

/* [<][>][^][v][top][bottom][index][help] */